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Preface

More than ten years have elapsed since the first completeness theorems for two-party and multi-party
fault-tolerant computation have been announced (by Yao and Goldreich, Micali and Wigderson,
respectively). Analogous theorems have been proven in a variety of models, yet full proofs of the
abovementioned basic results (i.e., for the “computational model” as well as for the “private channel
model”) are not to be found. This manuscript attempts to redeem this sour state of affairs, at least
as far as the “computational model” goes.
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A Warning

This is a working draft. It is certainly full of various minor flaws, but is hoped and believed to
contain no serious ones. The focus is on general constructions and on the proof that they satisfy
a reasonable definition of security, which is not necesarily an ultimate one. A reader seeking an
extensive definitional treatment of secure multi-party computation, should look for it elsewhere.

Final Notice

I do not intend to produce a polished version of this work. Whatever is here suffices for the original
purpose of providing full proofs of the abovementioned basic results (for the “computational model”).
This revision as well as previous ones is confined to pointing out (but not correcting) some (minor)
flaws or gaps in the original text. I do not plan to post additional revisions. A better exposition
(benefiting from composition theorems for the malicious model) will appear in a forthcoming text-
book, drafts of which are available on-line [40]. In particular, the draft of the relevant chapter
of [40] subsumes the current manuscript in all aspects.
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Chapter 1

Introduction and Preliminaries

The current contents of this chapter is tentative. The main part of the introduction is reproduced
with minor revisions from [41].

1.1 A Tentative Introduction

A general framework for casting cryptographic (protocol) problems consists of specifying a random
process which maps m inputs to m outputs. The inputs to the process are to be thought of as local
inputs of m parties, and the m outputs are their corresponding local outputs. The random process
describes the desired functionality. That is, if the m parties were to trust each other (or trust some
outside party), then they could each send their local input to the trusted party, who would compute
the outcome of the process and send each party the corresponding output. The question addressed
in this manuscript is to what extent can this trusted party be “emulated” by the mutually distrustful
parties themselves.

1.1.1 Overview of the Definitions

For simplicity, we consider in this overview only the special case where the specified process is
deterministic and the m outputs are identical. That is, we consider an arbitrary m-ary function and
m parties which wish to obtain the value of the function on their m corresponding inputs. Each
party wishes to obtain the correct value of the function and prevent any other party from gaining
anything else (i.e., anything beyond the value of the function and what is implied by it).

We first observe that (one thing which is unavoidable is that) each party may change its local in-
put before entering the protocol. However, this is unavoidable also when the parties utilize a trusted
party. In general, the basic paradigm underlying the definitions of secure multi-party computations
amounts to saying that situations which may occur in the real protocol, can be simulated in the
ideal model (where the parties may employ a trusted party). Thus, the “effective malfunctioning” of
parties in secure protocols is restricted to what is postulated in the corresponding ideal model. The
specific definitions differ in the specific restrictions and/or requirements placed on the parties in the
real computation. This is typically reflected in the definition of the corresponding ideal model — see
examples below.



An example — computations with honest majority: Here we consider an ideal model in
which any minority group (of the parties) may collude as follows. Firstly this minority shares its
original inputs and decided together on replaced inputs! to be sent to the trusted party. (The other
parties send their respective original inputs to the trusted party.) When the trusted party returns
the output, each majority player outputs it locally, whereas the colluding minority may compute
outputs based on all they know (i.e., the output and all the local inputs of these parties). A secure
multi-party computation with honest majority is required to emulate this ideal model. That is,
the effect of any feasible adversary which controls a minority of the players in the actual protocol,
can be essentially simulated by a (different) feasible adversary which controls the corresponding
players in the ideal model. This means that in a secure protocol the effect of each minority group
is “essentially restricted” to replacing its own local inputs (independently of the local inputs of the
majority players) before the protocol starts, and replacing its own local outputs (depending only on
its local inputs and outputs) after the protocol terminates. (We stress that in the real execution
the minority players do obtain additional pieces of information; yet in a secure protocol they gain
nothing from these additional pieces of information.)

Secure protocols according to the above definition may even tolerate a situation where a minority
of the parties aborts the execution. An aborted party (in the real protocol) is simulated by a party
(in the ideal model) which aborts the execution either before supplying its input to the trusted
party (in which case a default input is used) or after supplying its input. In either case, the
majority players (in the real protocol) are able to compute the output although a minority aborted
the execution. This cannot be expected to happen when there is no honest majority (e.g., in a
two-party computation) [26].

Another example — two-party computations: In light of the above, we consider an ideal model
where each of the two parties may “shut-down” the trusted (third) party at any point in time. In
particular, this may happen after the trusted party has supplied the outcome of the computation
to one party but before it has supplied it to the second. A secure multi-party computation allowing
abort is required to emulate this ideal model. That is, each party’s “effective malfunctioning” in a
secure protocol is restricted to supplying an initial input of its choice and aborting the computation
at any point in time. We stress that, as above, the choice of the initial input of each party may NOT
depend on the input of the other party.

1.1.2 Overview of the Known Results

General plausibility results: Assuming the existence of trapdoor permutations, one may provide
secure protocols for ANY two-party computation (allowing abort) [72] as well as for ANY multi-party
computations with honest majority [45]. Thus, a host of cryptographic problems are solvable assum-
ing the existence of trapdoor permutations. Specifically, any desired (input—output) functionality
can be enforced, provided we are either willing to tolerate “early abort” (as defined above) or can
rely on a majority of the parties to follow the protocol. Analogous plausibility results were sub-
sequently obtained in a variety of models. In particular, we mention secure computations in the
private channels model [9, 22], in the presence of mobile adversaries [60], and for an adaptively
chosen set of corrupted parties [18].

L Such replacement may be avoided if the local inputs of parties are verifiable by the other parties. In such a case,
a party (in the ideal model) has the choice of either joining the execution of the protocol with its correct local input
or not join the execution at all (but it cannot join with a replaced local input). Secure protocols emulating this ideal
model can be constructed as well.



We view the above results as asserting that very wide classes of problems are solvable in principle.
However, we do not recommend using the solutions derived by these general results in practice. For
example, although Threshold Cryptography (cf., [28, 34]) is merely a special case of multi-party
computation, it is indeed beneficial to focus on its specifics.

1.1.3 Aims and nature of the current manuscript

Our presentation is aimed at providing an accessible account of the most basic results regarding
general secure multi-party computation. We focus on the “computational model”, assuming the ex-
istence of trapdoor permutations. We provide almost full proofs for the plausibility results mentioned
above — secure protocols for ANY two-party (and in fact multi-party) computation allowing abort,
as well as for ANY multi-party computations with honest majority. We briefly mention analogous
results in other models.

We do not attempt to provide the most general definitions and the most general tools. This
choice is best demonstrated in our composition theorems — they are minimal and tailored for our
purposes, rather than being general and of utmost applicability. (Actually, in some cases we refrain
from presenting an explicit composition theorem and derive a result by implicit composition of a
subprotocol inside a bigger one.) Another example is our focus on the “static model” where the set of
dishonest parties is fixed before the execution of the protocol starts,? rather than being determined
adaptively during the execution of the protocol. Alternative presentations aimed at such generality
are provided in [49, 56, 2, 14, 15, 16].

Likewise, no attempt is made to present the most efficient versions possible for the said results. In
contrary, in many cases we derive less efficient constructions due to our desire to present the material
in a modular manner. This is best demonstrated in our non-optimized compilers — especially those
used (on top of one another) in the multi-party case. As we view the general results presented here
as mere claims of plausibility (see above), we see little point in trying to optimize them.

1.1.4 Organization of this manuscript

Choices were made here too. In particular, we chose to present the two-party case first (see Chap-
ter 2), and next to extend the ideas to the multi-party case (see Chapter 3). Thus, the reader
interested in the multi-party case cannot skip Chapter 2. We hope that such a reader will appreci-
ate that the two-party case is a good warm-up towards the m-party case, for general m. Actually,
most ideas required for the latter can be presented in the case m = 2, and such a presentation is
less cumbersome and allows to focus on the essentials.

Within each chapter, we start with a treatment of the relatively easy case of semi-honest behavior,
and next proceed to “force” general malicious parties to behave in a semi-honest manner. We believe
that even a reader who views the semi-honest model as merely a mental experiment will appreciate
the gain obtained by breaking the presentation in this way.

Previous versions: The first version of this manuscript was made public in June 1998, although
it was not proofread carefully enough. Thus, we chose to make available a working draft which
may have some errors rather than wait till the draft undergoes sufficiently many passes of critical
reading. We intend to continue to revise the manuscript while making these revisions public. In
order to minimize the confusion cause by multiple versions, starting from the first revision (i.e.,

2 We stress that the set of dishonest parties is determined after the protocol is specified.



Version 1.1), each version will be numbered. For further details on how this version differs from
previous ones, see Section 4.6.

1.2 Preliminaries (also tentative)

We recall some basic definitions regarding computational complexity and multi-party protocols.
More importantly, we present and sustain a stronger than usual definition of proof of knowledge.

1.2.1 Computational complexity

Throughout this manuscript we model adversaries by (possibly non-uniform) families of polynomial-
size circuits. Here, we call the circuit family C = {C,} uniform if there exists a poly(n)-time
algorithm than on input n produces the circuit C,. The latter circuit operates on inputs of length
n. The non-uniform complexity treatment is much simpler than the uniform analogue for several rea-
sons. Firstly, definitions are simpler — one may quantify over all possible inputs (rather than consider
polynomial-time constructible input distributions). Secondly, auxiliary inputs (which are essential
for various composition theorems) are implicit in the treatment; they can always be incorporated
into non-uniform circuits.

We take the liberty of associating the circuit family C' = {C,,} with the particular circuit of

relevance. That is, we write C(z) rather than Cj,(v); we may actually define C(z) Lef Clz|().
Furthermore, we talk of polynomial-time transformations of (infinite and possibly non-uniform)
circuit families. What we mean by saying that the transformation 7" maps {C,,} into {C!,} is that
Cl =T(C,), for every n.

Negligible functions. A function p: N [0, 1] is called negligible if for every positive polynomial
p, and all sufficiently large n’s, u(n) < 1/p(n).

Probability ensembles. A probability ensemble indexed by S C {0,1}* is a family, {X, }wes, so
that each X, is a random variable (or distribution) which ranges over (a subset of) {0, 1}Pe(wD.

Typically, we consider S = {0,1}* and S = {1 : n € N} (where, in the latter case, we sometimes

write S = N). We say that two such ensembles, X def {Xw}wes and YV def {Yuw}wes, are identically

distributed, and write X =Y. if for every w € S and every «
PrXw=a] =Pr[Y,=q]

Such X and Y are said to be statistically indistinguishable if for some negligible function x : N — [0, 1]
and all w € S,

Y IPriXu=a] = Pr¥,=a]| < u|w))

In this case we write X = Y. Clearly, for every probabilistic process F, if {Xw}wes = {Yo}wes
then {F(Xu)}wes = {F(Yu)}wes-

Computational indistinguishability. We consider the notion of indistinguishability by (possibly
non-uniform) families of polynomial-size circuits.



Definition 1.2.1 (computational indistinguishability): Let S C {0,1}*. Two ensembles (indexed

by S), X def {Xw}wes and Y def {Yuw}wes, are computationally indistinguishable (by circuits) if for

every family of polynomial-size circuits, {Dy},cn, there exists a negligible function p : N — [0,1]
so that
|Pr [Dn(w, Xo)=1] = Pr{Dn(w,Yy)=1]| < p(|w])

. C
In such a case we write X =Y.

Actually, it is not necessary to provide the distinguishing circuit (i.e., D,, above) with the index of
the distribution. That is,

Proposition 1.2.2 Two ensembles (indexed by S), X = {Xu}twes and Y Lef {Yu}wes, are com-

putationally indistinguishable if and only if for every family polynomial-size circuits, {Cy},cN, every
polynomial p(-), and all sufficiently long w € S

|Pr[Cpn(Xw)=1] — Pr{C,(Yy)=1]] <

p(al) (L)

Proof: Clearly if X = Y then Eq. (1.1) holds (otherwise, let D, (w, z) = Cn(z)). The other

direction is less obvious. Assuming that X and Y are NOT computationally indistinguishable, we
will show that, for some polynomial-sized {C,},.cn, Eq. (1.1) does not hold either. Specifically, let
{Dy},en be a family of (polynomial-size) circuits, p be a polynomial, and S’ an infinite subset of S
so that for every w € S’

1
|Pr[Dy(w, X,)=1] — Pr[Dy,(w,Yy,)=1]| > —/——
p(lwl)
We consider an infinite sequence, wy,w,, ..., so that w, € S" if S'N{0,1}" # B and w,, = 0™ (or

any other n-bit long string) otherwise. Incorporating w,, into D,,, we construct a circuit C,(z) def

D,,(wy, 2) for which Eq. (1.1) does not hold. |l

Comments: Computational indistinguishable is a proper relaxation of statistically indistinguishable

(ie., X =Y implies X = Y, but not necessarily the other way around). Also, for every fam-
C

ily of polynomial-size circuits, C = {Cpn},en, if {Xw}lwes = {Yuw}wes then {Cluw)(Xw) }wes =
{C\w\(Yw)}wGS-

Trapdoor Permutations. A sufficient computational assumption for all constructions used in
this text is the existence of trapdoor permutations. Loosely speaking, these are collections of one-
way permutations, {f,}, with the extra property that f, is efficiently inverted once given as auxiliary
input a “trapdoor” for the index a. The trapdoor of index «, denoted by (), can not be efficiently
computed from «, yet one can efficiently generate corresponding pairs («, t(«)).

Author's Note: Actually, we will need an enhanced notion of hardness. Specifically, in-
verting should be infeasible also when given coins that yield the target pre-image. See
further notes below.

Definition 1.2.3 (collection of trapdoor permutations, enhanced): A collection of permutations,
with indices in I C {0,1}*, is a set {fo : Do — Dy }aes so that each fo is 1-1 on the corresponding
D,. Such a collection is called a trapdoor permutation if there exists 4 probabilistic polynomial-time
algorithms G, D, F, F~1 so that the following five conditions hold.



1. (index and trapdoor generation): For every n,

PriG(1") e I x {0,1}*] > 1-27"

2. (sampling the domain): For every n € N and o € 1N {0,1}",

(a) PriD(a) € D] > 1—27". Thus, without loss of generality, D, C {0,1}PeWUal).

(b) Conditioned on D(a) € D, the output is uniformly distributed in D.. That is, for every
z € D,
1

Pr[D(a) =z |D(a) € D] = Da]

3. (efficient evaluation): For everyn € N, a € IN{0,1}" and = € D,,

PriF(a,z) = fo(z)] > 1—-27"

4. (hard to invert): For every family of polynomial-size circuits, {C, },en, every positive polyno-
mial p(-), and all sufficiently large n’s

1
PriCn(f1,(Xn), 1) = X,] < m

where I, is a random variable describing the distribution of the first element in the output of
G(1™), and X,, is uniformly distributed in Dy, .

Author's Note: In fact we need a stronger (or enhanced) condition. First note that
the above condition can be recast as
1

PrCu(Xn 1) = 1,1 (X)] < s

We strengthen this requirment by providing the inverting algorithm with the coins
used to generate X,,, rather than with X,, itself. Specifically, suppose that X, =
D(I,) = D(I.,R,.), where R, is uniformly distributed in {0,1}P°¥("). Then, we
require that
1
Pr[Cn(R,, 1) = f7 (DI, Rn < —
[Culltn, 1) = S/ (DU )] < o

(for every family of polynomial-size circuits, {Cn},eN)-

5. (inverting with trapdoor): For every n € N, every pair (a,t) in the range of G(1™), and every
z € Da,
PrF(t, folz) =2] > 1—-27"

We mention that (enhanced) trapdoor permutations can be constructed based on the Intractability
of Factoring Assumption (or more precisely the infeasibility of factoring Blum integers; that is, the
products of two primes each congruent to 3 mod 4). Any collection as above can be modified to
have a (uniform) hard-core predicate (cf., [43]); that is, a Boolean function which is easy to compute
but hard to predict from the image of the input under the permutation.



Definition 1.2.4 (hard-core for a collection of trapdoor permutations): Let {fy : Dy — Dg}tacr
be a collection of trapdoor permutations as above. We say that b: {0,1}* — {0,1} if a hard-core for
this collection if the following two conditions hold.

1. (efficient evaluation): There exists a polynomial-time algorithm which on input x returns b(x).
2. (hard to predict): For every family of polynomial-size circuits, {Cy},eN, every positive poly-

nomial p(-), and all sufficiently large n’s

L2
p(n)

where I, is a random variable describing the distribution of the first element in the output of
G(1™), and X,, is uniformly distributed in Dy, .

N~

PriCn(fr,(Xn), In) = b(Xy)] <

Author's Note: This condition should be stengthened in a corresponding way. That
is, we require that

Pr [Cn(Rn;In) = b(f;ul(D(ImRn)))] < % * ﬁ

(for every family of polynomial-size circuits, {Cr}, eN)-

Commitment schemes. For simplicity of exposition, we utilize a stringent notion of a commit-
ment scheme — for more general definition see [38]. Loosely speaking, here a commitment scheme is
a randomized process which maps a single bit into a bit-string so that (1) the set of possible images
of the bit 0 is disjoint from the set of possible images of the bit 1, and yet (2) the commitment to 0
is computationally indistinguishable from the commitment to 1.

Definition 1.2.5 (commitment scheme): A commitment scheme is a uniform family of probabilistic
polynomial-size circuits, {C}, satisfying the following two conditions.

1. (perfect unambiguity): For every n the supports of C,,(0) and C, (1) are disjoint.

2. (computational secrecy): The probability ensembles {Cr(0)},en and {Cr(1)},en are compu-
tationally indistinguishable.

We denote by C,,(b,r) the output of Cp, on input bit b using the random sequence r. Thus, the first
item can be reformulated as asserting that for every n € N and every r,s € {0,1}*, it holds that

C(0,7) # Ci(1, ).

Commitment schemes can be constructed given any 1-1 one-way function (and in particular given a
trapdoor permutation).

1.2.2 Two-party and multi-party protocols

Two-party protocols may be defined as pairs of interactive Turing machines (cf., [38]). However, we
prefer to use the intuitive notion of a two-party game. This in turn corresponds to the standard
message-passing model.

For multi-party protocols we use a synchronous model of communication. For simplicity we
consider a model in which each pair of parties is connected by a reliable and private (or secret)

10



channel. The issues involved in providing such channels are beyond the scope of this exposition.
Some of them — like establishing secret communication over insecure communication lines (i.e.,
by using encryption schemes), establishing party’s identification, and maintaining authenticity of
communication — are well-understood (even in case the search for more efficient solutions is very
active). In general, as the current exposition does not aim at efficiency (but rather at establishing
feasibility) the issue of practical emulation of our idealized communication model over a realistic one
(rather then the mere feasibility of such emulation) is irrelevant.

To simplify the exposition of some constructions of multi-party protocols (in Section 3.3), we
will augment the communication model by a broadcast channel on which each party can send a
message which arrives to all parties (together with the sender identity). We assume, without loss of
generality, that in every communication round only one (predetermined) party sends messages. Such
a broadcast channel can be implemented via an (authenticated) Byzantine Agreement protocol, thus
providing an emulation of our model on a more standard one (in which a broadcast channel does
not exist).

1.2.3 Strong Proofs of Knowledge

Of the standard definitions of proofs of knowledge, the one most suitable for our purposes is the
definition which appears in [6, 38]. (Other definitions, such as of [69, 33], are not adequate at
all; see discussion in [6].) However, the definition presented in [6, 38], relies in a fundamental way
on the notion of ezpected running-time. We thus prefer the following more stringent definition in
which the knowledge extractor is required to run in strict polynomial-time (rather than in expected
polynomial-time).

Definition 1.2.6 (System of strong proofs of knowledge): Let R be a binary relation. We say that
an efficient strategy V is a strong knowledge verifier for the relation R if the following two conditions
hold.

e Nou-triviality: There exists an interactive machine P so that for every (z,y) € R all possible
interactions of V. with P on common-input x and auziliary-input y are accepting.

e Strong Validity: There exists a negligible function p : N — [0,1] and a probabilistic (strict)
polynomial-time oracle machine K such that for every strateqgy P and every z,y,r € {0,1}*,
machine K satisfies the following condition:

Let P, 4, be a prover strategy, in which the common input x, auziliary imput y and
random-coin sequence T have been fived, and denote by p(x) the probability that the
interactive machine V' accepts, on input x, when interacting with the prover specified
by Py Now, if p(x) > p(|z]) then, on input x and access to oracle Py ., with
probability at least 1 — p(|x|), machine K outputs a solution s for x. That is,3

If p(z) > p(|z|) then Pr(z, KP=vr(z))€R] > 1 — u(|z|) (1.2)

The oracle machine K is called a strong knowledge extractor.

3 Our choice to bound the failure probability of the extractor by u(|z|) is rather arbitrary. What is important
is to have this failure probability be a negligible function of |x|. Actually, in case membership in the relation R
can be determined in polynomial-time, one may reduce the failure probability from 1 — m to 27Pely(n)  while
maintaining the polynomial running-time of the extractor.

11



An interactive pair (P,V) so that V is a strong knowledge verifier for a relation R and P is a
machine satisfying the non-triviality condition (with respect to V and R) is called a system for strong
proofs of knowledge for the relation R.

Some zero-knowledge proof (of knowledge) systems for NP are in fact strong proofs of knowledge. In
particular, consider n sequential repetitions of the following basic proof system for the Hamiltonian
Cycle (HC) problem (which is NP-complete). We consider directed graphs (and the existence of
directed Hamiltonian cycles), and employ a commitment scheme {C,,} as above.

Counstruction 1.2.7 (Basic proof system for HC):

e Common Input: a directed graph G = (V, E) with n def [V].

e Auxiliary Input to Prover: a directed Hamiltonian Cycle, C C E, in G.

e Prover’s first step (P1): The prover selects a random permutation, 7, of the vertices of G, and
commits to the entries of the adjacency matriz of the resulting permuted graph. That is, it
sends an n-by-n matriz of commitments so that the (w(i),n(5))™ entry is Cn(1) if (i,5) € E,
and Cp(0) otherwise.

e Verifier’s first step (V1): The verifier uniformly selects o € {0,1} and sends it to the prover.

e Prover’s second step (P2): If o = 0 then the prover sends m to the verifier along with the
revealing (i.e., preimages) of all n? commitments. Otherwise, the prover reveals to the verifier
only the commitments to n entries (n(i), n(j)) with (i,7) € C. (By revealing a commitment c,
we mean supply a preimage of ¢ under C,,; that is, a pair (o, r) so that ¢ = C,(o,7).)

e Verifier’s second step (V2): If o = 0 then the verifier checks that the revealed graph is indeed
isomorphic, via w, to G. Otherwise, the verifier just checks that all revealed values are 1 and
that the corresponding entries form a simple n-cycle. (Of course in both cases, the verifier
checks that the revealed values do fit the commitments.) The verifier accepts if and only if the
corresponding condition holds.

The reader may easily verify that sequentially repeating the above for n times yields a zero-knowledge
proof system for HC, with soundness error 27 ". We argue that the resulting system is also a strong
proof of knowledge of the Hamiltonian cycle. Intuitively, the key observation is that each application
of the basic proof system results in one of two possible situations depending on the verifier choice, o.
In case the prover answers correctly in both cases, we can retrieve an Hamiltonian cycle in the input
graph. On the other hand, in case the prover fails in both cases, the verifier will reject regardless
of what the prover does from this point on. This observation suggests the following construction of
a strong knowledge extractor (where we refer to repeating the basic proof systems n times and set

u(n) = 27).

Strong knowledge extractor for Hamiltonian cycle: On input G and access to the prover-
strategy oracle P*, we proceed in n iterations, starting with ¢ = 1. Initially, T (the transcript so
far), is empty.

1. Obtain the matrix of commitments, M, from the prover strategy (i.e., M = P*(T)).

2. Extract the prover’s answer to both possible verifier moves. Each of these answers may be
correct (i.e., passing the corresponding verifier check) or not.
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3. If both answers are correct then we recover a Hamiltonian cycle. In this case the extractor
outputs the cycle and halts.

4. In case a single answer, say the one for value o, is correct and i < n, we let T' «— (T, 0), and
proceed to the next iteration (i.e., i < ¢ + 1). Otherwise, we halt with no output.

It can be easily verified that if the extractor halts with no output in iteration ¢ < n then the verifier
(in the real interaction) accepts with probability zero. Similarly, if the extractor halts with no output
in iteration n then the verifier (in the real interaction) accepts with probability 2-™. Thus, whenever
p(G) > 27", the extractor succeeds in recovering a Hamiltonian cycle (with probability 1).
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Chapter 2

General Two-Party Computation

Our ultimate goal is to design two-party protocols which may withstand any feasible adversarial
behavior. We proceed in two steps. First we consider a benign type of adversary, called semi-honest,
and construct protocols which are secure with respect to such an adversary. Next, we show how to
force parties to behave in a semi-honest manner. That is, we show how to transform any protocol,
secure in the semi-honest model, into a protocol which is secure against any feasible adversarial
behavior.

We note that the semi-honest model is not merely an important methodological locus, but may
also provide a good model of certain settings.

Organization In Section 2.1 we define the framework for the entire chapter. In particular, we
define two-party functionalities and some simplifying assumptions, the semi-honest model (see Sec-
tion 2.1.1) and the general malicious model (see Section 2.1.2). In Section 2.2 we describe the
construction of protocols for the semi-honest model, and in Section 2.3 a compiler which transforms
protocols from the latter model to protocols secure in the general malicious model.

2.1 Definitions

A two-party protocol problem is casted by specifying a random process which maps pairs of inputs
(one input per each party) to pairs of outputs (one per each party). We refer to such a process as
the desired functionality, denoted f : {0,1}* x {0,1}* — {0,1}* x {0,1}*. That is, for every pair
of inputs (z,y), the desired output-pair is a random variable, f(x,y), ranging over pairs of strings.
The first party, holding input x, wishes to obtain the first element in f(z,y); whereas the second
party, holding input y, wishes to obtain the second element in f(z,y).

A special case of interest is when both parties wish to obtain a predetermined function, g, of the
two inputs. In this case we have

fla,y) € (9(z,9), 9(z,9))

Another case of interest is when the two parties merely wish to toss a fair coin. This case can
be casted by requiring that, for every input pair (z,y), we have f(z,y) uniformly distributed over
{(0,0),(1,1)}. Finally, as a last example, we mention highly asymmetric functionalities of the form

14



flz,y) def (f'(z,y),A), where f'{0,1}* x {0,1}* — {0,1}* is a randomized process and A denotes

the empty string.

Whenever we consider a protocol for securely computing f, it is implicitly assumed that the
protocol is correct provided that both parties follow the prescribed program. That is, the joint output
distribution of the protocol, played by honest parties, on input pair (z,y), equals the distribution

of f(z,y)-

Simplifying conventions. To simplify the exposition we make the following three assumptions:

1. The protocol problem has to be solved only for inputs of the same length (i.e., |z| = |y|).
2. The functionality is computable in time polynomial in the length of the inputs.

3. Security is measured in terms of the length of the inputs.

The above conventions can be greatly relaxed, yet each represent an essential issue which must be
addressed.

Observe that making no restriction on the relationship among the lengths of the two inputs,
disallows the existence of secure protocols for computing any “non-degenerate” functionality. The
reason is that the program of each party (in a protocol for computing the desired functionality) must
either depend only on the length of the party’s input or obtain information on the counterpart’s
input length. In case information of the latter type is not implied by the output value, a secure
protocol “cannot afford” to give it away.! An alternative to the above convention is to restrict the
class of functionalities to such where the length of each party’s input is included in the counterpart’s
output. One can easily verify that the two alternative conventions are in fact equivalent.

We now turn to the second convention (assumption). Certainly, the total running-time of a
(secure) two-party protocol for computing the functionality cannot be smaller than the time required
to compute the functionality (in the ordinary sense). Arguing as above, one can see that we need
an a-priori bound on the complexity of the functionality. A more general approach would be to
have this bound given explicitly to both parties as an auxiliary input. In such a case, the protocol
can be required to run for time bounded by a fixed polynomial in this auxiliary parameter (i.e., the
time-complexity bound of f). Using standard padding and assuming that a good upper bound of the
complexity of f is time-constructible, we can reduce this general case to the special case discussed
above: Given a general functionality, g, and a time bound ¢ : N — N, we introduce the functionality

i o def [ og(z,y) ifi=j=t(z|]) =ty
a2t vy {00 =0 D = D
where L is a special symbol. Now, the problem of securely computing g reduces to the problem of
securely computing f.

Finally, we turn to the third convention (assumption). Indeed, a more general convention would
be to have a security parameter which determines the security of the protocol. This general al-
ternative is essential for allowing “secure” computation of finite functionalities (i.e., functionalities
defined on finite input domains). We may accommodate the general convention using the special
case, postulated above, as follows. Suppose that we want to compute the functionality f, on input
pair (z,y) with security (polynomial in) the parameter s. Then we introduce the functionality

def

f((2,1%),(y,1%) = f(=z,y),

I The situation is analogous to the definition of secure encryption, where it is required that the message length be
polynomially-related to the key length.
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and consider secure protocols for computing f'. Indeed, this reduction corresponds to the realistic
setting where the parties first agree on the desired level of security and then proceed to compute
the function using this level (of security).

The first convention, revisited. An alternative way of postulating the first convention is to
consider only functionalities, f : {0,1}* x {0,1}* — {0,1}* x {0,1}*, which satisfy f(z,y) = (L, L)
whenever |z| # |y|. That is, such functionalities have the form

def f’(l';y) if |'T| = |y|
flz,y) = { (L,L1) otherwise

where f is an arbitrary functionality. Actually, in some cases it will be more convenient to consider
functionalities of arbitrary length relationship, determined by a 1-1 function ¢ : N — N. Such
functionalities have the form

def [ f'(z,y) if |z = £(|y])
f(z,y) = { (L,1) otherwise

where f' is an arbitrary functionality. Even more generally, we may consider functionalities which are
meaningfully defined only for input pairs satisfying certain (polynomial-time computable) relations.
Let R C U,en({0, 134 x {0,1}") be such a relation and f' be as above, then we may consider the
functionality
det [ f(@,y) if (z,y) €ER
flay) = { (L,1) otherwise

2.1.1 The semi-honest model

Loosely speaking, a semi-honest party is one who follows the protocol properly with the exception
that it keeps a record of all its intermediate computations. Actually, it suffices to keep the internal
coin tosses and all messages received from the other party. In particular, a semi-honest party tosses
fair coins (as instructed by its program), and sends messages according to its specified program (i.e.,
as a function of its input, outcome of coin tosses, and incoming messages). Note that a semi-honest
party corresponds to the “honest verifier” in definitions of zero-knowledge.

In addition to the role of honest-parties in our exposition, they do constitute a model of in-
dependent interest. In particular, in reality deviating from the specified program — which may be
invoked inside a complex application software — may be more difficult than merely recording the
contents of some communication registers. Furthermore, records of these registers may be available
through some standard activities of the operating system. Thus, whereas totally-honest behavior
(rather than semi-honest one) may be hard to enforce, semi-honest behavior may be assumed in
many settings.

The semi-honest model is implicit in the following definition of privacy. Loosely speaking, the
definition says that a protocol privately computes f if whatever a semi-honest party can be ob-
tained after participating in the protocol, could be essentially obtained from the input and output
available to that party. This is stated using the simulation paradigm. Furthermore, it suffices to
(efficiently) “simulate the view” of each (semi-honest) party, since anything which can be obtain
after participating in the protocol is obtainable from the view.

