
Reproduced from an old tro� �le (dating 1987/88).COMPUTATIONAL RANDOMNESS(a survey)Oded GoldreichABSTRACTA recent behaviouristic approach to randomness is surveyed. In this approach a probabilitydistribution is considered "pseudorandom" if no "e�cient procedure" can distinguish it from theuniform probability distribution. Remarkably, pseudorandomness so de�ned is expandable in thesense that (assuming the existence of 1-1 one-way functions) short pseudorandom sequences canbe deterministically and e�ciently expanded into much longer pseudorandom sequences. Thenew approach to randomness is based on basic concepts and results from the theory of resource-bounded computation. In order to make the survey as accessible as possible, we have presentedelements of the theory of resource bounded computation (but only to the extent required for thedescription of the new approaches). This survey is not intended to provide an account of themore traditional approaches to randomness (e.g. Kolmogorov Complexity) and this approach isdescribed only in order to confront it with the new approach.
Note added in Dec. 1997: Section 4 of this survey may be read only for historical purposes.Otherwise, it is far inferior to results known nowadays, and consequently to existing presentations.For further details see Appendix.

1. INTRODUCTIONRandomness is playing an increasingly important role in computation. It is frequently used in thedesign of sequential, parallel and distributed algorithms, and is of course central to cryptography.Gaining a better understanding of randomness thus yields a deeper understanding of computationand stronger computational tools. Indeed, a lot of attention has been devoted to formalize thenotion of randomness and for building good pseudo-random number generators. Kolmogorov sug-gested to measure the randomness of a string by the length of its shortest description. Thus, Kol-magorov randomness is an inherent property of individual strings. Unfortunately, this approachis non-constructive and is not applicable to pseudo-random number generation. Given their wideapplicability, "pseudo-random number generators" have appeared with the �rst computers, beforeit was understood what properties they should satisfy. Evidently good pseudo-random sequencesshould have some of the statistical properties of truely random sequences. The statistical prop-erties of linear congruential generators were extensively studied by Knuth [K]. This approach isempirical in nature and fails to yield general results of the form "for all practical purposes usingthe pseudo-random sequences is as good as using truely random ones". The fact that a pseudo-random number sequence passes some statistical tests, does not guarantee that it will pass a newtest, i.e. that it is good for a future (untested) application. Recently, a constructive approach torandomness based on computation complexity has been initiated by Manuel Blum, Silvio Micaliand Andy Yao [BM, Y]. Roughly speaking, a subset S of f0; 1gn is computationally random ifany statistical test that runs in polynomial time cannot distinguish strings randomly selected inS from strings randomly selected in f0; 1gn. Here \objects" are implicitly judged equal if theydemonstrate the same "feasibly measurable" behavior. This approach is constructive both in thefollowing two senses: First, one can test whether a subset is pseudorandom. Second, assumingthe existence of one-way functions (i.e. functions that are easy to evaluate but hard to invert) onecan specify a deterministic polynomial-time algorithm (a generator) that on input random k-bitlong seeds, outputs kc-bit strings (c > 1) undistinguishable, in polynomial time, from truly ran-dom kc-long bit-strings. Essentially this means that any probabilistic polynomial time proceduregives the same results when its source of randomness is an unbiased coin or the output of such agenerator. (Else the procedure would constitute an e�cient statistical test that distinguishes thetwo). Under the thesis that all practical purposes correspond to polynomial-time procedures, thestrings output by the generator are as good as truely random strings for all practical purposes.OrganizationIn Section 2 we recall some basic notions from the theory of resource bounded computation andstate our assumption concerning one-way functions. In Section 3, we present the fundamentalde�nitions of "polynomially indistinguishable probability ensembles" and "pseudorandom ensem-bles". In Section 4 we show that, under the one-wayness assumption, pseudorandomness can beexpanded. Section 5 consists of a discussion of the above notions and results. Further develop-

ment and applications of the theory of pseudorandomness (e.g. pseudorandom functions) appearin Section 6.2. BACKGROUND : RESOURCE � BOUNDED COMPUTATIONWe begin this section by recalling the de�nitions of P and BPP { the complexity classes cor-responding to deterministic and probabilistic polynomial-time computations. We continue bypresenting the de�nition of one-way functions, which plays a central role in the construction ofpseudorandom generators and in the general results concerning zero-knowledge proofs. The the-ory of resource bounded computations is developed in terms of asymptotic behaviour. Typically,we will consider the number of steps taken by an algorithm (i.e. a Turing machine) as a functionof its input length, bound this function from above by a "smoother" function, and ask whetherthe bound is (or can be) a polynomial. This convention allows us to disregard special (short)inputs on which the machine may behave exceptionally good, and helps us concentrate on the"typical" behaviour of the machine.2.1. Deterministic Polynomial-Time ComputationsTraditionally in computer science, deterministic polynomial-time computations are associatedwith e�cient computations. (Throughout the article, a polynomial-time computation means acomputations in which the number of elementary computing steps is bounded by a polynomialin the length of the input.) This association stems from the acceptability of determinististiccomputing steps and polynomial-time computations as feasible in practice. The preference of de-terministic computing steps (over non-deterministic ones) is self evident. Polynomial-time compu-tations are advocated as e�cient due to the moderate growing rate of polynomials and due to thecorrespondence between problems which are known to have "practically e�cient" solutions andthose known to have polynomial-time solutions. Deterministic polynomial-time computations arecaptured by the complexity class P (P stands for Polynomial). The complexity class P is de�nedas the set of languages satisfying for each L 2P there exists an algorithm A and a polynomialp(�) such that the following two conditions hold:1) On input a bit string x (x 2 f0; 1g�), algorithm A halts after at most p(jxj) steps, where jxjis the length of the string x.2) On input x, algorithm A halts in an accepting state if and only if x 2 L. (Otherwise it haltsin a "rejecting state".)

