
Proving Computational AbilityMihir Bellare� Oded GoldreichyAugust 1992(Draft)AbstractWe extend the notion of a proof of knowledge to a proof of the ability to perform some compu-tational task.

� Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500Gilman Drive, La Jolla, CA 92093. E-mail: mihir@cs.ucsd.eduy Department of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel.e-mail: oded@wisdom.weizmann.ac.il. Research was partially supported by grant No. 89-00312 from the US-IsraelBinational Science Foundation (BSF), Jerusalem, Israel. 1

2

1 MotivationWe extend the idea of proving \knowledge" of a string to encompass a notion of \proving the abilityto perform some task." Speci�cally, we wish to formalize what it means to \prove the ability tocompute a function f on some instance distribution D."Such a notion might have many uses, and two of them are described here. Suppose Alicepossess a trapdoor, t(x), to a (publically known) trapdoor permutation fx and wishes to identifyherself to Bob, by demonstrating ability to invert fx. The proof of ability should be zero-knowledgeso to prevent Bob from latter impersonating Alice. Admittingly, in this case Alice can establishher identity by directly proving, in a zero-knowledge manner, her knowledge of the trapdoor t(x)(which corresponds to the index x of fx). Still it may be cheaper to prove ability to invert fx(e.g., by using a trivial protocol in which the prover inverts fx on instances chosen by the veri�er).This is particularly valid in case Alice posseses special purpose hardware, in which the trapdooris hard-wired, making it very easy for her to invert the function on inputs of her choice. A secondapplication is for a party to prove possesion of vast computing power by conducting very di�culttasks (e.g., inverting one-way functions).2 De�nitionsFor greater generality, we will consider relations rather than functions. By a family of relations wemean a sequence fRxgx2f0;1g�, where Rx � f0; 1gjxj� f0; 1g� for each x. For simplicity we restrictour attention to polynomially bounded families; that is, we assume there is a polynomial p suchthat (z; y) 2 Rx implies jzj = jxj and jyj � p(jxj). Following the notation used in [1], we denoteRx(z) def= f y : (z; y) 2 Rx g and LRx def= f z : 9y such that (z; y) 2 Rx g. Prover and veri�er willinteract on common input x, with the goal of the interaction being for the prover to \convince"the veri�er that he has the \ability to solve Rx."We need to address the meaning of both of the phrases in quotes above. We will �rst de�newhat it means for a machine to \solve a relation" (or a family of relations), and only next will wede�ne what is a \proof of ability" to do so.The standard meaning of e�ciently solving a relation, The standard meaning of solving arelation, S � f0; 1g� � f0; 1g�, is the existence of an e�cient algorithm that, on input z, outputsy 2 S(z), called a solution to z, if such exists. This is a notion of worst case. Instead, we adopta notion of average case by which we consider a probability distribution on the inputs and requirethat the algorithm is e�cient on the average (with respect to the input distribution). An even moreliberal notion is derived by allowing the solver to ask for alternative inputs, which are generatedaccording to the same distribution (and independently of previous inputs), until it can present asolution to any of the inputs.Notation: Let S � f0; 1g�� f0; 1g�. Then dom(S) def= f z 2 f0; 1g� : S(z) 6= ; g is the domain of S.De�nition 2.1 (Solving relations) Let S � f0; 1g� � f0; 1g� be a relation, and D be a distributionon dom(S). Suppose t 2 N and let M(�) be a machine.� We say that machine M(�) solves S under D in expected t steps if, on input (z1; z2; :::; zt), witheach zi drawn independently according to D, machineM halts within expected t steps and outputsa pair (zi; y) so that y 2 S(zi). (The expectation here is over the random choices of M as wellas the t-product of the distribution D.) 3