Definition 2.1.1 (privacy w.r.t semi-honest behavior): Let f: {0,1}* x {0,1}* — {0,1}* x {0,1}*
be a functionality, where fi(x,y) (resp., fa(x,y)) denotes the first (resp., second) element of f(x,y),

16



and II be a two-party protocol for computing f.> The view of the first (resp., second) party during
an execution of I1 on (x,y), denoted VIEWI(x,y) (resp., VIEWS (z,v)), is (z,7,m1,...,m;) (resp.,
(y,r,m1,...,m¢), where r represent the outcome of the first (resp., second) party’s internal coin
tosses, and m; represent the i*® message it has received. The output of the first (resp., second) party
during an ezecution of II on (z,vy), denoted ouTPUTY (z,y) (resp., ouTPUTY (2,y)), is implicit in
the party’s view of the execution.

o (deterministic case) For a deterministic functionality f, we say that = privately computes f if
there exist polynomial-time algorithms, denoted S1 and S, such that

{Si(=, f1(@,9)) e yefo1}
{82y, f2(2,9)) }a yefon}-

[lle

—~
[\)
—_

~—

{VIEWll_[ (33, y)}ﬂi,yE{O’l}*

{VIszn(l"ay)}z,ye{o,l}* (2.2)

[lo

where |x| = |y|.

e (general case) We say that m privately computes f if there exist polynomial-time algorithms,
denoted Sy and Ss, such that

{(5’1(1', fl(x;y))7 fZ(x;y))}I,y
{(fl(xay)a 52(3/7 f2(x7y)))}17y

where, again, |z| = |y|. We stress that above VIEW! (z,y), VIEWY (z,y), ouTPuTi(z,y) and
oUTPUT (2,y), are related random variables, defined as a function of the same random exe-
cution.

{(VIEW?(@",y),OUTPUTgl(:ﬂ,y))}I,y (2.3)

lle e

{(ourpuri(z,y), VIEWY (2,4)) Y.y (2.4)

Consider first the deterministic case: Eq. (2.1) (resp., Eq. (2.2)) asserts that the view of the first
(resp., second) party, on each possible input, can be efficiently simulated based solely on its input
and output.®> Next note that the formulation for the deterministic case coincides with the general
formulation as applied to deterministic functionalities; since, in an protocol II which computes f, it
holds that outPuT! (z,y) = fi(w,y), for each party i and any pair of inputs (z,y).

In contrast to the deterministic case, augmenting the view of the semi-honest party by the output
of the other party is essential when randomized functionalities are concerned. Note that in this case,
for a protocol IT which computes a randomized functionality f, it does not necessarily hold that
outpuT(x,y) = fi(w,y), since each is a random variable. Indeed, these two random variables are
identically distributed but this does not suffice for asserting, for example, that Eq. (2.1) implies
Eq. (2.3). A disturbing counter-example follows: Consider the functionality (17,1") — (r, L),
where 7 is uniformly distributed in {0,1}", and consider a protocol in which Party 1 uniformly
selects r € {0,1}", sends it to Party 2, and outputs 7. Clearly, this protocol computes the above
functionality, alas intuitively we should not consider this computation private (since Party 2 learns
the output although it is not supposed to know it). The reader may easily construct a simulator
which satisfies Eq. (2.2) (i.e., S2(1™) outputs a uniformly chosen r), but not Eq. (2.4).

2 By saying that I computes (rather than privately computes) f, we mean that the output distribution of the
protocol (when played by honest or semi-honest parties) on input pair (z,y) is identically distributed as f(z,y).

3 Observe the analogy to the definition of a zero-knowledge protocol (w.r.t honest verifier): The functionality (in
this case) is a function f(z,y) = (A, (z, xr(x))), where xr is the characteristic function of the language L, the first
party is playing the prover, and II is a zero-knowledge interactive proof for L (augmented by having the prover send
(z, xL(z)) and abort in case ¢ L). Note that the above functionality allows the prover to send « to the verifier which
ignores its own input (i.e., y). The standard zero-knowledge condition essentially asserts Eq. (2.2), and Eq. (2.1) holds
by the definition of an interactive proof (i.e., specifically, by the requirement that the verifier is polynomial-time).
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Author’s Note: Unfortunately, the rest of the text is somewhat hand-waving when refer-
ring to the above issue (regarding randomized functionalities). However, most of the text
focuses on deterministic functionalities, and so the point is moot. In the cases where we
do deal with randomized functionalities, the simulators do satisfy the stronger require-
ments asserted by Eq. (2.3)—(2.4), but this fact is not explicitly referred to in the text.
This deficiency will be corrected in future revisions.

Alternative formulation. It is instructive to recast the above definitions in terms of the general
(“ideal-vs-real”) framework discussed in Section 1.1 and used extensively in the case of arbitrary
malicious behavior. In this framework we first consider an ideal model in which the (two) real parties
are joined by a (third) trusted party, and the computation is performed via this trusted party. Next
one considers the real model in which a real (two-party) protocol is executed (and there exist no
trusted third parties). A protocol in the real model is said to be secure with respect to certain
adversarial behavior if the possible real executions with such an adversary can be “simulated” in
the ideal model. The notion of simulation here is different than above: The simulation is not of
the view of one party via a traditional algorithm, but rather a simulation of the joint view of both
parties by the execution of an ideal model protocol.

According to the general methodology (framework), we should first specify the ideal model
protocol. Here, it consists of each party sending its input to the trusted party (via a secure private
channel), the third party computing the corresponding output-pair and sending each output to the
corresponding party. The only adversarial behavior allowed here is for one of the parties to conduct
an arbitrary polynomial-time computation based on its input and the output it has received. The
other party merely outputs the output it has received.* Next, we turn to the real model. Here, there
is a two-party protocol and the adversarial behavior is restricted to be semi-honest. That is, one
party may conduct an arbitrary polynomial-time computation based on its view of the execution (as
defined above). A secure protocol in the (real) semi-honest model is such that for every semi-honest
behavior of one of the parties, we can simulate the joint outcome (of their computation) by an
execution in the ideal model (where also one party is semi-honest and the other is honest). Actually,
we need to augment the definition so to account for a-priori information available to semi-honest
parties before the protocol starts. This is done by supplying these parties with auxiliary inputs, or
equivalently by viewing them as possibly non-uniform circuits of polynomial-size. Thus, we have —

Definition 2.1.2 (security in the semi-honest model): Let f:{0,1}* x {0,1}* — {0,1}* x {0,1}*
be a functionality, where fi(z,y) (resp., f2(z,y)) denotes the first (resp., second) element of f(x,y),
and I be a two-party protocol for computing f.

e Let C = (C1,Cy) be a pair of polynomial-size circuit families representing adversaries in the
ideal model. Such a pair is admissible (in the ideal model) if for at least one C; we have
Ci(I1,0) = O. The joint execution under C in the ideal model on input pair (z,y), denoted
IDEALﬁa(xay); is deﬁned as (Cl(x;fl (way))aCZ(y;fZ(x;y)))

(That is, C; is honest — it just outputs f;(z,y)).

o Let C = (C1,Cy) be a pair of polynomial-size circuit families representing adversaries in
the real model. Such a pair is admissible (in the real model) if for at least one i € {1,2}
we have Ci(V) = O, where O is the output implicit in the view V. The joint execution

4 Thus, unless the party’s output incorporates the party’s input, this input is not available to an honest party after
the computation.
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of II under C in the real model on input pair (z,y), denoted REALj &(7,y), is defined as

(CL(viEWT (2, 1)), C2(VIEWY (2, 9))).-
(Again, C; is honest — it just outputs fi(z,v))-

Protocol 11 is said to securely compute f in the semi-honest model (secure w.r.t f and semi-honest be-
havior) if there ezists a polynomial-time computable transformation of pairs of admissible polynomial-
size circuit families A = (A1, Ay) for the real model into pairs of admissible polynomial-size circuit
families B = (By, By) for the ideal model so that

{IDEALLE(x)y)}z,y s.t. lz|=]y| = {REALH7Z(w7y)}z,y s.t. |z]|=|y|

Observe that the definition of the joint execution in the real model prohibits both parties (honest
and semi-honest) to deviate from the strategies specified by II. The difference between honest and
semi-honest is merely in their actions on the corresponding local views of the execution: An honest
party outputs only the output-part of the view (as specified by II), whereas a semi-honest party may
output an arbitrary (feasibly computable) function of the view.

It is not hard to see that Definitions 2.1.1 and 2.1.2 are equivalent. That is,

Proposition 2.1.3 Let II be a protocol for computing f. Then, Il privately computes f if and only
if IT securely computes f in semi-honest model.

Proof Sketch: Suppose first that II securely computes f in semi-honest model (i.e., satisfies Defini-
tion 2.1.2). Without loss of generality, we show how to simulate the first party view. We define the
following admissible adversary A = (A;, Ay) for the real model: A; is merely the identity transfor-
mation and A, maps its view to the corresponding output (as required by definition of an admissible
pair). Let B = (Bj, Bs) be the ideal-model adversary guaranteed by Definition 2.1.2. Then, B; (in
role of Sp) satisfies Eq. (2.3). Note that B; is polynomial-time computable from the circuit families
A1, Ao, which in turn are uniform. Thus, the simulation is via a uniform algorithm as required.

Now, suppose that II privately computes f, and let 51 and S» be as guaranteed in Definition 2.1.1.
Let A = (A;, As) be an admissible pair for the real-model adversaries. Without loss of generality,
we assume that A, merely maps the view (of the second party) to the corresponding output (i.e.,
fa(z,y)). Then, we define B = (By, By) so that Bi(w,2) def A1(S1(z, 2)) and Ba(y, z) = Clearly,
B can be constructed in polynomial-time given A, and the following holds

REALy 7(,y) Ay (view!(z,9)), Ay (ViEWY (2, 9)))

e

(
Ay (view!(z,5)), outputi (2, y))
(

Al Sl (iL’, fl(way))a fZ(way))
Bl(wa fl(x;y))7 B2(y7 fZ(x;y)))
IDEAL; 5(2,Y)

(
(
(
(

The above is inaccurate (in its treatment of computational indistinguishability), however, a precise
proof can be easily derived following standard paradigms (of dealing with computationally indistin-
guishable ensembles). [l
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Conclusion: The above proof demonstrates that the alternative formulation of Definition 2.1.2 is
merely a cumbersome form of the simpler Definition 2.1.1. We stress again that the reason we have
presented the cumbersome form is the fact that it follows the general framework of definitions of
security which is used for less benign adversarial behavior. In the rest of this chapter, whenever we
deal with the semi-honest model (for two-party computation), we will used Definition 2.1.1.

2.1.2 The malicious model

We now turn to consider arbitrary feasible deviation of parties from a specified two-party protocol.
A few preliminary comments are in place. Firstly, there is no way to force parties to participate
in the protocol. That is, a possible malicious behavior may counsists of not starting the execution
at all, or, more generally, suspending (or aborting) the execution in any desired point in time. In
particular, a party can abort at the first moment when it obtains the desired result of the computed
functionality. We stress that our model of communication does not allow to condition the receipt
of a message by one party on the concurrent sending of a proper message by this party. Thus, no
two-party protocol can prevent one of the parties to abort when obtaining the desired result and
before its counterpart also obtains the desired result. In other words, it can be shown that perfect
fairness — in the sense of both parties obtaining the outcome of the computation concurrently — is not
achievable in two-party computation. We thus give up on such fairness altogether. (We comment
that partial fairness is achievable, but postpone the discussion of this issue to a later chapter.)

Another point to notice is that there is no way to talk of the correct input to the protocol. That
is, a party can alway modify its local input, and there is no way for a protocol to prevent this. (We
stress that both phenomena did not occur in the semi-honest model, for the obvious reason that
parties were postulated not to deviate from the protocol.)

To summarize, there are three things we cannot hope to avoid.
1. Parties refusing to participate in the protocol (when the protocol is first invoked).

2. Parties substituting their local input (and entering the protocol with an input other than the
one provided to them).

3. Parties aborting the protocol prematurely (e.g., before sending their last message).

The ideal model. We now translate the above discussion into a definition of an ideal model. That
is, we will allow in the ideal model whatever cannot be possibly prevented in any real execution. An
alternative way of looking at things is that we assume that the the two parties have at their disposal
a trusted third party, but even such a party cannot prevent specific malicious behavior. Specifically,
we allow a malicious party in the ideal model to refuse to participate in the protocol or to substitute
its local input. (Clearly, neither can be prevent by a trusted third party.) In addition, we postulate
that the first party has the option of “stopping” the trusted party just after obtaining its part of
the output, and before the trusted party sends the other output-part to the second party. Such an
option is not given to the second party.® Thus, an execution in the ideal model proceeds as follows
(where all actions of the both honest and malicious party must be feasible to implement).

5 This asymmetry is due to the non-concurrent nature of communication in the model. Since we postulate that the
trusted party sends the answer first to the first party, the first party (but not the second) has the option to stop the
third party after obtaining its part of the output. The second party, can only stop the third party before obtaining
its output, but this is the same as refusing to participate.
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Inputs: Each party obtains an input, denoted z.

Send inputs to trusted party: An honest party always sends z to the trusted party. A malicious
party may, depending on z, either abort or sends some 2’ € {0,1}!*l to the trusted party.

Trusted party answers first party: In case it has obtained an input pair, (z,y), the trusted
party (for computing f), first replies to the first party with fi(z,y). Otherwise (i.e., in case it
receives only one input), the trusted party replies to both parties with a special symbol, L.

Trusted party answers second party: In case the first party is malicious it may, depending on
its input and the trusted party answer, decide to stop the trusted party. In this case the
trusted party sends L to the second party. Otherwise (i.e., if not stopped), the trusted party
sends fa(x,y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted party. A
malicious party may output an arbitrary (polynomial-time computable) function of its initial
input and the message it has obtained from the trusted party.

The ideal model computation is captured in the following definition.5

Definition 2.1.4 (malicious adversaries, the ideal model): Let f : {0,1}* x {0,1}* — {0,1}* x
{0,1}* be a functionality, where fi(z,y) (vesp., f2(z,y)) denotes the first (resp., second) element of
flx,y). Let C = (C1,Cy) be a pair of polynomial-size circuit families representing adversaries in
the ideal model. Such a pair is admissible (in the ideal malicious model) if for at least one i € {1,2}
we have C;(I) = I and C;(I,0) = O. The joint execution under C in the ideal model (on input pair
(z,y)), denoted IDEALfE(:C,y), is defined as follows

e In case Cy(I) = I and Cy(1,0) = O (i.e., Party 2 is honest),

(Cy(z, L), 1) it Ci(z) =1 (2.5)
(Ci(z, f1(Ci(z),y), L), L) if C1(z) # L and Cy(z, f1(C1(z),y)) = L (2.6
(Ci(z, f1(C1(2),y)), f2(Ci(x),y))  otherwise

e In case C1(I) =1 and C1(1,0) = O (i.e., Party 1 is honest),

(fl(way) ) CZ(y;fZ(x;CZ(y))) otherwise (29)

Eq. (2.5) represents the case where Party 1 aborts before invoking the trusted party (and outputs a
string which only depends on its input; i.e., ). Eq. (2.6) represents the case where Party 1 invokes
the trusted party with a possibly substituted input, denoted C;(z), and aborts while stopping the
trusted party right after obtaining the output, fi(Ci(x),y). In this case the output of Party 1
depends on both its input and the output it has obtained from the trusted party. In both these
cases, Party 2 obtains no output (from the trusted party). Eq. (2.7) represents the case where

6 In the definition, the circuits C; and Co represent all possible actions in the model. In particular, Cy (z) = L
represents a decision of Party 1 not to enter the protocol at all. In this case Ci(x, L) represents its local-output.
The case Cy(x) # L, represents a decision to hand an input, denoted Cy(x), to the trusted party. Likewise, C1(z, z)
and Ci(z,z, L), where z is the answer supplied by the trusted party, represents the actions taken by Party 1 after
receiving the trusted party answer.
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Party 1 invokes the trusted party with a possibly substituted input, and allows the trusted party
to answer to both parties (i.e., 1 and 2). In this case, the trusted party computes f(Ci(z),y), and
Party 1 outputs a string which depends on both z and f;(C(x),y). Likewise, Eq. (2.8) and Eq. (2.9)
represent malicious behavior of Party 2; however, in accordance to the above discussion, the trusted
party first supplies output to Party 1 and so Party 2 does not have an option analogous to Eq. (2.6).

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exist no trusted third parties). In this case, a malicious party
may follow an arbitrary feasible strategy; that is, any strategy implementable by polynomial-size
circuits. In particular, the malicious party may abort the execution at any point in time, and when
this happens prematurely, the other party is left with no output. In analogy to the ideal case, we
use circuits to define strategies in a protocol.

Definition 2.1.5 (malicious adversaries, the real model): Let f be as in Definition 2.1.4, and II be
a two-party protocol for computing f. Let C = (Cy,Cs) be a pair of polynomial-size circuit families
representing adversaries in the real model. Such a pair is admissible (w.r.t II) (for the real malicious
model) if at least one C; coincides with the strategy specified by II. The joint execution of IT under C'
in the real model (on input pair (z,y)), denoted REALHE(az,y), is defined as the output pair resulting
of the interaction between Ci(z) and Ca(y).

In the sequel, we will assume that the circuit representing the real-model adversary (i.e., the C;
which does not follow II) is deterministic. This is justified by standard techniques: See discussion
following Definition 2.1.6.

Security as emulation of real execution in the ideal model. Having defined the ideal and
real models, we obtain the corresponding definition of security. Loosely speaking, the definition
asserts that a secure two-party protocol (in the real model) emulates the ideal model (in which a
trusted party exists). This is formulated by saying that admissible adversaries in the ideal-model are
able to simulate (in the ideal-model) the execution of a secure real-model protocol (with admissible
adversaries).

Definition 2.1.6 (security in the malicious model): Let f and II be as in Definition 2.1.5, Protocol
I is said to securely compute f (in the malicious model) if there exists a polynomial-time computable
transformation of pairs of admissible polynomial-size circuit families A = (A1, As) for the real model
(of Definition 2.1.5) into pairs of admissible polynomial-size circuit families B = (By, By) for the
ideal model (of Definition 2.1.4) so that

e

{IDEALLE($7 y)}z,y s.t. lz|=]y| {REALI'LZ('T’ y)}z,y s.t. |z]|=|y|

When the context is clear, we sometimes refer to I as an implementation of f.

Implicit in Definition 2.1.6 is a requirement that in a non-aborting (real) execution of a secure
protocol, each party “knows” the value of the corresponding input on which the output is obtained.
This is implied by the equivalence to the ideal model, in which the party explicitly hands the (possibly
modified) input to the trusted party. For example, say Party 1 uses the malicious strategy A; and
that REALHE(:C, y) is non-aborting. Then the output values correspond to the input pair (B;(z),y),
where Bj is the ideal-model adversary derived from the real-model adversarial strategy A;.
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Justification for considering only deterministic real-adversaries. As stated above, we will
assume throughout our presentation that the adversaries in the real (execution) model are deter-
ministic. Intuitively, (non-uniform) deterministic adversaries are as powerful, with respect to breach
of security, as randomized adversaries — since one may just consider (and fix) the “best possible”
choice of coins for a randomized adversary. However, as the above definition of security requires to
(efficiently) transform adversaries for the real model into adversaries for the ideal model, one may
wonder whether a transformation which applies to deterministic adversaries necessarily applies to
randomized adversaries. We claim that this is indeed the case.

Proposition 2.1.7 Let T be a polynomial-time transformation applicable to single-input circuits.
Then, there exists a transformation T' applicable to two-input circuits so that for every such circuit
circuit, C(+,), and for every possible input pair, (x,r), to C, it holds

T'(C)(z,r) = T(Cy)(z)

where C,. is the circuit obtained from C by fizing the second input to be r, and T'(C) (resp., T(C,))
is the two-input (resp., one-input) circuit obtained by applying the transformation T' (resp., T') to
the two-input circuit C (resp., one-input circuit C,.).

Thus, for every transformation for deterministic circuits (modeled above by single-input circuits),
we can derive an “equivalent” transformation for randomized circuits (modeled above by two-input
circuits).

Proof Sketch: Given a transformation 7', consider the universal function, fr : ({0,1}*)% — {0,1}*,
where fr is defined as follows, on triples (C,x,r), with C being a two-input circuit.

e Let C, be the circuit obtained from C by fixing its second input to be r.
e Let C' =T(C,) be the circuit obtained from C, by applying the transformation 7.
e Then, fr(C,z,r) equals C'(z).

Note that fr is computable in (uniform) polynomial-time (and hence circuits computing it can be
constructed in polynomial-time). Given a two-input circuit, C, the transformation 7" proceeds as
follows.

1. Constructs a circuit for computing fr (on inputs of the adequate length — determined by C).
2. Fix the appropriate inputs of the above circuit to equal the bits in the description of C.
3. Output the resulting circuit, denoted fr c.

Note that T'(C)(z,r) = fr.c(z,r) = fr(C,z,7) = T(C,)(z), and so the claim follows. [l

2.2 Secure Protocols for the Semi-Honest Model

We present a method of constructing private protocols (w.r.t semi-honest behavior) for any given
functionality. The construction takes a Boolean circuit representing the given functionality and
produces a protocol for evaluating this circuit. The circuit evaluation protocol, presented in sub-
section 2.2.4, scans the circuit from the input wires to the output wires, processing a single gate in

23



each basic step. When entering each basic step, the parties hold shares of the values of the input
wires, and when the step is completed they hold shares of the output wire. Thus, evaluating the
circuit “reduces” to evaluating single gates on values shared by both parties.

Our presentation is modular: We first define an appropriate notion of a reduction, and show
how to derive a private protocol for functionality g, given a reduction of the (private computation
of) g to the (private computation of) f together with a protocol for privately computing f. In
particular, we reduce the private computation of general functionalities to the private computation
of deterministic functionalities, and thus focus on the latter.

We next consider, without loss of generality, the evaluation of Boolean circuits with AND and
XOR gates of fan-in 2. Actually, we find it more convenient to consider the corresponding arithmetic
circuits over GF(2), where multiplication corresponds to AND and addition to XOR. A value v is
shared by the two parties in the natural manner (i.e., the sum of the shares is v). Thus, proceeding
through an addition gate is trivial, and we concentrate on proceeding through a multiplication gate.
The generic case is that the first party holds a1,b; and the second party holds as, b2, where a; + a2
is the value of one input wire and b; + bs is the value of the other input wire. What we want is to
provide each party with a “random” share of the value of the output wire; that is, a share of the
value (a1 + az2) - (by + b2). In other words we are interested in privately computing the following
randomized functionality

((a1,b1),(az,b2)) = (c1,c2) (2.10)
where ¢; + ¢ = (a1 + az) - (b1 + b2). (2.11

That is, (¢1,¢2) is uniformly chosen among the solutions to ¢; + ¢2 = (a1 + a2) - (b1 + b2). The
above functionality has a finite domain, and can be solved (generically) by reduction to a variant of
Oblivious Transfer (OT). This variant is defined below, and it is shown that it can be implemented
assuming the existence of trapdoor one-way permutations.

The actual presentation proceeds bottom-up. We first define reductions between (two-party)
protocol problems (in the semi-honest model). Next we define and implement OT, show how to use
it for securely computing a single multiplication gate, and finally for securely computing the entire
circuit.

2.2.1 A composition theorem

It is time to define what we mean by saying that private computation of one functionality reduces
to the private computation of another functionality. Our definition is a natural extension of the
standard notion of reduction in the context of ordinary (i.e., one party) computation. Recall that
standard reductions are defined in terms of oracle machines. Thus, we need to consider two-party
protocols with oracle access. Here the oracle is invoked by both parties, each supplying it with one
input (or query), and it responses with a pair of answers, one per each party. We stress that the
answer-pair depends on the query-pair.

Definition 2.2.1 (protocols with oracle access): A oracle-aided protocol is a protocol augmented by
a pair of oracle-tapes, per each party, and oracle-call steps defined as follows. Each of the parties
may send a special oracle request message, to the other party, after writing a string — called the
query — on its write-only oracle-tape. In response, the other party writes a string, its query, on its
own oracle-tape and respond to the first party with a oracle call message. At this point the oracle
is invoked and the result is that a string, not necessarily the same, is written by the oracle on the
read-only oracle-tape of each party. This pair of strings is called the oracle answer.
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Definition 2.2.2 (reductions):

o An oracle-aided protocol is said to be using the oracle-functionality f, if the oracle answers are
according to f. That is, when the oracle is invoked with first party query g and second party
query qo, the answer-pair is distributed as f(q1,q2)-

o An oracle-aided protocol using the oracle-functionality f is said to privately compute g if there
exist polynomial-time algorithms, denoted S1 and Sa2, satisfying Eq. (2.1) and Eq. (2.2), re-
spectively, where the corresponding views are defined in the natural manner.

e An oracle-aided protocol is said to privately reduce g to f, if it privately computes g when using
the oracle-functionality f. In such a case we say that g is privately reducible to f,

We are now ready to state a composition theorem for the semi-honest model.

Theorem 2.2.3 (Composition Theorem for the semi-honest model, two parties): Suppose that g is
privately reducible to f and that there exists a protocol for privately computing f. Then there exists
a protocol for privately computing g.

Proof Sketch: Let 119! be a oracle-aided protocol which privately reduces ¢ to f, and let I/ be
a protocol which privately computes f. We construct a protocol II for computing ¢ in the natural
manner; that is, starting with 119/, we replace each invocation of the oracle by an execution of
II/. Denote the resulting protocol by II. Clearly, IT computes g. We need to show that it privately
computes g.

For each 7z = 1,2, let Sf‘f and Sif be the corresponding simulators for the view of party 7 (i.e.,
in 1191 and II/, respectively). We construct a simulation S;, for the view of party ¢ in II, in the
natural manner. That is, we first run Sflf and obtain the view of party 4 in II9/7. This view includes
queries made by party ¢ and corresponding answers. (Recall, we have only the part of party ¢ in the
query-answer pair.) Invoking Sif on each such “partial query-answer” we fill-in the view of party ¢
for each of these invocations of I1/.

It is left to show that S; indeed generates a distribution indistinguishable from the view of party
1 in actual executions of II. Towards this end, we introduce an imaginary simulator, denoted I;. This
imaginary simulator invokes S I/ , but augment the view of party ¢ with views of actual executions
of protocol II/ on the corresponding query-pairs. (The query-pair is completed in an arbitrary
counsistent way.) Observe that the outputs of I; and S, are computationally indistinguishable; or
else one may distinguish the distribution produced by Sif and the actual view of party 4 in II7 (by

incorporating a possible output of S’f‘f into the distinguisher). On the other hand, the output of I;
must be computationally indistinguishable from the view of party ¢ in IT; or else one may distinguish
the output of Sf‘f from the view of party 4 in 119/ (by incorporating a possible view of party i in
the actual execution of I1/ into the distinguisher). The theorem follows. [l

Comment: The simplicity of the above proof is due to the fact that semi-honest behavior is rather
simple. In particular, the execution of a semi-honest party in an oracle-aided protocol is not effected
by the replacement of the oracle by an real subprotocol. (Note that this may not be the case when
malicious parties are discussed.)
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Application — reducing private computation of general functionalities to deterministic
ones. Given a general functionality g, we first write it in a way which makes the randomization
explicit. That is, we let g(r, (,y)) denote the value of g(z,y) when using coin tosses r € {0, 1}Pe¥(=])
(ie., g(z,y) is the randomized process consisting of uniformly selecting r € {0,1}P°¥(=D and
deterministically computing g(r, (z,vy))). Next, we privately reduce g to f, where f is defined as
follows

Fl(@1,m1), (@2,72) = g(ry @12, (21,22)) (2.12)

Applying Theorem 2.2.3, we conclude that the existence of a protocol for privately computing
the deterministic functionality f implies the existence of a protocol for privately computing the
randomized functionality g. For sake of future reference, we explicitly state the reduction of privately
computing g to privately computing f (i.e, the oracle-aided protocol for g given f).

Proposition 2.2.4 (privately reducing a randomized functionality to deterministic one): Let g be a
randomized functionality, and f be as defined in Eq. (2.12). Then the following oracle-aided protocol
privately reduces g to f.

Inputs: Party i gets input x; € {0,1}™.
Step 1: Party i uniformly selects r; € {0, I}POIY(\»"—’&‘).
Step 2: Party i invokes the oracle with query (x;,r;), and records the oracle response.

Outputs: Fach party outputs the oracle’s response.

Proof: Clearly, the above protocol, denoted II, computes g. To show that II privately computes g
we need to present a simulator for each party view. The simulator for Party i, denoted S;, is the
obvious one. On input (z;,v;), where x; is the local input to Party ¢ and v; is its local output, the
simulator uniformly selects r; € {0,1}™, and outputs (z;,7;,v;), where m = poly(|z;|). To see that
this output is distributed identically to the view of Party ¢, we note that for every fixed x;, x> and
r € {0,1}™, we have v; = ¢;(r, (z1,22)) if and ounly if v; = fi((z1,7r1), (x2,72)), for any pair (r1,rz)
satisfying r1 ® ro = r. Let (; be a random variable representing the random choice of Party i in
Step 1, and ¢! denote the corresponding choice made by the simulator S;. Then, for every fixed
x1,x2,7; and T = (vy,v2)

Pr = Prl(G=m) A (f((z1,G), (22,()) =)

g—m , Hrs—i: f((z1,11), (22, 72)) = 0}
2m
[{r = g(r, (z1,22)) = T}
2m
= Pr[(¢; =7i) A (g(z1,22) =7)]
_ Si(xi;gi(xl,xZ)) = (CCZ',’I“Z',’Ui)
= P [ A g3—i(z1,22) = V34

VIEWH (21, 70) = (24, 7i,0i)
OUTPUTL, (71, %2) = v3_;

= 27m.

and the claim follows. [l
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2.2.2 The OT’lC protocol — definition and construction

The following version of the Oblivious Transfer functionality is a main ingredient of our construction.
Let k be a fixed integer (k = 4 will do for our purpose), and let by, bs, ..., b € {0,1} and i € {1,...,k}.
Then, OT} is defined as

OT¥((by, b2, ..., br), i) = (N, b;) (2.13)

This functionality is clearly asymmetric. Traditionally the first player, holding input (by, b, ..., bx)
is called the sender and the second player, holding the input ¢ € {1,...,k} is called the receiver.
Intuitively, the goal is to transfer the i*® bit to the receiver, without letting the receiver obtain
knowledge of any other bit and without letting the sender obtain knowledge of the identity of the
bit required by the receiver.

Using any trapdoor permutation, {f;}icr, we present a protocol for privately computing OT’f.
The description below refers to the algorithms guaranteed by such a collection (see Definition 1.2.3),
and to a hard-core predicate b for such a collection (see Definition 1.2.4). We denote the sender (first
party) by S and the receiver (second party) by R. As discussed in the beginning of this chapter,
since we are dealing with a finite functionality, we want the security to be stated in terms of an
auxiliary security parameter, n, presented to both parties in unary.

Construction 2.2.5 (Oblivious Transfer protocol for semi-honest model):

Inputs: The sender has input (by,bs,...,bx) € {0,1}*, the receiver has input i € {1,2,...,k}, and
both parties have the auxiliary security parameter 1™.

Step S1: The sender uniformly selects a trapdoor pair, (a,t), by running the generation algorithm,

G, on input 1™. That is, it uniformly selects a random-pad, r, for G and sets (a,t) = G(1",r).
It sends « to the receiver.

