Appears in Proceedings of CRYPTO 92.

On Defining Proofs of Knowledge

Mr1HIR BELLARE* ODED GOLDREICH!

August 26, 1992

Abstract

The notion of a “proof of knowledge,” suggested by Goldwasser, Micali and Rackoff, has been
used in many works as a tool for the construction of cryptographic protocols and other schemes.
Yet the commonly cited formalizations of this notion are unsatisfactory and in particular inad-
equate for some of the applications in which they are used. Consequently, new researchers keep
getting misled by existing literature. The purpose of this paper is to indicate the source of these
problems and suggest a definition which resolves them.

* High Performance Computing and Communications, IBM T.J. Watson Research Center, PO Box 704, Yorktown
Heights, NY 10598, USA. e-mail: mihirQwatson.ibm.com

! Computer Science Department, Technion, Haifa, Israel. e-mail: oded@cs.technion.ac.il. Research was par-
tially supported by grant No. 89-00312 from the US-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

1 Introduction

The introduction of the concept of a “proof of knowledge” is one of the many conceptual contribu-
tions of the work of Goldwasser, Micali and Rackoff [14]. This fundamental work, though containing
intuition and clues towards a definition of the notion of a “proof of knowledge,” does not provide a
formal definition of it. Furthermore, in our opinion, the commonly cited formal definitions, namely
those of Feige, Fiat and Shamir [6] and Tompa and Woll [18], are not satisfactory, and, in particular,
inadequate for some of the applications in which they have been used.

The purpose of this paper is two-fold. First, we would like to describe whence stem the flaws
in the previous definitions and why these definitions do not suffice for some applications. We then
propose a definition which we feel remedies these defects and also has other advantages.

We note that a definition which is much better than those of [6, 18] has appeared in the work
of Feige and Shamir [7], but the community seems unaware of the fact that the definition in [7] is
fundamentally different from, and preferable to, the one in [6] (in particular, this fact is not stated
in [7]). The definition we present differs in many ways from that of [7] which we feel still has some
conceptual problems. Yet both have in common the attempt to capture provers who convince with
probabilities that are not non-negligible, thereby correctly addressing what we believe is one of the
main flaws in the definitions of [6, 18].

Among the novel features of our new definition is that it allows us also to talk of the knowledge
of machines which operate in super-polynomial-time. But this (and other novel features) we will
discuss later; let us begin with the basics.

1.1 Basic approach in defining proofs of knowledge

Intuitively, a two-party protocol constitutes a “system for proofs of knowledge” if “whenever” one
party (called the verifier) is “convinced”! then the other party (called the prover) indeed “knows”
“something”. The excessive use of quotation symbols in the condition of the above statement may
provide some indication to the complexity of the notion. For simplicity, let us consider the special
case in which the “object of knowledge” is a witness for membership of a common input in some pre-
determined language in NP. For example, let us consider the case in which the “object of knowledge”
is a satisfying assignment for a CNF formula (given as input to both parties). Hence, a two-party
protocol constitutes a “system for proofs of knowledge of satisfying assignments” if “whenever”
the verifier is “convinced” then the prover indeed “knows” a satisfying assignment for the given
formula. The clue to a formalization of “proofs of knowledge” is an appropriate interpretation of
the phrases “whenever” and “knows” which appear in the condition. The phrase “convinced” has
the straightforward and standard interpretation of accepting (i.e., entering a specified state in the
computation).

Following [14] the interpretation of the phrases “whenever” and “knows” is as follows. Suppose
for simplicity that the verifier is always convinced (i.e. after interaction with the prover the verifier
always enters an accepting state). Saying that the prover “knows” a satisfying assignment means
that it “can be modified” so that it outputs a satisfying assignment. The notion of “possible
modifications of machine M” is captured by efficient algorithms that use M as an oracle. Hence,
saying that the prover “knows” a satisfying assignment means that it is feasible to compute a
satisfying assignment by using the prover as an oracle. Namely, there exists an efficient algorithm,
called the knowledge extractor, that on input a formula ¢ and given oracle access to a good prover
(i.e. a prover which always convince the verifier on common input ¢) is able to output a satisfying

!We have replaced the more intuitive but possibly misleading phrase “convinced that the prover knows something”
by the neutral phrase “convinced”.

assignment to ¢. Indeed, this is exactly the interpretation given in works as [18, 6]. The problem
is to deal with the general case in which the prover may convince the verifier with some probability
€ < 1. Again, for constant ¢ there is no problem and it can be required that even in this case the
knowledge extractor succeeds in outputting a satisfying assignment in expected polynomial-time
(or alternatively output such an assignment in polynomial time with probability exponentially close
to 1). This interpretation is valid also if € is any non-negligible function of the length of the input
¢ (a non-negligible function in n is a function which is asymptotically bounded from below by a
function of the form n~¢, for some constant ¢). But what should be required if the prover does
not convince the verifier with non-negligible probability? Most previous formulations (e.g., [18, 6])
require nothing, and hence are unsatisfactory both from a conceptual point of view and from a
practical point of view (i.e., in view of many known applications). In particular, this inadequacy
often appears when “proofs of knowledge” are used as subprotocols inside larger protocols. In
other words, the inadequate formulations of “proofs of knowledge” drastically limit their modular
application in the construction of cryptographic protocols.

1.2 Provers which convince with probability that is not non-negligible

We start with an abstract justification of our claim that requiring nothing, in case the prover does
not convince the verifier with non-negligible probability, is wrong. We first uncover the reason it
has been believed that it is justified to require nothing. It has been believed that events which
occur with probability which is not non-negligible can be ignored, just as events which occur with
negligible probability can be ignored. However, a key observation, which has been overlooked by
this argument, is that a sequence of probabilities can be neither negligible (i.e., smaller that n~* for
all ¢ > 0 and all sufficiently large n’s) nor non-negligible (i.e., bigger that n=¢ for some ¢ > 0 and all
sufficiently large n). Hence, even if it were justified to require nothing in case the prover convinces
the verifier with negligible probability, it is unjustified to require nothing in case the probability of
being convinced is just not non-negligible!

To demonstrate what is wrong when we require nothing in case the prover does not convince the
verifier with a non-negligible probability, we consider the following possibility. Suppose that there
exist a prover and an infinite sequence of CNF formulae, {¢, : n € N}, such that the probability
that the prover convinces the verifier on common input ¢, is n=*, where n is the length of ¢, and
k is the number of literals in the longest clause of ¢,,. Furthermore, suppose that, for every k > 0,
there exists infinitely many n’s such that k is the number of literals in the longest clause of ¢,.
An important observation is that the sequence of probabilities (defined by the above prover and
formulae) is neither negligible (i.e., smaller that n=¢ for all ¢ > 0 and all sufficiently large n’s) nor
non-negligible (i.e., bigger that n~=° for some ¢ > 0 and all sufficiently large n). Hence, previous
definitions of “proof of knowledge” require nothing (or too little) with respect to the above prover.
To appreciate the severity of the lack of requirement with respect to the above prover consider the
following application. Suppose that each ¢, has a unique satisfying assignment, and that a “proof
of knowledge of a satisfying assignment” is used as a subprotocol inside a protocol in which Alice
will send Bob a satisfying assignment to ¢, if she is convinced by Bob that he already knows this
assignment. We would like to argue that in this application Alice yields no knowledge to Bob (i.e.,
Alice is zero-knowledge). Using a reasonable definition of “proof of knowledge” one should be able
to prove such a statement (and indeed using our definition such a proof can be presented). Yet, the
zero-knowledge property of Alice can not be demonstrated using previous formulations of “proof
of knowledge.”?

2Typically, the simulator for the zero-knowledge property uses the knowledge extractor (for the proof of knowledge)
as a subroutine. However, previous formulations of “proof of knowledge” do not guarantee a knowledge extractor

A more concrete and practical setting can help to further clarify our point. It has been suggested
to use a “proof of knowledge” as a subprotocol inside a multi-round encryption scheme secure
against chosen ciphertext attack (cf. [8, Sec. 5] and [15, Sec. 5.4]). Namely, the decryption module
returns a decryption of a chosen ciphertext only if “convinced” that the party asking for it already
“knows it”. (This is a special case of the application considered in the previous paragraph). Using
previous formalizations of “proof of knowledge” it cannot be proved that the above “decryption
module” is zero-knowledge (i.e., yields no knowledge) under a chosen ciphertext attack. Yet, the
above decryption module is zero-knowledge and this zero-knowledge property (though not proven!)
has been used to claim that the particular multi-round encryption scheme is secure against chosen
message attack. We stress that the above mentioned encryption scheme is indeed secure under
such attacks, it is just that its security has not been proven but rather “hand-waved”, and that
the essential flaw in the hand-waving is the fact that it is based on an inadequate formalization of
proofs of knowledge.

The above example is very typical. In many (yet not all) applications of “proofs of knowledge”
one relies on their meaningfulness with respect to arbitrary behavior of the prover. Yet as pointed
out above, previous formalizations of “proof of knowledge” are meaningful only in case the prover
convince the verifier with non-negligible probability. One should not make the mistake of saying
that events which happen with probability that is not non-negligible can be ignored, since such
probabilities are not negligible! Put in other words, negligible is not the negation of non-negligible!

To avoid confusion we stress that the definitions of [6] do suffice for the applications in their
paper. Problems (as illustrated above) have arisen when these same definitions have (later) been
used in other applications.

1.3 A few words about the definition presented in this paper

The most important aspect in which our definition (as well as the one of [7]) deviates from the
previous ones is that there is no sharp distinction between provers based on whether they convince
the verifier with non-negligible probability or not. In our case, the requirement is that the knowledge
extractor always succeeds and that the average number of steps it performs is inversely proportional
(via a polynomial factor) to the probability that the prover convinces the verifier.