2.2. Probabilistic Polynomial-Time ComputationsRecent treads in computer science regard random computing steps as feasible. Following thisapproach, we consider computations which can be carried out by Probabilistic polynomial-timealgorithms as modeling e�cient computations. A probabilistic algorithm (or a "coin-tossing" al-gorithm) is one which (based on its current con�guration) chooses its next move at random (withuniform probability distribution) among all possibilities. (In a deterministic algorithm, the nextmove is determined by the current con�guration.) Without loss of generality, we assume thatthe number of possibilities (for the next con�guration) is either 1 or 2. One can then view thealgorithm as tossing an unbiased coin before each move and determining the next move using theoutcome of the coin. On input x, the output of a probabilistic algorithm A is a random variablede�ned over the probability space of all possible internal coin tosses. Equivalently, probabilisticalgorithms can be viewed as deterministic algorithms with two inputs: the ordinary input, andan auxiliary "random input". One then considers the probability distributions de�ned by �xingthe �rst input and letting the auxiliary input assume all possible values with equal probabil-ity. In particular, the complexity class BPP (BPP stands for Bounded-away-error ProbabilisticPolynomial-time) is de�ned as the set of languages such that for every L 2 BPP there exists aprobabilistic polynomial-time algorithm A satisfying the following two conditions:1) If x 2 L then Prob(A(x) = 1) � 23 .2) If x 62 L then Prob(A(x) = 0) � 23 .It should be stressed that this de�nition is robust under substitution of 23 by either 12 + 1p(jxj)or 1 � 2�p(jxj), where p(�) is an arbitrary positive polynomial. The following thesis captures theassociation of "e�cient computation" with probabilistic polynomial-time computations.Thesis: BPP correspond to the set of computational problems which can be solved "e�-ciently".2.3. One-way FunctionsIt is generally believed that there exists (natural) problems, which demonstrate a gap betweenthe complexity of �nding a solution and the complexity of verifying its validity. For the resultsin this article we need to assume than there are problems which are hard on most (or at least ona "non-negligible" portion) of the instances. Furthermore, we assume that it is easy to generatehard instances together with a solution. This is formulated in terms of the infeasibility of invertingfunctions, which are easy to evaluate (in the forward direction).

De�nition 1: A function f : f0; 1g� ! f0; 1g� is called one-way if the following two conditionshold:1) There exist a (deterministic) polynomial-time algorithm that on input x outputs f(x).2) For any probabilistic polynomial-time algorithm A0, any constant c > 0, and su�cientlylarge n Prob �A0(f(x); 1n) 2 f�1(f(x))� < 1nc ;where the probability is taken over all x's of length n and the internal coin tosses of A0,with uniform probability distribution.Remark: The role of 1k in the above de�nition is to allow machine A0 to run in time polynomialin the length of the preimage it is supposed to �nd. (Otherwise, any function which shrinks theinput more than by a polynomial amount will be considered one-way.)Motivation to the notion of a negligible fraction: In the de�nition above, we have requiredthat any machine trying to invert the function will succeed only on a "negligible" fraction of theinputs. We call negligible any function �(�) that remains smaller than 1 when multiplied by anypolynomial (i.e., for every polynomial p(�) the limit of �(n) � p(n), when n grows to in�nity, is0). We ignore events which occur with negligible probability (as a function of the input length)since they are unlikely to occur even when repeating the experiment polynomially many times.On the other hand, events which occur with non-negligible (i.e., 1=p(n) for some polynomail p)probability will occur with almost certainty when repeating the experiment for a reasonable (i.e.polynomial) number of times. Thus, our notion of an "experiment" with a negligible successprobability is robust (under polynomial number of repetitions of the experiment).Motivation for considering in�nitely many input lengths: The notion of a polynomial-time algorithm is meaningful only when considering in�nitely many input lengths. (Otherwiseone can always choose a polynomial which bounds the running time of a machine that halts onall inputs in some �nite set.) Furthermore, for any instance length l, there exists a algorithmAl which successfully inverts the function on all instances x of length l within jxj+ jf(x)j steps(algorithm Al just incorporates in its transition function the inverses for all instances in this�nite set). The same happens whenever we consider the inversion task for a �nite set of instancelengths. Both technical di�culties are resolved when considering an in�nite set of input lengths.Assumption: There exist one-way functions. Furthermore, there exist one-way 1-1 and ontofunctions.The following three number theoretic 1-1 and onto functions are widely believed to be one-way:Ex1) Modular Exponentiation: In particular, let p be a prime and g be a primitive elementof Z�p (the multiplicative group modulo p). De�ne ME(p; g; x) = (p; g; y), where y is theresult of reducing gx modulo p. Inverting ME is known as the Discrete Logarithm Problem.