Step R1: The receiver uniformly and independently selects ey, ...,ex, € Dg, sets y; = fa(e;) and
y; = e; for every j # i, and sends (y1,¥z2,...,Yr) to the sender. That is,

1. It uniformly and independently selects eq,...,e, € Dy, by invoking the domain sampling
algorithm k times, on input o. Specifically, it selects random pads, r;’s, for D and sets
ej =D(a,r;), forj=1,...,k.

2. Using the evaluation algorithm, the sender sets y; = fa(€;).

3. For j #1, it sets y; = e;.

4. The receiver sends (y1,y2, ..., Yx) to the sender.
(Thus, the receiver knows f7'(y;) = e;, but cannot predict b(f,*(y;)) for any j #1.)

Step S2: Upon receiving (y1,Y2, ..., Yk), using the inverting-with-trapdoor algorithm and the trapdoor
t, the sender computes x; = fr'(y;), for every j € {1,....k}. It sends (by & b(x1),bs P
b(x2),...,br ® b(zk)) to the receiver.

Step R2: Upon receiving (c1, ca, ..., k), the receiver locally outputs c; @ b(e;).

We first observe that the above protocol correctly computes OT’f: This is the case since the receiver’s
local output satisfies

c; ®ble;) = (b; ®b(z;)) ® b(e;)

= bi@b(fy " (fale))) & bles)
b;
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We show below that the protocol indeed privately computes OT’f. Intuitively, the sender gets
no information from the execution since, for any possible value of 7, the senders sees the same
distribution — a sequence of uniformly and independently selected elements of D,. Intuitively, the
receiver gains no computational knowledge from the execution since, for 5 # i, the only data it has
regarding b; is the triplet (o, e;,b; b(f5*(e;))), from which it is infeasible to predict b; better than
by a random guess. A formal argument is indeed due and given next.

Proposition 2.2.6 Suppose that {fi}icr constitutes a trapdoor permutation. Then, Construc-
tion 2.2.5 constitutes a protocol for privately computing OT’lC (in the semi-honest model).

Proof Sketch: We will present a simulator for the view of each party. Recall that these sim-
ulators are given the local input and output of the party, which by the above includes also the
security parameter. We start with the sender. On input (((by, ..., bx),1™), A), this simulator selects
a (as in Step S1), and uniformly and independently generates yi,...,yx € Do. Let 7 denote the
sequence of coins used to generate a, and assume without loss of generality that the inverting-with-
trapdoor algorithm is deterministic (which is typically the case anyhow). Then the simulator outputs
(((b1, -, b8),1™), 7, (Y1, ---, Y& )), Where the first element represents the party’s input, the second its
random choices, and the third — the message it has received. Clearly, this output distribution is
identical to the view of the sender in the real execution.

We now turn to the receiver. On input ((z,1™), b;), the simulator proceeds as follows.

1. Emulating Step S1, the simulator uniformly selects a trapdoor pair, («,t), by running the
generation algorithm on input 1™.

2. Asin Step R1, it uniformly and independently selects 71, ..., rx for the domain sampler D, and
sets e; = D(a,rj) for j =1,...,k. Next, it sets y; = fo(e;) and y; = e;, for j # i.

3. It sets ¢; = b; @ b(e;), and uniformly selects ¢; € {0,1}, for j # i.

4. Finally, it outputs ((¢,1™), (r1,...,7%), (c, (c1,..-,¢k))), where the first element represents the
party’s input, the second its random choices, and the third — the two messages it has received.

Note that, except for the sequence of c;’s, this output is distributed identically to the corresponding
prefix of the receiver’s view in the real execution. Furthermore, the above holds even if we include
the bit ¢; = b; D b(e;) = b; ®b(f*(y:)) (and still exclude the other ¢;’s). Thus, the two distributions
differ only in the following aspect: For j # ¢, in the simulation c¢; is uniform and independent
of anything else, whereas in the real execution c¢; equals b(f7'(y;)) = b(f7'(e;)). However, it is
impossible to distinguish the two cases (as the distinguisher is not given the trapdoor and b is a
hard-core predicate of {fa}a)-

Author's Note: The above description is imprecise since we need to simulate the party’s
coins, which in the general case are the sequence of random coins used by the domain
sampling algorithm (rather than the selected elements themselves). Here is where we
need the enhanced notion of trapdoor permuation.
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value of (az,b2) | (0,0) (0,1) (1,0) (1,1)
OT-input 1 2 3 4
value of output | ¢; +a1by | 1 +ar-(b1+1) | v +(ar+1)-by | e+ (a1 +1)-(by +1)

Figure 2.1: The value of the output of Party 2 as a function of the values of its own inputs (repre-
sented in the columns), and the inputs and output of Party 1 (i.e., aj, b1, c1). The value with which
Party 2 enters the Oblivious Transfer protocol (i.e., 1 + 2as + by) is shown in the second row, and
the value of the output (of both OT and the entire protocol) is shown in the third. Note that in
each case, the output of Party 2 equals ¢; + (a1 + az2) - (b1 + b2).

2.2.3 Privately computing ¢, + ¢, = (a, + a,) - (b, + b,)

We now turn to the functionality defined in Eq. (2.10)—(2.11). Recall that the arithmetics is in
GF(2). We privately reduce the computation of this (finite) functionality to the computation of
OTj.

Construction 2.2.7 (privately reducing the computation of Eq. (2.10)~(2.11) to OT?):
Inputs: Party i holds (a;,b;) € {0,1} x {0,1}, fori=1,2.
Step 1: The first party uniformly selects ¢; € {0, 1}.

Step 2 — Reduction: The parties invoke OT%, where Party 1 plays the sender and party 2 plays
the receiver. The input to the sender is the 4-tuple

(Cl+a1bl,61 + a1 (b1 -|-].), Cl+(CL1 -|-].)'bl, Cc1 +(a1+1)-(bl+1)), (2.14)
and the input to the receiver is 1 + 2as + by € {1,2,3,4}.

Outputs: Party 1 outputs c1, whereas Party 2 output the result obtained from the OT‘l1 tnvocation.

We first observe that the above reduction is valid; that is, the output of Party 2 equals ¢; + (a1 +
az) - (by + by). This follows from inspecting the truth table in Figure 2.1, which depicts the value
of the output of Party 2, as a function of its own inputs and ai,b1,c;. We stress that the output
pair, (c1,¢2), is uniformly distributed among the pairs for which ¢; + ¢o = (a1 + az) - (b1 + b2) holds.
Thus, each of the local outputs (i..e, of either Party 1 or Party 2) is uniformly distributed, although
the two local-outputs are dependent of one another (as in Eq. (2.11)).

It is also easy to see that the reduction is private. That is,

Proposition 2.2.8 Construction 2.2.7 privately reduces the computation of Eq. (2.10)—(2.11) to
OTj.

Proof Sketch: Simulators for the oracle-aided protocol of Construction 2.2.7 are easily constructed.
Specifically, the simulator of the view of Party 1, has input ((a1,b1),c¢1) (i-e., the input and output
of Party 1), which is identical to the view of Party 1 in the execution (where ¢; serves as coins to
Party 1). Thus the simulation is trivial (i.e., by identity transformation). The same holds also for
the simulator of the view of Party 2 — it gets input ((a1,b1),c1 + (a1 + a2) - (by + b2)), which is
identical to the view of Party 2 in the execution (where ¢; + (a3 + a2) - (b + b2) serves as the oracle
respounse to Party 2). We conclude that the view of each party can be perfectly simulated (rather
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than just be simulated in a computationally indistinguishable manner), and the proposition follows.

As an immediate corollary to Propositions 2.2.8 and 2.2.6, and the Composition Theorem (Theo-
rem 2.2.3), we obtain.

Corollary 2.2.9 Suppose that trapdoor permutation exist. Then the functionality of Eq. (2.10)-
(2.11) is privately computable (in the semi-honest model).

2.2.4 The circuit evaluation protocol

We now show that the computation of any deterministic functionality, which is expressed by an
arithmetic circuit over GF(2), is privately reducible to the functionality of Eq. (2.10)—(2.11). Recall
that the latter functionality corresponds to a private computation of a multiplication gates over
inputs shared by both parties. We thus refer to this functionality as the multiplication gate emulation.

Our reduction follows the overview presented in the beginning of this section. In particular, the
sharing of a bit-value v between both parties means a uniformly selected pair of bits (vy,v2) so that
v = v1 +vo, where first party holds v; and the second holds v2. Our aim is to propagate, via private
computation, shares of the input wires of the circuit into shares of all wires of the circuit, so that
finally we obtain shares of the output wires of the circuit.

We will consider an enumeration of all wires in the circuit. The input wires of the circuit, n per
each party, will be numbered 1,2....,2n so that, for j = 1,...,n, the j" input of party i corresponds
to the (i — 1) -n + j* wire.” The wires will be numbered so that the output wires of each gate have
a larger numbering than its input wires. The output-wires of the circuit are clearly the last ones.
For sake of simplicity we assume that each party obtains n output bits, and that the output bits of
the second party correspond to the last n wires.

Construction 2.2.10 (privately reducing any deterministic functionality to multiplication-gate
emulation):

Inputs: Party i holds the bit string x} --- 2 € {0,1}™, fori=1,2.

Step 1 — Sharing the inputs: Each party splits and shares each of its input bits with the other
party. That is, for every i = 1,2 and j = 1,...,n, party i uniformly selects a bit r! and sends
it to the other party as the other party’s share of input wire (¢ —1)-n+ j. Party i sets its own
share of the (i — 1) - n + j*B input wire to ! +r?.

Step 2 — Circuit Emulation: Proceeding by the order of wires, the parties use their shares of the
two input wires to a gate in order to privately compute shares for the output wire of the gate.
Suppose that the parties hold shares to the two input wires of a gate; that is, Party 1 holds the
shares ay,by and Party 2 holds the shares as, by, where a1,as are the shares of the first wire
and by, by are the shares of the second wire. We consider two cases.

Emulation of an addition gate: Party I just sets its share of the output wire of the gate
to be ay + by, and Party 2 sets its share of the output wire to be as + bs.

7 Our treatment ignores the likely case in which the circuit uses the constant 1. (The constant 0 can always be
produced by ADDING any GF(2) value to itself.) However, the computation of a circuit which uses the constant 1
can be privately reduced to the computation of a circuit which does not use the constant 1. Alternatively, we may
augment Step 1 below so that the shares of the wire carrying the constant 1 are (arbitrarily) computed so that they
sum-up to 1 (e.g., set the share of the first party to be 1 and the share of the second party to be 0).
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Emulation of a multiplication gate: Shares of the output wire of the gate are obtained by
invoking the oracle for the functionality of Eq. (2.10)—(2.11), where Party 1 supplies the
input (query-part) (a1, b1), and Party 2 supplies (as,b2). When the oracle responses, each
party sets its share of the output wire of the gate to equal its part of the oracle answer.

Step 3 — Recovering the output bits: Once the shares of the circuit-output wires are com-
puted, each party sends its share of each such wire to the party with which the wire is associ-
ated. That is, the shares of the last n wires are send by Party 1 to Party 2, whereas the shares
of the preceding n wires are sent by Party 2 to Party 1. Each party recovers the corresponding
output bits by adding-up the two shares; that is, the share it had obtained in Step 2 and the
share it has obtained in the current step.

Outputs: Fach party locally outputs the bits recovered in Step 3.

For starters, let us verify that the output is indeed correct. This can be shown by induction on
the wires of the circuits. The induction claim is that the shares of each wire sum-up to the correct
value of the wire. The base case of the induction are the input wires of the circuits. Specifically,
the (i — 1) -m + j'" wire has value #7 and its shares are 7/ and r! + 2! (indeed summing-up to z?).
For the induction step we consider the emulation of a gate. Suppose that the values of the input
wires (to the gate) are a and b, and that their shares a;,as and by, by indeed satisfy a; +ax = a and
by + by = b. In case of an addition gate, the shares of the output wire were set to be a; + b; and
as + bz, indeed satisfying

(a1 +b1) + (a2 +b2) = (a1 +az) + (b +b2) = a+b

In case of a multiplication gate, the shares of the output wire were set to be ¢; and ¢y, so that
¢1 +c2 = (a1 +az) - (b1 + b2). Thus, ¢; + ¢z = a - b as required.

Privacy of the reduction. We now turn to show that Construction 2.2.10 indeed privately
reduces the computation of a circuit to the multiplication-gate emulation. That is,

Proposition 2.2.11 (privately reducing circuit evaluation to multiplication-gate emulation): Con-
struction 2.2.10 privately reduces the evaluation of arithmetic circuits over GF(2) to the functionality
of Eq. (2.10)~(2.11).

Proof Sketch: Simulators for the oracle-aided protocol of Construction 2.2.10 are constructed as
follows. Without loss of generality we present a simulator for the view of Party 1. This simulator
gets the party’s input x1,..., 27, as well as its output, denoted y,...,y™. It operates as follows.

1. The simulator uniformly selects 1, ...,r? and ri, ....7%, as in Step 1. (The rI’s will be used as
the coins of Party 1, which are part of the view of the execution, whereas the 3’s will be used

as the message Party 1 receives at Step 1.) For each j < n, the simulator sets z] + ] as the

party’s share of the value of the 4t wire. Similarly, for j < n, the party’s share of the n + 50
wire is set to 7.

This completes the computation of the party’s shares of all circuit-input wires.
2. The party’s shares for all other wires are computed, iteratively gate-by-gate, as follows.

e The share of the output-wire of an addition gate is set to be the sum of the shares of the
input-wires of the gate.
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e The share of the output-wire of a multiplication gate is uniformly selected in {0, 1}.

(The shares computed for output-wires of multiplication gates will be used as the answers
obtained, by Party 1, from the oracle.)

3. For each wire corresponding to an output, denoted y’, available to Party 1, the simulator sets
m’ to be the sum of the party’s share of the wire with y7.

4. The simulator outputs

(:L.}’ b :L."f)’ (yl’ b yn)’ (T%7 b T?)? Vl’ V27 V3)
where V! = (r, ..., r%) correspond to the view of Party 1 in Step 1 of the protocol, the string
V2 equals the concatenation of the bits selected for the output-wires of multiplication gates
(corresponding to the party’s view of the oracle answers in Step 2), and V3 = (m!,...,m")
(corresponding to the party’s view in Step 3 — that is, the messages it would have obtained

from Party 2 in the execution).

We claim that the output of the simulation is distributed identically to the view of Party 1 in the
execution of the oracle-aided protocol. The claim clearly holds with respect to the first four parts
of the view; that is, the party’s input (i.e., x1,...,27), output (i.e., ¥!,...,y™), internal coin-tosses
(i.e., r1,...,r]), and the message obtained from Party 2 in Step 1 (i.e., 73, ...,7%). Also, by definition
of the functionality of Eq. (2.10)—(2.11), the oracle-answers to each party are uniformly distributed
independently of the parts of the party’s queries. Thus, this part of the view of Party 1 is uniformly
distributed, identically to V2. It follows, that also all shares held by Party 1, are set by the simulator
to have the same distribution as they have in a real execution. This holds, in particular, for the
shares of the output wires held by Party 1. Finally, we observe that both in the real execution and
in the simulation, these latter shares added to the messages sent by Party 2 in Step 3 (resp., V?)
must yield the corresponding bits of the local-output of Party 1. Thus, conditioned on the view so
far, V3 is distributed identically to the messages sent by Party 2 in Step 3. We conclude that the
simulation is perfect (not only computationally indistinguishable), and so the proposition follows.

Conclusion. As an immediate corollary to Proposition 2.2.11, Corollary 2.2.9, and the Composi-
tion Theorem (Theorem 2.2.3), we obtain.

Corollary 2.2.12 Suppose that trapdoor permutation exist. Then any deterministic functionality
is privately computable (in the semi-honest model).

Thus, by the discussion following Theorem 2.2.3 (i.e., specifically, combining Proposition 2.2.4,
Corollary 2.2.12, and Theorem 2.2.3), we have

Theorem 2.2.13 Suppose that trapdoor permutation exist. Then any functionality is privately com-
putable (in the semi-honest model).

2.3 Forcing Semi-Honest Behavior

Our aim is to use Theorem 2.2.13 in order to establish the main result of this chapter; that is,
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Theorem 2.3.1 (main result for two-party case): Suppose that trapdoor permutation exist. Then
any two-party functionality can be securely computable (in the malicious model).

This theorem will be established by compiling any protocol for the semi-honest model into an
“equivalent” protocol for the malicious model. Loosely speaking, the compiler works by introducing
macros which force each party to either behave in a semi-honest manner or be detected — hence the
title of the current section. (In case a party is detected as cheating, the protocol aborts.)

2.3.1 The compiler — motivation and tools

We are given a protocol for the semi-honest model. In this protocol, each party has a local input and
uses a uniformly distributed local random-pad. Such a protocol may be used to privately compute
a functionality (either a deterministic or a probabilistic one), but the compiler does not refer to this
functionality. The compiler is supposed to produce an equivalent protocol for the malicious model.
So let us start by considering what a malicious party may do (beyond whatever a semi-honest party
can do).

1. A malicious party may enter the actual execution of the protocol with an input different
from the one it is given (i.e., “substitute its input”). As discussed in Section 2.1.2; this is
unavoidable. What we need to guarantee is that this substitution is done obliviously of the
input of the other party; that is, that the substitution only depends on the original input.

Jumping ahead, we mention that the input-commitment phase of the compiler is aimed at
achieving this goal. The tools used here are commitment schemes (see Definition 1.2.5) and
strong zero-knowledge proofs of knowledge (see Section 1.2.3).

2. A malicious party may try to use a random-pad which is not uniformly distributed as postulated
in the semi-honest model. What we need to do is force the party to use a random-pad (for the
emulated semi-honest protocol) which is uniformly distributed.

The coin-generation phase of the compiler is aimed at achieving this goal. The tool used here
is a coin-tossing into the well protocol, which in turn uses tools as above.

3. A malicious party may try to send messages different than the ones specified by the original
(semi-honest model) protocol. So we need to force the party to send messages as specified by
its (already committed) local-input and random-pad.

The protocol emulation phase of the compiler is aimed at achieving this goal. The tool used
here is zero-knowledge proof systems (for NP-statements).

Before presenting the compiler, let us recall some tools we will use, all are known to exist assuming
the existence of one-way 1-1 functions.

e Commitment schemes as defined in Definition 1.2.5. We denote by C,,(b,r) the commitment
to the bit b using security parameter n and randomness r € {0,1}". Here we assume, for
simplicity, that on security parameter n the commitment scheme utilizes exactly n random
bits.

e Zero-knowledge proofs of NP-assertions. We rely on the fact that there exists such proof
systems in which the prover strategy can be implemented in probabilistic polynomial-time,
when given an NP-witness as auxiliary input. We stress that by the above we mean proof
systems with negligible soundness error.
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e Zero-knowledge proofs of knowledge of NP-witnesses. We will use the definition of a strong
proof of knowledge (see Definition 1.2.6). We again rely on the analogous fact regarding
the complexity of adequate prover strategies: That is, strong proofs of knowledge which are
zero-knowledge exists for any NP-relation, and furthermore, the prover strategy can be im-
plemented in probabilistic polynomial-time, when given an NP-witness as auxiliary input (see
Construction 1.2.7).

Another tool which we will use is an augmented version of coin-tossing into the well. For sake of
self-containment, we first present the definition and implementation of the standard (vanilla) notion.
The augmented version is presented in the next subsection.

Definition 2.3.2 (coin-tossing into the well, vanilla version): A coin-tossing into the well protocol
is a two-party protocol for securely computing (in the malicious model) the randomized functionality
(1™,1™) — (b,b), where b is uniformly distributed in {0, 1}.

Thus, in spite of malicious behavior by any one party, a non-aborting execution of a coin-tossing-
into-the-well protocol ends with both parties holding the same uniformly selected bit b. Recall
that our definition of security allows (b, L) to appear as output in case Party 1 aborts. (It would
have been impossible to securely implement this functionality if the definition had not allowed this
slackness; see [26].) The following protocol and its proof of security are not used in the rest of this
manuscript. However, we believe that they are instructive towards what follows.®

Construction 2.3.3 (a coin-tossing-into-the-well protocol): Using a commitment scheme, {Cr},eN -

Inputs: Both parties get security parameter 1™.

Step C1: Party 1 uniformly selects o € {0,1} and s € {0,1}", and sends ¢ def Cn(o,s) to Party 2.

Step C2: Party 2 uniformly selects o' € {0,1}, and sends o' to Party 1. (We stress than any
possible response — including abort — of Party 2, will be interpreted by Party 1 as a bit.)°

Step C3: Party 1 setsb =0 @ o', and sends (o,s,b) to Party 2.

Step C4: Party 2 verifiers that indeed b = 0 ©o' and ¢ = C,,(0,s). Otherwise, it aborts with output
1.

Outputs: Both parties sets their local output to b.

Intuitively, Steps C1-C2 are to be viewed as “tossing a coin into the well”. At this point the value
of the coin is determined (as either a random value or a illegal one), but only one party knows (“can
see”) this value. Clearly, if both parties are honest then they both output the same uniformly chosen
bit, recovered in Steps C3-C4.

Proposition 2.3.4 Suppose that {Cp},cN is a commitment scheme. Then, Construction 2.3.3
constitutes a coin-tossing-into-the-well protocol.

8 The uninterested reader may skip to Section 2.3.2.
9 Thus, by convention, we prevent Party 2 from aborting the execution.
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Proof Sketch: We need to show how to (efficiently) transform any admissible circuit pair, (43, As),
for the real model into a corresponding pair, (By, Bs), for the ideal model. We treat separately each of
the two cases — defined by which of the parties is honest. Recall that we may assume for simplicity
that the adversary circuit is deterministic (see discussion at the end of Section 2.1.2). Also, for
simplicity, we omit the input 1™ is some places.

We start with the case that the first party is honest. In this case B; is determined, and we
transform the real-model adversary As into an ideal-model adversary B;. Machine By will run
machine Ay locally, obtaining the messages A2 would have sent in a real execution of the protocol
and feeding it with messages that it expects to receive. Recall that Bs gets input 1™.

1. By send 1™ to the trusted party and obtain the answer bit b (which is uniformly distributed).

2. B, tries to generate an execution view (of Ay) ending with output b. This is done by repeating
the following steps at most n times:

(a) Bz uniformly select o € {0,1} and s € {0,1}", and feeds A; with ¢ = Ch(o,s). Recall
that A, always responds with a bit, denoted o'.

(b) If oo’ = b then B, feed A, with the supposedly execution view, (¢, (o, s,b)), and outputs
whatever A, does. Otherwise, it continues to the next iteration.

In case all n iterations were completed unsuccessfully (i.e., without output), B2 outputs a
special failure symbol.

We need to show that for the coin-tossing functionality, f, and II of Construction 2.3.3,

n n i n n
{IDEALﬁE(l 1 )}neN = {REALI'LZ(]' 1 )}nEN

In fact, we will show that the two ensembles are statistically indistinguishable. We start by showing
that the probability that Bs outputs failure is exponentially small. This is shown by proving
that for every b € {0,1}, each iteration of Step 2 succeeds with probability approximately 1/2.
Such an iteration succeeds if and only if o & ¢’ = b, that is, if A>(C,(0,s)) = b @ o, where
(0,s) € {0,1} x {0,1}™ is uniformly chosen. We have

Proo[4s(Cul0,5) =b® o] = = -Pr[Ay(Cy(0)) = b + % PrAy(Ca(1)) = b 1]

N N =

45 (PrAs(Cal0)) = 8] — PrlA4s(Ca(1)) = )

Using the hypothesis that C), is a commitment scheme, the second term above is a negligible func-
tion in n, and so our claim regarding the probability that By outputs failure follows. Next, we
show that conditioned on Bs not outputting failure, the distribution IDEALfE(l", 1™) is statis-
tically indistinguishable from the distribution REAL; 7(1",1"). Both distributions have the form
(b, Ay(Cy(0,s),(0,s,b))), with b = 0 & A3(Cy(0,s)), and thus both are determined by the (o, s)-
pairs. In REAL 4(17,1™), all pairs are equally likely (i.e., each appears with probability 2~ (nt1)y;
whereas in IDEALf,E(lna 1™) each pair (o, s) appears with probability

1 1

R S (2.15)
2 |S43(Cu(o,s)) @0l
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where S, % {(z,y) : As(Cy(z,y)) Bz = b}.10 Observe that (by the above), for every b € {0,1} and
uniformly distributed (o,s) € {0,1} x {0,1}", the event (o,s) € S, occurs with probability which
is negligiblly close to 1/2. Thus, |Sa,(c,(o,s)ee| = (1 £ p(n)) - 5 - 2", where p is a negligible
function. It follows that the value of Eq. (2.15) is (1 £ p(n)) - 27("*1) | and so REAL; (1",1") and
IDEALf,F(ln’ 1™) are statistically indistinguishable. 7

We now turn to the case where the second party is honest. In this case By is determined,
and we transform A; into B; (for the ideal model). On input 1™, machine B; runs machine A;
locally, obtaining messages A; would have sent in a real execution of the protocol and feeding it
with messages that it expects to receive.

1. Bj invokes A; (on input 1™). In case A; aborts (or acts improperly) in Step C1, we let B; abort
before invoking the trusted party. Otherwise, suppose that A; sends message ¢ (supposedly ¢
is a commitment by C},). Recall that ¢ may be in the range of C), (o) for at most one o € {0, 1}.

2. Machine B, tries to obtain the answers of A; (in Step C3) to both possible messages sent in
Step C2.

(a) By feeds A; with the message 0 and records the answer which is either abort or (o, sg, bg)-
The case in which either ¢ # C,,(0,50) or by # o © 0 is treated as if A; has aborted.

(b) Rewinding A; to the beginning of Step C2, machine B; feeds A; with the message 1 and
records the answer which is either abort or (o, s1,b1). (Again, the case in which either
¢ # Cp(o,s1) or by # o @1 is treated as abort.)

If A; aborts in both cases, machine By aborts (before invoking the trusted party). Otherwise,
we proceed as follows, distinguishing two cases.

Case 1: A; answers properly (in the above experiment) for a single 0-1 value, denoted o'.
Case 2: A; answers properly for both values. (Note that the value o returned in both cases

is identical since ¢ must be in the range of C,(0).)

3. Machine B; sends 1™ to the trusted party, which responses with a uniformly selected value
b € {0,1}. Recall that the trusted party has not responded to Party 2 yet, and that B; has
the option of stopping the trusted party before it does so.

4. In Case 1, machine B; stops the trusted party if b # o @ o', and otherwise allows it to send
b to Party 2. In Case 2, machine B sets o’ = b ® o, and allows the trusted party to send b
to Party 2. Next, B; feeds o’ to A;, which responds with the Step C3 message (o, S5, b, ),
where b, = 0 ® o’ =D.

5. Finally, B; feed A; with the execution view, (1”,0'), and outputs whatever A; does.

We now show that IDEAL; 5(1",1") and REALy; z(1",1") are actually identically distributed. Con-
sider first the case where A; (and so Bj) never aborts. In this case we have,

IDEAL, 5(1",1") = (Ai(1",0®b), D)

REAL; 5(1",1") = (A1(1",0), 0 o’)

10 The pair (o, s) appears as output iff the trusted party answers with A2(Cy(o,s)) @ o (which happens with
probability 1/2) and the pair is selected in Step 2a. Note that the successful pairs, selected in Step 2a and passing
the condition in Step 2b, are uniformly distributed in S4, (¢, (o,s))@o-
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where ¢ and b are uniformly distributed in {0, 1}, and o is determined by ¢ = A;(1™). Observe that
o' is distributed uniformly independently of o, and so o @ ¢’ is uniformly distributed over {0, 1}.
We conclude that (41 (1", 0 @ b), b) and (A1(1",0 P (0 B '), o & ') are identically distributed.

Next, consider the case that B; always aborts (due to improper A; behavior in either Step C1
or Step C3). In this case, By aborts before invoking the trusted party, and so both ensembles are
identical (i.e., both equal (A4;(1™, L), L1)). Since A; is deterministic (see above), the only case left
to consider is where A; acts properly in Step C1 and responses properly (in Step C3) to a single
value, denoted o’. In this case, the real execution of II is completed only if Party 2 sends ¢’ as its
Step C2 message (which happens with probability 1/2). Similarly, in the ideal model, the execution
is completed (without By aborting) if the trusted party answers with b = o @ ¢’ (which happens with
probability 1/2).1! In both cases, the complete joint execution equals (4;(17,0"), o & ¢'), whereas
the aborted joint execution equals (4;(1%,0' ®1,1), 1).

2.3.2 The compiler — the components

In analogy to the three phases mentioned in the motivating discussion, we present subprotocol
for input-commitment, coin-generation, and emulation of a single step. We start with the coin-
generation protocol, which is actually an augmentation of the above coin-tossing into the well pro-
tocol. (Alternatively, the reader may start with the simpler input-commitment and single-step-
emulation protocols, presented in §2.3.2.2 and §2.3.2.3, respectively.)

We note that (like the functionality of Definition 2.3.2) all functionalities defined in this sub-
section are easy to compute privately (i.e., to compute securely in the semi-honest model). Our
aim, however, is to present (for later use in the compiler) protocols for securely computing these
functionalities in the malicious model.

All the construction presented in this subsection utilize zero-knowledge proofs of various types,
which in turn exists under the assumption that commitment schemes exists. We neglect to explic-
itly state this condition in the propositions, which should be read as stating the security of the
corresponding constructions given proof systems as explicitly specified in the latter.

2.3.2.1 Awugmented coin-tossing into the well

We augment the above coin-tossing-into-the-well protocol so to fit our purposes. The augmentation
is in providing the second party (as output) with a commitment to the coin-outcome obtained by
the first party, rather than providing it with coin outcome itself.!?

Definition 2.3.5 (coin-tossing into the well, augmented): An augmented coin-tossing into the well
protocol is a two-party protocol for securely computing (in the malicious model) the following ran-
domized functionality with respect to some fixed commitment scheme, {Cpn},enN,

(1",1%) = ((b,7), Cn(b,7)) (2.16)

where (b,r) is uniformly distributed in {0,1} x {0,1}™.

11 Recall that o and o' are determined by the Step C1 message.

12 The reason we use the term ‘augmentation’ rather than ‘modification’ is apparent from the implementation
below: The augmented protocol is actually obtained by augmenting the vanilla protocol. Furthermore, it is easy to
obtain the vanilla version from the augmented one, and going the other way around requires more work (as can be
seen below).
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Eq. (2.16) actually specifies coin-tossing with respect to a commitment scheme {C,,}. Definition 2.3.5
allows {C,,} to be arbitrary, but fixed for the entire protocol. The string r included in the output
of Party 1, allows it to later prove (in zero-knowledge) statements regarding the actual bit-value, b,
committed (to Party 2).

In the following construction the commitment scheme {C,} of Eq. (2.16) is used for internal steps
(i.e., Step C1) of the protocol (in addition to determining the output).!3

Construction 2.3.6 (an augmented coin-tossing-into-the-well protocol):
Inputs: both parties get security parameter 1™.

Step C1: The parties invoke a truncated/augmented version of the vanilla coin-tossing protocol
n + 1 times so to generate uniformly distributed bits, by, b1, ..., by, known to Party 1.

Specifically, for 7 = 0,1,...,n, the parties execute the following four steps:'*

Step C1.1: Party 1 uniformly selects (oj,s;) € {0,1} x {0,1}", and sends c, def Chl(oj,s5)
to Party 2.