Over and above this change, we have taken the opportunity to correct what we feel are other
conceptual drawbacks of previous definitions (including [7]). Although these other changes are
to some extent a matter of taste they are nonetheless important, and also enable us to obtain
definitions that are more general than previous ones. As examples, a few such issues are discussed
below; we refer the reader to §4 for more details as well as for a discussion of the many other points
of difference.

All previous definitions refer only to provers which can be implemented by probabilistic, poly-
nomial time programs (with auxiliary input). In some works it is even claimed that it makes no
sense to talk of the knowledge of computationally unrestricted machines. We strongly disagree
with such claims, and point out that previous definitions have considered only computationally
restricted provers because of technical reasons. From a conceptual point of view it is desirable
to have a “uniform” definition of proofs of knowledge which refers to all provers independently of
their complexity, the probability they lead the verifier to accept, and so on. In fact, our definition
has this property. A consequence of this property is that our definition enables one to talk of the
“knowledge” of super-polynomial-time machines. For example, we are able to say in what sense the

which handles the entire sequence of formulae. On the other hand, one cannot ignore the case in which something is
sent by Alice since this case is not negligible.

interactive proofs introduced by Shamir [17], in order to demonstrate that IP=PSPACE, constitute
“proofs of knowledge.”

Most proofs of knowledge (e.g., the proof of knowledge of an isomorphism used by [12] — see
Appendix E) are constructed by iterating some “atomic” protocol. Typically, these atomic protocols
have the property that one can easily lead the verifier to accept with some constant probability
(say, 1/2) even when having no “knowledge” whatsoever. Yet, these atomic protocols do prove
some “knowledge” of the prover, in case it is able to convince the verifier with higher probability.
However, previous definitions of “proof of knowledge” were unable to capture this phenomenon;
they were only able to say what it means for sufficiently (i.e. super-logarithmic) many iterations
of these “atomic” protocols to be “proofs of knowledge.” This belies the basic intuition and also
precludes a modular approach to protocol design. We correct these weaknesses by showing how to
measure the “knowledge error” of a proof, and then showing how composition reduces it.

A special case of our definition is when the knowledge error is zero. This special case is important
is some applications. In particular, “proofs of knowledge with zero error” are important when using
a proof of knowledge inside a zero-knowledge protocol so that one party sends some information only
if he is convinced that the other party already knows it. A typical example is the zero-knowledge
protocol for graph non-isomorphism of [12] (cf. §7.1). We stress that none of the previous definitions
could handle “proofs of knowledge with zero error.”

1.4 Organization

The main conventions used throughout the paper appear in §2. The new definition (of a proof of
knowledge) appears in §3, and §4 contains a discussion of various aspects of this definition. This
main part of the paper is augmented by Appendix A, in which previous definitions (of proofs of
knowledge) are reviewed, and by §7 in which examples of the applications of the new definition are
presented.

The rest of the paper addresses issues which are related to the definition of a proof of knowledge:
§5 addresses the effect of repeating a proof of knowledge, and §6 presents an equivalent formulation
of our definition of a proof of knowledge.

2 Preliminaries

Let R C {0,1}* x {0,1}* be a binary relation. We say that R is polynomially bounded if there
exists a polynomial p such that |y| < p(|z|) for all (z,y) € R. We say that R is an NP relation if
it is polynomially bounded and, in addition, there exists a polynomial-time algorithm for deciding
membership in K.

If R is a binary relation we let R(z) = {y : (2,y) € R} and Lg = {z : Jy such that (z,y) € R}.
If (z,y) € R then we call y a witness for x.

The proof systems we define are two-party protocols. We model the players in these protocols
not (as is common) as interactive machines, but rather as what we will call “interactive functions.”
The idea is to separate the computational aspect of the player from its input/output behaviour.
We feel that this eases and clarifies the presentation of the (later) definitions.

Definition 2.1 An interactive function A associates to each x € {0,1}* (common input) and n €
{0,1}* (prefiz of a conversation) a probability distribution on {0, 1}* which we denote by A.[n]. We
denote by A.(n) an element chosen at random from this distribution.

Intuitively, A,(n) is A’s next message when the prefix of the conversation so far was n and the
common input is z.

The two players in the protocols we will consider are called the prover and the verifier. Both are
modeled as interactive functions. The interaction between prover P and verifier V on a common
input @ consists of a sequence of “moves” in each of which one player sends a message to the
other. The players alternate moves, and for simplicity we will assume the prover moves first and
the verifier last. We denote by a; (resp. ;) the random variable which is the message sent by the
prover (resp. verifier) in his i-th move. We assume any prefix of a conversation can be uniquely
parsed into its constituent messages. Then each message is specified by the prescribed interactive
function as a function of the common input and previous messages. More precisely,

a = Polafi...oi_10i-1) (i=1,2,..))
Gi = Velafy...o_1fBi1a;) (1=1,2,...).
These random variables are defined over the probabilistic choices of both interactive functions.

We will adopt the convention that there are special symbols which an interactive function may
output to indicate things like acceptance or rejection. We assume there exists a function ¢y (-) (the
number of “rounds”) such that the ¢y (2)-th move of the verifier contains its verdict on acceptance
or rejection. (For simplicity we restrict the number of rounds to be a function of the verifier and the
common input, and do not allow it to depend on the prover. Yet this is without loss of generality).
The transcript of the interaction, denoted trpy(x), is the string valued random variable which
records the conversation up to the verifier’s verdict. That is, trpy(2) = a1 3; .. - Qy(2) By (2)- Note
that the transcript of the interaction between a prover P and verifier V contains the sequence of
message exchanged during the interaction, but not information which is available only to one party,
such as its “auxiliary input” or its “internal coin tosses,” unless these were sent to the other party.

Since we have assumed that the transcript contains the verifier’s verdict on whether to accept
or reject, we may, for each z, talk of the set of accepting transcripts, denoted ACCy (), and the set
of rejecting transcripts, denoted REJy (2). Thus the “probability that the verifier accepts” is, by
definition, Pr[trpy (2) € ACCy (z)].

We stress that the definition of an interactive function makes no reference to its computational
aspects. We may discuss the computational complexity of an interactive function in a natural way,
namely by the complexity of a (probabilistic) Turing machine that computes it. In particular, we
say that an interactive function A is computable in probabilistic polynomial time if there exists
a probabilistic Turing machine which on input z,7n outputs an element distributed uniformly in
A,[n], and runs in time polynomial in the length of x.

For simplicity we will restrict the verifier’s program to be computable in probabilistic, polyno-
mial time. (We stress that we do not restrict the computational power of the party playing the role
of the verifier.) We will also restrict the number of rounds (associated to this verifier program) to
be a polynomially bounded, polynomial time computable function.

Sometimes we wish to discuss probabilistic, polynomial time players who receive an additional
“auxiliary” input (such an input may be, for example, a witness for the membership of the common
input in some predetermined NP language). We may capture such situations by thinking of the
auxiliary input as being incorporated in the interactive function (i.e. the party’s interaction on
common input 2 and auxilary y is captured by an oracle indexed by both 2z and y).

We will be interested in probabilistic machines which use interactive functions as oracles.

Definition 2.2 Let K(-) be a probabilistic oracle machine, and A an interactive function. Then
K4«(z) is a random variable describing the output of K with oracle A, and input x, the probability
being over the random choices of K and A.

The meaning of having A, as an oracle is that K may specify a string n and, in one (special) step,
obtain a random element from A,[n]. We count the steps needed to specify 7 (and read the output),

but the oracle invocation is just one step. It is understood that an invocation of the oracle on a
string 7 returns a random element of A,[n], independently of any previous invocations of the oracle
on other inputs.?

We call a function f: N — R negligible if for all ¢ > 0 and all sufficiently large n we have
f(n) < n=°. We call afunction f: N+— R non-negligibleif there exists ¢ > 0 so that for all sufficiently
large n we have f(n) > n=°. We call f: {0,1}*+— R negligible if the function n — max,ejo13- f(2)
is negligible, and non-negligible if the function » — mingego13» f(2) is non-negligible. As stressed
above, non-negligible is not the negation of negligible but rather a very strong negation of it (and
there exist functions which are neither negligible nor non-negligible).

3 A Definition of a Proof of Knowledge

Let R C {0,1}*x{0,1}* be a binary relation. Our aim is to define a “system of proofs of knowledge
for R.” For simplicity, we restrict our attention to polynomially bounded relations (and, unless
otherwise stated, all relations in this paper are assumed to be such). Note that the most natural
and important class of proofs of knowledge, namely those of “knowledge of a witness for an NP
statement,” correspond to the special case of NP relations.

The heart of the proof system is the verifier, which remains fixed for our entire discussion. This
fixed verifier may interact with arbitrary provers, and we will relate the behavior of the verifier in
these interactions with assertions concerning knowledge of the corresponding provers.

For the purpose of defining proofs of knowledge there is no need to restrict the verifier compu-
tationally, although in most applications one asks that it be probabilistic, polynomial time.

We make no assumptions concerning the possible provers (in contrast to previous formaliza-
tions). We don’t even assume that they send messages that can be computed (say nothing about
efficiently computed) from the information they receive (i.e., their initial input and in-coming mes-
sages). That is, provers are arbitrary interactive functions.

We wish to define the “knowledge of P about & which may be deduced from the interaction of
P with V (on input 2)”. Clearly, this knowledge contains the transcript of the interaction. Yet, in
case the interaction is accepting and this event is not incidental, one can say more on the knowledge
of P. Namely, the ability of P to “often” lead the verifier to accept may say something about the
knowledge of P. The crucial observation, originating in [14], is that the “knowledge of P about z
(deduced by interaction)” can be captured by whatever can be efficiently computed on input & and
access to the oracle P,.