Ex2) RSA: Let p and q be primes, N = p � q and e be relatively prime to �(N) = (p� 1) � (q� 1).De�ne RSA(N; e; x) = (N; e; y), where y equals xe mod N .Ex3) Modular Squaring: In particular, let p and q be primes both congruent to 3 mod 4,and N = p � q. De�ne MS(N; x) = (N; y), where y equals x2 mod N . (To make thisfunction one-to-one, restrict x to be a quadratic residue modulo N .) Inverting MS(N; �)is computationally equivalent to factoring N ; that is, the problems are reducible to oneanother through probabilistic polynomial-time transformations.The formulation of the above examples does not exactly �t the De�nition 1, but things can bemodi�ed easily so they do. Alternatively, one may modify the constructions and theorems below.3. DEFINITION OF PSEUDORANDOM DISTRIBUTIONSA key de�nition in this approach is that of the infeasibility of distinguishing between two proba-bility distributions. This behaviouristic de�nition, views distributions as equal if they cannot betold apart by any probabilistic polynomial-time test. Such a test receives as input a single stringand outputs some statistics of the input. With no loss of generality, we may assume that thetest outputs a single bit, which may be interpreted as a guess of the distribution from which theinput was chosen. One considers the probability that, on input taken from the �rst distribution(resp. second distribution), the test outputs 1. If these two probabilities only di�er by a negligibleamount then the corresponding distributions are regarded as indistinguishable by this test.Preliminaries (Probability Ensembles): A probability distribution is a function, �, from stringsto non-negative reals such that P�2f0;1g� �(�) = 1. A probability ensemble indexed by I is asequence, � = f�igi2I , of probability distributions. Throughout the entire article, we adopt theconvention that the probability distributions in an ensemble assign non-zero probability only tostrings of length polynomial in the length of the index of the distribution. Also, it su�ces toconsider I = f1g�.Motivation to de�ning ensembles: Probability ensembles are de�ned so that we can con-sider the asymptotic behaviour of arbitrary polynomial-time algorithms on inputs taken from aprobability distribution.De�nition 2 (Polynomial Indistinguishability): Let �1 = f�1;igi2I and �2 = f�2;igi2I be twoprobability ensembles each indexed by elements of I . Let T be a probabilistic polynomial-timealgorithm (hereafter called a test). The test gets two inputs: an index i and a string �. Denoteby pT1 (i) the probability that, on input index i and a string � chosen according to the distribution�1;i, the test T outputs 1 (i.e., pT1 (i) = P� �1;i(�) � Prob(T (i; �) = 1)). Similarly, pT2 (i) denotesthe probability that, on input i and a string chosen according to the distribution �2;i, the testT outputs 1. We say that �1 and �2 are polynomially indistinguishable if for all probabilisticpolynomial-time tests T , all constants c > 0 and all su�ciently large i 2 I

jpT1 (i)� pT2 (i)j jij�c.Motivation to having the index as an auxiliary input to the test: In the above de�nition,when I = f1g�, giving the index as auxiliary input to the test is not essential. We adopted thisconvention to make it consistent with other material (omitted here...).An important special case of indistinguishable ensembles is that of probability ensembleswhich are polynomially indistinguishable from a uniform probability emsemble. These ensemblesare called pseudorandom since, for all practical purposes, they are as good as truly unbiased cointosses. This is clearly a behaviouristic point of view.De�nition 3 (Pseudorandom Distributions): Let l : f0; 1g�! N be a (length) function (mappingstrings to integers), �l0;i denote the uniform probability distribution on the set f0; 1gl(i), and�l0 = f�l0;igi2I . Let �1 = f�1;igi2I be a probability ensemble indexed by I . We say that �1 ispseudorandom if it is polynomially indistinguishable from �l0, for some length function l.Having de�ned pseudorandom ensembles, it is natural to ask whether such ensembles doexist. The answer is trivially a�rmative, since the uniform ensemble is pseudorandom (beingindistinguishable from itself!). However, this answer is of no interest. We would like to knowwhether ensembles which are not uniform, and furthermore are not statistically close to uniform,can be pseudorandom. Furthermore, can such ensembles be constructed using less coin tossesthan the length of the strings in their support? The answer to both questions is a�rmative.Namely,Theorem 1: There exist pseudorandom ensembles which are not statistically close to a uniformensemble. In particular, there exists a pseudorandom ensemble � = f�igi2I such that the supportof �i consists of 2jij strings, each of length 2 � jij. Furthermore, there exists an (exponential-time)probabilistic algorithm that on input i tosses jij coins and outputs strings with distribution �i.Proof's Idea: By a counting argument.4. ON THE EXPANDABILITY OF PSEUDORANDOM DISTRIBUTIONSWe have concluded the previous section by arguing that pseudorandom sequences which are verysparse can be constructed using less coin tosses than their length. However, this construction wasnot computational e�cient and thus could not be applied in practice. The real question is whethersuch an expansion of randomness can be carried out e�ciently. A key de�nition capturing thisquestion follows.De�nition 4 (Pseudorandom Generator): Let p(�) be a polynomial satisfying p(n) � n + 1. LetG be a deterministic polynomial-time algorithm that on input any n-bit string, outputs a string oflength p(n). Let n denote the unary encoding of the integer n. We say that G is a pseudorandom