Step C1.2: The parties invoke a zero-knowledge strong-proof-of-knowledge so that Party 1
plays the prover and Party 2 plays the verifier. The common input to the proof system
is ¢j, the prover gets auziliary input (0j,s;), and its objective is to prove that it knows
(z,y) such that

¢; = Ch(z,y) (2.17)

In case the verifier rejects the proof, Party 2 aborts with output L.

(As in Construction 2.3.3, any possible response — including abort — of Party 2 during
the execution of the protocol — and specifically this step — will be interpreted by a honest
Party 1 as a canonical legitimate message.)

Step C1.3: Party 2 uniformly selects o € {0,1}, and sends o} to Party 1. (Again, any
possible response — including abort — of Party 2, will be interpreted by Party 1 as a bit.)

Step C1.4: Party I sets b; = 0; ® 0.

Step C2: Party 1 sets b="by and r = b1bs - --b,, and sends ¢ def Cn(b,r) to Party 2.

Step C3: The parties invoke a zero-knowledge proof system so that Party 1 plays the prover and
Party 2 plays the verifier. The common input to the proof system is (co, C1, ..., Cn, T4, O], ey Thy €),
the prover gets auziliary input (60,01, ...,0n, 50,51, ..., Sn), and its objective is to prove that
there exists (Lo, T1, -, Tny Y0, Y1, -, Yn) Such that

(Vj ¢j = Cn(zj,9;)) A (e = Cnlmo ® 00, (211 B 01) -+ (0 © 07,))) (2.18)

In case the verifier rejects the proof, Party 2 aborts with output L (otherwise its output will be
¢). (Again, any possible response — including abort — of Party 2 during the execution of this
step, will be interpreted by Party 1 as a canonical legitimate message.)

13 Clearly, one could have used a different commitment scheme for Step C1.

14 Reversing the order of Steps C1.2 and C1.3 makes each iteration, as well as its emulation in the proof of security
below, more similar to the vanilla coin-tossing protocol of Construction 2.3.3. However, the proof of security is
somewhat simplified by the order used here.
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Outputs: Party 1 sets its local output to (b,r), and Party 2 sets its local output to c.

Observe that the specified strategies are indeed implementable in polynomial-time. In particular,
in Steps C1.2 and C3, Party 1 supplies the prover subroutine with the adequate NP-witnesses
which indeed satisfy the corresponding claims. We rely on the fact that given an NP-witness as
auxiliary input, a prover strategy which always convinces the prescribed verifier can be implemented
in probabilistic polynomial-time. It follows that if both parties are honest then neither aborts and
the output is as required by Eq. (2.16).

Proposition 2.3.7 Suppose that {C,, },,cN is a commitment scheme. Then Construction 2.3.6 con-
stitutes an augmented coin-tossing-into-the-well protocol.

Proof Sketch: We need to show how to (efficiently) transform any admissible circuit pair, (43, As),
for the real model into a corresponding pair, (B, Bs), for the ideal model. We treat separately each
of the two cases — defined by which of the parties is honest.

We start with the case that the first party is honest. In this case B; is determined, and we
transform (the real-model adversary) A, into (an ideal-model adversary) B,. Machine By will run
machine A, locally, obtaining the messages A, would have sent in a real execution of the protocol
and feeding it with messages that it expects to receive. The following construction is different from
the analogous construction used in the proof of of Proposition 2.3.4. Recall that B> gets input 1™.

1. By send 1™ to the trusted party and obtain the answer ¢ (where ¢ = C,, (b, r) for a uniformly
distributed (b,7) € {0,1} x {0,1}").

2. Bs generates a transcript which seems computationally indistinguishable from an execution
view (of A;) ending with output ¢ as above. This is done by emulating Steps C1 and C3 as
follows.

Emulating Step C1: For 5 =0,1,...,n, machine By proceeds as follows

(a) B; uniformly select o; € {0,1} and s; € {0,1}", and feeds A, with ¢; = C.(oj,55)-

(b) By invokes the simulator guaranteed for the zero-knowledge proof-of-knowledge sys-
tem (of Step C1.2), on input ¢;, using A»>(T;_1,¢;) as a possible malicious verifier,
where A2(T};_1,c;) denotes the behavior of Ay in the j*! iteration of Step C1.2, given
that it has received c; in the current iteration of Step C1.1 and that T;_; denotes
the transcript of the previous iterations of Step C1.2.
Denote the obtained simulation transcript by T = Tj(c;, Tj—1).

(c) Next, Bs obtains from A, its Step C1.3 message, which by our convention is always
a bit, denoted o. (We may consider this bit to be a part of Tj.)

Emulating Step C3: Bs invokes the simulator guaranteed for the zero-knowledge proof system
(of Step C3), on input ¢, using Ay (T, c) as a possible malicious verifier, where A5(T},, ¢)
denotes the behavior of Ay in Step C3, given that it has received ¢ in Step C2, and that
T, denotes the transcript of (all iterations of) Step C1. Denote the obtained simulation
transcript by T' = T'(¢, Th,).

3. Finally, B, feed A, with T', and outputs whatever A, does.
We need to show that for the functionality, f, of Eq. (2.16) and II of Construction 2.3.6,

n n 3 n n
{ieaL, (1", 1")}hen = {REALL 7(17", 1)} en (2.19)
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There are two differences between REALy 7(1™, 17) and IDEAL, 5(1", 1"). Firstly, in the real ex-
ecution the output of Party 1 (i.e.,(b,r)) equals (oo ® o), (01 D 01)---(0n € 0,)), whereas in the
ideal-model it (i-e., (b,r)) is uniformly distributed independently of everything else. Secondly, in the
ideal model simulations of zero-knowledge proof systems replace their actual execution. To show that
the two ensemble are nevertheless computationally indistinguishable we consider a hybrid ensemble,
denoted MENTAL7(1™), which is defined by the following mental experiment. Loosely speaking, the
mental experiment behaves as By except that it obtains the pair (b, 7) corresponding to the trusted
party answer ¢ = C,, (b, 7) and emulates Step C1 so that oy ® oy = b and (o1 @ oy)---(opd o)) =7,
rather than being independent as in the execution of By. Note that By does not get the pair (b,r),
and so could not possibly perform the procedure defined as a mental experiment below.

The mental experiment differs from B; only in the emulation of Step C1, which is conducted given
(b,7) as auxiliary input. We set by = b and b, to be the 5 bit of r, for j = 1,...,n.

For j = 0,1,...,n, given b;, we try to generate an execution view (of A in the gth
iteration of Step C1) ending with outcome b; (for Party 1). This is done by repeating
the following steps at most n times:

(a) We uniformly select o; € {0,1} and s; € {0,1}", and feeds A, with ¢; = C.(0j,s5).

(b) We run the zero-knowledge simulator for A;(Tj_1,¢;), as By does, and obtain from
Ay its Step C1.3 message, denoted o7

(c) If o ® o = b; then we record the values c¢; and T (as By does), and successfully
complete the emulation of the current (i.e., j*") iteration of Step C1.
Otherwise, we continue to the next attempt to generate such an emulation.

In case all n attempts (for some j € {0,1,...,n}) were completed unsuccessfully (i.e.,
without recording a pair (¢;,T})), the mental experiment is said to have failed.

By the proof of Proposition 2.3.4, each attempt succeeds with probability approximately 1/2,'5 and
so we may ignore the exponentially (in n) rare event in which the mental experiment fails. Thus,
we may write

MENTALE(1") = ((b,7), Ma,(b,7))

where (b, ) is uniformly distributed and Ma,(b,r) is the outcome of the mental experiment when
given (the auxiliary input) (b, 7). Turning to REALy (1", 1") and using again the proof of Proposi-
tion 2.3.4,'% we recall that each of the bits in the output of Party 1 (i.e., (b,7)) is distributed almost
uniformly in {0,1}, and the same holds for each bit conditioned on the value of all previous bits.
Thus, we may write

REALL (1", 1") = ((b,r), Ra,(b,7))

where the distribution of (b,r) is statistically indistinguishable from the uniform distribution over
{0,1} x {0,1}"™, and R4, (b,r) is the output of the second party in REALH,Z(ln’ 1™) conditioned on
the first party outputting (b,r). The only difference between M4, (b,r) and Ra,(b,r) is that in the
first distribution the output of zero-knowledge simulators replace the transcript of real executions ap-
pearing in the second distribution. Thus, the two ensembles are computationally indistinguishable.

15 Specifically, we use the fact that |Sq| & 2™, where S, ef {(z,y) : ¢ ® A2(Crn(z,y)) = a} C {0,1} x {0,1}™.
16 Specifically, we use the fact that |Sq| = (14 pu(n))-2™, where S, is as in the previous footnote and p is a negligible
function.
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Specifically, we use the fact that the standard formulation of zero-knowledge guarantees computa-
tionally indistinguishable simulations also in the presence of auxiliary inputs. Considering (b,7) as
auxiliary input, it follows that for every fixed (b,r) the distributions Ma,(b,r) and Ra,(b,r) are
indistinguishable by polynomial-size circuits. Thus, we have

{MENTALZ(1") }pen = {REALL 7(17", 1)}, en (2.20)

On the other hand, using the hypothesis that the commitment scheme used in Step C1 is secure,
one can prove that

{MENTAL7(1")},.eN = {mEAL, 5(1", 1") }en (2.21)

First, we write

IDEAL, (1", 1") = ((b,;7), L4,(b,7))

where (b, 7) is uniformly distributed and I4, (b, r) is the output of By (equiv., A2) conditioned on the
trusted party answering Party 1 with (b,r). We will show that for any fixed (b,r) € {0,1} x {0,1}™,
no poly(n)-circuit can distinguish I4,(b,r) from M4, (b,r). Recall that I4,(b,r) from M, (b,7) are
identical except to the way cp,c1, ..., ¢, are generated. In the first distribution each c; is generated
by uniformly selecting (o,s) € {0,1} x {0,1}", and setting ¢; = C,,(0,s); whereas in the second
distribution ¢; is generated by uniformly selecting among the (o,s)’s (in {0,1} x {0,1}") which
satisfy o @ A(Tj_1,Cn(0,s)) = b; (and setting ¢; = C,(0,5)).t7 The rest of the argument is aimed
at showing that these two types of distributions (on commitments) are computationally indistin-
guishable. This is quite intuitive; yet a proof is provided below. Consequently, no poly(n)-circuit
can distinguish I4, (b, r) from Ma4,(b,r), and Eq. (2.21) follows.

Abusing notation a little,'® we need to prove that X2 and Y,, are computationally indistinguish-
able, where S, = {(x y) : Ax(Cr(z,y)) @ ¢ = a}, and X2 (resp., Y;,) denote the distribution of
Cp (cr, s) where (o, s) is uniformly distributed in Sy (resp., in {0,1} x {0,1}™). (Y, represents the way
each ¢; is distributed in I4,(b,r), whereas X7 represents the way ¢; is distributed in Ma,(b,7).)

To prove the latter assertion, let D be an arbitrary polynomial-size circuit representing a potential

distinguisher, and let A def A,y. Then, for some negligible function u, we have

PAD(XE) = 1] = Pro o) x(on)+[D(Ca(0,9)) = 1] A(Cu(0,5)) = 0 @ a]
= 2P 01011 [(D(Ca(0,5) = 1) A (A(Cal0,5) = 0 & )] £ pu(n)

where the second equality is due t0 Pr(, s)cq0,13x 0,13+ [A(Cn(0,s)) =0 @ a] = Zi#(n) Thus,

PID(XS) =1 = Pracoyr[(D(Ca(0,5)) = 1) A (A(C,(0,5)) = 0® a)]
T Pricfoap [(D(Ca(1,9)) = 1) A (A(Ca(L,5)) = 1 a)] & pu(n)
= Procioa)r[D(Cu(1,9) = 1] + An) £ u(n)

where A(n) is defined as the difference between Prycrg 1)+ [(D(Cr(0,5)) = 1) A (A(C(0,5)) = a)]
and Proego,130 [(D(Cn(1,5)) = 1) A (A(Cn(1,5)) = a)]. Observe that |A(n)| is a negligible function,
or else one may combine A and D and obtain a small circuit distinguishing C,,(0) from C,(1) (in

17 Recall bg = b and b; is the j*0 bit of 7, for j = 1,...,n
18 The abuse in in writing A»(c) as a shorthand for A2(Tj_1,c).
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contradiction to our hypothesis regarding the commitment scheme C,). Thus, for some negligible
function p', we have

PID(XS) =1 = PrD(Cu(1)) = 1] % 4/(n)
Proc o) [D(C(0)) = 1] £ ' (m) £ 4 (n)
= PrD(Y,) = 1] + 24/ (n)

and so, by the above discussion, Eq. (2.21) follows. Combining Eq. (2.20) and Eq. (2.21), we establish
Eq. (2.19) as required.

We now turn to the case where the second party is honest. In this case Bs is determined, and we
transform (real-model) A; into (ideal-model) B;. Machine B; will run machine A4, locally, obtaining
message it would have sent in a real execution of the protocol and feeding it with messages that it
expects to receive. Our construction augments the one presented in the proof of Proposition 2.3.4,
by using the strong proof-of-knowledge in order to extract, for each j, the bit o; being committed
in Step C1.1 (by the corresponding ¢;). The regular proof system is used as a guarantee that the
commitment, ¢, sent in Step C3 indeed satisfies ¢ = C,,(bg, b1 - - - b,). Recall that B; gets input 1™.

1. B; sends 1™ to the trusted party and obtains a uniformly distributed (b,7) € {0,1} x {0,1}™.
We stress that the trusted party has not answered to Party 2 yet, and that Bj still has the
option of stopping the trusted party before it does so.

2. By sets by = b and b; as the 5" bit of r, for j = 1,...,n. It now tries to generate an execution of
Step C1 which matches these bits (i.e., with respect to the setting in Step C1.3). Specifically,
for each j = 0,1, ..., m, it tries to extract o, by using the strong knowledge extractor associated
with the proof system of Step C1.2, and sets the o’ accordingly. (We remark that since b; is
uniformly distributed so is 0}.) Alongside, machine By produces a view of A; of the execution
of Step C1. Details follow.

For j = 0,1,...,n, machine B; proceeds as follows (in emulating the j*® iteration of Step C1):

(a) By obtains from A; the Step C1.1 message, denoted ¢;. In case A; aborts (or acts im-
properly) in the current iteration of Step C1.1, we let B; abort (outputting the transcript
of the truncated execution).

(b) Bj; emulates the verifier in an execution of the strong proof-of-knowledge of Step C1.2
using A; as the prover. In case the verifier rejects, By aborts (outputting the transcript
of the truncated execution). Otherwise, it records the transcript of the execution (of the
proof-of-knowledge system), denoted T;.

(c) B: invokes the strong knowledge extractor to obtain a pair, (oj,s;), so that ¢; =
Ch(0oj,s;). In case the extraction fails, By aborts.

(d) Bi sets o = o; @ bj, and feeds it (together with 7}) to A;. This sets A; for the next
iteration.

3. In case A; aborts (or acts improperly) in Step C2, we let B; abort (outputting the transcript
of the truncated execution). Otherwise, suppose that A; sends message ¢ (supposedly ¢ =
Cp(b,r)).
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4. B; emulates the verifier in an execution of the proof system of Step C3 using A; as the prover.
In case the verifier rejects, B; aborts (outputting the transcript of the truncated execution).
Otherwise, machine B; records the transcript of the execution (of the proof system), denoted
T.

5. In case machine B; did not abort so far, it allows the trusted party to answer to Party 2.

6. Finally, By feeds A; with the execution view so far (i.e., T'), and outputs whatever A; does.

Recall that in case B; has aborted due to the emulated Party 2 detecting improper behavior
of Ay, it did so while outputting A;’s view of an aborting execution.

We now show that
{mEAL, 5(1", 1")}en = {REALL 7(17, 1™)},en (2.22)

The statistical difference is due to two cases corresponding to the two proof systems in use. The first
case is that A; succeeds to convince the strong knowledge-verifier (played by Party 2 in Step C1)
that it knows an opening of some ¢; (i.e., a preimage (0}, s;) of ¢; under C,,), and still the knowledge-
extractor failed to find such an opening. The second case is that A; succeeds to convince Party 2
playing the verifier of Step C3 that ¢ = Cy,(bo, by - - - by) (where the b;’s are as above — equal 0; © 07),
and yet this is not the case. By definition of these proof systems, such events may occur only with
negligible probability. Details follow.

Discussion — the statistical difference in Eq. (2.22): As stated above, the potential difference is due to
two sources (or cases). The first case is that A; convinces A, in the real execution of some iteration
of Step C1.2, but B; (using the strong knowledge-extractor) fails to extract the corresponding NP-
witness. Let p be the negligible function referred to in Definition 1.2.6. Then there are two sub-cases
to consider.

1. A; convinces A, with probability at most p(n). In this case there is no guarantee with respect
to extraction of the NP-witness. However, in this case, with probability at least 1 — u(n),
Party 2 aborts in the real model. Thus, the fact that in the ideal model, Party 2 aborts with
probability at least 1 — u(n) raises no problem. To summarize, the statistical difference in this
case is bounded above by u(n).

2. A; convinces A, with probability greater than u(n). In this case, we are guaranteed that the
extraction succeeds with very high probability; specifically, with probability at least 1 — u(n).
Thus, ignoring the negligiblly-rare event of failure, in this case we can match each non-aborting
execution in the real model by a corresponding non-aborting execution in the ideal model. Note
that the unambiguity property of the commitment scheme guarantees that each extracted bit,
oj, is the correct one. To summarize, the statistical difference in this case is also bounded
above by p(n).

We stress the essential role of the strong notion of a proof-of-knowledge (as defined in Definition 1.2.6)
in the above argument. This definition provides a negligible function, denoted p, so that whenever
the convincing probability exceeds p(n) — extraction succeeds with overwhelmingly high probability.
For further discussion see Section 1.2.3. The second potential source of statistical difference in
Eq. (2.22) is that A; convinces Ay in the real execution of Step C3, but yet ¢ # C,, (b, 7), where (b, r)
are as are supposed to be (uniquely) determined in Step C2. By the soundness property of the proof
system used in Step C3, in the latter case (i.e., ¢ # C, (b, 7)) the real execution is non-aborting with
negligible probability and the same holds for the simulation in the ideal model.
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Discussion — the case where A; never lies in the proof systems: We next consider the case where A;
never tries to prove false statements in either Step C1 or Step C3. Furthermore, we assume that in
this case the extraction always succeeds (which is indeed the case when using an extractor of zero
failure probability, as provided in Section 1.2.3). In this case, we show that IDEALfE(l”, 1) and
REALHE(I", 1™) are identically distributed. We first use the hypothesis that A; does not try to lie in
the proof system of Step C3. Using the the hypothesis that the commitment scheme is unambiguous,
it follows that the (c;, U_;-) pairs sent in Step C1 uniquely define the b;’s, and so uniquely define a
value ¢ = C,,(b,r) for which Eq. (2.18) can be satisfied. Thus, both in the real execution and in the
ideal model, Party 2 outputs the Step C2 message of A;; that is, ¢ = C,,(b,r), where b and r are as
determined is Step C1. Also note that both in the real execution and in the ideal model, the pair
(b,r) is uniformly distributed over {0,1} x {0,1}"™. As for the output of Party 1, we claim that B;
exactly emulates A;. Looking at the construction of Bj, we note that the only possible deviation
of B; from emulating A; may occur when it tries to extract the bits o;, for j =0,1,...,n. We first
note that in case extraction succeeds, it always yields the correct value (again, by unambiguity of
the commitment scheme). Finally, by the case hypothesis, A; always convinces the verifier (in the
iterations of Step C1.2) and extraction always succeeds.

The actual proof of Eq. (2.22): The real argument proceeds top down. That is, we start by considering
what happens in the iterations of the real execution of Step C1 versus its emulation. Suppose that
we are now at the j'I iteration (and that B; did not abort so far). The message ¢; obtained by By
from A; is exactly the one sent by A; in the current iteration of Step C1.1. We now consider the
probability, denoted p;, that A; convinces the verifier in the strong proof-of-knowledge conducted
in the current iteration of Step C1.2. (Indeed, p; depends on the view of A; of the execution so
far, but we omit this dependency from the notation.) We consider two cases, with respect to the
negligible function p referred to in Definition 1.2.6.

1. Suppose p; > p(n). In this case, with probability at least 1 — u(n), machine B; succeeds
(using the strong knowledge-extractor) to obtain the (unique) bit o; so that ¢; is in the range
of Cy(0j). In such a case, setting o = o ® bj, where b; as obtained from the trusted party
is uniformly distributed, machine B; perfectly emulates Step C1.3. Thus, with probability at
least (1 — u(n)) - pt, machine B; perfectly emulates a non-aborting execution of the current
iteration (of Step C1) by A;. Also, with probability at least (1 — p;), machine By perfectly
emulates an aborting execution of the current iteration (of Step C1) by A;. Thus, the emulation
of the current iteration of Step C1 is statistically indistinguishable from the real execution (i.e.,

the statistical difference is at most u(n)).

2. Suppose py < p(n). Again, real execution of the current iteration of Step Cl aborts with
probability 1 —p,, which in this case is negligiblly close to 1. In emulating the current iteration
of Step C1, with probability 1 — p; we perfectly emulate an aborting execution, but there is
no guarantee as to what happens otherwise. However, the uncontrolled behavior occurs only
with probability p; < p(n). Thus, again, the emulation of the current iteration of Step C1 is
statistically indistinguishable from the real execution.

We conclude that the emulation of Step C1 by B, is statistically indistinguishable from the real
execution of Step C1 by A;. We next turn to consider the execution (and emulation) of Step C3,
assuming — off course — that the execution (and emulation) of Step C1 did not abort. Let by, by, ..., b,
be bits as determined in a correct execution of Step C1.4. Note that assuming that the emulation
did not abort, these bits are well-defined and actually equal the bits provided (to B;) by the trusted
party. Let ¢ be the message sent by A; in Step C2. We consider two cases.
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1. ¢ = Cp(bo, by ---by). In this case the emulation of Steps C2 and C3, as conducted by By, is
perfect. Note that this does not necessarily mean that the emulation does not abort, as it
may abort whenever the real execution does. (This may happen when A; fails to convince
Party 2 in the real execution, an event which may happen as A; is arbitrary.) We stress that
in case By does not abort, the trusted party hands C,,(bo, by - - - b,) = ¢ to Party 2 (in the ideal
model), and so By outputs ¢ — exactly as Ay does in the real execution.

2. ¢ # C,(bg,by---by). In this case, the emulation of rejecting (and so aborting) executions of
Step C3 is perfect. Recall that by the soundness of the proof system accepting executions
occur only with negligible probability. Indeed, these executions are not correctly emulated by
By (as the answer provided to Party 2 in the ideal model differs from the message As receives
from A;, and consequently the output of Party 2 differ in the two models). However, since
non-aborting executions in this case occur with negligible probability, the emulation of the
execution is statistically indistinguishable from the real execution.

Thus, in the worst case, the emulation conducted by B is statistically indistinguishable from the
real execution as viewed by A;. Eq. (2.22) follows and does the proposition. [l

2.3.2.2 Input Commitment Protocol

Let {Cn},en be a commitment scheme. Our goal is to have Party 1 commit to its input using this
scheme. To facilitate the implementation we make the randomization to be used for the commitment
be outside the protocol (functionality). In typical applications, the input  will be given by a high-
level protocol which also generates r at random. For simplicity, we consider the basic case where x
is a bit.

((z,7),1™") = (X, Cpn(z,r)) (2.23)

At first glance, one may say that Eq. (2.23) is obviously implementable by just letting Party 1 apply
the commitment scheme to its input and send the result to Party 2. However, this naive suggestion
does not guarantee that the output is in the range of the commitment scheme, and so is not secure
in the malicious model. Furthermore, a secure implementation of the functionality requires that
Party 1 “knows” a preimage of the commitment value output by Party 2 (see discussion following
Definition 2.1.6). Thus, the naive protocol must be augmented by Party 1 proving to Party 2 (in
zero-knowledge) that it knows such a preimage. The resulting protocol follows.

Construction 2.3.8 (input-bit commitment protocol):
Inputs: Party 1 gets input (o,7) € {0,1} x {0,1}", and Party 2 gets input 1™.
Step C1: Party 1 sends c def Cn(o,r) to Party 2.

Step C2: The parties invoke a zero-knowledge strong-proof-of-knowledge so that Party 1 plays the
prover and Party 2 plays the verifier. The common input to the proof system is c, the prover
gets auziliary inputs (o,r), and its objective is to prove that it knows (z,y) such that

c=Cp(z,y) (2.24)

In case the verifier rejects the proof, Party 2 aborts with output L (otherwise the output will
be ¢). (Again, any possible response — including abort — of Party 2 during the execution of this
step, will be interpreted by Party 1 as a canonical legitimate message.)
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Outputs: Party 2 sets its local output to c. (Party 1 has no output.)

Observe that the specified strategies are indeed implementable in polynomial-time. In particular,
in Step C2, Party 1 supplies the prover subroutine with the NP-witness (o, 7) which indeed satisfies
Eq. (2.24) (with £ = 0 and y = 7). Also, using the non-triviality condition of the proof system
it follows that if both parties are honest then neither aborts and the output is as required. We
comment that the above protocol does not rely on {C,,} being a commitment scheme, and remains
valid for any family of functions {f, : {0,1} x {0,1}" + {0, 1}Po¥(")} .

Proposition 2.3.9 Construction 2.3.8 securely computes (in the malicious model) the functionality
Eq. (2.23), where {C,, : {0,1} x {0,1}" > {0, 1}po¥ (M)} .

Proof Sketch: Again, we need to show how to (efficiently) transform any admissible circuit pair,
(A1, Az), for the real model into a corresponding pair, (B, Bs), for the ideal model. We treat
separately each of the two cases — defined by which of the parties is honest.

We start with the case that the first party is honest. In this case B; is determined, and we
transform (the real-model adversary) A, into (an ideal-model adversary) By, which uses A, as a
subroutine. Recall that B, gets input 17™.

1. B, send 1™ to the trusted party and obtain the commitment value ¢ (which equals C),(o,7)
for (o,7) handed by Party 1).

2. B invokes the simulator guaranteed for the zero-knowledge proof system, on input ¢, using
A as a possible malicious verifier. Denote the obtained simulation transcript by S = S(c).

3. Finally, By feed A, with the supposedly execution view, (¢, S) and outputs whatever A, does.

We need to show that for the functionality, f, of Eq. (2.23) and II of Construction 2.3.8,

{IDEAL; 5((0,7) ; 1)} e, (o,myefo,1 ) x 0,1} = {REALy 7((0,7) , 1) e, (o, efo,1yx (0,1} (2:25)

Let R(o,r) denote the verifier view of the real interaction on common input C,(o,r), prover’s
auxiliary input (o, r), and verifier played by Bs. Then,

REALy z((0,7), 1) = (L, As(R(0o,17)))
IDEAL, 5((0,7), 1") = (L, 42(S(Cnl(o,7))))

However, by the standard formulation of zero-knowledge — which guarantees computationally indis-
tinguishable simulations also in the presence of auxiliary inputs — we have that ((o,r), S(C.(0,1)))
and ((o,7), R(o,7)) are computationally indistinguishable for any fixed (o,r), and so Eq. (2.25)
follows.

We now turn to the case where the second party is honest. In this case B; is determined, and we
transform (real-model) A; into (ideal-model) B, which uses A; as a subroutine. Recall that B
gets input (o,7) € {0,1} x {0,1}".

1. B invokes A; on input (o,r). In case A; aborts (or acts improperly) in Step C1, we let By
abort before invoking the trusted party. Otherwise, suppose that A; sends message ¢ (i.e.,
¢ = Aq(o,7)). (Supposedly c is in the range of C,,.)
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2. Machine B; tries to obtain the a preimage of ¢ under C,. Towards this end, B; uses the
knowledge-extractor associated with the proof system of Step C2. Specifically, using the strong
knowledge-extractor, B tries to extract from A; a pair (z,y) satisfying Eq. (2.24). In case
the extractor succeeds, By sets ' = x and r’ = y. If the extraction fails, machine B; aborts
(before invoking the trusted party). Otherwise, we proceed as follows.

3. Machine B; now emulates an execution of Step C2. Specifically, it lets A;(o,r) play the
prover and emulates the (honest) verifier interacting with it (i.e., behaves as A,). In case the
emulated verifier rejects, machine By aborts (before invoking the trusted party). Otherwise,
it sends (o',7') to the trusted party, and allows it to respond to Party 2. (The response will
be C,(do',7") =¢.)

4. Finally, By feed A; with the execution view, which consists of the prover’s view of the emulation
of Step C2 (produced in Step 3 above), and outputs whatever A; does.

We now show that

{IDEAL; 5((0,7) ; 1)} e, (o,myefo,1 ) x 0,1} = {REALy 7((0,7) , 1) e, (o, efo,1)x (0,1} (2:26)

The statistical difference is due to the case where A; succeeds to convince the strong knowledge-
verifier (played by As) that it knows a preimage of ¢ under C,, and still the knowledge-extractor
failed to find such a preimage. By definition of strong knowledge-verifiers, such an event may occur
only with negligible probability. Loosely speaking, the rest of the argument shows that, ignoring the
rare case in which extraction fails although the knowledge-verifier (played by As) is convinced, the
distributions IDEAL, 5((0,7),1") and REALy %((0,7),1") are identical.

Consider first, for simplicity, the case where B; never aborts (i.e., never stops the trusted party).
In this case, both in the real execution and in the ideal model, Party 2 outputs the Step C1 message
of Ay; that is, Ai(o,r). Thus, they both equal (A;((o,r),T), Ai(0o,r)), where T represents the
(distribution of the) prover’s view of an execution of Step C2, on common input ¢, in which the
prover is played by A, (o, 7).

Next, consider the case that A; always aborts (i.e., either it aborts in Step Cl or it never
convinces the verifier in Step C2). In this case, By aborts before invoking the trusted party, and
so both ensembles are identical (i.e., both equal (A;((o,7),L),L)). Since A; is deterministic, we
are left with the case in which A; appears to behave properly in Step C1 and, in Step C2, machine
Aq(o,r) convinces Party 2 with some probability, denoted p, taken over the moves of Party 2. We
consider two cases, with respect to the negligible function u referred to in Definition 1.2.6.

1. Suppose p > u(n). In this case, by definition of a strong proof of knowledge, with probability
at least 1 — p(n), machine B has successfully extracted (o', ') in Step 2. Thus, the situation
is as in the simple case (above), except that with probability 1 — p, the joint execution in the
real model ends up aborting. In the ideal model a joint execution is aborting with probability
1 —p = u(n) (actually, the probability is at least 1 — p and at most 1 — p + u(n)). As in the
simple case (above), non-aborting executions are distributed identically in both models. (The
same holds with respect to aborting executions which equal (A4;((o,7), L), L) in both models.)

2. Suppose that p < p(n). Again, in the real model the abort probability is 1 — p, which in
this case is negligiblly close to 1. In the ideal model we are only guaranteed that aborting
executions occur with probability at least 1 — p, which suffices for us (recalling that aborting
executions are equal in both models, and noting that they occur with probability at least
1 — u(n) in both models).
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We conclude that in both cases the distributions are statistically indistinguishable, and the propo-
sition follows. [

2.3.2.3 Authenticated Computation Protocol

Let f : {0,1}* x {0,1}* ~ {0,1}* and h : {0,1}* — {0,1}* be polynomial-time computable.
Intuitively, our goal is to force Party 1 to send f(«, 3) to Party 2, where 3 is known to both parties,
« is known to Party 1, and h(«) — which determines « in case h is 1-1 — is known to Party 2. That
is, we are interested in the functionality

((a, B), (h(a), B)) = (A f(e, ) (2.27)

The above formulation makes acute a issue which is present also in all previous functionalities
considered: What happens if the parties provide inputs which do not satisfy the relations postulated
above (i.e., Party 1 provides input (o, ) and Party 2 provides (7', 3') where either 8 # 5’ or
h(a) #v"). Our convention is that in this case the output is (L, L) (see discussion in the preamble
to Section 2.1).