The phrase “efficiently computed on input = and access to an oracle P,” is made precise in
the definition of a “knowledge extractor.” The straightforward approach is to require that the
knowledge extractor is a probabilistic polynomial-time oracle machine. Indeed this is the approach
taken in some previous works (if one translates their ideas to this slightly different setting). We will
replace the strict requirement that the knowledge extractor works in polynomial-time by a more
adaptive requirement which relates the running time of the knowledge extractor to the probability
that the verifier is convinced. The advantages of this approach have already been discussed and
will be further discussed below.

Let p(x) be the probability that prover P convinces verifier V' to accept on input z. In its
simplest form, the requirement we impose is that the extractor succeed in outputting a witness in
(expected) time proportional to 1/p(x). In actuality, we will introduce a “knowledge error function”

7 A stricter alternative is obtained by fixing the prover’s sequence of coin tosses and treating it as auxiliary input
to the prover. Note that all known “proofs of knowledge” satisfy also this more strict requirement. The fact that the
strict requirement implies the main one can be shown by techniques similar to those used in Appendix C.

k(-) and ask that the extractor succeed in outputting a witness in (expected) time proportional to
1/(p(z)— k(x)). Intuitively, x(a) is the probability that the verifier might accept even if the prover
did not in fact “know” a witness. We note that in applications x(x) is small, and often it is zero
(cf. §4.4 and §5). The precise definition follows.

Definition 3.1 (System of proofs of knowledge) Let R be a binary relation, and x: {0,1}* — [0, 1].
Let V' be an interactive function which is computable in probabilistic, polynomial time. We say that
a 'V is a knowledge verifier for the relation R with knowledge error x if the following two conditions

hold.

o Non-triviality: There exists an interactive function P* so that for all x € Lg, all possible in-
teractions of V. with P* on common input x are accepting (i.e. Pr[trp« y(z)€ ACCy(z)] = 1).

o Validity (with error k): There exists a constant ¢ > 0 and a probabilistic oracle machine K
such that for every interactive function P and every x € Ly, machine K satisfies the following
condition:

if p(z) € Prftrpy(z) € ACCy (2)] > k(z) then, on input and access to oracle P,,
machine K outputs a string from the set R(z) within an expected number of steps
bounded by
|z|°
p(w) = k(x)
The oracle machine K is called a universal knowledge extractor, and x is called the knowledge error
function.

The next section is devoted to remarks on various features of this definition.

4 Remarks

We discuss various features of our definition, with particular regard to how it differs from previous
definitions.

4.1 Provers which convince with non-negligible probability

Suppose the knowledge error is negligible. Clearly, if the verifier accepts with non-negligible prob-
ability then the knowledge extractor runs in average polynomial in |2| time. This conclusion yields
essentially what [6, 18] have considered as sufficient. Yet, as we have argued, this conclusion by
itself does not suffice.

4.2 The efficiency of the provers and verifier

For the purpose of defining proofs of knowledge, there is no need to restrict the prover to polynomial-
time. This is a point on which we disagree with previous works which claimed that it makes
no sense to talk of the knowledge of unrestricted machines. Our definition is presented without
assuming anything about the power of the prover, and it is a corollary that machines with no
time bounds may know facts which cannot be deduced in (say) double exponential time (and so
on). In particular, as we will see (cf. §7.2), it is meaningful, under our definition, to say that
the prover in Shamir’s interactive proof system for a PSPACE-complete language “knows” an
accepting computation of a polynomial-space machine. One the other hand, provers which succeed

in convincing a verifier of their knowledge can be reasonably efficient. For example, they may be
implemented by polynomial-time programs. Furthermore, all “reasonable” interactive proofs for
languages in NP (and in particular the zero-knowledge ones [12]) can be convinced by probabilistic
polynomial-time provers which get an NP-witness as auxiliary input. (However, membership in an
NP language can be proven via Shamir’s result that IP = PSPACE. The corresponding prover is
unlikely to be implementable in polynomial-time).

Note that we do not ask that the verifier be a probabilistic polynomial time interactive Turing
machine, but just that it be an interactive function computable by one. This distinction is con-
ceptually useful when we consider applications such as the graph non-isomorphism protocol [12] in
which the verifier (of the proof of knowledge) is the prover of the graph non-isomorphism protocol,
and thus not a probabilistic polynomial time interactive Turing machine. However, the part of this
prover’s program which implements the verifier (of the proof of knowledge) is indeed computable
in probabilistic polynomial time.

4.3 The knowledge extractor

What should not be given to the knowledge extractor. We deviate from some previous works in
that we define the knowledge of the prover only with respect to what is publicly available (i.e.,
the common input z, access to an oracle for the prover, and possibly the transcript). Some other
works define the knowledge of the prover with respect to the auxiliary information available to
the prover as well as its sequence of coin tosses (which may* not be known to the verifier). To
justify our choice we remind the reader that the definition of “proof of knowledge” is supposed to
capture the knowledge of the prover demonstrated by the interaction and not merely the knowledge
of the prover. Hence, there seems to be little motivation and/or justification to talk about the
knowledge of a machine with respect to something which is not known to the outside (i.e., verifier).
In particular, only the common input (of the interaction) should be given as input to the knowledge
extractor, and the auxiliary input or local coins of the prover should certainly not be given.

One thing that the knowledge extractor can do. In all examples we are aware of, the knowledge
extractor proceeds by trying to find several (not more than polynomially many) related accepting
transcripts. For example, the knowledge extractor presented in Appendix E tries to find a single
accepting transcript in addition to the one given as input. Clearly such a knowledge extractor
succeeds within an average number of steps which is inversely proportional to the density of the
accepting transcripts (which is in other words the accepting probability). Note that if the proof of
knowledge is zero-knowledge then a single accepting transcript (and in particular the one given as
input) cannot suffice.

Universality of the knowledge extractor. In the above definition we require the existence of a
universal knowledge extractor which works for all possible interactive functions P. Switching the
quantifiers (i.e., requiring that for every interactive function P there exist a knowledge extractor
Kp) would make little sense in practice since P in our conventions may depend on (non-uniform)
auxiliary input of the “real” prover (cf. §2). However, the quantifiers may be switched if one
considers only provers which are (uniform) interactive machines. For further discussion see the
parenthetical subsection in [10, Sec. 4.1], which considers an analogous situation in the context of
zero-knowledge. We stress that also in case the quantifiers are switched, the knowledge extractor
(although it may depend on the prover) must be given oracle access to the prover. The reason

*Using the term “may” is indeed an understatement!

10

being that the prover’s program may be highly inefficient (and therefore cannot be “incorporated”
into the extractor).

4.4 The knowledge error function
The knowledge error function is a novelty of our definition.> Let us see why it is important.

Typically, “proofs of knowledge” are constructed by repeating an “atomic” protocol sufficiently
many times. An atomic protocol for graph isomorphism, for example, is the following (cf. [12]).

Example. The input is a pair of (isomorphic) graphs G; and (5. The prover generates a single
random isomorphic copy of GG; which we call H, and sends H to the verifier. The latter responds
with a random query @ € {1,2}. The prover replies to 7 by presenting an isomorphism between G;

and H. The verifier accepts if the permutation supplied by the prover is indeed an isomorphism
between G; and H.

Intuitively, this protocol does demonstrate some “knowledge” of an isomorphism between ; and
G5. Yet, previous definitions were unable to capture this fact; they were only able to show that
sufficiently (i.e. super-logarithmic) many iterations of this protocol constituted a “proof of knowl-
edge.” This non-modular approach belies the basic intuition and is also not the natural approach
to protocol design.

The introduction of the knowledge error function remedies these defects. In particular, we are
able to capture “atomic” proofs of knowledge of the above type. Indeed, under our definition,
the above is a proof of knowledge with knowledge error 1/2. Furthermore, we are able to prove
composition theorems which show how to reduce the knowledge error (cf. §5) and thus construct
proofs of knowledge in a modular fashion.

Another motivation of the knowledge error function comes from cases where, for convenience,
we have the verifier accept with some (usually small) probability even if the evidence supplied by
the prover is not convincing. For example, we may do this to guarantee perfect completeness (i.e.,
the prover’s ability to alway convince the verifier of valid statements). In such cases, the knowledge
error can compensate for this small probability. The importance of this aspect of the knowledge
error function, and the perfect completeness example, were pointed out to us by Feige (private
communication, June 1992).

4.5 What about soundness?

We note that our definition makes no requirement for the case @ € Lg. In particular, soundness (i.e.,
a bound on the prover’s ability to lead the verifier to accept « ¢ Lg) is not required. Consequently,
a knowledge verifier for R does not necessarily define an interactive proof of membership in Lg.
This is in contrast to previous definitions; they had the “validity” condition imply the soundness
condition, so that the latter always held. We feel that our “decoupling” of soundness from validity
is justified both conceptually and in the light of certain applications. Let us see why.

First, conceptually, it seems more natural to talk about extracting witnesses only when these
witnesses exist. Furthermore, as long as one property is not known to imply the other it seems
wrong to require the latter unless one really needs it.

Second, there are some natural applications (e.g., “zero-knowledge based” identification schemes)
in which it is a-priori agreed that the protocol will be applied only to strings in some NP language
(i.e., z € Lr € NP). Such applications are better modeled by our definition than by previous ones.

° Although the ideas in [5] may be interpreted as pointing to a similar notion.

11

To be concrete, consider the following identification scheme based on the hardness of quadratic
residuosity.