� We say that machine M(�) strongly solves S under D in expected t steps if, on input z, drawnaccording to D, machine M halts within expected t steps with output y 2 S(z). (The expectationhere is over the random choices of M as well as the distribution D.)Conventions: If a machine has several inputs, we may �x some of them to obtain a machine on theremaining inputs. Likewise, for an oracle machine, we may �x the oracle and consider the resultingmachine. Speci�cally, suppose that the oracle machine M(�; �; �) has three inputs, then MA(x; y; �)denotes the machine with one input whose output on input z is MA(x; y; z).Let R = fRxgx2f0;1g� be a family of relations. We say that D = fDxgx2f0;1g� is an input distributionfor R if for every x, it holds that Dx is a distribution on dom(Rx). We are now ready to de�neproofs of ability to solve (repectively, ability to strongly solve) a family of relations under a familyof distributions.De�nition 2.2 (Proof of ability) LetR = fRxgx2f0;1g� be a family of relations, and D def= fDxgx2f0;1g�be an input distribution for R. Let �: f0; 1g� ! [0; 1]. We say that an interactive function, V , isa veri�er of the ability to solve (resp., strongly solve), R under D with error � if the following twoconditions hold.� non-triviality: There exists an interactive function P � so that for all x, all possible interactionsof V with P � on common input x are accepting (i.e. Pr[trP�;VDx (x)2ACCV (x)] = 1).� validity: There exists a constant c > 0 and a probabilistic oracle machine K(�; �; �) such that forevery interactive function P , every x 2 f0; 1g� and every 2 ACCV (x), machine KPx(x; ; �)satis�es the following condition:if p(x) def= Pr[trP;VDx (x) 2 ACCV (x)] > �(x) then machine KPx(x; ; �) solves (resp.,strongly solves) Rx under Dx in an expected number of steps bounded byjxjcp(x)� �(x)The oracle machine K is called an ability extractor (resp., strong ability extractor) under D.Hence an ability extractor is given a sequence of instances, each independently selected according toDx, and is supposed to output a solution to one of these instances within the speci�ed (expected)time bound. A strong ability extractor is given a single instance, selected according to Dx, and issupposed to output a solution to this instances within the speci�ed (expected) time bound.Proofs of knowledge (as per [1, De�nition 3.1]) are a special case of proofs of ability. Tojustify this claim, given a binary relation R we de�ne the family of relations R = fRxg so thatRx = f (x; y) : (x; y) 2 R g. Clearly, dom(Rx) is the singleton fxg if R(x) 6= ; and ; otherwise. LetDx be the distribution on dom(Rx) which, in the former case, assigns the entire probability massto x (and is unde�ned in the latter case). Clearly D = fDxg is an input distribution for R. It iseasy to see that if V is a veri�er of the ability to solve R under D (with error �) then V is also aknowledge verifer for R (with knowledge error �).De�nition 2.2 refers to a speci�c input distribution. Clearly, both the ability-veri�er and theability-extractor may depend on this distribution, and this dependency seems inevitable. How-ever, the dependency on the input distribution can be \uniform" in the sense that both veri�erand extractor can be �xed machines with access to a random source which generates the inputdistribution. We call such a proof of ability distribution-free.4