To facilitate the implementation, we assume that the function h is one-to-one, as will be the
case in our applications. This allows us to use (ordinary) zero-knowledge proofs, rather than strong
(zero-knowledge) proofs-of-knowledge. We also assume, for simplicity, that for some polynomial p
and all o’s, the function h satisfies |h(a)| = p(|a]).*?

The functionality of Eq. (2.27) is implemented by having Party 1 send f(«,3) to Party 2, and
then prove in zero-knowledge the correctness of the value sent (with respect to the common input
(h(a), B)). Note that this statement is of the NP-type and that Party 1 has the NP-witness. Actually,
the following protocol is the archetypical application of zero-knowledge proof systems.

Construction 2.3.10 (authenticated computation protocol):
Inputs: Party 1 gets input (o, 8) € {0,1}* x{0,1}*, and Party 2 gets input (u, 3), where u = h(a).
Step C1: Party 1 sends v def f(a, B) to Party 2.

Step C2: The parties invoke a zero-knowledge proof system so that Party 1 plays the prover and
Party 2 plays the verifier. The common input to the proof system is (v, u, 3), the prover gets
auxiliary inputs o, and its objective is to prove that

Az s.t. (uw=h(x)) A (w=f(z,0)) (2.28)

(We stress that the common input is supplied by the verifier, which sets the first element to
be the message received in Step C1, and the two other elements to be as in its input.) The
proof system employed has negligible soundness error. In case the verifier rejects the proof,
Party 2 aborts with output L (otherwise the output will be v). (Again, any possible response —
including abort — of Party 2 during the execution of this step, will be interpreted by Party 1 as
a canonical legitimate message.)

Outputs: Party 2 sets its local output to v. (Party 1 has no output.)

19 This assumption can be enforced by redefining h so that h(a) def h(e) - 0PUeD=1r()] " where p(Ja|) — 1 is an
upper bound on the time-complexity of the original h.
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Observe that the specified strategies are indeed implementable in polynomial-time. In particular, in
Step C2, Party 1 supplies the prover subroutine with the NP-witness a so that Eq. (2.28) is satisfied
with © = «. Also, using the completeness condition of the proof system it follows that if both parties
are honest then neither aborts and the output is as required. We stress that, unlike the previous
two protocols, the current protocol only utilizes an ordinary (zero-knowledge) proof system (rather
than a strong proof-of-knowledge).

Proposition 2.3.11 Suppose that the function h is one-to-one. Then, Construction 2.3.10 securely
computes (in the malicious model) the functionality Eq. (2.27).

Proof Sketch: Again, we need to show how to (efficiently) transform any admissible circuit pair,
(A1, As), for the real model into a corresponding pair, (B, Bs), for the ideal model. We treat
separately each of the two cases — defined by which of the parties is honest. Assume, for simplicity,
that |« = |5].

We start with the case that the first party is honest. In this case B; is determined, and we
transform (the real-model adversary) A, into (an ideal-model adversary) By, which uses A, as a
subroutine. Recall that Bs gets input (u, ), where v = h(«).

1. By send (u, ) to the trusted party and obtain the value v, which equals f(«a, () for («, §)
handed by Party 1.

2. B invokes the simulator guaranteed for the zero-knowledge proof system, on input v, using
A, as a possible malicious verifier. Denote the obtained simulation transcript by S = S(v).

3. Finally, B, feed A, with the supposedly execution view, (v,S) and outputs whatever A, does.

Repeating the analogous arguments of the previous proofs, we conclude that for the functionality,
f, of Eq. (2.27) and II of Construction 2.3.10,

{IDEALLE((O‘; ﬁ) ) (h(a)a ﬂ))}nEN, a,B€{0,1}m % {REALILZ((C“; /6) ) (h(Oé), ﬁ))}nEN, a,B€{0,1}m

We now turn to the case where the second party is honest. In this case Bs is determined, and we
transform (real-model) A; into (ideal-model) B, which uses A; as a subroutine. Recall that B
gets input (a, 8) € {0,1}"™ x {0,1}™

1. B invokes A; on input («, ). In case A; aborts (or acts improperly) in Step C1, we let By
abort before invoking the trusted party. Otherwise, suppose that A; sends message v (i.e.,

v=A1(c, B)).

2. Machine By checks that v supplied in Step 1 indeed satisfies Eq. (2.28) with respect to v = h(«),
where (a, 3) are as above (i.e., the input to By). This is done by emulating the proof system
of Step C2 so that A;(«, ) plays the prover and Bj plays the (honest) verifier (i.e., behaves
as As). Recall that this proof system has negligible soundness error, and so if v does not
satisfy Eq. (2.28) this is detected with probability 1 — u(n), where p is a negligible function.
If the verifier (played by B;) rejects then machine B; aborts (before invoking the trusted
party). Otherwise, we proceed assuming that v satisfies Eq. (2.28). Note that since h is 1-1
and Eq. (2.28) is satisfied it must be the case that v = f(h~1(u),) = f(a, 3).2°

20 We comment that if h were not 1-1 and a strong proof-of-knowledge (rather than an ordinary proof system) was
used in Step C2 then one could have inferred that Party 1 knows an o' so that h(a') = w and v = f(a/, 3), but o/
does not necessarily equal . Sending (o', 3) to the trusted party in the next step, we would have been fine, as it
would have (also) meant that the trusted party’s respond to Party 2 is v.
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3. Machine B; sends («, ) to the trusted party, and allows it to respond to Party 2. (The
response will be f(a, ) =v.)

4. Finally, B, feed A; with the execution view, which consists of the prover’s view of the emulation
of Step C2 (produced in Step 2 above), and outputs whatever A; does.

We now show that

{1DEAL, (0, B) , ((@), B)}nen, apeony = {REALY (0, B) , ((a), B) el apeonye (2:20)

The statistical difference is due to the case where A; succeeds to convince the verifier (played by
As) that it v satisfies Eq. (2.28), and yet this claim is false. By soundness of the proof system, this
event happens only with negligible probability. The rest of the argument is a simplified version of
the corresponding parts of the previous proofs. Specifically, assuming that v satisfies Eq. (2.28), we
show that IDEAL 5((c, B), (h(a), 8)) and REALy 7((a, B), (h(ar), B)) are identically distributed.
Consider first, the case that A; always aborts in Step C1 (or is detected to behave improperly —
which is treated as abort). In this case, By aborts before invoking the trusted party, and so both
ensembles are identical (i.e., both equal (A;((a,3),L),L)). Since A; is deterministic, we are left
with the case in which A; appears to behave properly in Step C1 and, in Step C2, machine 4, (a, §)
convinces Party 2 with some probability, denoted p, taken over the moves of Party 2. We consider
two cases, with respect to the soundness error-bound function p associated with the proof system.
We stress that such an explicit function can be associated with all standard zero-knowledge proof

systems, and here we use a system for which p is negligible. For example, we may use a system with

error bound p(n) Lfgn,

1. Suppose p > u(n). In this case, by the soundness condition, it must be the case that 4 (a, §) =

f(a, B) (since in this case v Lef Ai(a, B) satisfies Eq. (2.28) and so v = f(h~ (), 8) = f(a, ).
Thus, in both the real and the ideal model, with probability p, the joint execution is non-
aborting and equals (A;((a,3),T), Ai(e, 3)), where T represents the (distribution of the)
prover’s view of an execution of Step C2, on common input (h(a), S, f(a,3)), in which the
prover is played by A;(a,3). Also, in both models, with probability 1 — p, the joint execution
is aborting and equal (A4;((«, 3), L), L). Thus, in this case the distributions in Eq. (2.29) are
identical.

2. Suppose that p < p(n). Again, in both models aborting executions are identical and occur with
probability 1—p (as the ideal model aborts only during a single emulation of the real model). In
this case we have no handle on the non-aborting executions in the ideal model (as A; (o, §) may
be arbitrary), but we do not care since these occur with negligible probability (i.e., p < p(n)).
Thus, in this case the distributions in Eq. (2.29) are statistically indistinguishable.

The proposition follows. Il

Authenticated Computation Protocol, generalized. Actually, we will use a slightly more
general functionality in which A is a randomized process rather than a function. Alternatively,
we consider a two-argument function h (rather than a single argument one), and the following
functionality.

((a, 7, 8), (ha,7),8)) — (A, fla, B)) (2.30)
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Analogously to above, we make the assumption that h is 1-1 with respect to its first argument; that
is, for every a # o' and any r,r" we have h(a,r) # h(a',r"). Construction 2.3.10 generalizes in the
obvious way and we obtain.

Proposition 2.3.12 Suppose that the function h : {0,1}* x {0,1}* — {0,1}* satisfies that for
every a # o, the sets {h(a,r) : 7 € {0,1}*} and {h(c/,r) : r € {0,1}*} are disjoint. Then, the
functionality of Eq. (2.30) can be securely computed (in the malicious model).

Proof Sketch: For clarity, we reproduce the generalized protocol.

Inputs: Party 1 gets input (a,7,8) € ({0,1}*)3, and Party 2 gets input (u,3), where v = h(a, 7).

Step C1: As before, Party 1 sends v def f(a, B) to Party 2.

Step C2: As before, the parties invoke a zero-knowledge proof system so that Party 1 plays the
prover and Party 2 plays the verifier. The common input to the proof system is (v,u, ), the
prover gets auxiliary inputs (a,r), and its objective is to prove that

dz,y st (uw=h(z,y)) A= fz,0) (2.31)

In case the verifier rejects the proof, Party 2 aborts with output L (otherwise the output will
be v). (Again, any possible response — including abort — of Party 2 during the execution of
this step, will be interpreted by Party 1 as a canonical legitimate message.)

Outputs: As before, Party 2 sets its local output to v. (Party 1 has no output.)

The fact that this generalized protocol securely computes the functionality Eq. (2.30) is proven by
following the proof of Proposition 2.3.11. The only thing to notice is that the first element of a
preimage in the range of h is still uniquely defined. [l

2.3.3 The compiler itself

We are now ready to present the compiler. Recall that we are given a protocol, II, for the semi-
honest model, and we want to generate an “equivalent” protocol IT' for the malicious model. The
meaning of the term ‘equivalent’ will be clarified below. We assume, without loss of generality, that
on any input of length n, each party to II tosses ¢(n) = poly(n) coins.

Construction 2.3.13 (The two-party compiler): Given a protocol, II, for the semi-honest model,
the compiler produces a protocol, II', for the malicious model. Following is a specification of the
resulting protocol II'.

Inputs: Party 1 gets input © = x129---x, € {0,1}™ and Party 2 gets input y = y1y2---Yn €
{o,1}m.

Input-commitment phase: Fach of the parties commits to each of its input bits by using a se-
cure implementation of the input-commitment functionality of Eq. (2.23). Recall that these
executions should be preceded by the “committing party” selecting a randomization for the
commitment scheme C,. That is, for i =1 to n, the parties do:>!

21 The order in which these 2n commitments are run is immaterial. Here we chose an arbitrary one. The same
holds for the protocols in the next phase.
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e Party 1 uniformly selects pt € {0,1}", and invokes a secure implementation of the input-
commitment functionality of Eq. (2.23), playing Party 1 with input (z;, pt). Party 2 plays
the role of Party 2 in Eq. (2.23) with input 1™. Party 2 obtains the output C,,(z;, pl).

e Analogously, Party 2 uniformly selects p? € {0,1}", and invokes a secure implementation
of the input-commitment functionality of Eq. (2.23), playing Party 1 with input (y;, p?).
Party 1 plays the role of Party 2 in Eq. (2.23) Party 1 obtains the output C,,(yi, p?)-

Note that each party now holds a string which uniquely determines the n-bit long input of
the other party. Specifically, Party 1 (resp., Party 2) holds C,(y1,p2), .., Co(yn, p2) (resp.,
Cr(z1,pb), .., Co(wn, pL)). In addition, each party, holds an NP-witness for the value of the
imput committed to by the sequence held by the other party; that is, Party ¢ holds the witness
p’i’ b p:’b'

Coin-generation phase: The parties generate random-pad for the emulation of II. FEach party
obtains the bits of the random-pad to be held by it, whereas the other party obtains commit-
ments to these bits. The party holding the bit also obtains the randomization used in these
commitments, to be used as an NP-witness to the correctness of the committed value. This
is done by invoking a secure implementation of the (augmented) coin-tossing functionality of
Eq. (2.16). Specifically, the coin-tossing protocol is invoked 2¢c(n) times, c¢(n) times in each of
the two directions.

That is, for i =1 to ¢(n), the parties do

e Party 1 invokes a secure implementation of the coin-tossing functionality of Eq. (2.16)
playing Party 1 with input 1™. Party 2 plays the role of Party 2 in Eq. (2.16) with
input 1™. Party 1 obtains a pair, (r},w?), and Party 2 obtains the corresponding output
Cu(ri,w;)-

Party 1 sets the i*® bit of the random-pad for the emulation of II to be T}, and records
the corresponding NP-witness. Party 2 records Cp(r},w}).

e Party 2 invokes a secure implementation of the coin-tossing functionality of Eq. (2.16)
playing Party 1 with input 1™. Party 1 plays the role of Party 2 in Eq. (2.16) with
input 1. Party 2 obtains a pair, (r?,w?), and Party 1 obtains the corresponding output
Co(r?,w?).

Party 2 sets the it" bit of the random-pad for the emulation of 11 to be r?, and records
the corresponding NP-witness. Party 1 records C,(1?,w?).

Each party, sets the random-pad for 11 to be the concatenation of the corresponding bits. That

is, for j = 1,2, Party j sets v’ =rir} .- -ri(n).

Note that each party holds a string which uniquely determines the random-pad of the other
party.

Protocol emulation phase: The parties use a secure implementation of the authenticated-computation
functionality of Eq. (2.30) in order to emulate each step of protocol I. The party which is sup-
posed to send a message plays the role of Party 1 in Eq. (2.30) and the party which is supposed
to receive it plays the role of Party 2. The inputs a, 1,3 and the functions h, f, for the func-
tionality of Eq. (2.30), are set as follows:
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e The string « is set to equal the concatenation of the party’s original input and its random-
pad, the string r is set to be the concatenation of the corresponding randomizations used
in the commitments and h(c,r) equals the concatenation of the commitments themselves.
That is, suppose the message is supposed to be sent by Party 7 in IL and that its input s
z (i.e., z=w if j =1 and z =y otherwise). Then

a = (z,77), wherer’ = r{r% . 'TZ(n)
ro= (p{pé---piL;W{wg"'WZ(n))
h(Oé,T) = (Cn(zlapi)acn(z27pé

)7 R CTL(ZTL7p"ZL) )
Cr(r],w]), Ca(13,03), wvry Ol s w2 )

Note that h indeed satisfies h(a,T) # h(a',r") for all a # o' and all 7,7".

o The string B is set to equal the concatenation of all previous messages sent by the other
party.
o The function f is set to be the computation which determines the message to be sent in II.

Note that this message is computable in polynomial-time from the party’s input (denoted
z above), its random-pad (denoted 17), and the messages it has received so far (i.e., 3).

Aborting: In case any of the protocols invoked in any of the above phases terminates in an abort
state, the party (or parties) obtaining this indication aborts the execution, and sets its output
to L. Otherwise, outputs are as follows.

Outputs: At the end of the emulation phase, each party holds the corresponding output of the party
in protocol II. The party just locally outputs this value.

We note that the compiler is efficient. That is, given the code of a protocol II, the compiler produces
the code of II' in polynomial-time. Also, in case both parties are honest, the input-output relation
of IT" is identical to that of II.

2.3.3.1 The effect of the compiler

As will be shown below, given a protocol as underlying the proof of Theorem 2.2.13, the compiler
produces a protocol which securely computes the same function. Thus, for any functionality f, the
compiler transforms a protocol for privately computing f (in the semi-honest model) into a protocol
for securely computing f (in the malicious model). The above suffices to establish our main result
(i.e., Theorem 2.3.1), yet it does not say what the compiler does when given an arbitrary protocol
(i.e., one not produced as above). In order to analyze the action of the compiler, in general, we
introduce the following model which is a hybrid of the semi-honest and the malicious models.??> We
call this new model, which may be of independent interest, the augmented semi-honest model.

Definition 2.3.14 (the augmented semi-honest model): Let IT be a two-party protocol. An aug-
mented semi-honest behavior (w.r.t II) for one of the parties is a (feasible) strategy which satisfies
the following conditions.

22 Indeed, Theorem 2.3.1 will follow as a special case of the general analysis of the compiler provided below. Our
treatment decouples the effect of the compiler from properties of protocols which when compiled (by the compiler)
yield a secure in the malicious model implementation of a desired functionality. This footnote is clarified by the text
below.
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Entering the execution: Depending on its initial input, denoted z, the party may abort before
taking any step in the execution of IL. Otherwise, again depending on z, it enter the execution
with any input 2’ € {0,1}#! of its choice. From this point on 2" is fized.

Proper selection of random-pad: The party selects the random-pad to be used in II uniformly
amonyg all strings of the length specified by II. That is, the selection of the random-pad is
evactly as specified by I1.

Proper message transmission or abort: In each step of 11, depending on its view so far, the
party may either abort or send a message as instructed by II. We stress that the message is
computed as II instructs based on input z', the random-pad selected above, and all messages
received so far.

Output: At the end of the interaction, the party produces an output depending on its entire view of
the interaction. We stress that the view consists of the initial input z, the random-pad selected
above, and all messages received so far.

A pair of polynomial-size circuit families, C = (Cy,Cs), is admissible w.r.t II in the augmented
semi-honest model if one family implements II and the other implements an augmented semi-honest
behavior w.r.t 1L.

Intuitively, the compiler transforms any protocol II into a protocol IT' so that executions of IT' in
the malicious model correspond to executions of IT in the augmented semi-honest model. That is,

Proposition 2.3.15 (general analysis of the two-party compiler): Let II' be the protocol produced
by the compiler of Construction 2.5.13, when given the protocol I1. Then, there exists a polynomial-
time computable transformation of pairs of polynomial-size circuit families A = (Ay, Ay) admissible
(w.r.t II') for the (real) malicious model (of Definition 2.1.5) into pairs of polynomial-size circuit
families B = (By, By) admissible w.r.t II for the augmented semi-honest model (of Definition 2.3.14)
so that

c
{REALH7§($7y)}z,y s.t. |z|=|y| = {REALH’7Z(I7y)}17y s.t. |z|=|y|

Proposition 2.3.15 will be applied to protocols as underlying the proof of Theorem 2.2.13. As
we shall see (in §2.3.3.2 below), for these specific protocols, the augmented semi-honest model
(of Definition 2.3.14) can be emulated by the ideal malicious model (of Definition 2.1.4). Thus,
Theorem 2.3.1 will follow (since, schematically speaking, for every functionality f there exist II
and IT' so that IDEALf,malicious(x’y) equals REALH,aug—semi—hones‘u(x’y)7 which in turn equals
REALH',malicious(wﬂy))' Thus, Theorem 2.3.1 is proven by combining the properties of the com-
piler, as stated in Proposition 2.3.15, with the properties of specific protocols to be compiled by it.
We believe that this decoupling clarifies the proof. We start by establishing Proposition 2.3.15.

Proof Sketch: Given a circuit pair, (A;, A2), admissible w.r.t II' for the real malicious model, we
present a corresponding pair, (Bi, B2), admissible w.r.t II for the augmented semi-honest model.
Denote by hon the identity of the honest party and by mal the identity of the malicious party
(mal = 1 if hon = 2 and mal = 2 otherwise). Then, Byoy is determined, and we transform (the
malicious adversary) Apaj into (an augmented semi-honest adversary) Bpa1, which uses Apa7 as a
subroutine. Actually, machine By 57 will use Ap 51 as well as the ideal-model (malicious) adversaries
derived from the behavior of Ap 51 in the various subprotocols invoked by II'. Furthermore, machine
Bpa1 will also emulate the behavior of the trusted party in these ideal-model emulations (without
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communicating with any trusted party — there is no trusted party in the augmented semi-honest
model). Thus, the following description contains an implicit special-purpose composition theorem.?3

On input z = z122 - - - 2, € {0,1}", machine Bp,7 behaves as follows.

Entering the execution: By ;7 invokes Ap,7 on input 2z, and decides whether to enter the pro-
tocol, and if so — with what input. Towards this end, machine Bp 51 emulates execution of
the input-committing phase of II', using Ap41 (as subroutine). Machine Bp,7 supplies Apaq
with the messages it expects to see, thus emulating a honest Party hon in II', and obtains
the messages sent by Apa7. Specifically, it emulates the executions of the input-commitment
protocol, which securely computes the functionality Eq. (2.23), in attempt to obtain the bits
committed to by Apg71. The emulation of each such execution is done by using the malicious
ideal-model adversary derived from (the real malicious adversary) Apg71. Details follow.

e In an execution of the input-commitment protocol where Party hon commits to an input
bit, say its i*! bit, machine By, tries to obtain the corresponding commitment (for future
usage in emulation of message-transmission steps). First By, emulates the uniform

selection (by Party hon) of p°™ € {0,1}". Machine By,7 will use an arbitrary value, say
0, for the i'! bit of Party hon (as the real value is unknown to Bp,7). Next, machine Bp,q
derives the ideal-model adversary, denoted A;nal’ which corresponds to the behavior of
Apa1 — given the history so far — in the corresponding execution of the input-commitment

protocol.

Invoking the ideal-model adversary A/, and emulating both the honest (ideal-model)

Party hon and the trusted party, machine Bp,7 obtains the outputs of both parties (i.e.,
the commitment handed to Party mal). That is, machine By, obtains the message that
Al .7 would have sent to the trusted party (i.e., 1), emulate the sending of message
~hon
¢

(O,phon) by Party hon, and emulates the response of the trusted oracle, ¢;

7

¢hon — ¢, (0, pPOD). (See definition of the functionality Eq. (2.23).)

i

, where

In case the emulated machines did not abort, machine By, records phon

i, and concate-
nates the emulation of the input-commitment protocol (i.e., the final view of Party mal as
output by A’ 1) to the history of the execution of Apa7. (Indeed, the emulated text may
not be distributed as a transcript of a prefix of real execution of Ap,7, but the former is

computationally indistinguishable from the latter.)

e In an execution of the input-commitment protocol where Party mal commits to an input
bit, say its i*® bit, machine By, tries to obtain the corresponding bit as well as the
commitment to it. First Bpap derives the ideal-model adversary, denoted A/ _;, which
corresponds to the behavior of Ap4q — given the history so far — in the corresponding

execution of the input-commitment protocol.

Machine Bpaq uniformly selects p®1 € {0,1}", invokes Al 1 on input (z;, pmal) 24

and emulating both the honest (ideal-model) Party hon and the trusted party, machine

23 Tt is indeed our choice neither to make this composition theorem explicit nor to state a general-purpose com-
position theorem for the malicious model. We believe that the implicit composition is easy to understand, whereas
an explicit statement would require some technicalities which — at a last account — will not make the proof easier to
follow.

24 Machine Aénal may, indeed, ignore this input altogether and act according to other strings which may be

incorporated in its description. Giving input to Aénal merely mimics the situation in which this party is honest,

which is not the case here. In fact, one could have defined adversaries to have no input at all (as they are non-uniform
and so can incorporate whatever input we wish anyhow).
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Bpa1 obtains the outputs of both parties (i.e., the commitment handed to Party hon).
A key point is that machine Bp,1 has obtained, while emulating the trusted party, the
input handed by Al ; to the trusted party. We denote this input by (z;,s). That is,
machine Bp,7 obtains the message (z;, s) that A' 1 would have sent to the trusted party

which may differ from (z;, o al , emulates the sending of message 1™ by Party hon, and
i g g
emulates the response of the trusted oracle, &l = (2!, s).

In case the emulated machines did not abort, machine Bp,7 records the pair (Z£7anal)7
and concatenates the emulation of the input-commitment protocol (i.e., the final view of

Party mal as output by Al ;) to the history of the execution of Ap,7.

o If A 47 aborts in any of these executions then Bpg7 aborts the entire execution. Other-
wise, Bpaq sets 2/ = 2}z -+ 2], cal _ Erlnalgznal .. ,Ejrrllal, and phon _ plllonpgon .. 'PBOH-

In case Bpg1 did not abort, it enters protocol II with input 2’.

Note that this entire step is implemented in polynomial-time, and the resulting 2’ depends
only on z (the initial input of Bpa7).

Selection of random-pad: By, selects its random-pad uniformly in {0,1}(™) (as specifies by II),
and emulates the execution of the coin-generation phase of I’ ending with this outcome, so as
to place Apa7 in the appropriate state towards the protocol-emulation phase. To achieve the
latter goal, machine Bp,7 supplies Ap57 with the messages it expects to see, thus emulating
a honest Party hon in IT', and obtains the messages sent by Apa7. Specifically, it emulates the
executions of the (augmented) coin-tossing protocol, which securely computes the functionality
Eq. (2.16), so that these executions end with the desired coin outcome. The emulation of each
such execution is done by using the malicious ideal-model adversary derived from (the real
malicious adversary) Aps1- The fact that in these emulations machine By ;1 also emulates the
trusted party allows it to set the outcome of the coin-tossing to fit the above selection of the
random-pad. Alternatively, one may think of Bp57 as “honestly” emulating the trusted party
(i.e., which sets the outcome uniformly), and setting the random-pad to equal the result of
these random outcomes. In any case, the random-pad is selected uniformly and independently
of any thing else. Details follow.

e Machine By, selects its random-pad, r21 = ;pal,mal . -r’&f&, uniformly in {0, 1}¢(").

e In i'" execution of the coin-tossing protocol in which Party hon obtains the outcome of the
coin-toss, machine By 41 tries to obtain the outcome as well as the randomness used by
Party hon when committing to it. First, machine Bp,7 derives the ideal-model adversary,
denoted Al _;, which corresponds to the behavior of Ap,7 — given the history so far —
in the corresponding execution of the coin-tossing protocol. Invoking the ideal-model

adversary A/, and emulating both the honest (ideal-model) Party hon and the trusted

party, machine Bpg1 obtains the outputs of both parties (i.e., both the coin value and

the randomness handed to Party hon and a commitment handed to Party mal).

That is, machine Bpa7 obtains the message that Al would have sent to the trusted
party (i.e., 1™), emulates the sending of message 1™ by Party hon, and emulates the

response of the trusted oracle, ((roR, hony ghony wpepe (phon hony ¢ g 13 % {0, 1}
hon _ Cn(rhon hon)_ (

is uniformly distributed and ¢; See definition of the functionality

Eq. (2.16).)

, W
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In case the emulated machines did not abort, machine Bp,7 records the pair (Tzhon, w

and concatenates the emulation of the coin-tossing protocol (i.e., the final view of Party mal

as output by AL 1) to the history of the execution of Apa7.

mon),

e In i'" execution of the coin-tossing protocol in which Party mal is supposed to obtain the
outcome of the coin-toss, machine Bp,q tries to generate an execution ending with the
corresponding bit of 7ML First By,q derives the ideal-model adversary, denoted A1
which corresponds to the behavior of Ap57 — given the history so far —in the corresponding
execution of the coin-tossing protocol. It invokes A;nal and emulating both the honest
(ideal-model) Party hon and the trusted party, machine Bpg7 obtains the outputs of
both parties (i.e., both the coin value handed to Party mal and a commitment handed to
Party hon).

That is, machine Bp,7 obtains the message that Al _; would have sent to the trusted
party (i.e., 1), emulates the sending of message 1™ by Party hon, and emulates the
response of the trusted oracle, ((r8al wmaly gnaly wpere (;Ral maly ¢ 1o 1} x{0,1}"
is uniformly distributed and @81 = ¢, (rmal ,maly

In case the emulated machines did not abort, machine By 57 records the value Elz-nal, and
concatenates the emulation of the coin-tossing protocol (i.e., the final view of Party mal
as output by AL 1) to the history of the execution of Apa7.

o If Apoq aborts in any of these executions then Bp,7 aborts the entire execution.

In case Bpgj did not abort, it will use rmal us its random-pad in its the subsequent steps of

protocol II. It also sets ¢l — gmalgmal Emc(% and whon = ,hon hon -wfl(?f)l.

mal ig selected uniformly

Note that this entire step is implemented in polynomial-time, and r
in {0,1}°(™ independent of anything else.

Subsequent steps — message transmission: Machine By 57 now enters the actual execution of
IT. It proceeds in this real execution along with emulating the corresponding executions of
the authenticated-computation functionality of Eq. (2.30). In a message-transmission step by
Party hon in IT, machine Bp51 obtains from Party hon (in the real execution of II) a message,
and emulates an execution of the authenticated-computation protocol resulting in this message
as output. In a message-transmission step by Party mal in II, machine By, computes the
message to be sent to Party hon (in II) as instructed by II, based on the input 2’ determined
above, the random-pad rmal gelected above, and the messages obtained so far from Party hon
(in IT). In addition, Bpya7 emulates an execution of the authenticated-computation protocol
resulting in this message as output. The emulation of each execution of the authenticated-
computation protocol, which securely computes the functionality Eq. (2.30), is done by using
the malicious ideal-model adversary derived from (the real malicious adversary) Apay. The
fact that in these emulations machine Bp,q also emulates the trusted party allows it to set the
outcome of the authenticated-computation protocol to fit the message being delivered. Details
follow.

e In a message-transmission step by Party hon in II, machine Bp,; first obtains from
Party hon (in the real execution of II) a message, denoted msg. Next, machine Bpgq
derives the ideal-model adversary, denoted A;nal’ which corresponds to the behavior of

Apa1 — given the history so far — in the corresponding execution of the authenticated-

computation protocol (executed by protocol IT').
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Invoking the ideal-model adversary A/, and emulating both the honest (ideal-model)

Party hon and the trusted party, machine By, sets the trusted-party reply to equal
msg. When emulating Party hon, machine By, sends the trusted party the message
((on, rRomy (phon ;homy gy here 0 is the dummy input used for Party hon, the string
oD represents the random-pad (as recorded above), pl°%, RO are randomizations used
in the corresponding commitments, and [ represents the the messages received received
so far by Party hon (as resulted in the previous emulated executions).

We comment that the emulation is carried out so to produce output msg which does not
necessarily equal the output of the authenticated-computation functionality of Eq. (2.30)
on the corresponding inputs. However, the machine A;nal used in the emulation cannot
distinguish the two cases (since the inputs which it gets in the two cases — commitments

to the corresponding inputs of Party hon — are computationally indistinguishable).

In case machine A 4 aborts the emulation, machine Bp,7 aborts the entire execution of
II. Finally, By, concatenates the emulation of the authenticated-computation protocol
(i.e., the final view of Party mal as output by A ;) to the history of the execution of
Apal-

e In a message-transmission step by Party mal in II, machine By, first computes the
message to be sent according to II. This message is computed based on the input 2’
determined above, the random-pad rmal (as recorded above), and the messages received
so far (from Party hon in execution of IT). Denote the resulting message by msg. Next,
machine Bp,q derives the ideal-model adversary, denoted A 4, which corresponds to

the behavior of Ap,7 — given the history so far — in the corresponding execution of the

authenticated-computation protocol.