Example. A user A (Alice), who wishes to be able to securely remote-login to a mainframe
computer (which we denote by V' because it plays the role of verifier) chooses at random a pair of
large primes and multiplies them to get a modulus N,. She also chooses Y, € Zy, at random,
sets X4 = YZ mod Ny, and gives the pair (N4, X4) to V. All this is performed once in a life-time,
when Alice is identified by other means. Later, whenever Alice wishes to remote-login, she sends her
name (A) to V', who responds by sending the pair (N4, X4). She now provides a (zero-knowledge)
proof that she “knows” a square root of X4 mod N,. Besides the fact that A can provide the proof
(completeness) we require that if Bob (B # A) were to attempt to remote-login as A then he (B)
would fail. The point to note in (the formalization of) the latter requirement is that the interaction
of B with V takes place on an input (namely (N4, X4)) which is in the underlying language
Ly (the relation R here is { (N, X),Y):Y? = X (mod N)} and the underlying language is
Lr ={(N,X): X is a square mod N }). So it suffices to require that the interaction of B with
V on inputs in this language “proves possession of a witness.” What happens on interactions on
input not in the language is immaterial to the security of the identification scheme. Thus the
requirements for a secure (zero-knowledge based) identification scheme are more faithfully modeled
by our Definition 3.1 than by previous definitions (which required that any proof of knowledge of
a relation R be an interactive proof of membership in Lg).

We stress that we are not, of course, saying that soundness is always redundant. Rather, the above
discussion justifies our choice not to make soundness a part of the definition of a proof of knowledge.
In cases where soundness is necessary, it can be viewed as a separate, additional property that the
knowledge verifier must satisfy. Furthermore, it is possible that some applications call for other
kinds of conditions on & ¢ Lg. One possibility, which we call strong validity, is discussed in
Appendix B.

4.6 Relaxing the non-triviality requirement

The prover guaranteed by the non-triviality requirement must convince the verifier in all interactions
of # € Lg. This requirement, met in all known protocols, is not essential to the definition of a
proof of knowledge. In general one may require that the existence of a prover that convinces the
verifier, on input z, with probability C(z). As far as polynomial-time (or even more powerful)
verifiers are concerned any choice of a polynomial-time constructible bound, C(-), which is both
non-negligibly greater than #(-) and bounded above by 1 —27P°W() 'is equivalent.® In fact, following
the ideas in [9], one can eliminate the error probability in the completeness condition altogether
and derive the definition as in the previous section. However, although the last transformation does
preserve validity, it does not necessarily preserve the complexity of the prover and its zero-knowledge
property.”

SWhen saying that these choices are equivalent, as long as the above requirements are satisfied, we mean that
existence of a verifier which satisfies one permissible bound yields the existence of another verifier which satisfies
the second bound. Furthermore, the complexity both of the verifier and of the prover (meeting the completeness
condition) is preserved (and so are zero-knowledge properties).

"In this context we note, however, that the zero-knowledge too may be preserved, as long as one is willing to make
a complexity assumption, by further applying the transformation of [2].

12

4.7 A word about computationally convincing proofs of knowledge

Some works (cf. [4, 5]) consider the situation in which the class of provers for which the protocol
is supposed to be a “proof of knowledge” is restricted to the class of probabilistic, polynomial
time interactive Turing machines with auxiliary input.® Typically, the protocols in question rely
on the use of problems which are intractable for the prover(s). This is the case of computationally
convincing (zero-knowledge) proofs, also known as arguments (cf. [3]).

Our definitions may be adapted to cover such settings as well. We would restrict the class of
provers for which validity is required to hold to the class of interactive functions computable in
probabilistic, polynomial time by interactive machines. We would, however, also relax slightly the
validity requirement by asking that it only be true for sufficiently long inputs. More precisely,
we would require that for each probabilistic, polynomial time computable interactive function P
(prover) there exist a constant np such that for each @ € Lg of length at least np, machine K
satisfies the following condition:

if p(z) € Prftrpy(z) € ACCy(z)] > w(z) then, on input z and access to oracle P,,
machine K outputs a string from the set R(z) within an expected number of steps

bounded by |z|¢/(p(z) — k(z)).

In applications, k(z) could be set to 1/poly(z) for some specific poly(-). Alternatively, following
[7], one can use x(-) as a shorthand for “smaller than any function of the form 1/poly(-)”. However,

a much better alternative is to set x(-) to be a specific negligible function (e.g., x(z) = 2~ W)
related to a specific intractability assumption concerning the computational problem on which the
scheme is based (e.g., DLP is intractable with respect to algorithms which run in time 2V” on
inputs of length n).

Some ideas on the subject of “computationally convincing proofs of knowledge” appear in the
work of Brassard, Crépeau, Laplante and Léger [5]. Although they do not present definitions, it
would appear these ideas bear many similarities to ours. We discuss their work in Appendix A.

The fact that some variations are needed to treat the case of “computationally convincing proofs
of knowledge” has been pointed out to us by Feige (private communication, June 1992).

5 Reducing the knowledge error via repetitions

One of the reasons to introduce the knowledge error function is the theorems established here. We
show that the knowledge error may be reduced by composition.

First we consider sequential composition. Here m = m(x) independent copies of the original
protocol are executed on input z, and the verifier accepts iff all copies are accepting (we stress
that by “independent” we mean that the verifier acts in each of the copies independently of the
others; of course we don’t assume this about prospective provers). If K was the knowledge error of
the original protocol then the knowledge error the resulting protocol is essentially ™. The more
precise statement follows.

Notational convention: by poly(-) we mean any sufficiently large polynomial in the length of the
input (string).

Required assumption: y € R(x) can be found (if such exists) in exponential-time (i.e., time 2ro¥ (2D,
Finally, we assume of course that m(z) < poly(|z]).

& For simplicity we ignore the auxiliary inputs in this discussion. They can be treated as outlined in §2.

13

Theorem 5.1 Suppose that V is a knowledge verifier for the relation R with error k(-). Let V,,
denote the program that, on input x, sequentially executes the program V', on input x, for m(x)

times. Then V,, is a knowledge verifier for the relation R with error ki, (-) = (1+1/poly(-))-r(-)™0),

The proof is in Appendix C.1.

With respect to error reduction via parallel repetitions we were only able to prove a statement
concerning a special class of knowledge verifiers (which nonetheless contains all known verifiers).
For further discussion see Appendix C.2.

Finally, we observe that tiny knowledge error can be eliminated.

Proposition 5.2 Suppose that an element in R(x), if such exists, can be found in time at most
t(z), given only x as input. Suppose V is a knowledge verifier for R with knowledge error smaller

than #(x) Then, V is a knowledge verifier for R with knowledge error 0.

We omit the proof which uses methods similar to those used in Appendix B.

The resulting formulation (namely, knowledge error 0) is often the simplest way of thinking about
proofs of knowledge: we are saying that the knowledge extractor succeeds in time |z|*/p(x), where
p(z) is as in Definition 3.1. Many proofs of knowledge (e.g., the one presented in Appendix E) are
of this type.

6 An equivalent formulation of validity

Following is an equivalent formulation of the validity condition. The new formulation is inspired by
(vet is quite different in many respects from) the definition in [7]. Let p(z) be as in Definition 3.1.
Instead of asking that the knowledge verifier always output y € R(x), we ask only that it output
y € R(x) with a probability bounded below by p(z)— x(x), and otherwise output a special symbol,
denoted L, indicating “failure to find y € R(x)”. However, whereas originally the extractor had
expected time proportional to 1/(p(z)— k(2)), we now give it only expected polynomial time. More
precisely, letting x: {0,1}* — [0, 1], we have the following.

o New validity (with error k): We say that the verifier V' satisfies new validity with error & if there
exists a probabilistic expected polynomial-time oracle machine K such that for every interactive
function P and every z € Ly it is the case that K<(z) € R(z)U {L} and

Pi[K"™(2) € R(x)] > Prltrpy(z) EACCy (z)] — K(x) .
Proposition 6.1 The new validity condition is equivalent to the one given in Definition 3.1.

Here we give the proof for the case x(z) = 0. The proof for the general case is more complex and
is in Appendix D.

Suppose, first, that K is a knowledge extractor satisfying the new definition. We construct a
knowledge extractor K’ that, on input # repeatedly invokes K (on z) until K'(z) # L. Clearly, K’ al-
ways outputs a string in R(x), halting in expected time poly(z)/Pr[A(2) € R(x)], which is bounded
above by poly(z)/Prtrpy(2) € ACCy (2)]. Hence, K’ satisfies the condition in Definition 3.1. Sup-
pose, now, that K is a knowledge extractor satisfying Definition 3.1. We construct a knowledge
extractor K’ that, on input a first generates a random transcript (i.e., trpy(2)) and activates
K (z) if this transcript is accepting (i.e., in ACCy(z)). Otherwise, K’ halts immediately outputting
L. One can easily verify that K’ runs in expected polynomial-time and outputs y € R(x) with
probability exactly Prltrpy (2)€ACCy (z)].

14

7 Applications

Our formalization, as well as that of [7], do suffice to prove the security of those schemes for en-
cryption secure against chosen-cyphertext attack which rely on zero-knowledge proofs of knowledge
(cf. §1.2). However, we prefer to describe here two applications to which our definition of “proof of
knowledge” can be applied, whereas all the previous formalizations fail. The first application is a
modular description of the zero-knowledge proof for Graph Non-Isomorphism (of [12]) which uses
a “proof of knowledge of an isomorphism” as a subprotocol. The second application is to Shamir’s
interactive proof for PSPACE.