generator if the probability ensemble de�ned by it is pseudorandom. Here, the ensemble de�nedby G is fGng where a string y has probability m � 2�n in the distribution Gn if there are exactlym seeds of length n such that feeding each of them to G yields the output y.Motivation to the unary encoding of the length: The length of the seed to G (i.e. n) isencoded in unary so that the strings in the support of Gn have length polynomial in n (= jnj).Now, we can formally state the fundamental question of whether pseudorandom generators doexist. We will see that, under the assumption that one-way 1-1 and onto functions exist, theanswer is yes. The following de�nitions and results are used in order to prove this implication.In particular, the equivalence of De�nition 3 and De�nition 5 plays an important role in provingthe pseudorandomness of the construction presented below. De�nition 5 concerns the feasibilityof predicting the next bit in a string, which is taken from some distribution. The predictor isgiven only a pre�x of the string. The question is whether there exists an e�cient predictor whichsucceeds with probability non-negligibly greater than 12 .De�nition 5 (Unpredictability): Let �1 = f�1;igi2I be a probability ensemble indexed by I . LetA be a probabilistic polynomial-time algorithm that on inputs i and y outputs a single bit (calledthe guess). Let bit(�; r) denote the r-th bit of the string �, and pref(�; r) denote the pre�xconsisting of the �rst r bits of the string � (i.e. pref(�; r) = bit(�; 1)bit(�; 2) � � �bit(�; r)). Wesay that the algorithm A predicts the next bit of �1 if for some c > 0 and in�nitely many i'sProb (M(i; pref(�; r)) = bit(�; r+ 1)) � 12 + jij�c,where the probability space is that of the string � chosen according to p1;i, the integer r chosen atrandom with uniform distribution in f0; 1; :::; j�j� 1g and the internal coin tosses of M . We saythat �1 is unpredictable if there exist no probabilistic polynomial-time algorithm A which predictsthe next bit of �1. De�nition 5 can be viewed as a special case of De�nition 3. Any predictorcan be easily converted into a test which outputs 1 if and only if the guess of the predictor iscorrect. The resulting test will distinguish an ensemble from the uniform ensemble if and only ifthe original predictor's guesses are non-negligibly better than "random". Interestingly, the specialcase is not less powerful. Namely, each successful distinguisher can be converted into a successfulpredictor.Theorem 2: Let �1 be a probability ensemble. Then �1 is pseudorandom if and only if it isunpredictable.Proof's Idea: Assume that T is a test which distinguishes �1;i from the uniform distribution.We consider the behaviour of T when fed with strings taken from the hybrid distributions H (j)i ,where H (j)i is de�ned as the distribution resulting by taking the �rst j bits of a string chosen from�1;i and letting the other bits be uniformly distributed. There must be two adjacent hybrids, H (j)iand H (j+1)i , which are distinguishable by T . The j + 1st bit is predicted using this "gap".The notion of a hard-core predicate (presented below) plays a central role in the constructionof pseudorandom generators. Intuitively, a hard-core of a function f is a predicate (b(x)) which is

easy to evaluate (on input x) but hard to even approximate when given the value of the function(f(x)). Recall that f is one-way if it is easy to evaluate (i.e. compute f(x) from x) but hardto invert (i.e. compute x from f(x)). Thus, the hard-core maintains in a strong sense both theeasyness (in the forward direction) and the hardness (in the backward direction) of the function.De�nition 6 (Hard-core Predicate): Let f : f0; 1g� ! f0; 1g� and b : f0; 1g� ! f0; 1g. Thepredicate b is said to be a hard-core of the function f if the following two conditions hold1) There is a deterministic polynomial-time algorithm that on input x returns b(x).2) There is no probabilistic polynomial-time algorithm A0 such that for some c > 0 andin�nitely many n Prob (A0(f(x)) = b(x)) � 1=2 + n�c,where the probability is taken over all possible choices of x 2 f0; 1gn and the internal cointosses of A0 with uniform probability distribution.Clearly, if the predicate b is a hard-core of the 1-1 and onto function f then f is hard to invert.Assuming that either of the functions presented in subsection 2.4 is one-way, predicates whichconstitutes corresponding hard-core can be presented. For example, the least signi�cant bit is ahard-core of RSA (i.e., given RSA(N; e; x) one cannot e�ciently predict the least signi�cant bitof x). In fact, every one-way function f can be "transformed" into a one-way function f 0 witha corresponding hard-core predicate b0. Thus, unpredictability and computational di�culty playdual roles.Theorem 3: If there exist one-way functions (resp. one-way 1-1 and onto functions) then thereexist one-way functions (resp. one-way 1-1 and onto functions) with a hard-core predicate.Proof's Idea: The proof uses the observation that if f is one-way then there must be a bit in itsargument x that cannot be e�ciently predicted from f(x) with success probability greater than1 � 1=jxj. (Otherwise, with constant probability, all the bits of the argument can be predictedcorrectly and the argument can be retrieved.) Let b(i; x) denote the ith bit of x. For jx1j =jx2j = � � � = jxn3 j = n, de�nef 0(x1; x2; :::; xn3) = f(x1)f(x2) � � �f(xn3),b0(x1; x2; :::; xn3) = �Pni=1Pn2j=1 b(i; x(i�1)�n2+j)mod 2 �.It can be shown that the predicate b0 is a hard-core of f 0. The proof does not reduce to showingthat a (su�ciently long) sequence of biased and independent 0-1 random variables has sum mod2 which is almost unbiased (since the prediction errors on the various predicates are not randomvariables)! Reproducing the actual proof is beyond the scope of this article.