Convention: Let D be a family of distributions for some R, and let M be an (interactive and/ororacle) probabilistic machine. A D-source augmentation of machine M is a machine that, oninput x, in addition to the standard behaviour of M can obtain elements draw independently fromdistribution Dx (at the cost of reading them).De�nition 2.3 (Distribution-free proof of ability) Let R = fRxgx2f0;1g� be a family of relations, andlet �: f0; 1g� ! [0; 1].� We say that an interactive machine, V , is a distribution-free veri�er of the ability to solve R witherror � if for every input distribution, denoted D, for R, the D-source augmentation of machineV constitutes a veri�er of the ability to solve R under D with error �.� We say that a distribution-free veri�er of the ability to solve R (with error �) has a distribution-free ability extractor if there exists an oracle machine, K, so that the D-source augmentation ofmachine K constitutes a ability extractor under D.A de�nition of a distribution-free strong ability extractor is derived analogously.3 ExamplesTo demonstrate the above de�nitions we consider two natural examples. Both examples refer toa familty of trapdoor one-way permutations, ffxgx2f0;1g�. The string x is called the index of thepermutation fx : f0; 1gjxj 7! f0; 1gjxj. There exists an e�cient algorithm that, on input index xand argument y, returns the value fx(y). There is an e�cient algorithm that, on input index x andvalue v, returns the inverse of fx on v (i.e., f�1x (v)).Example 1: Consider a veri�er that, on common input x, sends the prover a single uniformlyselected string v 2 f0; 1gjxj, and accepts if and only if the prover answers with the inverse of vunder fx (i.e., with y satisfying fx(y) = v). We show (below) that the above veri�er is an ability-veri�er for inverting fx under the uniform distribution.Example 2: Consider a veri�er that, on common input x 2 f0; 1gn (n 2 N), sends the prover2n uniformly and indepedently selected strings, v1; :::; v2n 2 f0; 1gn, and accepts if and only ifthe prover answers with the inverse of each of these vi's under fx (i.e., with y1; :::; y2n satisfyingfx(yi) = vi, for every i). We show (below) that the above veri�er is a strong ability-veri�er forinverting fx on at least one out of 2jxj of uniformly selected instances.Proposition 3.1 The program described in Example 1 is an ability-veri�er (with error zero) forsolving R = fRxg under D = fDxg, where� Rx = f(v; y) : v = fx(y)g;� Dx is uniform over the set of all strings of length jxj.Furthermore, if the veri�er in Example 1, selects v according to an arbitrary distribution Dx, thenthe system described constitutes a distribution-free proof of ability.proof sketch: We present here only the case of uniform distribution. Consider an arbitrary, �xedprover. Let px denote the probability that the veri�er is convinced on common input x. Herethe probability space is over all choices of both the veri�er and prover. Assume, without loss ofgenerality, that px > 2�jxj, otherwise the extractor satis�es the requirement by merely exhaustivesearch. Also, we may assume that the ability-extractor \knows" px since it may estimate px inexpected time poly(x)=px by repeated experiments. Let qx(v) denote the probability that the5

veri�er is convinced conditioned on the event that it chose and sent v to the prover. Here theprobability distribution is merely over the prover's random coins (in case it is at all probabilistic).Let Vx(i) be the set of v's for which qx(v) is greater than 2�i and smaller/equal to 2�i+1. Clearly,there exists an i � jxj such that jVx(i)j2jxj > px � 2in (1)We are now ready to present the ability-extractor. Formally speaking, the extractor gets as input anindex, x, and a sequence of independently and uniformly selected jxj-bit long strings, and its task isto invert fx on one of them. However, to simplify the exposition, we prefer to think of these stringsas being chosen by the extractor. Hence, on input x, the extractor executes m def= dlog2(1=px)ecopies of the following procedure, each with a di�erent value of i 2 f1; :::;mg. The ith copy consistsof uniformly and independently selecting M def= poly(n)=(px � 2i) values, v1; :::; vM, and executingthe following sub-procedure on each of them. The sub-procedure with value vj invokes the prover'sprogram (as oracle), on input x and message vj , for poly(n) � 2i times, each time checking whetherthe prover's answer is the inverse of vj under fx. Once a positive answer is obtained, the extractorhalts with the corresponding value-inverse pair.The extractor's expected running-time is bounded above bymXi=1 poly(n)px � 2i � �poly(n) � 2i� = poly(n)pxTo evaluate the performace of the above extractor, consider the ith copy, where i satis�es Equa-tion (1). With overwhelmingly high probability (i.e., greater than 1� 2�n), one of the vj 's chosenin this copy satis�es qx � 2�i. Hence, with overwhelmingly high probability, the extractor invertsfx on this vj. The exponentially small error probabilities can be eliminated by running an exhaus-tive search algorithm (for inverting fx) in parallel to the entire algorithm described above. Theproposition follows. 2Proposition 3.2 The program described in Example 2 is a strong ability-veri�er for solving R =fRxg under D = fDxg, where� Rx = f(v1; :::; v2jxj; y) : 9i s.t. vi = fx(y)g;� Dx is uniform over the set of strings of length 2jxj2.proof sketch: As in the proof of Proposition 3.1, we consider an arbitrary �xed prover and letpx denote the probability that the veri�er is convinced on common input x. As before, we mayassume that px > 2�jxj and that the ability-extractor has a good estimate of px. Let n def= jxj, andconsider an 2n-dimentional table in which the dimensions correspond to the 2n values chosen bythe veri�er. The (v1; :::; v2n)-entry in the table equals the probability that the prover convinces theveri�er (i.e., successfuly inverts fx on v1 through v2n) conditioned on the event that the veri�ersent message (v1; :::; v2n) to the prover. The probability here is merely on the prover's randomchoices. As in the proof of Proposition 3.1, we consider a partition of these probabilities to clustersof similar magnitude. It follows that there exists an m < 2n such that at least a qx def= px � 2m=2nfraction of the entries have value greater than 2�m. We call these entries admisible. It follows thatthere exists a dimention i so that at least a 2npqx=2 > 12 of the rows in the ith dimention contain atleast qx=2n admisible entries. We call such a (m; i) pair good.We are now ready to present the strong ability-extractor. The extractor gets as input an index,x, and a uniformly chosen 2jxj2-long string v = (v1; :::; v2n), where vj 2 f0; 1gn and n= jxj. The6