7.1 Zero-Knowledge proof of Graph Non-Isomorphism

The second author first realized the inadequacy of previous formulations of “proofs of knowledge”
when Leonid Levin insisted that the zero-knowledge interactive proof for Graph Non-Isomorphism
(of [12]) should be presented in a modular manner.” As many people noticed, the intuition behind
this zero-knowledge proof is that the verifier first proves to the prover that it “knows” an isomor-
phism between one of the input graphs and the query graph that it presents to the prover.'® If
the prover is convinced then it answers the query by indicating to which of the two input graphs
the query graph is isomorphic. By doing so the prover yields no knowledge to the verifier, since
the verifier “knows” to which of the two input graphs the query is isomorphic, yet the prover’s
answer supplies statistical evidence that the two input graphs are not isomorphic. This intuitive
idea, taken from the Quadratic Non-Residousity zero-knowledge proof of [14], has indeed guided
the development of the zero-knowledge proof system for GNI, but plays no part in the formal de-
scription and proof of correctness appearing in [12] (and [14]). Levin complained, rightfully, against
this inelegant and non-modular approach. The second author’s answer, at the time, was that an
elegant proof which uses the subprotocol and its properties in a modular fashion is not possible
due to lack of appropriate definitions.!!

One definition that was lacking at the time was that of the information hiding property of the
subprotocol used to prove “possession of knowledge”. Specifically, that subprotocol, which consists
of the parallel version of the zero-knowledge proof of Graph Isomorphism, is not known to be
zero-knowledge (and in light of [11] it is unlikely that a proof that it is zero-knowledge can ever be
given). Nevertheless, this subprotocol is “witness indistinguishable” (in the sense defined latter by
Feige and Shamir [7]) and this property suffices to the soundness of the interactive proof of GNI.
However this entire issue is irrelevant to the current paper.

The other definition that was lacking at that time was an adequate definition of a proof of
knowledge. An adequate definition of a “proof of knowledge” is needed to ensure that if the
GNI-prover is convinced that the GNI-verifier “knows” an isomorphism between the query graph
and one of the input graphs then indicating to which input graph the query graph is isomorphic
vields no knowledge to the GNI-verifier.?? To this end, the simulator (constructed to meet the
zero-knowledge clause) uses the knowledge extractor guaranteed by the definition of a “proof of
knowledge”. However, as pointed out above, previous definitions of “proof of knowledge” are
useless in the case the GNI-prover is not convinced with non-negligible probability. It follows that

°For sake of self-containment, this protocol is presented in Appendix E

19T he prover in the zero-knowledge proof for GNI is the verifier in a “proof of knowledge of an isomorphism between
two graphs”; whereas the verifier in the zero-knowledge proof for GNI is the party claiming and proving knowledge
of an NP-witness for GI.

1Tt should be stressed that a proof of correctness of (the zero-knowledge property of) the protocol of does appear
n [12]. The criticism points to the fact that the proof of correctness in [12] does not reflect the intuition just outlined.

12The reader may find it useful at this point to consult Appendix E.

15

the simulator will fail to construct the interactions in these cases which may occur with probability
that is neither non-negligible nor negligible (see §1.2). In particular, consider the situation where
for every ¢ > 0 there exists an infinite sequence of inputs to the protocol such that on input of
length n the GNI-prover is convinced with probability n=°.

On the other hand, one can show that the subprotocol “for proof of knowledge of isomorphism”
(presented in [12] and Appendix E) constitutes a (sound) proof of knowledge, according to the
definitions presented in §3. It follows that the running time of the knowledge extractor is inversely
proportional to the probability that the GNI-prover is convinced. Hence, the simulator for the GNI-
protocol will run in expected polynomial-time and produce a perfect simulation of the interaction.
Furthermore, it can be easily shown that the GNI-prover while playing the role of the Gl-verifier
in the proof of knowledge yields no knowledge to the GNI-verifier (since its messages are generated
in probabilistic polynomial-time from its inputs).

7.2 What does the prover of a PSPACE language know?

Using our definition, it is possible to say that the verifier in Shamir’s interactive proof for a PSPACE-
complete language L is a knowledge verifier for the relation R consisting of pairs (z,¢) where ¢ is
the middle configuration in the computation of a fixed machine accepting @ € L. Hence, one can
say that (in some meaningful sense) any prover which convinces this verifier (with, say, probability
1) on input z, does know an accepting computation on input z.

Let us show how a knowledge extractor may find the middle configuration. For the rest of
this subsection, we assume that the reader is very familiar with the interactive proof for QBF as
presented in [17, Section 5]. The standard reduction of a PSPACE language to QBF associates the
middle configuration in an accepting poly-space computation with the first block of ¢ existential
quantifiers in the formula. So in the rest of this subsection we will consider only the problem of
retrieving a sequence of truth-values so that assigning these values to the above mentioned variables
yields value true for the resulting formula.

First, we consider a straightforward method for retrieving these ¢ boolean values. This method
does work in case the prover convinces the verifier with probability 1 (but will have to be modified
to deal with arbitrary provers). First the knowledge extractor asks the oracle for the first message
of the prover which is a pair (N,), where N is a large prime and vy is a non-zero residue mod
N (the value of the arithmetic expression mod N). Next, the knowledge extractor proceeds in
t rounds. In the " round, the extractor feeds the oracle the sequence ry,....,r;_1 € Zy and gets
the polynomial, p;, which corresponds to the opening of the :*" variable, when the previous 7 — 1
variables are set to 7,...,7;_1, respectively. The extractor then finds a p; € {0,1} so that p;(y;) is
not equal to zero modulo N (such p; must exist since 3°, 1oy pi(p) =v;21 Z0 (mod N)). Round
i is completed by setting r; = p; and v; = p;(r;).

In general the above method may fail as it relies too heavily on the answers of the prover on
boolean r;’s. An alternative approach is to select the r;’s uniformly in Zy. The problem is that the
resulting residual arithmetic expression no longer reflects the truth value of the residual boolean
formula. To solve the problem we need to find the polynomial resulting by setting the r;’s to p;’s by
examining the polynomials which result by random settings of the r;’s. To see how this can be done,
we need to take a closer look at the formula used by Shamir and its arithmetization. It can be seen
that the polynomial p; received from the prover in round ¢ has coefficients which are polynomials
in ry through r,_;. Denote by ¢; ;(ry,...,7;_1) the polynomial in r; through r;_; representing the
J™ coefficient of p;. The ¢, ;’s are polynomials each of total degree at most 2(: — 1) < 2t — 1,
and we are interested in the values of ¢; j(oy,...,0;_1). Using the ideas of [1] these values can be
found via “interpolation” at 2¢ uniformly selected (yet dependent) points. Finally, we note that

16

the knowledge extractor can tell whether it is given the correct polynomial at a point by carrying
on the rest of the interactive proof using the oracle to the function P,. Further details are omitted.

Acknowledgements

The second author thanks Leonid Levin for his interest in “proofs of knowledge” and his insis-
tence that they have to be formalized in a sufficiently robust manner so that they can be used in
applications such as the Graph Non-Isomorphism protocol.

We are grateful to Uri Feige for valuable criticisms of an earlier version of this paper. Specific
credit to Feige’s suggestions is given in the relevant places of the current manuscript.

17

References

[1] D. Beaver, and J. Feigenbaum, “Hiding Instances in Multioracle Queries,” Proc. of the 7th

[2]

[3]

STACS, 1990, pp. 37-48.

M. Bellare, S. Micali and R. Ostrovsky, “The True Complexity of Statistical Zero-Knowledge,”
Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing, ACM (1990),
pp. 494-502.

G. Brassard, D. Chaum, and C. Crépeau, “Minimum Disclosure Proofs of knowledge,” JCSS,
Vol. 37, No. 2, 1988, pp. 156-189.

J. Boyar, C. Lund and R. Peralta, “On the Communication Complexity of Zero-Knowledge
Proofs.” 1989.

G. Brassard, C. Crépeau, S. Laplante and C. Léger, “Computationally Convincing Proofs of
Knowledge,” Proc. of the 8th STACS, 1991.

U. Feige, A. Fiat, and A. Shamir, “Zero-Knowledge Proofs of Identity”, Journal of Cryptology,
Vol. 1, 1988, pp. 77-94.

U. Feige, and A. Shamir, “Witness Indistinguishability and Witness Hiding Protocols,” Pro-
ceedings of the 22nd Annual ACM Symposium on the Theory of Computing, ACM (1990), pp
416-426.

7. Galil, 5. Haber, and M. Yung, “Symmetric Public-Key Encryption”, Advances in Cryptology

- Crypto8H proceedings, Lecture Notes in Computer Science, Vol. 218, Springer-Verlag, 1986,
pp. 128-137.

M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos, “On Completeness and Sound-
ness in Interactive Proof Systems”, Advances in Computing Research: a research annual, Vol.
5 (S. Micali, ed.), pp. 429-442, 1989.

0. Goldreich, “A Uniform-Complexity Treatment of Encryption and Zero-Knowledge”, J. of
Cryptology, to appear.

0. Goldreich, and H. Krawczyk, “On Sequential and Parallel Composition of Zero-Knowledge
Protocols”, 17th ICALP, Lecture Notes in Computer Science, Vol. 443, Springer-Verlag, 1990,
pp. 268-282.

O. Goldreich, S. Micali, and A. Wigderson, “Proofs that Yields Nothing but Their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems”, JACM, Vol. 38, No. 1, July
1991.

0. Goldreich, and Y. Oren, “Definitions and Properties of Zero-Knowledge Proof Systems”,
TR-610, Computer Science Dept., Technion, Haifa, Israel. Submitted to Jour. of Cryptology.

S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive Proof
Systems”, SIAM J. on Computing, Vol. 18, No. 1, 1989, pp. 186-208.

S. Haber, “Multi-Party Cryptographic Computations: Techniques and Applications”, PhD
Dissertation, Computer Science Dept., Columbia University, Nov. 1987.

18

[16] Y. Oren, “On the Cunning Power of Cheating Verifiers: Some Observations about Zero-
Knowledge Proofs,” Proceedings of the 28th Annual IEEE Symposium on the Foundations of
Computer Science, IEEE (1987), pp. 462-471.