Having a one-way 1-1 and onto function with a hard-core predicate su�ces for the followingconstruction of pseudorandom generators.Construction 1: Let f be a one-way 1-1 and onto function and b a hard-core predicate of f .We de�ne the following polynomial-time algorithm G. On input x, algorithm G computes thebits bi = b(f (i)(x)), where 1 � i � 2jxj and f (i) denotes the function f iteratively applied i times.Machine G outputs b2jxj � � �b2b1.Lemma 1: Let f , b and G be as in Construction 1. Then fGng de�ned as in De�nition 4 isunpredictable.Proof's Idea: An e�cient predictor of the sequence de�ned above can be easily converted intoa algorithm M that on input f(x) guesses b(x) with success probability greater than 1=2. Oninput f(x), algorithm M computes the sequence b(f (k)(x)); :::; b(f (2)(x)); b(f(x)) and obtains aprediction for b(x).Combining Theorem 3, Lemma 1 and Theorem 2, we getTheorem 4: If there exist one-way 1-1 and onto functions then there exist pseudorandom gen-erators.We conclude that feeding a pseudorandom generators with seeds taken from a uniform dis-tribution (over f0; 1gn), yields a pseudorandom distribution. The following theorem states thatfeeding a pseudorandom generator with seeds taken from a pseudorandom distribution also yieldsa pseudorandom distribution over longer strings.Theorem 5: Suppose that �1 = f�1;igi2I is a pseudorandom ensemble, and G is a pseudorandomgenerator. Then the ensemble �2 = f�2;igi2I , where �2;i is de�ned by feeding G with inputsaccording to the distribution �1;i, is also pseudorandom.Proof's Idea: Assume to the contrary that there exists a (polynomial-time) test T distinguishingbetween �2 and the uniform distribution. Then at least one of the following two statements hold:1) The test T also distinguishes fGng from the uniform distribution (in contradiction to Gbeing a pseudorandom generator).2) The test T can be modi�ed into a test T 0 (which �rst applies G to the tested string andthen runs T on the result) so that T 0 distinguish �1 from the uniform distribution (thuscontradicting the hypothesis that �1 is pseudorandom).5. DISCUSSION

Before presenting further extensions and applications of the above approach to randomness, letus discuss several conceptual aspects.Behavioristic versus OntologicThe behaviouristic nature of the above approach to randomness is best demonstrated by con-fronting this approach with the Kolmogorov-Chaitin approach to randomness. Loosely speaking,a string is Kolmogorov-random if its length equals the length of the shortest program producingit. This shortest program may be considered the "true explanation" to the phenomenon describedby the string. A Kolmogorov-random string is thus a string which does not have a substantiallysimpler (i.e. shorter) explanation than itself. Considering the simplest explanation of a phe-nomenon is certainly an ontologic approach. In contrast, considering the e�ect of phenomenaon certain objects, as underlying the de�nition of pseudorandomness (above), is a behaviouristicapproach. Furthermore, assuming the existence of one-way 1-1 and onto functions, there existprobability distributions which are not uniform (and are not even statistically close to a uniformdistribution) that nevertheless are indistinguishable from a uniform distribution (by any e�cientmethod). Thus, distributions which are ontologically very di�erent, are considered equivalent bythe behaviouristic point of view taken in the de�nitions above.A Relativistic View of RandomnessPseudorandomness is de�ned above in terms of its observer. It is a distribution which cannotbe told apart from a uniform distribution by any e�cient (i.e. polynomial-time) observer. Thus,pseudorandomness is subjective to the abilities of the observer. To illustrate this point considerthe following mental experiment.Alice and Bob want to play "head or tail" in one of the following four ways. In all of themAlice ips an unbiased coin and Bob is asked to guess its outcome before the coin rests on theoor. The alternative ways di�er by the knowledge Bob has before making his guess. In the�rst way, Bob has to announce his guess before Alice ips the coin. Clearly, in this way Bobwins with probability 1=2. In the second way, Bob has to announce his guess while the coinis spinning in the air. Although the outcome is determined in principle by the motion of thecoin, Bob does not have accurate information on the motion and thus we believe that also inthis case Bob wins with probability 1=2. The third way is similar to the second, except thatBob has at his disposal sophisticated equipment capable of providing accurate informationon the coin's motion as well as on the environment e�ecting the outcome. However, Bobcannot process this information in time to improve his guess. In the fourth way, Bob'srecording equipment is directly connected to a powerful computer programmed to solve themotion equations and output a prediction. It is conceivable that in such a case Bob canimprove his guess of the outcome of the coin substantially.