Invoking the ideal-model adversary A/, and emulating both the honest (ideal-model)

Party hon and the trusted party, machine Bp,7 determines the answer of the trusted

party. When emulating Party hon, machine Bp,7 sends the trusted party the message

((mal gmaly g) where @l 72l yre the commitments recorded above, and (8 repre-

sents the the messages received received so far by Party mal (as resulted in the previous

emulated executions).

In case the answer of the trusted party (emulated by Bpgy) differs from msg, machine
Bpa1 aborts the entire execution of I1.25 Otherwise, By, sends msg to Party hon (in
IT), and concatenates the emulation of the authenticated-computation protocol (i.e., the

final view of Party mal as output by A’ ;) to the history of the execution of Apgaq.

o If Ap4q aborts in any of these executions then Bp,7 aborts the entire execution.

Note that each message-transmission step is implemented in polynomial-time. Each message
sent by Bpaq is computed as instructed by II, and the decision whether to abort or proceed is
taken by Bp41 based on its input, its random-pad, and the messages it has received so far.

Output: Assuming machine Bp,7 has not aborted the execution, it just outputs whatever machine
Apa1 outputs given the execution history composed above.

25 Alternatively, we may abort whenever Ap,1 supplies the trusted party (emulated by Bpa7) with input which

does not fit the input computed by By, based on z’ and rmal

Party hon.

recorded above and the messages obtained so far from
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Clearly, machine Bpgq (described above) implements an augmented semi-honest behavior with re-
spect to II. It is left to show that

llle

{REALH’,Z(x’y)}I,y S.t. |z|=]y| {REALH,F(wMy)}Ly s.t. |z|=]y| (232)

There are two differences between the two ensembles referred to in Eq. (2.32):

1. In the first distribution (i.e., REALH,E(Q:, y)), secure protocols implementing the input-commitment,
coin-tossing and authenticated-computation functionalities (of Eq. (2.23), Eq. (2.16) and Eq. (2.30),
respectively) are executed; whereas in the second distribution (i.e., REALy 5(2,y)) these exe-
cutions are emulated using the corresponding ideal-model adversaries.

2. The emulation of Eq. (2.30) (in REAL 5(,y)) is performed with a potentially wrong Party mal
input.

However, by the fact that the above protocols are secure, all emulations are computationally indis-
tinguishable from the real executions. Furthermore, the inputs given to Party mal in the emulation
of Eq. (2.30) are computationally indistinguishable from the correct ones, and so the corresponding
outputs are computational indistinguishable too. Observing that the output of Party hon in both
cases is merely the corresponding output of IT on input (z',y’), where (z',y’) = (z,2') if hon =1
and (z',y') = (2',y) otherwise, Eq. (2.32) follows. [

2.3.3.2 On the protocols underlying the proof of Theorem 2.2.13

We now show that for the protocols underlying the proof of Theorem 2.2.13, there is an clear cor-
respondence between the augmented-semi-honest model and the malicious-ideal-model. Recall that
each such protocol is designed (and guaranteed) to privately compute some desired functionality.
Thus, a real semi-honest execution of this protocol corresponds to an ideal semi-honest computation
of the functionality. However, these protocol have the salient property of allowing to transform
the wider class of augmented-semi-honest executions into the wider class of ideal malicious com-
putations. Recall that the augmented semi-honest model allows two things which go beyond the
semi-honest model: (1) oblivious substitution of inputs, and (2) abort. The first type of behavior
has a correspondence in the malicious ideal model, and so poses no problem. To account for the
second type of behavior, we need to match an aborting execution in the augmented semi-honest
model with an aborting execution in the ideal malicious model. Here is where the extra property of
the specific protocols, underlying the proof of Theorem 2.2.13, comes to help — see below.

Proposition 2.3.16 (on the protocols underlying the proof of Theorem 2.2.13): Let IT be a protocol
which privately computes the functionality f. Furthermore, suppose that I1 was produced as follows.

1. First, the private computation of f was reduced to the private computation of a deterministic
functionality, f', using the protocol of Proposition 2.2.J.

2. Next, Construction 2.2.10 was applied to a circuit computing f', resulting in an oracle-aided
protocol.

3. Finally, the oracle was implemented using Corollary 2.2.9.
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Then, there exists a polynomial-time computable transformation of pairs of polynomial-size circuit
families B = (By, By) admissible w.r.t II for the augmented semi-honest model (of Definition 2.3.14)
into pairs of polynomial-size circuit families C = (Cy,Cy) admissible for the ideal malicious model
(of Definition 2.1.4) so that

C
{REALL B(2,9)} oy s.t. o=y = {PEAL; 5(7,0) )0y s 8. Ja)=y]

Proof Sketch: We use the following property of the simulators of the (view of a semi-honest party)
in protocol II (produced as above). These simulators, hereafter referred to as two-stage simulators,
acts as follows.

Input to simulator: A pair (z,v), where z is the initial input of the semi-honest party and v the
corresponding local output.

Simulation Stage 1: Based on z, the simulator generates a transcript corresponding to the view
of the semi-honest party in a truncated execution of I, where the execution is truncated just
before the last message is received by the semi-honest party.

We stress that this truncated view, denoted 7', is produced without using v.

Simulation Stage 2: Based on T and v, the simulator produces a string corresponding to the last
message received by the semi-honest party. The simulator then outputs the concatenation of
T and this message.

The reader may easily verify that protocol II, produced as in the hypothesis of this proposition,
indeed has two-stage simulators. This is done by observing that the simulators for IT are basically
derived from the simulators of Construction 2.2.10. (The simulators used in Proposition 2.2.4 and
Corollary 2.2.9 merely prepend and expand, respectively, the transcripts produced by the simulator
of Construction 2.2.10.) Turning to the protocol of Construction 2.2.10, we note that Steps 1
and 2 of this protocol are simulated without having the corresponding output (see the proof of
Proposition 2.2.11). This corresponds to Stage 1 in the definition of a two-stage simulator. The
output is only needed to simulate Step 3 which consists of two messages-transmissions (one from
Party 2 to Party 1 and the second in the other direction). The latter corresponds to Stage 2 in the
definition of a two-stage simulator.

Next we show that for any protocol having two-stage simulators, the transformation claimed in
the current proposition holds. Given a circuit pair, (B;, B2), admissible w.r.t II for the augmented
semi-honest model, we construct a circuit pair, (Cy,C5), which is admissible for the ideal malicious
model as follows. We distinguish two cases — according to which of the parties is honest. The
difference between these cases amount to the possibility of (meaningfully) aborting the execution
after receiving the last message — a possibility which exists for a dishonest Party 1 but not for a
dishonest Party 2.

We start with the case where Party 2 is totally honest (and Party 1 possibly dishonest). In this
case Cy is determined, and we need to transform the augmented semi-honest real adversary B; into
a malicious ideal-model adversary C;. The latter operates as follows, using the two-stage simulator,
denoted S, provided for semi-honest executions of IT (which privately computes f). Recall that C;
gets input z € {0, 1}".

1. First, Cy computes the substituted input with which By enters II. That is, ' = By (x).
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2. Next, C invokes the first stage of the simulator Sy, to obtain the view of a truncated execution
of IT by a semi-honest party having input z’. That is, T' = Sy (z').

Machine C; extracts from T the random-pad, denoted r, of Party 1. This pad correspond to
the random-pad used by B;.

3. Using T', machine C; emulates the execution of By on input z' and random-pad r, up to the
point where Party 1 is to receive the last message. Towards this end, C; feeds B; with input
z' and random-pad r (i.e., it substitutes r as the random-pad of B; making it deterministic),
and sends B; messages as appearing in the corresponding locations in 7.

Note that B; may abort in such an execution, but in case it does not abort the messages it
sends equal the corresponding messages in 7' (as otherwise one could efficiently distinguish the
simulation from the real view).

4. In case B; has aborted the execution, machine C; aborts the execution before invoking the
trusted party. Otherwise, it invokes the trusted party with input z’, and obtains a response,
denoted v.

We stress that C still has the option of stopping the trusted party before it answers Party 2.

5. Next, C; invokes the second stage of the simulator S7, to obtain the last message sent to
Party 1. It supplies the simulator with the input 2’ and the output v and obtains the last
message, denoted msg,.

6. Machine C; now emulates the last step of By by supplying it with the message msg. In case B;
aborts, machine C; prevents the trusted party from answering Party 2, and aborts. Otherwise,
machine C; allows the trusted party to answer Party 2.

7. The output of C is set to be the output of By, regardless if By has aborted or completed the
execution.

We need to show that

{REALL 5(2,9) )0y 5.t jo|=ly) = {IPEAL, 5 (2, 9) ey st /=[] (2.33)

Suppose first, for simplicity, that machine B; never aborts. In such a case, by definition of 57,

{(Bl (VIEWll_I(Bl (l’), y)) ) OUTPUT2H(B1 (CC), y))}n€N7 z,yef{0,1}"

{(B1(S1(Bi(2), f1(B1(),9))), f2(B1(2),9))}neN, o ycfo,1}n
{(Ci(z, f1(C1(2),9)) , f2(C1(2),9)) }neN, o,yeqo,1}
{IDEALLU(@": y)}nEN, z,ye{0,1}"

{REALHE(% ?J)}neN, z,ye{0,1}"

e

Next, suppose that By always aborts after receiving the last message, and before sending its last
message to Party 2. In this case, we have

{ Bl(VIEWll_[(Bl(x)ay))a J—)}nEN,z,yE{O,l}"

(
(B1(S1(B1(), f1(B1(),9))) s L)}neN, ,yefo,13
(Cl ('T: fl(Cl (QT), y): J—) ) J—)}nEN, z,ye{0,1}"
IDEALﬁﬁ(xa y)}nEN, z,ye{0,1}"

{rEALL B(2,9)}neN, o yefo,13m

e

{
{
{
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As a final illustration, consider the third extreme case in which B; always aborts before receiving
the last message. Here

{(Bl (trunca‘ted'VieW{[ (Bl (l’), y)) ) J—)}nGI\L z,ye{0,1}"

{(B1(S1(B1(2)), L)} e, ayefo,13n
{(Cl ('Ta J—) ’ J—)}nGN, z,yc{0,1}"
{IDEALfE(CCay)}neN,z,ye{0,1}"-

{REALHE(CC; y)}n€N7 z,ye{0,1}"

e

In the general case, machine B; may abort in certain executions in varying places — in particular
sometimes before obtaining the last message or just after it (and before sending its last message).
The first type of abort depends on the view of B; in partial executions truncated before it receives
the last message, whereas the second type depends also on the last message it receives. For both
type of abort, the behavior in the two cases (REALy 5(2,y) and IDEAL; #(z,y)) is determined by
By based on a pair of computational indistinguishable ensembles (i.e., the real view of an execution
versus a simulated one). Thus, Eq. (2.33) follows.

Next, suppose that Party 1 is honest. In this case C is determined, and we need to transform the
augmented semi-honest real adversary Bs into a malicious ideal-model adversary C>. The latter
operates as follows, using the two-stage simulator, denoted Ss, provided for semi-honest executions
of the private computation of f. (The difference w.r.t the previous case is in the last 3 steps of the
emulation.) Recall that Cy gets input y € {0,1}™.

1. First, Cy computes the substituted input with which By enters II. That is, y' = Ba(y)-

2. Next, C5 invokes the first stage of the simulator Ss, to obtain the view of a truncated execution
of IT by a semi-honest party having input y'. That is, T = Sa(y').

Machine Cy extracts from T the random-pad, denoted r, of Party 2. This pad correspond to
the random-pad used by Bs.

3. Using T, machine Cy emulates the execution of Bs on input y’ and random-pad r, up to the
point where Party 2 is to receive the last message. Towards this end, C5 feeds By with input
y' and random-pad r (i.e., it substitutes r as the random-pad of By making it deterministic),
and sends B, messages as appearing in the corresponding locations in T'.

Note that B, may abort in such an execution, but in case it does not abort the messages it
sends equal the corresponding messages in 7' (as otherwise one could efficiently distinguish the
simulation from the real view).

4. In case By has aborted the execution, machine Cy aborts the execution before invoking the
trusted party. Otherwise, it invokes the trusted party with input %', and obtains a response,
denoted v.

(Unlike the case where Party 1 is semi-honest, since the trusted party answers Party 1 first,
Party 2 does not have the option of stopping the trusted party before it answers Party 2. Yet,
we do not need this option either, since in case.)

5. Next, C5 invokes the second stage of the simulator S, to obtain the last message sent to
Party 2. It supplies the simulator with the input ¢’ and the output v and obtains the last
message, denoted msg.

(Note that Party 2 has already sent its last message, and so the execution of C ends here.)
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6. The output of Cs is set to be the output of Bs, regardless if By has aborted or completed the
execution.

We again need to show that Eq. (2.33) holds. The argument is analogous to the one applied for
Party 1. Specifically, in the simple case where machine By never aborts, we have
{REALH,E(w7 y)}nEN, z,ye{0,1}» = {(OUTPUTIZL_I (CC, B, (y)) , B2 (VIEWE (iL', B, (y))))}nEN, z,ye{0,1}"

{(fi(z, B2(y)) , B2(S2(y, f2(w, B2(¥))))) }neN, ,yefo,13»
{(fi(z, Ca(y)), Caly, fo(z,C2(¥)))) }neN, o,yefo,1}n
{IDEALﬁ@(w: y)}nEN, z,ye{0,1}"

[llo

and the proposition follows.

2.3.3.3 Conclusion — Proof of Theorem 2.3.1

Theorem 2.3.1 follow by combining Propositions 2.3.15 and 2.3.16. Specifically, let II be the protocol
produced as in Proposition 2.3.16 when given the functionality f, and II' be the protocol compiled
from II by Construction 2.3.13. Furthermore, let A be admissible for the real malicious model,
let B be (admissible w.r.t II in the augmented semi-honest model) produced by the transforma-
tion in Proposition 2.3.15, and C be (admissible for the ideal malicious model) produced by the
transformation in Proposition 2.3.16. Then

e

{IDEALﬂa(x’ y)}z,y s.t. |z|=|y| {REALI_LE(Q:’ y)}z,y s.t. lz|=]y|

{REALY, Z(2,9)} 0y 5.t o=y

e

as required by Theorem 2.3.1. W
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Chapter 3

General Multi-Party Computation

Our presentation proceeds as in the previous chapter. Again, our ultimate goal is to design protocols
which may withstand any feasible adversarial behavior. We proceed in two steps. First we consider a
benign type of adversary, called semi-honest, and construct protocols which are secure with respect
to such an adversary. The definition of this type of adversary is very much the same as in the
two-party case. However, in case of general adversary behavior we consider two models. The first
model of malicious behavior mimics the treatment of adversaries in the two-party case; it allows
the adversary to control even a majority of the parties, but does not consider the unavoidable early
abort phenomena as a violation of security. The second model of malicious behavior we assume that
the adversary can control only a strict minority of the parties. In this model, which would have
been vacuous in the two-party case, early abort phenomena may be effectively prevented. We show
how to transform protocols secure in the semi-honest model into protocols secure in each of the two
malicious-behavior models. As in the two-party case, this is done by forcing parties (in each of the
latter models) to behave in an effectively semi-honest manner.

The constructions are obtained by suitable modifications of the constructions used in the two-
party case. Actually, the construction of multi-party protocols for the semi-honest model is a minor
modification of the construction used in the two-party case. The same holds for the compilation
of protocols for the semi-honest model into protocols for the first malicious model. In compiling
protocols for the semi-honest model into protocols for the second malicious model, a new ingredient —
Verifiable Secret Sharing (VSS) — is used to “effectively prevent” minority parties from aborting the
protocol prematurely. Actually, we shall compile protocols secure in the first malicious model into
protocols secure in the second malicious model.

As in the two-party case, we believe that the semi-honest model is not merely an important
methodological locus, but also provides a good model of certain settings.

Organization: In Section 3.1 we define the framework for the entire chapter. In particular, we de-
fine multi-party functionalities, the semi-honest model, and the two malicious models. In Section 3.2
we describe the construction of protocols for the semi-honest model, and in Section 3.3 compilers
which transform protocols from the latter model to protocols secure in each of the two malicious
models.
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3.1 Definitions

A multi-party protocol problem is casted by specifying a random process which maps sequences of
inputs (one input per each party) to sequences of outputs (one per each party). Let m denote the
number of parties. It will be convenient to think of m as being fixed, alas one can certainly think of
it as an additional parameter. An m-ary functionality, denoted f : ({0,1}*)™ — ({0,1}*)™, is thus
a random process mapping string sequences of the form = = (z1, ..., z,,) into sequences of random
variables, f1(Z), ..., fm(T). The semantics is that, for every 4, the i*® party, initially holds an input
7;, and wishes to obtain the i'" element in f(z, ..., 7., ), denoted f;(x1, ..., T ). The discussions and
simplifying conventions made in Section 2.1 apply in the current context too. Most importantly, we
assume throughout this section that all parties hold inputs of equal length; that is, |z;| = |z;].

We comment that it is natural to discuss multi-party functionalities which are “uniform” in the
sense that there exists an algorithm for uniformly computing them for each value of m (and of
course each m-sequence). One such functionality is the “universal functionality” which is given a
description of a circuit as well as a corresponding sequence of inputs. (For example, the circuit
may be part of the input of each party, and in case these circuits are not identical the value of the
functionality is defined as a sequence of L’s.) Indeed, a universal functionality is natural to consider
also in the two-party case, but here (in view of the extra parameter m) its appeal is enhanced.

The definitions presented below (both for the semi-honest and the two malicious models) pre-
suppose that honest parties may communicate in secrecy (i.e., or put differently, we assume that
adversaries do not tape communication lines between honest parties). This assumption can be re-
moved at the expense of further complicating the notations. Furthermore, the issue of providing
secret communication (via encryption schemes) is well understood, and may thus be decoupled from
the current exposition. Specifically, this means that protocols constructed in the sequel need to be
further compiled using encryption schemes if one wishes to withstand wire-tapping attacks by an
adversary. Similarly, we assume that messages sent between honest parties arrive intact, whereas
one may want to consider adversaries which may inject messages on the communication line between
honest parties. Again, this can be counteracted by use of well-understood paradigms — in this case
the use of signature schemes.

The definitions presented below are all “static” in the sense that the set of dishonest parties is
fixed before the execution of the protocol starts, rather than being determined adaptively during the
execution of the protocol. (We stress that in either cases honest parties may not necessarily know
which parties are dishonest.) The difference between the static model of security considered in this
chapter and the “adaptive” model (considered in Section 4.3) becomes crucial when the number of
parties (i.e., m) is treated as a parameter, rather than being fixed.

For simplicity of exposition, we assume throughout our exposition that m is fixed. At the end of
each subsection, we comment on what is needed in order to derive definitions when m is a parameter.

3.1.1 The semi-honest model

This model is defined exactly as in the two-party case. Recall that a semi-honest party is one
who follows the protocol properly with the exception that it keeps a record of all its intermediate
computations. Loosely speaking, a multi-party protocol privately computes f if whatever a set
(or coalition) of semi-honest parties can be obtained after participating in the protocol, could be
essentially obtained from the input and output available to these very parties. Thus, the only
difference between the current definition and the one used in the two-party case is that we consider
the gain of a coalition (rather than of a single player) from participating in the protocol.
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Definition 3.1.1 (privacy w.r.t semi-honest behavior): Let f : ({0,1}*)™ — ({0,1}*)™ be an m-

ary functionality, where f;(x1,...,Tm), denotes the i element of f(x1,..,Tm). For I = {i1,...,is} C
[m] def {1,...,m}, we let fi(z1,...,xm) denote the subsequence f; (T1,...,Tm), .., fi,(T1, ..., Tmm). Let

II be an m-party protocol for computing f.' The view of the it party during an ezecution of IL on
T = (T1,...,Tm), denoted VIEW(T), is defined as in Definition 2.1.1, and for I = {iy,...,is}, we let

view!(z) € (1, VIEWLL (), ..., VIEWL ().

e (deterministic case) In case f is a deterministic m-ary functionality, we say that m privately
computes f if there exist polynomial-time algorithm, denoted S, such that for every I as above

(S, (@iys s w2, 1T me(ronyyn = {VIEWHT) }ze(f0,130)m (3.1)

e (general case) We say that w privately computes f if there exist polynomial-time algorithm,
denoted S, such that for every I as above

{(S(, (wiys ooy i), F1(E)), F@))}ze(oapyn = {(VIEWH(T), ouTPUT™ (T)) bze(fo,1))m (3:2)

where ouTPUT(Z) denote the output sequence of all parties during the ezecution represented
in VIEWH(T).

Eq. (3.2) asserts that the view of the parties in I can be efficiently simulated based solely on their
inputs and outputs. The definition above can be easily adapted to deal with a varying parameter m.
This is hinted by our order of quantification (i.e., “exists an algorithm S so that for any 17).2 We
also note that the simulator can certainly handle the trivial cases in which either I = [m] or I = 0.

Author’'s Note: For further discussion of the extended formulation used in case of ran-
domized functionalities, the reader is referred to an analogous discussion in Section 2.1.
Again, the rest of the text is somewhat hand-waving when referring to the above issue
(regarding randomized functionalities). However, most of the text focuses on deter-
ministic functionalities, and so the point is moot. In the cases where we do deal with
randomized functionalities, the simulators do satisfy the stronger requirements asserted
by Eq. (3.2), but this fact is not explicitly referred to. This deficiency will be corrected
in future revisions.

3.1.2 The two malicious models

We now turn to consider arbitrary feasible deviation of parties from a specified multi-party protocol.
As mentioned above, one may consider two alternative models:

1. A model in which the number of parties which deviate from the protocol is arbitrary. The
treatment of this case follows the treatment given in the two-party case. In particular, in this
model one cannot prevent malicious parties from aborting the protocol prematurely, and the
definition of security has to account for this if it is to have a chance of being met.

L As in Section 2.1, by saying that IT computes (rather than privately computes) f, we mean that the output
distribution of the protocol (when played by honest or semi-honest parties) on the input sequence (z1,...,Tm) is
identically distributed as f(z1,...,Zm).

2 Note that for a fixed m it may make as much sense to reverse the order of quantifiers (i.e., require that “for every
I exists an algorithm S;”).
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2. A model in which the number of parties which deviate from the protocol is strictly less than
half the total number of parties. The definitional treatment of this case is simpler than the
treatment given in the two-party case. In particular, one may — in some sense — (effectively)
prevent malicious parties from aborting the protocol prematurely.?> Consequently, the defini-
tion of security is “freed” from the need to account for early stopping, and thus is simpler.

We further assume (towards achieving a higher level of security) that malicious parties may com-
municate (without being detected by the honest parties), and may thus coordinate their malicious
actions. Actually, it will be instructive to think of all malicious parties as being controlled by one
adversary. Our presentation follows the ideal-vs-real emulation paradigm introduced in the previous
chapters. The difference between the two malicious models is reflected in a difference in the corre-
sponding ideal models, which capture the behavior which a secure protocol is aimed at achieving.
The different bound on the number of malicious parties (in the two model) is translated into the
only difference between the corresponding real models (or, rather, a difference in the adversaries
allowed as per each malicious model).

Discussion. The above alternative models gives rise to two appealing and yet fundamentally
incomparable notions of security. Put in other words, there is a trade-off between willing to put-up
with early-abort (i.e., not consider it a breach of security), and requiring the protocol to be robust
against malicious coalitions controlling a majority of all parties. The question of which notion of
security to prefer depends on the application or the setting. In some settings one may prefer to be
protected from malicious majorities, while giving-up the guarantee that parties cannot abort the
protocol prematurely (while being detected doing so). On the other hand, in settings in which a
strict majority of the parties can be trusted to follow the protocol, one may obtain the benefit of
effectively preventing parties to abort the protocol prematurely.

Convention. The adversary will be represented as a family of polynomial-size circuits. Such a
circuit will capture the actions of the adversary in each of the models. Typically, the adversary
will be given as input the set of parties it controls, denoted I, the local inputs of these parties,
denoted Ty, and additional inputs as adequate (e.g., the local outputs of parties, or messages they
have received in the past, etc.). However, we will omit I from the list of inputs to the circuit.
(Alternatively, I could be incorporated into the circuit, but we prefer to have it explicit so that one
can refer to it.)

3.1.2.1 The first malicious model

Following the discussion in Section 2.1.2, we conclude that three things cannot be avoided in the
first malicious model:

1. Malicious parties may refuse to participate in the protocol (when the protocol is first invoked).

2. Malicious parties may substituting their local input (and enter the protocol with an input
other than the one provided to them from the outside).

3. Malicious parties may abort the protocol prematurely (e.g., before sending their last message).

3 As we shall see, the assumption that malicious parties are in minority opens the door to effectively preventing
them from aborting the protocol immaturely. This will be achieved by having the majority players have (together!)
enough information so to be able to emulate the minority players in case the latter have decided to abort.
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Accordingly, the ideal model is derived by a straightforward generalization of Definition 2.1.4. In
light of this similarity, we allow ourself to be quite terse. To simplify the exposition, we assume that,
for every I, first the trusted party supplies the adversary with the I-part of the output (i-e., the
value of f7), and only then may answer the other parties (at the adversary’s discretion).* Actually,
as in the two-party case, the adversary has the ability to prevent the trusted party from answering
all parties only in case it controls Party 1.

Definition 3.1.2 (malicious adversaries, the ideal model — first model): Let f : ({0,1}*)™ —
({0,1}*)™ be an m-ary functionality, I = {i1,...,iz} C [m], and (x1,....,xm)1 = (®iy,...,x5,). A
pair (I,C), where I C [m] and C is a polynomial-size circuit family represents an adversary in the
ideal model. The joint execution under (I,C) in the ideal model (on input T = (z1, ..., zm)), denoted

IDEAL(l)ﬂ(LC)(E), is defined as follows

(CE, 1), L,...,1) if C(z;) =L (3.3)

(C=q, f1(C(Z)),T7), L), L,y L)  ifC@)#L,1€landy, =L (3.4)
where 7, % C(Z,, £1(C(T1), %))

(C(@1, f1(C(T1),T1)), f1(C(T1),T7))  otherwise (3.5)

where T %' [m] \ I.

Eq. (3.3) represents the case where the adversary makes some party (it controls) abort before invoking
the trusted party. Eq. (3.4) represents the case where the trusted party is invoked with possibly
substituted inputs, denoted C(Z;), and is halted right after supplying the adversary with the I-part
of the output, denoted 7, = f;(C(Z;),Z;). This case is allowed only when 1 € I, and so Party 1
can always be “blamed” when this happens.® Eq. (3.5) represents the case where the trusted party
is invoked with possibly substituted inputs (as above), but is allowed to answer all parties.

Definition 3.1.3 (malicious adversaries, the real model): Let f be as in Definition 3.1.2, and II
be an m-party protocol for computing f. The joint execution of II under (I, C) in the real model (on
input sequence T = (21, ..., Tm)), denoted REALy (1,c(T), is defined as the output sequence resulting
of the interaction between the m parties where the messages of parties in I are computed according
to C and the messages of parties not in I are computed according to II.

In the sequel, we will assume that the circuit representing the real-model adversary is deterministic.
This is justified by standard techniques: See discussion following Definition 2.1.6. Having defined
the ideal and real models, we obtain the corresponding definition of security.

Definition 3.1.4 (security in the first malicious model): Let f and II be as in Definition 3.1.3,
Protocol 11 is said to securely compute f (in the first malicious) if there ezists a polynomial-time
computable transformation of polynomial-size circuit families A = {A,} for the real model (of Defi-
nition 3.1.3) into polynomial-size circuit families B = {B,} for the ideal model (of Definition 3.1.2)
so that for every I C [m)]

{IDEAL(l)f,(LB)(f)}neN,ie({o,l}")m = {REALW,(1,4)(%) }reN, ze({0,1)n)m

4 A less significant simplification is having the m-sequence of outputs not be presented in the “correct” order; that
is, the outputs are presented so that the outputs of malicious parties appear first followed by the outputs of honest
parties, whereas (unless I = {1,...,t}) the order should have been different (i.e., the output of party ¢ should have
been in location ).

5 In fact, in the protocols presented below, early abort is always due to malicious behavior of Party 1. By
Definition 3.1.4 (below), this translates to malicious behavior of Party 1 in the ideal model.
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When the context is clear, we sometimes refer to Il as an implementation of f.

We stress that the resulting adversary in the ideal model (i.e., B) controls exactly the same set of
parties (i.e., I) as the adversary in the real model (i.e., A).

3.1.2.2 The second malicious model

In the second model, where malicious players are in strict minority, the early-abort phenomena
can be effectively prevented. Thus, in this case, there is no need to “tolerate” early-abort and
consequently our definition of security requires “proper termination” of executions. This is reflected
in the definition of the ideal model, which actually becomes simpler. However, since the definition
differs more substantially from the two-party one, we present it in more detail (than done in the
presentation of the first malicious model).

The ideal model. Again, we will allow in the ideal model whatever cannot be possibly prevented
in any real execution.’ Specifically, we allow a malicious party in the ideal model to refuse to
participate in the protocol or to substitute its local input. (Clearly, neither can be prevent by a
trusted third party.) Thus, an execution in the ideal model proceeds as follows (where all actions of
the both honest and malicious parties must be feasible to implement).

Inputs: Each party obtains an input; the one of Party 7 is denoted z;.

Send inputs to trusted party: An honest party always sends z to the trusted party. The mali-
cious minority parties may, depending on their inputs, z1, ..., z;, either abort or sends modified
2! € {0,1}!#! to the trusted party.

Trusted party answers the parties: In caseit hasobtained a valid input sequence, T = (z1, ..., T ),
the trusted party computes f(Z), and replies to the i*® party with f;(Z), for i = 1,...,m. Oth-
erwise, the trusted party replies to all parties with a special symbol, L.

Outputs: An honest party always outputs the message it has obtained from the trusted party. The
malicious minority parties may output an arbitrary (polynomial-time computable) function of
their initial inputs and the messages they have obtained from the trusted party.

The ideal model computation is captured in the following definition, where the circuit C represent
the coordinated activities of all malicious parties as impersonated by a single adversary. To simplify
the exposition, we treat the case in which malicious parties refuse to enter the protocol as if they have
substituted their inputs by some special value, denoted L. (The functionality f can be extended
so that if any of the inputs equals L then all outputs are set to L.) Thus, there is a single case to
consider: All parties send (possibly substituted) inputs to the trusted party, who always responses.

Definition 3.1.5 (malicious adversaries, the ideal model — second model): Let f : ({0,1}*)™ —
({0,1}*)™ be an m-ary functionality, I = {i1,...,iz} C [m], and (X1, ...,Tm)1 = (@iy, ..., xs). A
pair (I,C), is called admissible if t < n/2 and C = {C},} ,en is a family of polynomial-size circuits.
The joint execution under (I,C) in the ideal model (on input sequence T = (z1,...,Znm)), denoted
IDEAL(2)f7(170)(E), is defined as follows

(C@1, f1(C(T1),71)) , [1(C(T1),T1)) (3.6)

6 Recall that an alternative way of looking at things is that we assume that the the parties have at their disposal
a trusted third party, but even such a party cannot prevent specific malicious behavior.
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where T < [m]\ I.

Note that (again) the m-sequence of outputs is not presented in the “correct” order; that is, the
outputs are presented so that the outputs of malicious parties appear first followed by the outputs of
honest parties, whereas (unless I = {1,...,t}) the order should have been different (i.e., the output
of party i should have been in location 7). This convention simplifies the presentation, while having
no significant impact on the essence. In the sequel we will refer to the pair (I,C) as an adversary.
(Note that I can indeed be incorporated into C'.)