extractor is suppose to �nd a solution to v, and this amounts to inverting fx on one of the vj's. Tothis end the extractor executes 8n3 copies of the following procedure, each with a di�erent triples(m; i; j), where 1 � m; i; j � 2n. The (m; i; j)th copy of the procedure tries to invert fx on vj,using the parameters i and m. Speci�cally, the (m; i; j)th copy consists of repeatedly invoking thesub-procedure Am;i on input vj , for at most bpoly(n)=(px � 2m)c times.On input v, the sub-procedure Am;i proceeds as follows.1. Selects uniformly 2n strings of length n each. These strings are denoted u1; :::; u2n;2. Invokes the (oracle to the) prover poly(n) � 2m times, each time with input x and veri�er'smessage (u1; :::; ui�1; v; ui+1; :::; u2n). The message consist of the sequence selected at step (1),except that ui is replaced by v.3. If in one of these invocations, the prover answers with a 2n-tuple (y1; :::; y2n) such that fx(yi) =v then the extractor halts with output (v; yi).Clearly, the expected running-time of the above extractor can be bounded by poly(x)=px. Toevaluate the performance of the above extractor, consider a good pair (m; i). By de�nition ofa good pair, it follows that at least one half of the rows in the ith direction contain at least�m;i def= px � 2m=(2n)2 entries on which the prover convinces the veri�er with probability at least2�m. Let us denote the set of n-bit strings corresponding to these rows by Sx. It follows that forevery v 2 Sx, the sub-procedure Am;i inverts fx on v with probability at least �i;m � 2�n. Hence,when invoking Am;i on v for poly(n)=�m;i times, with overwhelming probability (i.e., greater than1 � 2�n) we invert fx on v. The �nal observarion is that, since jSxj � 12 � 2n, the probability thatnone of 2n indepedently and uniformly selected n-bit strings hits Sx is very small (i.e., smallerthan 2�n). As in the proof of Proposition 3.1, the exponentially small error can be elliminated. Itfollows that the extractor strongly solve Rx under Dx. 2AcknowledgementsWork done while the �rst author was at the IBM T.J. Watson Research Center, New York.
7