We conclude that the randomness of an event is relative to the information and computing re-sources at our disposal. Pseudorandom ensembles are unpredictable by probabilistic polynomial-time algorithms (associated with feasible computations), but may be predictable by in�nitelypowerful machines (not at our disposal!).E�ectiveness and ApplicabilityAnother interesting property of the above approach to randomness is that it is e�ective in thefollowing two senses: First, one may construct an e�cient (universal) test that distinguishespseudorandom distributions from ones which are not pseudorandom. In contrast, the problemof determining whether a string is Kolmogorov-random is undecidable. Second, assuming theexistence of one-way 1-1 and onto functions, long pseudorandom strings can be e�ciently anddeterministically generated from much shorter pseudorandom strings. Clearly, this cannot be thecase with Kolmogorov-random strings. The existence of pseudorandom generators has applica-tions to the construction of e�cient probabilistic algorithms. Such algorithms maintain the sameperformance when substituting their internal coin tosses by pseudorandom sequences. Thus, forevery constant � > 0, the number of truly random bits required in a polynomial-time computationon input x can be decreased (from poly(jxj)) to jxj�.Randomness and Computational Di�cultyRandomness and computational di�culty play dual roles. This was pointed out already whendiscussing one-way functions and hard-core predicates. The relationship between pseudorandomgenerators and one-way computations is even a better illustration of this point. We have shownabove that the existence of one-way 1-1 and onto functions implies the existence of pseudoran-dom generators. On the other hand, one can readily verify that any pseudorandom generatorconstitutes a one-way function.6. FURTHER EXTENSIONS AND APPLICATIONS6.1. Pseudorandom Functions or Experimenting with the Random SourceIn the previous subsection we have (implicitly) modelled phenomena as single events (bit strings).This model su�ces for describing phenomena in which the observer is passive: he can only recordthe events which occur. A more powerful model allows the observer to conduct experiments.Namely, "feed" the phenomenon with some values and measure the events which correspond tothese values. Modelling a phenomenon as a function from events to events (or as a function from

environment values to actions) is thus natural and useful. As in the previous subsections, we willpresent de�nitions for a pair of indistinguishable phenomena, a pseudorandom phenomenon anda generator of the latter. In other words, we will present de�nitions for indistinguishability offunctions, pseudorandom functions, and pseudorandom function generators. For our de�nition ofindistinguishable function ensembles we consider Turing machines (i.e. algorithms) with oracles.These machines are able, in addition to the traditional computing steps, to make oracle queries:place a string on a special tape and read an "answer" in the next step. Loosely speaking, wewill say that two function ensembles are indistinguishable if any polynomial-time oracle Turingmachine cannot distinguish the case that its oracle is a function taken from the �rst ensemble andthe case that the oracle is a function taken from the second.De�nition 7 (Indistinguishability of Functions): Let F1 = fF1;igi2I and F2 = fF2;igi2I be twofunction ensembles, where Fj;i is a probability distribution on the functions f : f0; 1gjij! f0; 1g.We say that F1 and F2 are polynomially indistinguishable if for every probabilistic polynomial-timeoracle machine M , every constant c > 0 and all su�ciently large i 2 IjpM1 (i)� pM2 (i)j < jij�c;where pMj (i) is the probability that M outputs 1 on input i when querying an oracle randomlychosen from the distribution Fj;i.De�nition 8 (Pseudorandom Functions and Function Generators): The function ensemble F =fFigi2I is pseudorandom if it is polynomially indistinguishable from the ensemble H = fHigi2I ,where Hi is the uniform probability distribution on the set of functions f : f0; 1gjij! f0; 1g.We say that F = fFng is a pseudorandom function generator if the following three conditionshold:1) There exists a probabilistic polynomial-time machine M1 that, on input n, randomly selectsa function f from the distribution Fn, and outputs a (succinct) description of f (denoted~f).2) There exists a (deterministic) polynomial-time machine M2 that, on input ~f (a descriptionof f : f0; 1gn! f0; 1g) and a string x (2 f0; 1gn), outputs f(x). That is, M2(~f; x) = f(x).3) The ensemble F is pseudorandom.Similar de�nitions apply to function ensembles consisting of distributions Fi on functions mappingf0; 1gjij to f0; 1gjij. Furthermore, one can easily transform ensembles of the �rst kind to ones ofthe second type, and vice versa. As in subsection 3.2, we now ask whether there exist non-trivialensembles of pseudorandom functions, and furthermore whether such ensembles can be e�cientlygenerated. It turns out that this question reduces to the question handled in subsection 3.2.Namely,