Execution in the real model. We next consider the real model in which a real (multi-party)
protocol is executed (and there exist no trusted third parties). In this case, a malicious parties may
follow an arbitrary feasible strategy; that is, any strategy implementable by polynomial-size circuits.
Again, we consider these parties as being controlled by a single adversary, which is represented by
a family of polynomial-size circuits. The resulting definition is exactly the one used in the first
malicious model (i.e., Definition 3.1.3), except that here we will only consider minority coalitions
(i-e., [I| <m/2).

Security as emulation of real execution in the ideal model. Having defined the ideal and
real models, we obtain the corresponding definition of security. Loosely speaking, the definition
asserts that a secure multi-party protocol (in the real model) emulates the ideal model (in which a
trusted party exists). This is formulated by saying that admissible adversaries in the ideal-model are
able to simulate (in the ideal-model) the execution of a secure real-model protocol (with admissible
adversaries). Note that the following definition differs from Definition 3.1.4 in two aspects: Firstly,
it quantifies only on minority collisions (i.e., |I| < m/2); and, secondly, it refers to the second ideal

model (i.e., IDEAL(2)) rather than to the first (i.e., IDEAL(l)).

Definition 3.1.6 (security in the second malicious model, assuming honest majority): Let f and
IT be as in Definition 3.1.3, Protocol 11 is said to securely compute f (in the second malicious
model) if there ezists a polynomial-time computable transformation of polynomial-size circuit families
A ={A,} for the real model (of Definition 3.1.3) into polynomial-size circuit families B = {B,} for
the ideal model (of Definition 3.1.5) so that for every I C [m] with |I| < m/2

2 = < —
{IDEAL( )f,(I,B)(a:)}neN,56({0,1}n)m = {REALm (1,4)(T) }neN, me({0,1}7)m
When the context is clear, we sometimes refer to Il as an implementation of f.

To deal with m as a parameter (rather than a fixed constant), one needs to consider sequences (of
strings) so that both the length of individual strings as well as the number of strings may vary.
Adversaries will be defined as families of circuits having two parameters (i.e., C = {Cr n}p meN),
and polynomial-size would mean polynomial in both n and m. Clearly, all these extensions pose no
real problem (beyond the usage of even more cumbersome notations).

3.2 Construction for the Semi-Honest Model

Our construction of private multi-party protocols (i.e., secure versus semi-honest behavior) for any
given multi-argument functionality follows the presentation of the two-party case. For simplicity,
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we think of the number of parties m as being fixed. The reader may verify that the dependency of
our constructions on m is at most polynomial.

Our protocol construction adapts the one used in the two-party case (see Section 2.2). That
is, we consider a GF(2) circuit for evaluating the m-ary functionality f, and start by letting each
party share its input bits with all other parties so that the sum of all shares equals the input bit.
Going from the input wires to the output wires, we proceed to privately compute shares of each wire
in the circuit so that the sum of the shares equals the correct value. We are faced with only one
problem: When evaluating a multiplication gate of the circuit, we have party ¢ holding bits a; and
b;, and we need to conduct a private computation so that this party ends-up with a random bit ¢;
and (300 aq) - (301, b)) = Y%, ¢; holds. More precisely, we are interested in privately computing
the following randomized m-ary functionality

((a1,b1), ..., (@m, b)) +— (c1,-.sCp) uniformly in {0,1}™ (3.7)
subject to >0 ¢ = (i, ai) - (00 bs). (3.8)

Thus, all that we need to do on top of Section 2.2 is to provide a private m-party computation of
the above functionality. This is done by privately reducing, for arbitrary m, the computation of
Eq. (3.7)—(3.8) to the computation of the same functionality in case m = 2, which in turn coincides
with Eq. (2.10)—(2.11). But first we need to define an appropriate notion of reduction. Indeed, the
new notion of reduction is merely a generalization of the notion presented in Section 2.2.

3.2.1 A composition theorem

We wish to generalize the notion of reduction presented in Section 2.2 (in the context of two-party
(semi-honest) computation). Here the reduction is an m-party protocol which may invoke a k-ary
functionality in its oracle calls, where £ < m. In case k < m, an oracle call needs to specify also
the set of parties who are to provide the corresponding k inputs. Actually, the oracle call needs
to specify the order of these parties (i.e., which party should supply which input, etc.). (We note
that the ordering of parties needs to be specified also in case £k = m, and indeed this was done
implicitly in Section 2.2, where the convention was that the party who makes the oracle is request
is the one supplying the first input. In case k > 2 such a convention does not determine the
correspondence between parties and roles, and thus we use below an explicit mechanism for defining
the correspondence.)

Definition 3.2.1 (m-party protocols with k-ary oracle access): As in the two-party case, a oracle-
aided protocol is a protocol augmented by a pair of oracle-tapes, per each party, and oracle-call steps
defined as follows. FEach of the m parties may send a special oracle request message, to all other
parties. The oracle request message contains a sequence of k distinct parties, called the request
sequence, which are to supply queries in the current oracle call. In response, each party specified in
the request sequence writes a string, called its query, on its own write-only oracle-tape. At this point
the oracle is invoked and the result is that a string, not necessarily the same, is written by the oracle
on the read-only oracle-tape of each of the k specified parties. This k-sequence of strings is called
the oracle answer.

One may assume, without loss of generality, that the party who invokes the oracle is the one who

plays the role of the first party in the reduction (i.e., the first element in the request sequence is
always the identity of the party which requests the current oracle call).
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Definition 3.2.2 (reductions):

o An m-party oracle-aided protocol is said to be using the k-ary oracle-functionality f, if the
oracle answers are according to f. That is, when the oracle is invoked with request sequence
(i1, .. ik), and the query-sequence qi, ..., qx s supplied by parties i1, ..., ix, the answer-sequence
is distributed as f(qi,...,qr). Specifically, party i; in the m-party protocol (the one which
supplied g;), is the one which obtains the answer part f;(q1, ..., Gk )-

o An m-party oracle-aided protocol using the k-ary oracle-functionality f is said to privately
compute g if there exists a polynomial-time algorithm, denoted S, satisfying Eq. (3.2), where
the corresponding views are defined in the natural manner.

o An m-party oracle-aided protocol is said to privately reduce the m-ary functionality g to the
k-ary functionality f, if it privately computes g when using the oracle-functionality f. In such
a case we say that g is privately reducible to f,

We are now ready to generalize Theorem 2.2.3:

Theorem 3.2.3 (Composition Theorem for the semi-honest model, multi-party case): Suppose that
the m-ary functionality g is privately reducible to the k-ary functionality f, and that there exists a
k-party protocol for privately computing f. Then there exists an m-party protocol for privately
computing g.

Proof Sketch: The construction supporting the theorem is identical to the one used in the proof
of Theorem 2.2.3: Let I19// be a oracle-aided protocol which privately reduces ¢ to f, and let IIf be
a protocol which privately computes f. Then, a protocol II for computing g is derived by starting
with II9V and replacing each invocation of the oracle by an execution of II/. Clearly, IT computes
g. We need to show that it privately computes g.

We consider an arbitrary set I C [m] of semi-honest parties in the execution of II. Note that, for
k < m (unlike the situation in the two-party case), the set I may induce different sets of semi-honest
parties in the different executions of II/ (replacing different invocations of the oracle). Still our
“uniform” definition of simulation (i.e., uniform over all possible sets of semi-honest parties) keeps
us away from trouble. Specifically, let S97 and S/ be the simulators guaranteed for 19/ and II7,
respectively. We construct a simulation S, for II, in the natural manner. On input (I,Z;, f;(Z)) (see
Definition 3.1.1), we first run S9!/ (I,Z;, f;(T)), and obtain the view of the semi-honest coalition I
in I19//. This view includes sequence of all oracle-call requests made during the execution as well
as the sequence of parties which supplies query-parts in each such call. The view also contains
the query-parts supplied by the parties in I as well as the corresponding responses. For each such
oracle-call, we denote by J the subset of I which supplied query-parts in this call, and just invoke
S/ providing it with the subset J as well as with the corresponding J-parts of queries and answers.
Thus, we fill-up the view of I in the current execution of II/. (Recall that S¥ can also handle the
trivial cases in which either |J| =k or |J| =0.)

It is left to show that S indeed generates a distribution indistinguishable from the view of semi-
honest parties in actual executions of II. As in the proof of Theorem 2.2.3, this is done by introducing
an imaginary simulator, denoted S’. This imaginary simulator invokes S9lf but augment the view of
the semi-honest parties with views of actual executions of protocol II/ on the corresponding query-
sequences. (The query-sequences is completed in an arbitrary consistent way.) As in the proof of
Theorem 2.2.3, one can show that the outputs of S’ and S are computationally indistinguishable and
that the output of S’ is computationally indistinguishable from the view of the semi-honest parties
in II. The theorem follows. [
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3.2.2 Privately computing >, ¢; = (X, a;) + (3 by)

We now turn to the m-ary functionality defined in Eq. (3.7)—(3.8). Recall that the arithmetic is that
of GF(2), and so —1 = +1 etc. The key observation is that

(Z CLZ'> ' < bz> = Zazbz + Z (aib]- + ijbi) (39)
; i i=1 1<i<j<m

= (1—(m—1))-2aibi+ > (ai+a)- (b +b))

1<i<j<m

m - Zaibi + Z (ai + aj) . (bi + bj) (3.10)
=1 1<i<j<m

where the last equality relies on the specifics of GF(2). Now, looking at Eq. (3.10), we observe

that each party, ¢, may compute (by itself) the term m - a;b;, whereas each 2-subset, {i,7}, may

privately compute shares to the term (a; + a;) - (b; + b;), by invoking Corollary 2.2.9. This leads to

the following construction.

Construction 3.2.4 (privately reducing the m-party computation of Eq. (3.7)—(3.8) to the two-
party computation of Eq. (2.10)—(2.11)):

Inputs: Party ¢ holds (a;,b;) € {0,1} x {0,1}, fori=1,...,m.

Step 1 — Reduction: Fach pair of parties, (i,j), where i < j, invokes the 2-ary functionality of
Eq. (2.10)«(2.11). Party ¢ provides the input pair, (a;,b;), whereas Party j provides (aj,b;).
{i.} i

Let us denote the oracle respond to Party i by c¢; 7, and the respond to Party j by c}Z’J}.

Step 2: Party v sets ¢; = ma;b; + Z#Z_ C;_{i,j}'

Outputs: Party i outputs ¢;.

We first observe that the above reduction is valid; that is, the output of all parties indeed sum-up
to what they should. It is also easy to see that the reduction is private. That is,

Proposition 3.2.5 Construction 3.2.4 privately reduces the computation of the m-ary functionality
given by Eq. (3.7)«(3.8) to the computation of the 2-ary functionality given by Eq. (2.10)—(2.11).

Proof Sketch: We construct a simulator, denoted S, for the view of parties in the oracle-aided
protocol, denoted II, of Construction 2.2.7. Given a set of semi-honest parties, I = {iy,...,4;} (with
t < m), and a sequence of inputs (a;,, b;, ), ..., (ai,, b;,) and outputs ¢;, , ..., ¢;,, the simulator proceeds
as follows.
1. For each pair, (i,7), where both 4,5 € I, it uniformly selects cz{i’j} € {0,1} and sets c}i’j} =
et 4 (a5 + a5) - (b + b))

2. Let T [m] \ I, and let £ be the largest element in I. (Such an £ € [m] exists since |I| < m).

For each ¢ € I and each j € I\ {}, the simulator uniformly selects c;-{i’j} € {0,1}. Finally, it
sets c;-{z’l} to ¢; +mab; + 301 0 c;-{”}.
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{5}

3. The simulator outputs all ¢; ”’’s generated above.

We claim that the output of the simulator is distributed identically to the view of the parties in I
during the execution of the oracle-aided protocol. That is, we claim that for every such I and every
T = ((a/la bl): ey (a’ma bm)):

S(I,%1, f1(T)) = view () (3.11)

Note that f7(Z) is uniformly distributed over {0,1}*. The same holds also for the outputs of I in
IT (by looking at the contribution of the cz’z’s to the output of 7 € I). So we may consider the two
distributions in Eq. (3.11), when conditioned on any sequence of parties’ outputs, ¢;, , ..., ¢;,. In such
a case, we show that the views of parties in I (during an execution of II) are distributed exactly
as in the simulation. Specifically, for ¢,5 € I, the oracle answer on ((as,b;), (a;,b;)) is uniformly
distributed over a pair of bits summing-up to (a; + a;) - (b; + b;) (which is exactly what happens
in the simulation). Similarly, for every ¢ € I, the answers obtained in the m — 1 oracle invocations
will be uniform over the sequences agreeing with the above and summing-up to ¢; + ma;b;. The
proposition follows.

As an immediate corollary to Proposition 3.2.5, Corollary 2.2.9, and the Composition Theorem
(Theorem 3.2.3), we obtain

Corollary 3.2.6 Suppose that trapdoor permutation exist. Then the m-ary functionality of Eq. (3.7)—
(3.8) is privately computable (in the m-party semi-honest model).

3.2.3 The multi-party circuit evaluation protocol

For sake of completeness, we explicitly present the m-party analogue of the protocol of Section 2.2.4.
Specifically, we show that the computation of any deterministic functionality, which is expressed by
an arithmetic circuit over GF(2), is privately reducible to the functionality of Eq. (3.7)—(3.8).

Our reduction follows the overview presented in the beginning of this section. In particular, the
sharing of a bit-value v between m parties means a uniformly selected m-sequence of bits (v1, ..., vm)
so that v = 37" | v;, where the i*® party holds v;. Our aim is to propagate, via private computation,
shares of the input wires of the circuit into shares of all wires of the circuit, so that finally we obtain
shares of the output wires of the circuit.

We will consider an enumeration of all wires in the circuit. The input wires of the circuit, n per
each party, will be numbered 1,2....,m-n so that, for j = 1,...,n, the j*" input of Party i corresponds
to the (i — 1) - n + 5" wire. The wires will be numbered so that the output wires of each gate have
a larger numbering than its input wires. The output-wires of the circuit are the last ones. For sake
of simplicity we assume that each party obtains n output bits, and that the j*® output bit of the i*@
party corresponds to wire N — (m 4+ 1 —4) - n + j, where N denotes the size of the circuit.

Construction 3.2.7 (privately reducing any deterministic m-ary functionality to the functionality
of Eq. (3.7)—(3.8), for any m > 2):

Inputs: Party i holds the bit string x} -z € {0,1}", fori=1,...,m.

Step 1 — Sharing the inputs: Each party splits and shares each of its input bits with all other

parties. That is, for every i = 1,...,m and j = 1,...,n, and every k # ©, party © uniformly

selects a bit r,(:_l)nﬂ and sends it to party k as the party’s share of input wire (i — 1) -n + j.

Party i sets its own share of the (i — 1) -n + j*® input wire to azf + Zk# r,(:_l)"-l_j.
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Step 2 — Circuit Emulation: Proceeding by the order of wires, the parties use their shares of the
two input wires to a gate in order to privately compute shares for the output wire of the gate.
Suppose that the parties hold shares to the two input wires of a gate; that is, for i =1,...,m,
Party @ holds the shares a;,b;, where ay, ..., a,, are the shares of the first wire and by, ..., b, are
the shares of the second wire. We consider two cases.

Emulation of an addition gate: FEach party, ¢, just sets its share of the output wire of the
gate to be a; + b;.

Emulation of a multiplication gate: Shares of the output wire of the gate are obtained by
invoking the oracle for the functionality of Eq. (3.7)—(3.8), where Party i supplies the
input (query-part) (a;,b;). When the oracle responses, each party sets its share of the
output wire of the gate to equal its part of the oracle answer.

Step 3 — Recovering the output bits: Once the shares of the circuit-output wires are com-
puted, each party sends its share of each such wire to the party with which the wire is
associated. That is, for ¢« = 1,....,m and j = 1,...,n, each party sends its share of wire
N —(m+1—1)-n+j to Partyi. Each party recovers the corresponding output bits by adding-
up the corresponding m shares; that is, the share it had obtained in Step 2 and the m — 1 shares
it has obtained in the current step.

Outputs: Fach party locally outputs the bits recovered in Step 3.

For starters, let us verify that the output is indeed correct. This can be shown by induction on
the wires of the circuits. The induction claim is that the shares of each wire sum-up to the correct
value of the wire. The base case of the induction are the input wires of the circuits. Specifically,
the (i — 1) -n + j*I wire has value 27 and its shares indeed sum-up to 7. For the induction step we
counsider the emulation of a gate. Suppose that the values of the input wires (to the gate) are a and
b, and that their shares ai,...,an and by, ..., b,, indeed satisfy > . a; = a and ), b; = b. In case of
an addition gate, the shares of the output wire set to be ay + by, ..., a4 + by, indeed satisfying

S a8 = (Z)-I-(Zb) ~ st

k2

In case of a multiplication gate, the shares of the output wire were set to be ci,...,¢n, so that
Y=, a:) - (32, b:) holds. Thus, >, ¢; = a- b as required.

Privacy of the reduction. Analogously to Proposition 2.2.11, we now show that Construc-

tion 3.2.7 indeed privately reduces the computation of a circuit to the multiplication-gate emulation.
That is,

Proposition 3.2.8 Construction 3.2.7 privately reduces the evaluation of arithmetic circuits over
GF(2), representing an m-ary deterministic functionality, to the functionality of Eq. (3.7)—(3.8).

Proof Sketch: In proving this proposition, for any set I C [m], we need to simulate the joint view
of the parties in I = {iy,...,4;}. This is done by direct analogy to the proof of Proposition 2.2.11,
where m = 2 (and where we have considered, without loss of generality, I = {1}).

The simulator gets the inputs, denoted «} ,...,x7, ..., a},, ..., 2], as well as the outputs, denoted

Yiis oYl s Ui 5 eyl to the parties in 1. It operates as follows.
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1. The simulator uniformly selects coins for each party in I, as done in Step 1 of the protocol.
These coins determine the messages to be sent to other parties in I as well as the party’s shares
of its own inputs (as in Step 1). Specifically, the share of Party ¢, where ¢ € I, of the input

wire corresponding to x! is set to equal the sum of all other shares (of this wires) with z7.

Finally, the simulator selects uniformly values to be used as Step 1 incoming-messages each

party in I has received from parties in I % [m] \ I (as shares of these parties’ inputs).

This completes the computation of the shares of all circuit-input wires held by parties in I.

2. The shares, held by the parties in I, of all other wires are computed, iteratively gate-by-gate,
as follows.

e The share of each party ¢ € I in the output-wire of an addition gate is set to be the sum
of its shares of the input-wires of the gate.

e The share of each party ¢ € I in the output-wire of a multiplication gate is uniformly
selected in {0, 1}.

(The shares computed for output-wires of multiplication gates will be used as the answers
obtained, by parties in I, from the oracle.)

3. For each wire corresponding to an output, denoted y/, available to Party 4 in I, the simulator
uniformly selects a sequence of m bits among the sequences which match the shares (of this
wire) held by parties in I and sum-up to y!. (In case |I| = m — 1, this sequence is uniquely
determined.)

4. The simulator outputs the concatenation of the above z!’s and yf’s with the coins generated for
each party in I and the incoming-messages and oracle-answers generated for it. In particular,
the latter include the messages generated in Step 1 (simulating Step 1 of the protocol), the
concatenation of the bits selected for the output-wires of multiplication gates (corresponding
to the party’s view of the oracle answers in Step 2), and the sequences generated in Step 3
(corresponding to the party’s view in Step 3 of the protocol).

Analogously to the proof of Proposition 2.2.11, one may verify that the output of the simulation is
distributed identically to the view of parties I in the execution of the oracle-aided protocol. The
proposition follows. W

Conclusion. As an immediate corollary to Proposition 3.2.8, Corollary 3.2.6, and the Composition
Theorem (Theorem 3.2.3), we obtain.

Corollary 3.2.9 Suppose that trapdoor permutation exist. Then any deterministic m-ary function-
ality is privately computable (in the m-party semi-honest model).

Furthermore, as in Section 2.2, we may privately reduce the computation of a general (randomized)
m-ary functionality, g, to the computation of the deterministic m-ary functionality, f, defined by

FU@1,71), s @y 7)) & GBI 71, (@1, s T)) (3.12)

where g(r,7) denote the value of g(Z) when using coin tosses r € {0, 1}pev(D) (ie., g(Z) is the ran-
domized process consisting of uniformly selecting r € {0, 1}P°¥(I7D) " and deterministically computing
g(r,T)). Combining this reduction with Corollary 3.2.9 and Theorem 3.2.3, we have
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Theorem 3.2.10 Suppose that trapdoor permutation exist. Then any m-ary functionality is pri-
vately computable (in the m-party semi-honest model).

3.3 Forcing Semi-Honest Behavior
Our aim is to use Theorem 3.2.10 in order to establish the main result of this chapter; that is,

Theorem 3.3.1 (main result for multi-party case): Suppose that trapdoor permutation exist. Then
any m-ary functionality can be securely computable in each of the two malicious models.

The theorem will be established in two steps. Firstly, we compile any protocol for the semi-honest
model into an “equivalent” protocol for the first malicious model. The compiler is very similar to
the one used in the two-party case. Next, we compile any protocol for the first malicious model
into an “equivalent” protocol for the second malicious model. The heart of the second compiler is a
primitive alien to the two-party case — Verifiable Secret Sharing (VSS).

For simplicity, we again think of the number of parties m as being fixed. The reader may again
verify that the dependency of our constructions on m is at most polynomial.

3.3.1 Changing the communication model

To simplify the exposition of the multi-party compilers, we describe them as producing protocols for
a communication model consisting of a single broadcast channel (and no point-to-point links). We
assume, without loss of generality, that in each communication round only one (predetermined) party
may send a message and that this message arrives to all processors. Such a broadcast channel can
be implemented via an (authenticated) Byzantine Agreement protocol, thus providing an emulation
of our model on the standard point-to-point model (in which a broadcast channel does not exist).

We stress that indeed the first compiler, as presented below, transforms protocols which are
secure in the semi-honest point-to-point model (of private channels) into protocols secure in the
(first) malicious broadcast model. Actually, we first preprocess protocols secure in the semi-honest
point-to-point model into protocols secure in the semi-honest broadcast-channel model, and only then
apply the two compilers, each taking and producing protocols in the broadcast-channel model (alas
secure against different types of adversaries). Thus, the full sequence of transformations establishing
Theorem 3.3.1 based on Theorem 3.2.10 is as follows

e Precompiling a protocol IIy which privately computes a functionality f in the point-to-point
model (of the previous section), into a protocol IIj, which privately computes f in the broadcast
model (where no private point-to-point channels exist).

e Using the first compiler (of Section 3.3.2) to transform IIj (secure in the semi-honest model)
into a protocol II} secure in the first malicious model.
We stress that both IIj, and II] operate and are evaluated for security in a communication
model consisting of a single broadcast channel. The same holds also for IT;, mentioned next.

e Using the second compiler (of Section 3.3.3) to transform II} (secure in the first malicious
model) into a protocol II), secure in the second malicious model.

e Postcompiling each of the protocols II} and IT,, which are secure in the first and second
malicious models when communication is via a broadcast channel, into corresponding protocols,
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II; and II,, for the standard point-to-point model. That is, II; (resp., II2) securely computes
f in the first (resp., second) malicious model in which communication is via point-to-point
channels.

We note that security holds even if the adversary is allowed to wire-tap the (point-to-point)
communication lines between honest parties.

We start by discussing the security definitions for the broadcast communication model, and present-
ing the precompiler and the postcompiler mentioned above. Once this is done, we turn to the real
core of this section — the two compilers which operate on protocols in the broadcast channel.

Definitions. Indeed, security in the broadcast model was not defined above. However, the three
relevant definitions for the broadcast communication model are easily derived from the correspond-
ing definitions given in Section 3.1, assuming a point-to-point communication model. Specifically, in
defining security in the semi-honest model one merely includes the entire transcript of the commu-
nication over the (single) broadcast channel in the party’s view. Similarly, when defining security
in the two malicious models one merely notes that the “real execution model” (i.e., REAL (1,¢))
changes (as the protocol is now executed over a different communication media), whereas the “ideal

model” (i.e., IDEAL(l)f,(I,C) or IDEAL(Z)L(LC)) remains intact.

Precompiler. It is easy to (securely) emulate over a (single) broadcast channel any protocol IT
for the (private) point-to-point communication model. All one needs to do is use a secure public-key
encryption scheme. That is, each party randomly generates a pair of encryption/decryption keys,
posts the encryption-key on the broadcast channel, and keeps the decryption-key secret. Any party
instructed (by II) to send a message, msg, to Party ¢, encrypts msg using the encryption-key posted by
Party ¢, and places the resulting ciphertext on the broadcast channel (indicating that it is intended
for Party 7). Party i recovers msg by using its decryption-key, and proceeds as directed by II. Denote
the resulting protocol by II'. Note that we merely consider the effect of this transformation in the
semi-honest model.

Proposition 3.3.2 (precompiler): Suppose that trapdoor permutation ezist. Then any m-ary func-
tionality is privately computable in the broadcast communication model.

Proof Sketch: Let f be an m-ary functionality, and II be a protocol (guaranteed by Theorem 3.2.10)
for privately computing f in the point-to-point communication model. Given a trapdoor permu-
tation, we construct a secure public-key encryption scheme and use it to transform II into IT' as
described above. To simulate the view of parties in an execution of IT' (taking place in the broadcast
communication model), we first simulate their view in an execution of II (taking place in the point-
to-point communication model). We then encrypt each message sent by a party in the semi-honest
coalition, as this would be done in an execution of II'. Note that we know both the message and
the corresponding encryption-key. We do the same for messages received by semi-honest parties.
All that remain is to deal with messages, which we may not know, sent between two honest parties.
Here we merely place an encryption of an arbitrary message. This concludes the description of the
“broadcast-model” simulator.

The analysis of the latter simulator combines the guarantee given for the “point-to-point simu-
lator” and the guarantee that the encryption scheme is secure. That is, ability to distinguish the
output of the “broadcast-model” simulator from the execution view (in the broadcast model) yields
either (1) ability to distinguish the output of the “point-to-point” simulator from the execution view
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(in the point-to-point model) or (2) ability to distinguish encryptions under the above public-key
encryption scheme. In both cases we reach contradiction to our hypothesis. [l

Postcompiler. Here we go the other way around. We are given a protocol which securely com-
putes (in one of the two malicious models) some functionality, where the protocol uses a broadcast
channel. We wish to convert this protocol into an equivalent one which works in a point-to-point
communication model. (Actually, we do not go all the way back, as we do not assume these point-
to-point lines to provide private communication.) Thus, all we need to do is emulate a broadcast
channel over a point-to-point network and in the presence of malicious parties — which reduces to
solving the celebrated Byzantine Agreement problem. However, we have signature schemes at our
disposal and so we merely need to solve the much easier problem known as authenticated Byzantine
Agreement. For sake of self-containment we define the problem and present a solution.

Authenticated Byzantine Agreement: Suppose a synchronous point-to-point model of commu-
nication and a signature scheme infrastructure. That is, each party knows the verification-key of
all other parties. Party 1 has an input bit, denoted o, and the objective is to let all honest parties
agree on the value of this bit. In case Party 1 is honest, they must agree on its actual input, but
otherwise they may agree on any value (as long as they agree).

Construction 3.3.3 (Authenticated Byzantine Agreement): Let m denote the number of parties.
We assume that the signature scheme in use has signature length which depends only of the security
parameter, and not on the length of the message to be signed.”

1. Phase 0: Party 1 should sign its input and sends it to all parties.
2. Phase ¢ = 1,...,m: Each honest party (other than Party 1) proceeds as follows:

(a) It inspects the messages it has received at Phase i — 1. Such a message is admissible if
it has the form (v,Spy, Spy,--s Sps_1), Where py = 1, all p;’s are distinct, and for every
J =0,..,0 — 1, the string s, is accepted as a signature to (v, 8py, Sp,, ., Sp,_, ) relative
to the verification key of party p;. Such an admissible message is called an authentic
(v,i — 1)-message or an authentic v-message.
(We comment that p;_; is different from the identity of the processing party, receiving
the message.)

(b) If the party finds an authentic (v,i — 1)-message among these messages then it signs this
authentic (v,1 — 1)-message, appends the signature to it, and sends the resulting message
to all parties.®

Note that the resulting message is an authentic (v,i)-message.
3. Each honest party (other than Party 1) evaluates the situation as follows:

o If it has received both an authentic 0-message and an authentic 1-message then it decides
that Party 1 is malicious and outputs a default value, say 0.

7 Such a signature scheme can be constructed given any one-way function. In particular, one signs the hash-value
of the message under a universal one-way hashing function [58]. Maintaining short signatures is important in this
application since we are going to iteratively sign messages consisting of the concatenation of an original message and
prior signatures.

8 For sake of efficiency, one may instruct the party not to process this authentic (v,i — 1)-message in case it has
seen an authentic (v, j)-message for any j < ¢ — 1 in a prior phase.
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o If for a single v € {0,1} it has received an authentic v-message then it outputs the value
.

o If it has never received an authentic v-message, for any v € {0,1}, then it decides that
Party 1 is malicious and outputs a default value, say 0.

The protocol can be easily adapted to handle non-binary input values. For sake of efficiency, one
may instruct honest parties to forward at most two authentic messages (as this suffices to establish
that Party 1 is malicious).

Proposition 3.3.4 (Authenticated Byzantine Agreement): Assuming that the signature scheme in
use is unforgeable, Construction 3.5.3 satisfies the following two conditions:

1. It is infeasible to make any two honest parties output different values.

2. If Party 1 is honest then it is infeasible to make any honest party output a value different from
the input of Party 1.

Proof Sketch: Suppose that in Phase i, some honest party sees an authentic (v,i — 1)-message.
For this to happen we must have 1 — 1 < m. Then, it will send an authentic (v,¢)-message in this
phase and so all honest parties will see an authentic (v,4)-message in Phase i + 1, where i + 1 < m.
Thus, if an honest party see a single (or both possible) authentic v-message then so do all other
honest parties, and Part 1 follows. Part 2 follows by noting that if Party 1 is honest and has input
v then all honest parties see an authentic (v,0)-message. Furthermore, none can see an authentic
v'-message, for v’ Zv. W

Author's Note: As observed in [55], repeated invocations of Authenticated Byzantine
Agreement are secure only if a high-level process can provide them with distuinct iden-
tifiers. In our case, the postcompiler should provide each invocation of Authenticated
Byzantine Agreement with a distinct ID that will is required to appear in all signed
strings. This will prevent an adversary from using signatures produced in one invocation
in its attack on another invocation.

3.3.2 The first complier

We follow the basic structure of the compiler presented in Section 2.3, and the reader is referred
there for further discussion. Adapting that compiler to the multi-party setting merely requires
generalizing the implementation of each of the three phases. Following is a high-level description of
the multi-party protocols generated by the (multi-party) compiler. Recall that all communication,
both in the input protocol as well as in the one resulting from the compilation, is conducted merely
by posting messages on a single broadcast channel.

Input-commitment phase: Each of the parties commits to each of its input bits. This will be
done using a multi-party version of the input-commitment functionality of Eq. (2.23).
Intuitively, malicious parties may (abort or) substitute their inputs during this phase, but they

may do so depending only on the value of the inputs held by (all) malicious parties.