References[1] M. Bellare and O. Goldreich, \On De�ning Proofs of Knowledge," Advances in Cryptol-ogy { Crypto 92 Proceedings, Lecture Notes in Computer Science Vol. 740, Springer-Verlag,E. Brickell, ed., 1992.[2] M. Bellare and S. Goldwasser, \New Paradigms for Digital Signatures and Message Authenti-cation based on Non-Interactive Zero-Knowledge Proofs,"Advances in Cryptology { Crypto 89Proceedings, Lecture Notes in Computer Science Vol. 435, Springer-Verlag, G. Brassard, ed.,1989.[3] G. Brassard, D. Chaum, and C. Cr�epeau, \Minimum Disclosure Proofs of knowledge," JCSS,Vol. 37, No. 2, 1988, pp. 156{189.[4] J. Boyar, C. Lund and R. Peralta, \On the Communication Complexity of Zero-KnowledgeProofs." 1989.[5] G. Brassard, C. Cr�epeau, S. Laplante and C. L�eger, \Computationally Convincing Proofs ofKnowledge," Proc. of the 8th STACS, 1991.[6] U. Feige, A. Fiat, and A. Shamir, \Zero-Knowledge Proofs of Identity", Journal of Cryptology,Vol. 1, 1988, pp. 77-94. (Preliminary version in the 19th STOC, 1987.)[7] U. Feige, and A. Shamir, \Witness Indistinguishability and Witness Hiding Protocols", Pro-ceedings of the Twenty Second Annual Symposium on the Theory of Computing, ACM, 1990.[8] Z. Galil, S. Haber, and M. Yung, \Symmetric Public-Key Encryption", Advances in Cryptol-ogy { Crypto 85 Proceedings, Lecture Notes in Computer Science Vol. 218, Springer-Verlag,H. Williams, ed., 1985.[9] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos, \On Completeness and Sound-ness in Interactive Proof Systems", Advances in Computing Research: a research annual, Vol.5 (S. Micali, ed.), pp. 429-442, 1989.[10] O. Goldreich, \A Uniform-Complexity Treatment of Encryption and Zero-Knowledge", J. ofCryptology, Vol. 6, No. 1, 1993.[11] O. Goldreich, and H. Krawczyk, \On Sequential and Parallel Composition of Zero-KnowledgeProtocols", Proceedings of ICALP 90, Lecture Notes in Computer Science Vol. 443, SpringerVerlag, 1990.[12] O. Goldreich, S. Micali, and A. Wigderson, \Proofs that Yields Nothing but Their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems", JACM, July 1991. (Preliminaryversion in the 27th FOCS, 1986.)[13] O. Goldreich, and Y. Oren, \De�nitions and Properties of Zero-Knowledge Proof Systems",Jour. of Cryptology, Vol. 7, No. 1, 1994.[14] S. Goldwasser, S. Micali, and C. Racko�, \The Knowledge Complexity of Interactive ProofSystems", SIAM J. on Computing, Vol. 18, No. 1, 1989, pp. 186-208. (Preliminary version inthe 17th STOC, 1985.) 8

[15] S. Haber, \Multi-Party Cryptographic Computations: Techniques and Applications", PhDDissertation, Computer Science Dept., Columbia University, Nov. 1987.[16] Y. Oren, \On the Cunning Power of Cheating Veri�ers: Some Observations about Zero-Knowledge Proofs", Proceedings of the Twenty Eighth Annual Symposium on the Foundationsof Computer Science, IEEE, 1987.[17] A. Shamir, \IP=PSPACE", Proceedings of the Thirty First Annual Symposium on the Foun-dations of Computer Science, IEEE, 1990.[18] M. Tompa and H. Woll, \Random Self-Reducibility and Zero-Knowledge Interactive Proofsof Possession of Information," University of California (San Diego) Computer Science andEngineering Dept. Technical Report Number CS92-244 (June 1992). (Preliminary version inthe 27th FOCS, 1987, pp. 472-482.)[19] M. Yung, Some eurocrypt paper about proving ability to factor, to be located.

9