Theorem 6: Pseudorandom function generators exist if and only if pseudorandom generatorsexist.Proof's Idea: The "only if" direction of Theorem 6 is easy. The generator �rst uses M1 toget an ~f and next uses M2 to evaluate f(1), f(2); ::: The "if" direction of the Theorem alsohas a constructive proof. The construction proceeds in two steps: First one uses an arbitrarypseudorandom generator to construct a pseudorandom generator G that doubles the length of itsinput. Next, G is used to construct a pseudorandom function in the following manner. Let G0(x)denote the �rst jxj bits output by G on input x, and G1(x) denote the last jxj bits output by G oninput x. Extend the above notation so that for every bit � and bit string �, G��(x) = G�(G�(x)).Now, let fx(y) = Gy(x), and Fn is the distribution obtained by picking x uniformly among all n bitstrings and using the resulting function fx. It can be shown that F so de�ned is a pseudorandomfunction generator. (It is interesting to note that this is not the case if we let fx(y) = Gx(y).)Further Discussion It is interesting to point out the analogy between the above de�nition ofpseudorandom functions and Turing's famous "test of intelligence". (In Turing's test of intelli-gence, one is interacting arbitrarily with an unknown entity which is either a human or a machine.The machine is said to be (pseudo)intelligent if the tester cannot distinguish the two cases.) Inboth settings one interacts with an unknown function in order to latter determine the "nature" ofthis function. Failure to determine the "true nature" is interpreted as a proof that the di�erencein nature is of no importance (as far as functionality goes...). Pseudorandom functions can not bepredicted, even not in the following weak sense: any probabilistic polynomial-time oracle Turingmachine cannot predict the value of the oracle on an unasked query better than 50-50, when theoracle is a pseudorandom function. This resembles the following quotation of Turing:I have set up on a Manchester computer a small programme using only 1000 units of storage,whereby the machine supplied with one sixteen �gure number replies with another within twoseconds. I would defy anyone to learn from these replies su�cient about the programme tobe able to predict any replies to untried values.6.2. Applications to CryptographyThe most obvious application of pseudorandomness to cryptography is making one-time pads afeasible and secure encryption method. One-time pads are the simplest and safest private-keycryptosystem. A cleartext is encrypted by XORing its bits with the currently initial segment ofthe (randomly selected) key, and the resulting ciphertext is decrypted by XORing its bits with thevery segment of the key. Each segment of the key is deleted after use, and thus no informationabout the cleartext can be extracted from the ciphertext. The drawback of one-time pads is thatthe length of the key in use must equals or even exceed the length of the messages sent. Namely, inorder to secretly pass a message of length l one must exchange secretly another message of length

l. This is not satisfactory both from a theoretical and practical point of view, since the aim isto achieve high level of security in a much lower "cost". In practice, "pseudorandom sequences"are used instead of the randomly selected key of the one-time pad, but security can no longerbe asserted. Assuming the existence of pseudorandom bit generators (in the sense discussedin section 3.2), one can replace the key of the one-way pad by a pseudorandom sequence andprove that the resulting cryptosystem is secure in the following sense: whatever can be e�cientlycomputed from the ciphertext can be e�ciently computed without it. In other words, as far aspolynomial-time computations are concerned, no information about the cleartext is revealed fromthe ciphertext. Other applications of pseudorandomness to Cryptography use the constructionof pseudorandom functions (Theorem 6, section 3.4). For example, it is possible to produceunforgeable message authentication tags and time-stamps. Assume two parties A and B, sharinga secret key, communicate over a channel tampered by an adversary C. The adversary may injectmessages on the channel. The parties would like to be able to verify that a message has arrivedfrom their counterpart, and not from the adversary. It is suggested that in order to authenticatea message M , party A just applies the pseudorandom function f to M , and sends f(M) as theauthentication tag of M . Party B may then verify the validity of this authentication tag, beingcon�dent that the message has been sent by A (and not injected by C). We stress that if f is apseudorandom function then the above scheme is provably secure in the following sense: evenif C gets polynomially many authentication tags to messages of his choice he cannot produce inpolynomial-time an authentication tag to any other message.6.3. Necessary and Su�cient Conditions of the Existence of PseudorandomGeneratorsThe condition in Theorem 4 can be relaxed so to derive a necessary and su�cient condition forthe existence of pseudorandom generators. Essentially, one requires a function f which is "one-way on its iterates"; namely, that f is hard to invert on the distribution obtained by applyingthe function iteratively k1:5 times, where k is the length of the argument. Clearly, any one-waypermutation is one-way on its iterates.Theorem 40: Functions which are one-way on their iterates exist if and only if pseudorandomgenerators exist.Proof's Idea: For the ! direction one should carefully modify the proof of Theorem 4. The direction follows by slightly modifying the pseudorandom generator.We believe that the reader will not �nd the above Theorem 40 satisfactory, and urge him toprove our conjecture that the above two conditions are in fact equivalent to the mere existence ofarbitrary one-way functions. Partial progress is reported in [GKL].7. CONCLUSIONS

The fact that pseudorandom generators and functions exist under a reasonable complexity the-oretic assumption (i.e. the existence of one-way 1-1 and onto functions), must be considered atleast a plausibility argument. Thus, every reasoning overruling the existence of such generatorsmust incorporate a demonstration that one-way 1-1 and onto functions do not exist. The possibleexistence of pseudorandom generators does not allow us to consider "unbounded" random be-haviour as necessarily arising from an "unbounded" source of randomness, since a pseudorandomgenerator may expand a "bounded" amount of randomness to an "unbounded" amount of pseudo-randomness. Furthermore, the possible existence of pseudorandom functions implies that a smallamount of randomness su�ces in order to e�ciently determine a random mapping from huge setsinto huge sets. All the above was discovered through a behaviouristic approach to the notionof randomness. We believe that a behaviouristic approach is justi�ed when studying computingdevices, as much as it is unjusti�ed when studying "thinking beings".ACKNOWLEDGEMENTSFirst of all, I would like to thank two remarkable people who had a tremendous inuence onmy professional development. Shimon Even introduced me into theoretical computer science andclosely guided me in my �rst steps. Silvio Micali led my way in the evolving foundations ofcryptography and shared with me his e�orts of further developing them. Next, I would like tothank Benny Chor for his indispensable contribution to our joint research, and for the excitementand pleasure I had when collaborating with him. Special thanks to Leonid Levin for manyinteresting discussions. Finally, I would like to thank Hugo Krawczyk for carefully reading anearlier version of the manuscript, pointing out some errors, and suggesting several improvements.