[17] A. Shamir, “IP=PSPACE,” Proceedings of the 31st Annual IEEFE Symposium on the Founda-
tions of Computer Science, IEEE (1990), pp. 11-15.

[18] M. Tompa and H. Woll, “Random Self-Reducibility and Zero-Knowledge Interactive Proofs
of Possession of Information,” University of California (San Diego) Computer Science and
Engineering Dept. Technical Report Number CS92-244 (June 1992). (Preliminary version in
Proceedings of the 28th Annual IEFE Symposium on the Foundations of Computer Science,
IEEE (1987), pp. 472-482.)

19

A Previous Definitions of Proofs of Knowledge

For sake of self-containment we review below the definitions of “proof of knowledge” appearing in
the literature. In general there are two generally cited formulations appearing in [6] and in [18]. In
addition, there is the better (but lesser known) formulation of Feige and Shamir [7]. Finally, there
is work on “computationally convincing proofs of knowledge” [4, 5].

“Proof of Knowledge” according to Feige, Fiat and Shamir [6] The definition presented
in [6] refers only to parties which work in probabilistic polynomial-time, yet may have auxiliary
input (which is not necessarily generated efficiently). The knowledge extractor is given the prover’s
program and auxiliary input and may run the prover’s program as a subroutine (yet being charged
for the time).'® The knowledge extractor is required to produce good output only for provers and
inputs for which the prover has a non-negligible probability of convincing the verifier on that input.
Specifically, it is required that

for every constant @ > 0 there exists a probabilistic polynomial-time extractor M
so that for all constants b > 0, all provers P, and all sufficiently large z,r k, if
Pr[(P,V)(x,r, k) = ACC] > |2|=* then Pr[M(desc(P),z,r,k) € R(z)] > 1 — |z|7".
(desc(P) denotes the description of P).

The string k in the above definition denotes a-priori knowledge of P (given in the form of aux-
iliary input) where r denotes the prover’s sequence of coin tosses. The fact that k is given to
the knowledge extractor, though being indeed conceptually disturbing, can be justified in several
applications (and in particular those in [6]). We stress that the definition of [6] does not guarantee
one knowledge extractor which works regardless of the prover’s success probability but rather a
sequence of extractors each relevant for a different “measure” of non-negligence. As claimed in the
our text this is conceptually unsatisfactory and inadequate for many applications in which a proof
of knowledge is used as a subroutine. It should be said that “proofs of knowledge” are not used as
subprotocols in [6], but rather as the “thing itself” (and hence our critic of their definition is only
weakly relevant, if at all, to the results of that paper).

“Proof of Knowledge” according to Tompa and Woll [18] The definition presented in [18]
differs slightly from the one of [6]. It allows the verifier to run for an arbitrary (not necessarily
polynomial) amount of time. The running time of the knowledge extractor is polynomial in the
length of the input and in the running time of the verifier. As explained in §4.3, we don’t believe
that this choice is justified. The knowledge extractor in the [18] definition is given as input the
prover’s view of the interaction with the verifier, which contains among other things the prover’s
auxiliary input (denoted k in the definition of [6] presented above). The requirement concerning
the output of the verifier is that the event “on input z the verifier is convinced yet the knowledge
extractor fails to find y € R(z)” happens very rarely (i.e. with probability smaller than € for some
€ < 1). The probability is taken over the random coin tosses of both parties (for any fixed input
z and fixed auxiliary input k). Clearly, this definition suffers from all the disadvantages of the
definition of [6] discussed above. Furthermore, if € is indeed fixed, as suggested by the definition
n [18], then protocols satisfying their definition are useless even in a stronger sense: the prover
may convince the verifier with probability €/2 and yet the knowledge extractor is required nothing.

13The extractor may try to analyze the prover’s program by other means but Feige, Fiat and Shamir claim that
this does not make sense. In any case the knowledge extractors that they present only use the prover’s program as a

“black-box”.

20

Tompa and Woll were indeed aware of this point and seem to suggest to eliminate the problem
by applying the protocol iteratively sufficiently many times. This is indeed a good suggestion.
However, several problems remain. First a conceptual problem: their Lemma 3 (hereafter referred to
as the Composition Lemma) indeed offers a useful tool, but it does not provide a general satisfactory
definition of a “proof of knowledge”. More annoying is the fact that the Composition Lemma
constructs better protocols via sequential composition of worse ones. It is not clear (and furthermore
it seems unlikely) that a parallel composition will have the same affect. Finally, the Composition
Lemma is applicable only to relations R which are in BPP.

“Proof of Knowledge” according to Feige and Shamir [7] The definition presented in
[7] looks similar to the one in [6], but in fact it is fundamentally different. The critical point is
that the definition in [7] treats potential provers uniformly with respect to the probability they
lead the verifier to accept. In this sense, the definition in [7] is similar to our definition. Specif-
ically, the knowledge extractor, denoted M, runs in expected polynomial-time (rather than in
strict polynomial-time as in [6]) and outputs an element of R(x) with probability that is at most
non-negligibly smaller than the probability that the verifier accepts on input z. Specifically, it is
required that

there exists a probabilistic expected polynomial-time extractor M so that for all con-
stants b > 0, all provers P, and all sufficiently large x,r, k.,

Pr[(P,V)(x,r,k)=ACC] > Pr[M(desc(P),z,r, k)€ R(z)] — |2|™"

Consequently this definition does not suffer from the main criticism raised against the definition
of [6]. However, it still suffers from the other problems such as the fact that k is given to M.
Furthermore, it does not capture “knowledge” of super-polynomial-time provers.

Work on “computationally convincing proofs of knowledge”. Brassard, Crépeau, Laplante
and Léger [5] study “computationally convincing proofs of knowledge” (the “validity” condition
refers only to probabilistic, polynomial-time provers). They do not present formal definitions so
we found it difficult to compare their work to ours, but the ideas appear to have some relation.
They too propose an “adaptive” requirement linking the running time of the extractor to the
success of the prover. Specifically, they appear to consider a particular class of protocols, namely
those consisting of k rounds, each of which contains a “challenge” (from verifier to prover) which the
prover may correctly answer with probability 1/2 if he correctly “guesses” a coin toss of the verifier.
They require that the extractor succeed in time linear in 1/¢, where 27% + ¢ is the “probability of
undetected cheating.” The quantity in quotes was not defined precisely, particularly for the case
of the input being in the language, but if 27% 4+ ¢ is interpreted as the probability that the verifier
accepts, then it is like our definition with the knowledge error set to 27%.

Brassard et. al. [5] also raise some criticisms of the definitions of [6, 18], but their criticism is the
opposite of ours: whereas we suggest that the previous definitions are too weak (and propose a
stronger definition) they suggest that the previous definitions are already too strong.

B Soundness and Strong Validity

For completeness, we state here also the standard soundness condition (for interactive proof sys-
tems). We remind the reader that we view soundness as an additional property that a knowledge
verifier may (or may not) satisfy.

21

Definition B.1 (Additional possible properties of a system of proofs of knowledge) Let R be a binary
relation, and suppose that V is a knowledge verifier for the relation R with knowledge error k. We
define two additional properties that V. may satisfy:

e soundness: For every interactive function P, and for all x ¢ Lr, most of the possible interac-
tions of V with P on common input x are rejecting (i.e., Prtrpy(z)€ACCy (z)] < 1/2).

e strong validity (with error k): Let K be the universal knowledge extractor, and ¢ > 0 be the
constant guaranteed by the validity condition of Definition 3.1. Then, for every interactive
function P and every x ¢ Lg, machine K satisfies the following condition:

if p(a) = Prftrpy (z) € ACCy ()] > k(z) then, on input © and access to oracle P,
machine K outputs the special symbol L within an expected number of steps bounded
by

|z|°

p(z) — K(z)

As usual, the completeness (or non-triviality) and soundness conditions merely state that there is
a gap between the probability that a prover may convince the verifier on @ € Lz (which by the
completeness condition is exactly 1) and the probability that a prover may convince the verifier on
2 ¢ L (which by the soundness condition is at most 1/2). Validity (resp., strong validity) is a more
refined condition regarding the behavior of arbitrary provers on @ € Lg (resp., arbitrary strings).
Specifically, validity relates the probability that the prover convinces the verifier on = € Lz and
the average time it takes the knowledge extractor to find a y € R(x) in the case z € Lg. Strong
validity is an analogous requirement regarding = ¢ Lg. Validity, soundness, and strong validity are
not always independent. Namely,

Proposition B.2 Validity and soundness imply strong validity for NP relations.

The proof that follows is for the case k = 0.

Recall that an NP relation is a polynomially bounded relation R(-,-) which is decidable in
polynomial time. Suppose an NP relation R possesses a knowledge verifier which (in addition)
satisfies the soundness condition. Without loss of generality'?, we may assume the error probability
in the soundness condition is at most 277(™) where p(-) is a polynomial bounding the length of
witnesses as a function of the length of the input. Let K be the universal knowledge extractor
(satisfying the validity condition). Fix a deterministic procedure, with running-time 2°("). poly(n),
for deciding Ly (e.g., the one which scans through all possible witnesses for the given input).

We construct a new knowledge extractor, denoted K’, for the above proof of knowledge, sat-
isfying also strong validity. On input z and oracle access to P,, machine K’ runs in parallel the
extractor K (with input z and oracle P,) and the decision procedure for Lg, fixed above. Suppose
K halts before the decision procedure terminates, and yields an output y. Machine K’ checks
whether R(x,y) is true (it can do this in polynomial time) and if so outputs y; otherwise it outputs
1. On the other hand, suppose the decision procedure halts while K is still running. If the decision
is negative (z ¢ Lg) then K’ outputs L; else it continues to run K to whatever outcome this might
yield.

We note that the running time of K” is (within a polynomial factor of) that of K when z € Lp,
and at most (within a polynomial factor of) 220D otherwise. But in the latter case, the probability
p(z) = Prltrpy(z) € ACCy(2)] is at most 27PU°D so that the running time of K’ is expected

The error probability in the soundness condition may be reduced, as usual, by repetitions.

22

|| /p(2) in both cases. The fact that K’ is a knowledge extractor for R which satisfies (validity
and) strong validity follows.

Finally, we note that the above transformation preserves (upto polynomial factors) the running
time of the knowledge verifier, and, as long as we do the error-reduction in a suitable way (for
example, by serial composition), it also preserves zero-knowledge.

C Reducing the Knowledge Error via Repetitions

We prove the claims of §5. Let us first recall the notation and assumptions introduced there. By
poly(-) we mean any sufficiently large polynomial in the length of the input (string). By assumption
the messages of the verifier can be computed in polynomial-time, and y € R(z) can be found (if
such exists) in exponential-time (i.e., time 2P°¥(®)). Consequently, failure of the knowledge extractor
occurring with exponentially small probability (i.e., probability 27P°¥()) can be ignored. Finally,
we assume of course that m(z) < poly(z).

C.1 Reducing the Knowledge Error via Sequential Composition

Suppose that V' is a knowledge verifier with error s(-) for the relation R, and let K be a knowledge
extractor witnessing this fact. Let V), denote the program that, on input z, sequentially executes
the program V', on input «, for m(z) times. Theorem 5.1 asserts that V,,, is a knowledge verifier with

error i, (+) = (14 1/poly(-)) - £(-)™) for the relation R. The theorem is proven by constructing a
knowledge extractor, denoted K,,, as described below.

Suppose that P, is a prover which, on input z, leads V,, to accept with probability p,(z) >
Em(2). Loosely speaking, we observe that there exists an ¢, 0 < ¢ < m(z) — 1, and a partial
transcript of ¢ iterations so that, relative to this partial transcript, the 7 + 1°* iteration is accepting
with probability at least ™%/p,,(z). The idea is to use the guaranteed knowledge extractor, K, on
the i + 1% iteration of V,,, relative to an appropriate partial i-iteration transcript. Details follow.

For simplicity, we assume here that all transcripts are equally likely. Let T; denote the set

of all possible partial transcripts of the first ¢ iterations, and A; C T; denote the set of partial

(i-iteration) transcripts in which all the ¢ iterations are accepting. Let a; L 4/1T] (ag = 1). For

every a € A;, let g(a) denote the accepting probability of the ¢ + 1°* iteration relative to a partial
transcript a, and ¢;;; denote the average of g(«a) taken over all a € A;.

The following sequence of claims lead to the construction of the knowledge extractor K,
Claim 1: for every i, 0<i<m(x), it holds that a;4, = a; - ¢;1;.
Proof: Clearly,

T ITz+1I gl

A =
aEA;
| il Paea, 9l@)
= 1—; -
| +1| | |Az|

and the claim follows. O

Claim 2: there exists an 7, 0<i<m(z), such that

L cian > "R/ pl@).

2. a; - (Ci+1 - ()) > ;)OT;(xx))

23

Proof: By Claim 1, p,,(2) = [T ¢;, and Part (1) follows. Using p,(2) > ki (2), we get

ciyr > "1+ 1/poly(x) - k()
1
= (1 + 7p01y(x)) k()

and hence ¢;41 — k(z) > ¢;p1/poly(z). Using a; - ¢;41 > pm(2), Part (2) follows. O

Notation: Let ¢ be as guaranteed by Claim 2, and denote ;44 def ¢;iy1 — k(z). Let A;, denote

the set of partial transcripts in A; containing only partial transcripts relative to which the ¢ + 15
iteration accepts with probability bounded below by s(z) + 2'é;,,/poly(a) and above by s(z) +
2!%16, 11 /poly(z), where poly(-) is a specific polynomial which depends on m(-) and the time required
to find y € R(x). Namely,

o o
A; déf{aEAi:mw + 2. it < qla) < k(x 4 20t it }
! (=) poly() = A1) < () poly(z)

Claim 3: Let 7 and A;; be as above. Then there exists an ¢, 1 <t < poly(z), such that |A;] >
270 | Ayl

Proof: Assume, on the contrary, that the current claim does not hold. Then

z Az 62
¢y < k()4 A Z||At|| (H'l. +1)

poly(z) poly(z)
+1 poly(x) (5'_|_1
< Klz i 27t (27)
(@) + poly(z Z poly ()
< R() 4 b

= G4
and contradiction follows. O

Claim 4: There exists an ¢, 0<i<m(z), and an j, 1 <j<poly(z), such that at least a 277 fraction
of the o € T; satisfy
P ()

0] > M)+ 2)

Proof: Let i as guaranteed by Claim 2. Rephrasing Claim 3, we get that there exists an ¢, 1 <t <
poly(z), such that at least a 27* - ; fraction of the o € T; satisfy ¢(a) > k(x) + 2° - §;41 /poly(z).
Substituting j = ¢t + log,(1/a;) and using Part (2) of Claim 2, the claim follows. O

Using Claim 4, we are now ready to present the knowledge extractor K,,. Machine K, runs in
parallel m(x)-poly(x) copies of the following procedure, each with a different pair (¢,7), 1 <i<m(z)
and 1 <j <poly(z). By saying “run several copies in paralle]” we mean execute these copies so
that ¢ steps are executed in each copy before step ¢ + 1 is executed in any other copy®®

The copy running with the pair (7, j), generates M = -poly(z) random partial transcripts of
t-iterations, denoted vy, ..., var, and runs M copies of the knowledge extractor K in parallel, each
using a corresponding partial transcript (7;). The sub-procedure, indexed by the triple (¢, 7, k), uses

1% Actually, the condition can be related. For example, it suffices to require that at least ¢ steps are executed in
each copy before step 2 -t is executed in any other copy.

24

the partial transcript 7, to convert queries of the basic knowledge extractor (i.e., K') into queries
concerning the ¢ + 1°° iteration. Namely, when K is invoked it asks queries to an oracle describing
the messages of a prover interacting with V. However, K, has access to an oracle describing prover
P,, (which is supposedly interacting with V,,,). Hence, K, needs to simulate an oracle describing a
basic prover (interacting with V'), by using an oracle describing P,,. This is done by prefixing each
query of K with the :-iteration partial transcript v, generated above.

To analyze the performance of K, consider the copy of the procedure running with a pair
(,7) satisfying the conditions of Claim 4. If this is the case, then with very high probability
(i.e., exponentially close to 1) at least one of the partial transcripts generated by this copy has
the property that, relative to it, the i 4 1°" iteration accepts with probability at least x(z) +
2/p,.(x)/poly(z). It follows that the corresponding copy of the sub-procedure will halt, outputting
y € R(x), within % steps (on the average). Since the (7, 7)™ copy of the procedure consists of
2/ - poly(z) copies of the sub-procedure running in parallel, this copy of the procedure will halt in

expected time ppOly((f)) 5 (l';o)lz(:)(x). The entire knowledge extractor consists of polynomially many
copies of the procedure, running in parallel, and hence it also runs in expected —Pol(®)__ fime as

P ()= Fom (@)
required.

Remark: We believe that V,, is a knowledge verifier with error x(-)™() for the relation R (rather
than just being a knowledge verifier with error (1 4 1/poly(+)) - &(-)™() for this relation). The
difference is of little practical importance, yet we consider the question to be of theoretical interest.

C.2 Reducing the Knowledge Error via Parallel Composition

A fundamental problem with presenting a parallel analogue of the above argument is that we cannot
fix a partial transcript for the other iterations while working with one selected iteration (which was
possible and crucial to the proof used in the sequential case). Furthermore, even analyzing the

profile of accepting transcripts is more complex.

As before, let p,,(2) denote the accepting probability, here abbreviated by p(z), and let é(x) Lt

p(z) — Kp(z). Consider a m(z)-dimensional table in which the dimensions correspond to the

m m(z) parallel executions, where the (rq, ..., 7,)-entry in the table corresponds to the transcript

when the verifier uses coin tosses r; in the first execution, 7, in the second execution, and so
on. Since a p(z) fraction of the entries are accepting transcripts, it follows that there exists a
dimension ¢ so that at least a ™%/p(z) — é(x)/2 fraction of the rows in the ™" dimension contain
at least 6(z)/2m(x) accepting entries. Furthermore, there exists a j, 0 < j <log,(poly(z)/6()),
so that at least a 2/ - ™®@/p(x) — 6(x)/2 fraction of the rows in the i"" dimension contain at least

szoly(;;(.xi;)i(/;)(/:)—5@)/2 accepting entries.

Getting back to the problem of using the knowledge extractor K (of the basic verifier V'), we
note that we need to simulate an oracle to K using an oracle describing P,,. The idea used in the
sequential case is to augment all queries to the P-oracle by the same partial transcript. However,
we can no longer guarantee high accepting probability for one execution relative to a fix transcript
of the other (parallel) executions.

We can however treat the special case in which the basic knowledge extractor, K, operates by
generating random transcripts and keeping a new transcript only if it satisfies some polynomial-
time predicate with respect to the transcripts kept so far. Details omitted. We remark that the
known knowledge extractors do operate in such a manner.

25

D Equivalence of Two Formulations of Validity with Error

We now prove the equivalence of the definitions of validity with error given in Definition 3.1 and
in §6, respectively. We assume that whenever Prltrpy (2)€ACCy (z)] > k(x), we have Prltrpy(2)€
ACCy(2)] > k() + 27P(®) as well. Alternatively, we may assume that there exist an exponential
time algorithm for solving the relation R (i.e., finding y € R(z) if such exists within 2PV steps).
The proof extends the argument presented in §6, for the special case k = 0, yet in one direction an
additional idea is required.