BIBLIOGRAPHIC NOTESFor background on Computational Complexity consult an appropriate textbook such as [HU, ch.12-13] and [GJ]. The notion of one-way functions was �rst suggested in [DH], and the most famouscandidate is due to [RSA]. A 1-1 function which is one-way, unless factoring is easy appears in [R].De�nition 1 (one-way functions), however, is a weaker form and is due to [Y]. A special case ofDe�nition 2 (indistinguishability) �rst appeared in [GM], the general case is from [Y]. De�nitions3 and 4 (pseudorandomness) are due to [Y], while De�nition 5 (unpredictability) appears in [BM].Theorem 2 (equivalence of Def 's 3 and 5) is implicit in [Y]. De�nition 6 (hard-core predicate),Construction 1 (pseudorandom generator based on a hard-core predicate) and Lemma 1 appear in[BM]. Theorem 3 (existence of hard-core predicates assuming one-way 1-1 functions) is implicitin [Y], where a sketch of the proof of Theorem 4 (pseudorandom generator based on one-way1-1 functions) appears. A �ner analysis, which leads to Theorem 40 (a necessary and su�cientcondition for the existence of pseudorandom generators, appears in [L]. Predicates which are hard-core of the particular number theoretic functions mentioned in section 2.4, appear in [BM] and[ACGS]. De�nitions 7 and 8 (pseudorandom functions) and Theorem 6 (pseudorandom generatorsimply pseudorandom function generators) appear in [GGM]. Further developments appear in [LR].REFERENCES[ACGS] Alexi, W., B. Chor, O. Goldreich and C.P. Schnorr, "RSA and Rabin Functions: CertainParts Are As Hard As the Whole", Proc. 25th IEEE Symp. on Foundation of ComputerScience, 1984, pp. 449-457, (to appear in SIAM J. Computing).[BM] Blum, M., and Micali, S., "How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits", SIAM Jour. on Computing, Vol. 13, 1984, pp. 850-864.[DH] Di�e, W., and M. E. Hellman, "New Directions in Cryptography", IEEE transactions onInfo. Theory, IT-22 (Nov. 1976), pp. 644-654[GJ] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory ofNP-Completeness, W.H. Freeman and Company, New York, 1979.[GGM] Goldreich, O., S. Goldwasser, and S. Micali, "How to Construct Random Functions", Jour.of ACM, Vol. 33, No. 4, 1986, pp. 792-807.[GKL] Goldreich, O., H. Krawczyk, and M. Luby, "On the Existence of Pseudorandom Generators",priprint, 1987.[GM] Goldwasser, S., and S. Micali, "Probabilistic Encryption", JCSS, Vol. 28, No. 2, 1984, pp.270-299.

[HU] Hopcroft, J.E., and J.D. Ullman, Introduction to Automata Theory, Languages, and Com-putation, Addison-Wesley Publishing Co., 1979.[L] Levin, L.A. "One-Way Function and Pseudorandom Generators", Proc. 17th ACM Symp.on Theory of Computing, 1985, pp. 363-365.[LR] Luby, M., and C. Racko�, "Pseudo Random Permutation Generators and DES", Proc. 18thACM Symp. on Theory of Computing, 1986, pp. 356-363.[R] Rabin, M.O. "Digitalized Signatures and Public Key Functions as Intractable as Factoring",MIT/LCS/TR-212, 1979.[RSA] Rivest, R., A. Shamir, and L. Adleman, "A Method for Obtaining Digital Signatures andPublic Key Cryptosystems", Comm. ACM, Vol. 21, Feb. 1978, pp. 120-126[Y] Yao, A.C., "Theory and Applications of Trapdoor Functions", Proc. of the 23rd IEEESymp. on Foundation of Computer Science, 1982, pp. 80-91.

APPENDIX: ALTERNATIVE PRESENTATION FOR SECTION 4Technically speaking, the proof of Theorem 3 can be simpli�ed by replacing Yao's XOR Lemmawith an alternative (and e�cient) construction of Goldreich and Levin [2]: For every one-way func-tion f , the inner-product mod 2 of x and r is a hardcore of the function f 0(x; r) = (f(x); r). (Bythe way, an accessible exposition of the proof of Yao's XOR Lemma are now available (cf., [3]).)Furthermore, I currently prefer an alternative presentation, as in [1], which proceeds as follows:First, one shows (directly) that, for any one-way 1-1 onto function f and hardcore b, the functionG(s) = f(s)b(s) is a pseudorandom generator. Next, one shows how to transform any pseudoran-dom generator into one which doubles the length of its input. Finally, we comment that it hasbeen shown that the existence of any one-way function implies the existence of a pseudorandomgenerator [4].References[1] O. Goldreich. Foundation of Cryptography { Fragments of a Book. February 1995. Availablefrom http : ==theory:lcs:mit:edu=� oded=frag:html.[2] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st STOC,pages 25{32, 1989.[3] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC, TR95-050, 1995.[4] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Gener-ator from any One-Way Function. To appear in SICOMP. Preliminary versions by Impagli-azzo et. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).