Let us start with the easy direction. Suppose that a verifier V satisfies validity with knowledge
error £(-) by the definition in §6. Let K be a knowledge extractor satisfying this definition. We
construct a knowledge extractor K” that, on input z repeatedly invokes K (on z) until K(z) # L.
Clearly, K’ always outputs a string in R(z), halting in expected time poly(z)/P1[K(z) € R(z)]
which is bounded above by poly(z)/(Pr[trp« v(2) € ACCy(2)] — k(2)). Hence, K’ satisfies the
condition in Definition 3.1.

Suppose that a verifier V satisfies validity with knowledge error k() by Definition 3.1, and
let K be a knowledge extractor witnessing this fact. Let ¢ > 0 be the constant satisfying the
condition on the running-time of K. Namely, that its expected running-time is bounded above
by |z|°/(Pr[trpyv(z) € ACCy ()] — K(2)). Assume, without loss of generality, that with very high
probability (i.e., exponentially close to 1) K halts within at most 2P°¥(*) steps!®. We construct a
knowledge extractor K’ that, on input 2 runs K(z) with the following modification. Machine K’
proceeds in iterations, starting with ¢ = 1, and terminating after at most poly(z) iterations. In
iteration ¢, machine K’ executes K(z) with time bound 2’ - |z|°. If K halts with some output y
then K’ outputs y and halts. Otherwise (i.e., K’ does not halt within 2 - |z|° steps), machine K’
halts with probability % with output L and otherwise proceeds to iteration ¢ + 1. We stress that
in all iterations, K uses the same internal coin tosses. In fact, we can record the configuration at
the end of iteration ¢ and consequently save half of the time spent in iteration ¢ + 1. Clearly, the
expected running-time of K’(z) is bounded above by

poly(z) 1

> s (2 lal) = poly(e)

i=1

We now evaluate the probability that, on input x, machine K’ outputs y € R(z). It is guaranteed
that, on input z, the extractor i outputs y € R(z) within T'(z) < |2|°/(Pr[trpv(z) € ACCy(2)] —
x(z)) steps on the average (and by hypothesis T(z) < 2P°W()) Hence, with probability at least 3,
on input z, machine K outputs y € R(x) within 2 - T'(z) steps. The probability that K’ conducts
2-T(z) steps (i.e., K’ reaches iteration log,(T(x)/|z|?))is |¢|°/T(x) > Prtrpy(z) € ACCy (2)]— k().
Hence, K’ satisfies the condition in §6.

E The Zero-Knowledge proof of Graph Non-Isomorphism
Following is the basic ingredient of the zero-knowledge proof for Graph Non-Isomorphism (GNT)
presented in [12].

Common input: Two graphs G| and G, of n vertices each.
Objective: In case the graphs are not isomorphic, supply (statistical) evidence to that affect.

$This can be achieved by running the exponential time solver in parallel to K. Alternatively, assuming that if
Prtrpv(z) € ACCv(z)] > k(z) then Prltrpv(z) € ACCy(z)] > w(z) + 2_p°1}’(m), we can implement a probabilistic
exponential-time solver using K.

26

Step V1: The GNl-verifier selects uniformly ¢ € {1,2}, and a random isomorphic copy of G;,
hereafter denoted H and called the query, and sends H to the GNI-prover. Namely, H is obtained
by selecting a random permutation 7, over the vertex-set, and letting the edge-set of H consist of
pairs (7(u),7(v)) for every pair (u,v)in the edge-set of G,.

Step VP: The GNI-verifier “convinces” the GNI-prover that he (i.e., the GNI-verifier) “knows”
an isomorphism between H and one of the input graphs. To this end the two parties execute a
witness indistinguishable proof of knowledge (with zero error) for graph isomorphism. (Such a
protocol is described below.) In that proof of knowledge the GNI-verifier acts as the prover while
the GNI-prover acts as the verifier.

Step P1: If the GNI-prover is convinced by the proof given at step VP, then he finds j such that
H is isomorphic to G}, and sends j to the GNI-verifier. (If H is isomorphic to neither graphs or to
both the GNI-prover sets j = 1; this choice is arbitrary.)

Step V2: If j (received in step P1) equals 7 (chosen in step V1) then the GNI-verifier accepts, else
he rejects.

It is easy to see that if the input graphs are not isomorphic then there exists a GNI-prover which
always convinces the GNI-verifier. This meets the completeness condition of interactive proofs.
To show that some sort of soundness is achieved we use the witness indistinguishability of the
subprotocol used in Step VP. Loosely speaking, it follows that no information about ¢ is revealed
to the GNI-prover and therefore if the input graphs are isomorphic then the GNI-verifier rejects
with probability at least one half (no matter what the prover does).!”

The demonstration that the GNI-prover is zero-knowledge is the place where the notion of proof
of knowledge plays a central role. As required by the zero-knowledge condition we have to construct,
for every efficient program playing the role of the GNI-verifier, an efficient simulator which outputs a
distribution equal to that of the interaction of the verifier program with the GNI-prover. Following
is a description of such a simulator. The simulator starts by invoking the verifier’s program and
obtaining a query graph, H, and a transcript of the execution of step VP (this is obtained when
the simulator plays the role of the GNI-prover which is the knowledge-verifier in this subprotocol).
If the transcript is not accepting then the simulator halts and outputs it (thus perfectly simulating
the real interaction). However, if the transcript is accepting the simulator must proceed (otherwise
its output will not be correctly distributed). The simulator needs now to simulate step P1, but,
unlike the real GNI-prover, the simulator does not “know” to which graph H is isomorphic. The
key observation is that the simulator can obtain this information (i.e., the isomorphism) from the
knowledge extractor guaranteed for the proof of knowledge (taking place in step VP), and once
the isomorphism is found producing the rest of the interaction (i.e., the bit j) is obvious. Using
our definition (of proof of knowledge with zero error), the simulator can find the isomorphism in
expected poly(n)/p(G1, G, H) time, where p(Gy, Gy, H) is the probability that the GNI-prover is
convinced by the proof of knowledge in step VP. Since this module in the simulator is invoked
only with probability p(Gy, G5, H), the simulator runs in expected polynomial-time, and the zero-
knowledge property follows. We stress that carrying out this plan is not possible when using any
of the previous definitions of “proof of knowledge”.

To complete the description of the above protocol we present a (witness indistinguishable) proof
of knowledge of Graph Isomorphism. This proof of knowledge can be easily adapted to a proof of
knowledge of an isomorphism between the first input graph and one of the other two input graphs.

17Reducing the cheating probability further can be done by iterating the above protocol either sequentially or in
parallel. However, this is not our concern here.

27

Common input: Two graphs H and G of n vertices each.
Objective: In case the graphs are isomorphic, the GI-prover has to “prove knowledge of ¥”, where
1 is an isomorphism between H and G.

Note: In our application the GNI-verifier plays the role of the Gl-prover, while the GNI-prover
plays the role of the Gl-verifier.

Notation: Let ¢ ¢(n)% n2.

Step pl: The Gl-prover selects uniformly ¢ random isomorphic copies of H, denoted Ky, ..., K,
and called the mediators, and sends these graphs to the Gl-verifier. Namely, K; is obtained by
selecting a random permutation 7; over the vertex-set, and letting the edge-set of K; consist of
pairs (m;(u), m;(v)) for every pair (u,v) in the edge-set of H.

Step v1: The Gl-verifier selects uniformly a subset S of {1,2,...,t} and sends S to the GI-prover.

Step p2: For every 1€ 5, the GIl-prover sets a; = m;, where w; is the permutation selected in step
pl to form K;. For every i € {1,...,t} — 5, the Gl-prover sets a; = m;%, where 7; is as before, v
is the isomorphism between GG and H (known to the Gl-prover), and 7 denotes composition of
permutations (or isomorphisms). The Gl-prover sends ay, as, ..., a; to the Gl-verifier.

Step v2: The Gl-verifier checks if, for every ¢ € S, the permutation @; (supplied in step p2) is
indeed an isomorphism between the graphs H and K;. In addition, the Gl-verifier checks if, for
every 1€{1,2,...,t}—9, the permutation a; (supplied in step p2) is indeed an isomorphism between
the graphs G and K;. If both conditions are satisfied (i.e., all ¢ permutations are indeed what they
are supposed to be) then the Gl-verifier accepts (i.e., is convinced that the Gl-prover knows an
isomorphism between GG and H).

One can show that the above Gl-verifier constitutes a knowledge-verifier (with zero error) for Graph
Isomorphism. This is done by considering all possible choices of 5 C {1,2,...,t} for a fixed set of
mediators Ky, ..., K;. Denote by s the number of subsets 5 for which the Gl-verifier accepts. A
knowledge extractor, given one accepting interaction (i.e., containing a good .5') tries to find another
one (i.e. a good subset different from). Having two good subsets clearly yields an isomorphism
between G and H (i.e., using any index in the symmetric difference between the good subsets).
Clearly, if s = 1 then there exists no good subset other than 5. In this case the extractor finds
an isomorphism by exhaustive search (which is always performed in parallel to the attempts of the
extractor to find a different good subset). The exhaustive search requires less than 2° steps, but
dominates the total running time only in case s = 1 (in which case the accepting probability is
1/2"). Yet, for any s > 1, the expected number of tries required to find a different good subset is

1 < 2! <2-2t
(s=1)/(2t=1) s—-17

(the last inequality follows from s > 2). Since s/2' is the probability that the Gl-verifier accepts,

S

the extractor described above indeed runs in expected time inversely proportional to the accepting
probability of the Gl-verifier. Our claim follows.

28