Coin-generation phase: The parties generate random-pads for each of the parties. These pads
are intended to serve as the coins of the corresponding parties in their emulation of the semi-
honest protocol. Each party obtains the bits of the random-pad to be held by it, whereas the
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other parties obtains commitments to these bits. This will be done using a multi-party version
of coin-tossing functionality of Eq. (2.16).

Intuitively, malicious parties may abort during this phase, but otherwise they end-up with a
uniformly distributed random-pad.

Protocol emulation phase: The parties emulate the execution of the semi-honest protocol with
respect to the input committed in the first phase and the random-pads selected in the sec-
ond phase. This will be done using a multi-party version of the authenticated-computation
functionality of Eq. (2.30).

In order to implement the above phases, we define the natural extensions of the coin-tossing, input-
commitment and authenticated-computation functionalities (of the two-party case), and present
secure implementations of them in the current (first malicious) multi-party model. The original
definitions and constructions are obtained by setting m = 2.

3.3.2.1 Multi-party coin-tossing into the well

We extend Definition 2.3.5 (from m = 2) to arbitrary m, as follows.

Definition 3.3.5 (coin-tossing into the well, multi-party version): An m-party coin-tossing into
the well is an m-party protocol for securely computing (in the first malicious model) the following
randomized functionality with respect to some fixed commitment scheme, {Cy},.cN,

(1",..,1") = ((b,7),Cn(b,7),...,Cr(b,T)) (3.13)
where (b,r) is uniformly distributed in {0,1} x {0,1}".

Construction 2.3.6 generalizes naturally to the multi-party setting. In the generalization we use
the fact that the zero-knowledge proofs (and proof of knowledge) employed are of the public-coin
(a.k.a Arthur-Merlin) type. That is, the role of the verifier in these proof systems is restricted to
tossing coins, sending their outcome to the prover, and evaluating a predetermined predicate at the
end of the interaction. Thus, anybody seeing the transcript of the interaction (i.e., the sequence of
messages exchanged over the broadcast channel) can determine whether the verifier has accepted or
rejected the proof.

Construction 3.3.6 (Construction 2.3.6, generalized):
Inputs: Fach party gets security parameter 1™.

Convention: Any deviation from the protocol, by a party other than Party 1, will be interpreted
as a canonical legitimate message. In case Party 1 aborts or is detected cheating, all honest
parties halt outputting the special symbol L.

Step C1: The parties generate uniformly distributed bits, by, b1, ..., bn, known to Party 1.
Specifically, for j =0,1,...,n, the parties execute the following four steps:

Step C1.1: Party I uniformly selects (oj,s;) € {0,1} x {0,1}", and places c; def C,(oj,s5)
on the broadcast channel.
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Step C1.2: The parties invoke m — 1 instances of a zero-knowledge strong-proof-of-knowledge
so that Party 1 plays the prover and each of the other m — 1 parties plays the verifier in
one of these invocations (i.e., in the i'" invocation Party i + 1 plays the verifier). The
common input to the proof system is c;, the prover gets auziliary input (o;,s;), and its
objective is to prove that it knows (x,y) such that

¢; = Cnl(z,y) (3.14)

We stress that all m — 1 invocations of the proof system takes place over the broadcast
channel, and so all parties may determine if the verifier should accept or reject in each
of them. In case the verifier should reject in any of these invocations of the proof system,
all parties aborts with output L.

(4)

Step C1.3: For ¢ = 2,...,m, Party © uniformly selects agi) € {0,1}, and places o;’ on the

channel.

Author’s Note: As pointed out by Yehuda Lindell, Step C1.3 is wrong. It will
only work in case the adversary controls a single party. Otherwise, by controlling
Parties 1 and m, the adversary may determine the coin b;. What is needed is to
first have each Party i execute steps analogous to C1.1 and C1.2, and only once

all these are done, each Party i (i > 1) reveals its bit cry).

Step C1.4: Party 1 sets bj = o, @ (@:’;20;i)).

Step C2: Party 1 setsb="0by and r = bybs - - - b, and places ¢ def Cn(b, 1) on the channel.

Step C3: The parties invoke m—1 instances of a zero-knowledge proof system so that Party 1 plays
the prover and each of the other m—1 parties plays the verifier (i.e., in the i'® instance Party i+
1 plays the verifier). The common input to the proof system is (co,c1,...,Cn, 00,01, .cs 00, C),
where o’ def 69?;205-1), the prover gets auxiliary input (0o,01, .-, Tn, 805 81, -, Sn), and its 0b-

jective is to prove that there exists (Lo, 1, Try Y0, Y1, - Yn) Such that
(Vj ¢j = Culzj,y;)) A (c = Cul@o @ 07, (21 @ 0) -+ (20 © 07,))) (3.15)

Again, oll m — 1 invocations of the proof system takes place over the broadcast channel, and
so all parties may determine if the verifier should accept or reject in each of them. In case
the verifier should reject in any of these invocations of the proof system, all parties aborts with
output L.

Outputs: Party 1 sets its local output to (b,r), and each other party sets its local output to c,
provided they did not halt with output L before.

The fact that the above protocol constitute an m-party coin-tossing protocol (as in Definition 3.3.5)
is established analogously to the proof of Proposition 2.3.7. Specifically, one distinguishes the case
in which Party 1 is honest (i.e., 1 ¢ I) from the case in which Party 1 belongs to the malicious
coalition. In the first case, all honest parties are shown to produce a proper output (and towards
this end one relies again on the perfect completeness® of the proof systems in use). In the second
case, the special symbol L may occur as output, but this is allowed by Definition 3.1.2. Thus, we
have

9 By perfect completeness we mean that, whenever the corresponding assertion does holds, the prover may convince
the verifier with probability 1.
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Proposition 3.3.7 Suppose that {Cr},.cN is a commitment scheme. Then Construction 3.3.6 se-
curely implements the coin-tossing functionality of Eq. (3.13) (in the first malicious model).

Proof Sketch: We employs one of the two strategies used in the proof of Proposition 2.3.7, de-
pending on whether Party 1 is honest (i.e., 1 € I) or not (i.e., 1 € I).

In case Party 1 is honest, the adversary strategy is transformed (from the real model to the ideal
one) as in the first transformation in the proof of Proposition 2.3.7. Note that the only “effective”
communication in the protocol is between Party 1 and each of the other parties. Thus the argument
is essentially as in the two-party case.

In case Party 1 belongs to the malicious parties (i.e., 1 € I), the adversary strategy is obtained
analogous to the second transformation in the proof of Proposition 2.3.7. In this case we merely
rely on the fact that there exists ¢ € I, and conclude that since this party has executed the role of
verifier properly the verifier-acceptance indicates validity of the corresponding claim. The rest of
the argument is essentially as in the two-party case, with one additional concern: Using the fact
that honest parties abort based on the publically known decisions of the verifier in all instances of
the proof systems employed, we conclude that they either all output ¢ = C,(b,r) or all abort (i.e.,
output 1). W

3.3.2.2 Multi-party input-commitment protocol

We extend the definition of the bit-committing functionality of Eq. (2.23) (from m = 2) to arbitrary
m. Recall that, as before, {C},},cn is an arbitrary commitment scheme.

((z,7),1™,..,1") = (A, Cp(z,7),...,Cp(z,7)) (3.16)
Construction 2.3.8 generalizes naturally to the multi-party setting.
Construction 3.3.8 (multi-party input-bit commitment protocol):
Inputs: Party 1 gets input (o,7) € {0,1} x {0,1}", all other parties gets input 1™.
Conventions: As in Construction 3.3.6.
Step C1: Party 1 posts c def Cn(o,1) on the broadcast channel.

Step C2: The parties invoke m — 1 instances of a zero-knowledge strong-proof-of-knowledge so that
Party 1 plays the prover and each of the other m — 1 parties plays the verifier in one of the
invocations. The common input to the proof system is c, the prover gets auziliary inputs (o,7),
and its objective is to prove that it knows (x,y) such that ¢ = Cy(x,y). In case the verifier
rejects the proof, all parties abort with output L (otherwise the output will be c¢).

Outputs: Fori=2,..,m, Party i sets its local output to c.
Again, correctness is established analogously to the two-party case (i.e., Proposition 2.3.9).

Proposition 3.3.9 Suppose that trapdoor permutation exist. Then, Construction 3.3.8 securely
computes (in the first malicious model) the functionality Eq. (3.16).

Proof Sketch: Again, we employs one of the two strategies used in the proof of the corresponding
two-party case (i.e., Proposition 2.3.9), depending on whether Party 1 is honest (i.e., 1 ¢ I) or not
(i.e., 1 € I). The adaptation is analogous to what was done in the proof of Proposition 3.3.7. i
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3.3.2.3 Multi-party authenticated-computation protocol

Finally, we extend the definition of the authenticated-computation functionality of Eq. (2.30) (from
m = 2) to arbitrary m. As in Eq. (2.30), we consider two two-argument functions, f,h : {0,1}* x
{0,1}* — {0,1}*, each being polynomial-time computable. Recall that h captures information on
« available to all parties, whereas f captured the desired computation (which may also depend on
an auxiliary input £).

((a, 7, B), (ha, 1), B), .., (Ma,7),8)) = (X, fla,B),.... f(e, B)) (3.17)

As before, we make the simplifying assumption that h is 1-1 with respect to its first argument; that
is, for every a # @' and any r,r" we have h(a,r) # h(a',r"). The construction used in the proof of
Proposition 2.3.12 generalizes in the obvious way and we obtain.

Proposition 3.3.10 Suppose that trapdoor permutation ezist, and that the function h : {0,1}* x
{0,1}* +— {0,1}* satisfies that for every a # o', the sets {h(a,r) : 7 € {0,1}*} and {h(a/,r) : 1 €
{0,1}*} are disjoint. Then, the functionality of Eq. (3.17) can be securely computed (in the first
malicious model).

Proof Sketch: The desired protocol follows (using conventions as above).

Inputs: Party 1 gets input (a, 7, 3), and each other party gets input (u,3), where u = h(a, 7).

Step C1: Party 1 posts v def f(a, B) on the broadcast channel.

Step C2: The parties invoke m — 1 instances of a zero-knowledge proof system so that Party 1 plays
the prover and each of the other m — 1 parties plays the verifier in one of the invocations. The
common input to the proof system is (v,u, ), the prover gets auxiliary inputs («,r), and its
objective is to prove that Eq. (2.31) holds (i.e., there exists z, y s.t (v = h(z,y))A(v = f(z, 3))).
In case the verifier rejects the proof, all parties abort with output L (otherwise the output will
be ¢).

Author's Note: These proofs are executed over the broadcast channel, and so all
parties can check whether the verifier has justifiablly rejected. We use proof systems
of perfect complewteness and so a verifier cannot justifiablly reject when the assertion
is valid and the prover is honest,.

Outputs: For every i = 2,...,m, Party ¢ sets its local output to v.

The fact that the above protocol securely computed the functionality of Eq. (3.17) is established by
adapting (as above) the proof presented in the two-party case. [

3.3.2.4 The compiler itself

We are now ready to present the compiler. Recall that we are given a multi-party protocol, II, for
the semi-honest model, and we want to generate an “equivalent” protocol II' for the first malicious
model. Recall that both the given protocol and the one generated operate in a communication model
consisting of a single broadcast channel. The compiler is a generalization of the one presented in
Construction 2.3.13 (for m = 2), and the reader is referred there for additional clarifications.
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Construction 3.3.11 (The first multi-party compiler): Given an m-party protocol, II, for the semi-
honest model, the compiler produces the following m-party protocol, denoted I, for the first malicious
model.

Inputs: Party i gets input 2" = ziah---2* € {0,1}".

Input-commitment phase: Fach of the parties commits to each of its input bits by using a secure
implementation of the input-commitment functionality of Eq. (3.16). These executions are
preceded by the “committing party” selecting a randomization for the commitment scheme C,,.

That is, for i = 1,...,m and 7 = 1,...;n, Party ¢ uniformly selects pj- € {0,1}", and invokes
a secure implementation of the input-commitment functionality of Eq. (3.16), playing Party 1
with input (x5, p5). The other parties play the role of the other parties in Eq. (2.23) with
imput 1™, and obtain the output C’n(:ﬂ;,p;) Party © records pé, and each other party record
Cn(z}, pj).

Coin-generation phase: The parties generate random-pads for the emulation of II. Each party
obtains the bits of the random-pad to be held by it, whereas the other party obtains commitments
to these bits. This is done by invoking a secure implementation of the coin-tossing functionality
of Eq. (3.13). Specifically, the coin-tossing protocol is invoked m - c(n) times, where c(n) is the
length of the random-pad required by one party in 11

That is, for i = 1,....,m and j = 1,...,¢(n), Party i invokes a secure implementation of the
coin-tossing functionality of Eq. (3.13) playing Party 1 with input 1™, and the other parties play
the other roles. Party i obtains a pair, (rj,wj-), and each other party obtains the corresponding
output C’n(r;,wé). Party i sets the j* bit of the random-pad for the emulation of I1 to be ré,
and records the corresponding NP-witness (i.e., w}). Each other party records Cp(r;,w}). In

the sequel, we let ' = rirs - -ri(n) denote the random-pad generated for Party i.

Protocol emulation phase: The parties use a secure implementation of the authenticated-computation
functionality of Eq. (3.17) in order to emulate each step of protocol I1. The party which is sup-
posed to send a message plays the role of Party 1 in Eq. (3.17) and the other parties play the
other roles. The inputs «,r, B and the functions h, f, for the functionality of Eq. (3.17), are
set as follows:

o The string « is set to equal the concatenation of the party’s original input and its random-
pad, the string r is set to be the concatenation of the corresponding randomizations used
in the commitments and h(a,r) equals the concatenation of the commitments themselves.
That s, suppose the message is supposed to be sent by Party j in II. Then

a = (z7,17), where 1’ =r{rg---rz(n) and 2/ = 2lad - al)
ro= (e phwled W)
ha,r) = (Cul], p1), Cnld, pb), s Culah, 01,)

Cn('r{:w{)a C’n("é:“')%)’ Tt Cn(ri(n)awZ(n)))

Note that h indeed satisfies h(a, 1) # h(a',r") for all a # o' and all 7,1".

e The string (B is set to equal the concatenation of all previous messages sent (over the
broadcast channel) by all other parties.
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o The function f is set to be the computation which determines the message to be sent in II.
Note that this message is computable in polynomial-time from the party’s input (denoted
x? above), its random-pad (denoted 17), and the previous messages posted so far (i-e., §).

Aborting: In case any of the protocols invoked in any of the above phases terminates in an abort
state, the party (or parties) obtaining this indication aborts the execution, and sets its output
to L. Otherwise, outputs are as follows.

Outputs: At the end of the emulation phase, each party holds the corresponding output of the party
in protocol II. The party just locally outputs this value.

We note that both the compiler and the protocols produced by it are efficient, and that their
dependence on m is polynomially bounded.

3.3.2.5 Analysis of the compiler

The effect of Construction 3.3.11 will be analyzed analogously to the effect of Construction 2.3.13.
In view of this similarity we combine the two main steps in this analysis, and state the end result —

Theorem 3.3.12 (Restating half of Theorem 3.3.1): Suppose that trapdoor permutation exist. Then
any m-ary functionality can be securely computable in the first malicious model (using only point-
to-point communication lines). Furthermore, security holds even if the adversary can read all com-
munication among honest players.

Proof Sketch: We start by noting that the definition of the augmented semi-honest model (i.e.,
Definition 2.3.14) applies with any change to the multi-party context, also in case the communication
is via a single broadcast channel. Recall that the augmented semi-honest model allows parties to
enter the protocol with modified inputs (rather than the original ones), and abort the execution at
any point in time. We stress that in the multi-party augmented semi-honest model, an adversary
controls all non-honest parties and coordinates their input modifications and abort decisions. As in
the two-party case, other than these non-proper actions, the non-honest parties follow the protocol
(as in the semi-honest model).

We stress that unless stated differently, all subsequent statements will refer to the single broadcast
channel communication model. (Only at the very end of this proof, we pass to the point-to-point
communication model.)

The first significant part of the proof is showing that the compiler of Construction 3.3.11 trans-
forms any protocol II into a protocol II' so that executions of II' in the (real) first malicious model
can be emulated by executions of II in the augmented semi-honest model. This part is analogous to
Proposition 2.3.15, and its proof is analogous to the proof presented in the two-party case. That is,
we transform any malicious adversary (A, ) (for executions of II') into an augmented semi-honest
adversary, (B, I). The construction of B out of A in analogous to the construction of Bpgq out
of Apay (carried out in the proof of Proposition 2.3.15): Specifically, B modifies inputs according
to the queries A makes in input-committing phase, uniformly selects random-pad (in accordance to
the coin-generation phase), and aborts in case the emulated machine does so. Thus, B which is an
augmented semi-honest adversary emulates the malicious adversary A.

The second significant part of the proof is essentially showing that the protocols generated by
Construction 3.2.7 have the property that their execution in the augmented semi-honest model can
be emulated in the ideal model of Definition 3.1.2. Actually, there are two minor problems with the
above statement:
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1. The statement is not quite true. Actually, the protocols generated by Construction 3.2.7 were
not full-specified. What was not specified and is crucial here is the order in which messages
are sent in Step 3 (i.e., the step in which output bits are recovered).

To fit our goals, we now further specify Step 3 instructing that Party 1 is the last to send the
shares he holds in an output wire of the circuit to the party associated with this wire. Given
this specification the above claim can be proven analogously to the proof of Proposition 2.3.16.
Recall that they key property used in the proof is the fact that the execution view under this
protocol can be simulated in two stages; the first stage depends only on the party’s input
(here it is the party’s’ inputs), whereas the second only produces the message corresponding
to Step 3. This allows the adversary in the ideal model of Definition 3.1.2 to emulate real
executions in the augmented semi-honest model.

2. The statement does not quite suffice. As in the two-party case, we are not interested in the
protocols generated by Construction 3.2.7 but rather in protocols generated as follows:

(a) First, the private computation of an arbitrary functionality is reduced to the private
computation of a deterministic functionality, using Eq. (3.12).

(b) Next, Construction 3.2.7 is applied to the resulting circuit, giving an oracle-aided protocol.
(¢) Then, the oracle was implemented using Constructions 3.2.4 and 2.2.7.

(d) Finally, the resulting protocol is precompiled as in the proof of Proposition 3.3.2.

However, as observed in the proof of Proposition 2.3.16, none of these pre/post-processing
effects the two-stage simulation property. Thus, the statement above does hold also for the
protocols produced in the four-step process described above.

Let IT denote a protocol, generated by the above four-step process, for privately computing a
given functionality f. Combining the above two parts, we conclude that when feeding II to the
compiler of Construction 3.3.11, the result is a protocol IT" so that executions of I’ in the (real) first
malicious model can be emulated in the ideal model of Definition 3.1.2. Thus, II' securely computes
f in the first malicious model.

We are almost done. The only problem is that IT' operates in the single broadcast channel
communication model. This problem is resolved by the postcompiler mentioned in Section 3.3.1.
Specifically, we implement the broadcast channel over the point-to-point communication model using
(authenticated) Byzantine Agreement (cf., Construction 3.3.3). W

3.3.3 The second complier

We now show how to transform protocols for securely computing some functionality in the first
malicious model into protocols which securely computing it in the second malicious model. We
stress that again all communication, both in the input protocol as well as in the one resulting from
the compilation, is conducted merely by posting messages on a single broadcast channel.

The current compiler has little to do with anything done in the two-party case. The only
similarities are in the technical level; that is, in using secure implementation of the authenticated
computation functionality, which in turn amounts to using zero-knowledge proofs. The main novelty
is in the use of a new ingredient — Verifiable Secret Sharing (VSS).

Interestingly, we use secure in the first malicious model implementations of the authenticated
computation functionality (of Eq. (3.17)) and of VSS. It is what we add on top of these implemen-
tations which makes the resulting protocol secure in the second malicious model. Following is a
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high-level description of the multi-party protocols generated by the current compiler. Recall that
the input to the compiler is a protocol secure in the first malicious model, so the random-pad and
actions refer to this protocol.!°

The sharing phase: Each party shares each bit of its input and random-pad, with all the parties so
that any strict majority of parties can retrieve the bit. This is done by using a new ingredient —
Verifiable Secret Sharing (VSS).

Intuitively, (minority) malicious parties are effectively prevented from abort the protocol by
the following convention:

e If a party aborts the execution prior to completion of this phase, then the majority players
will set its input and random-pad to some default value, and will carry out the execution
(“on its behalf”).

e If a party aborts the execution after the completion of this phase, then the majority
players will reveal its input and random-pad, and will carry out the execution (“on its
behalf”).

The fact that all communication is over a broadcast channel and the provisions above guarantee
that the (honest) majority players will always be in consensus.

Protocol emulation phase: The parties emulate the execution of the original protocol with re-
spect to the input and random-pads shared in the first phase. This will be done using a secure
(in the first malicious model) implementation of the authenticated-computation functionality
of Eq. (3.17).

We start by defining and implementing the only new tool needed — Verifiable Secret Sharing.

3.3.3.1 Verifiable Secret Sharing

Loosely speaking, a Verifiable Secret Sharing scheme is (merely) a secure (in the first malicious
model) implementation of a secret sharing functionality. Thus, we first define the latter functionality.

Definition 3.3.13 (secret sharing schemes): Let t < m be positive integers. A t-out-of-m secret
sharing scheme is a pair of algorithms, G+ and R, ., satisfying the following conditions.

e (syntax): The share-generation algorithm, G, +, is a probabilistic mapping of secret bits to m-
sequences of shares; that is, G, ¢ : {0,1} — ({0,1}*)™. The recovering algorithm, R,, :, maps
t-long sequences of pairs in [m] x {0,1}* into a single bit, where [m)] et {1,...,m}.

e (the recovery condition): For any o € {0,1}, any sequence (s1, ..., Sm) in the range of G, (o),
and any t-subset {i1,...,i;} C [m], it holds that

Rm,t((ila Sil)a (a3} (ita Sit)) =0

10 In our application, we will feed the current compiler with a protocol generated by the first compiler. Still the
random-pad and actions below refer to the compiled protocol, not the the semi-honest protocol from which it was
compiled.
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e (the secrecy condition): For any (t — 1)-subset I = {iy,....,iy_1} C [m], and any n € N, the
distribution of the I-components of Gy, (o) is independent of o.

That is, for I = {i1,....,50—1} C [m], let g1(c) be defined to equal ((i1,$iy), .-, (bt—1,5i,_1)),
when the value of Gy, (o) is (s1,...,8m). Then, we require that for any such I

91(0) = g1(1)

It is well-known that secret sharing schemes do exists for any value of m and ¢. However, common
presentations neglect some details such as the representation of the field used in the construction.
For sake of self-containment, we present a fully specified construction.

Construction 3.3.14 (Shamir’s t-out-of-m secret sharing scheme): Find'! the smallest prime num-
ber bigger than m, denoted p, and consider arithmetic over the finite field GF(p). The share gener-
ating algorithm consists of uniformly selecting a degree t — 1 polynomial over GF(p) with free term
equal o, and setting the i*® share to be the value of this polynomial at i. The recovering algorithm
consists of interpolating the unique degree t — 1 polynomial which matches the given values, and
outputting its free term.

Getting back to our subject matter, we have

Definition 3.3.15 (Verifiable Secret Sharing): A verifiable secret sharing scheme with parameters
(mm,t) is an m-party protocol which implements (i.e., securely computes in the first malicious model)
the share-generation functionality of some t-out-of-m secret sharing scheme. That is, let Gy, be
a share-generation algorithm of some t-out-of-m secret sharing scheme. Then, the corresponding
share-generation functionality which the VSS securely computes is

((0,1™),1",..,1™) = G (o) (3.18)

Actually, it will be more convenient to use an augmented notion of Verifiable Secret Sharing. The
augmentation supplies each party with auxiliary input which determines the secret o and allows
Party 1 to latter conduct authenticated computations depending on this secret. Furthermore, each
party is provided with an NP-proof of the validity of its share (relative to public information given
to all). From this point on, when we say Verifiable Secret Sharing (or VSS), we mean the notion
defined below (rather the the weaker form above).

Definition 3.3.16 (Verifiable Secret Sharing, revised — VSS): Let G.,+ be a share-generation al-
gorithm of some t-out-of-m secret sharing scheme, producing shares of length €. Let {C,} be a

bit commitment scheme, and define Cp(01---0¢,71 - T¢) def Cnlo1,m1)---Cplog,me). Consider the
corresponding (augmented) share-generation functionality

((0,1™),1",..,1™") = ((5,D), (82, 02,C)s -y (Sm, p2,C)) (3.19)

where 3% (s1, ..., $m) — Gm.(0), (3.20)

p»=(p1,.--, pm) is uniformly chosen in {0, 1}™ " (3.21)

and € = (Cn(81,01); -, Cu(Sm, Pm))- (3.22)

Then any m-party protocol which implements (i.e., securely computes in the first malicious model)

Eq. (3.19)—(3.22) is called a verifiable secret sharing scheme (VSS) with parameters (m,t).

11 By the Fundamental Theorem of Number Theory, p < 2m. Thus, it can be found by merely (brute-force)
factoring all integers between m + 1 and 2m.
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Observe that each party may demonstrate the validity of its primary share (i.e., the s;) by revealing
the corresponding p;. We shall be particularly interested in VSS schemes with parameters (m, [m/2])
(i.e., t = [m/2]). The reason for this is that we assume throughout this section that the malicious
parties are in strict minority. Thus, by the secrecy requirement, setting ¢ > m/2 guarantees that
the minority parties are not able to obtain any information about the secret from their shares. On
the other hand, by the recovery requirement, setting ¢ < [m /2] guarantees that the majority parties
are able to efficiently recover the secret from their shares. Thus, in the sequel, whenever we mention
VSS without specifying the parameters, we mean the VSS with parameters (m, [m/2]), where m is
understood from the context.

Clearly, by Theorem 3.3.12, Verifiable Secret Sharing schemes can be constructed provided that
trapdoor permutation exist. Actually, to establish this result we merely need to apply the first
compiler to the obvious semi-honest protocol in which Eq. (3.19)—(3.22) is privately computed by
merely letting Party 1 invoke the share-generation algorithm G, ; and send the corresponding shares
to each of the parties. For sake of subsequent reference we state the result.

Proposition 3.3.17 Suppose that trapdoor permutation exist. Then, for every t < m, there exists
a verifiable secret sharing scheme with parameters (m,t).

3.3.3.2 The compiler itself

We are now ready to present the compiler. Recall that we are given a multi-party protocol, II, for the
first malicious model, and we want to generate an “equivalent” protocol II' for the second malicious
model. Also recall that both the given protocol and the one generated operate in a communication
model consisting of a single broadcast channel.

Construction 3.3.18 (The second multi-party compiler): Given an m-party protocol, 11, for the
first malicious model, the compiler produces the following m-party protocol, denoted II', for the
second malicious model.

Inputs: Party i gets input z* € {0,1}".
Random-pad: Party i gets (or uniformly selects) a random-pad, denoted r* € {0, 1}<(™),

The sharing phase: FEach party shares each bit of its input and random-pad, with all the parties,
using a Verifiable Secret Sharing scheme.

That is, fori=1,...,m and j = 1,...,n+ c(n), Party i invokes a secure implementation of the
VSS functionality of Eq. (3.19)—(3.22), playing Party 1 with input (o,1"), where o is the j*&
bit of z'r'. The other parties play the role of the other parties in Eq. (3.19)—(3.22) with input
1. (In case the parties supply different values for 1™, the majority value — supported by the
honest parties — is used). Party i obtains output pair, (pj-,w;), and each other Party k obtains
a pair (sfﬂ-,
is a sequence of commitments to the bits of pé (using the random strings sequence ).

¢.) so that the sfz s are shares of a secret relative to G, rmy21’s random-pad pj—,
j
Handling Abort: If a party aborts the execution prior to completion of this phase, then the other
parties set its input and random-pad to some default value, and will carry out the execution on
its behalf. We stress that since the party’s input and random-pad are now fized and known to
all parties, and since the entire execution takes place over a broadcast channel, all subsequent
actions of the aborting party are determined. Thus, there is no need to send actual messages
on its behalf. Each of the other parties may determine in solitude what these messages are.

and ¢
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Protocol emulation phase: The parties emulate the execution of the protocol I1 with respect to the
input and random-pads shared in the first phase. This will be done using a secure (in the first
malicious model) implementation of the authenticated-computation functionality of Eq. (3.17).

That is, Party i, which is supposed to send a message in II, plays the role of Party 1 in
Eq. (3.17) and the other parties play the other roles. The inputs o, r, 3 and the functions h, f,
for the functionality of Eq. (3.17), are set as follows:

o The string « is set to equal the concatenation of the party’s original input and its random-
pad, and the string r is set to be the concatenation of the corresponding randomizations
obtained by this party when playing the role of Party 1 in the n + c¢(n) corresponding
invocations of the Verifiable Secret Sharing scheme. The value h(a, 1) equals the concate-
nation of the second elements obtained by the other parties in these invocations; that is,
the commitment sequences E; ’s. Then

@ = (@)
r= ((p Zlaw) (P3, @), - (Pn+c(n)a n+c(n)))
h(a,r) = ( ( i) (p27 )7' C (pn+c(n)7 n+c(n)))
where C,,(o1 04,71+ 7¢) def Cn(o1,m1) - Cnloe,T0)-

Note that h indeed satisfies h(a,T) # h(a',r") for all a # o' and all 7,7".

e The string B is set to equal the concatenation of all previous messages sent (over the
broadcast channel) by all other parties.

o The function f is set to be the computation which determines the message to be sent in II.
Note that this message is computable in polynomial-time from the party’s input (denoted
x* above), its random-pad (denoted 1), and the previous messages posted so far (i.e., ).

As in the sharing phase, the inputs with which the other parties are to enter the authenticated-
computation functionality can be determined. Thus, in case the parties supply different values
for (h(a,r), ) the majority value — supported by the honest parties — is used.

Handling Abort: If a party aborts during the execution of this phase then the majority players
will recover its input and random-pad, and carry out the execution on its behalf. We note that
the completion of the sharing phase (and the definition of VSS) guarantee that the majority
player hold shares which yield the corresponding bits of the input and random-pad of any
party. Furthermore, the correct shares are verifiable by each of the other parties, and so
reconstruction of the initial secret is efficiently implementable whenever a majority of parties
wishes so. Also, by definition of the secure (in the first malicious model) implementation of
authenticated-computation, it follows that the parties are always in consensus as to whether the
emulated sender has aborted. In case it did, each honest party posts all the shares it has of bits
(either input of random-pad) of the emulated sender, and recovers using the shares posted by
other parties the input and random-pad of the emulated sender. Based on these, all subsequent
actions of the aborting party are determined. Thus, as before, there is no need to send actual
messages on its behalf. Each of the parties may determine in solitude what these messages are.

Outputs: At the end of the emulation phase, each party holds the corresponding output of the party
in protocol II. The party just locally outputs this value.
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We note that in the above we have somewhat modified the definition of VSS and of Eq. (3.17).
By the original formulation (following the conventions in Section 2.1), in case the functionality is
not defined for some input sequence, the output is defined as a sequence of 1’s. In the compiler
above we have adopted an alternative convention by which the input is “corrected” according to
some predetermined rule (e.g., majority vote was used above) to an input sequence for which the
functionality is defined. One can easily verify that this alternative definition of functionalities can
be securely implemented as well (in the semi-honest and first malicious models).

The abort-handling procedure of the protocol-emulation phase is described above as being im-
plemented by having each honest party reveal the (s;, p;) pair it has obtained in each VSS, and each
party reconstructing the secret bit by first checking the validity of the s;’s against the commitments
Cn(si, pi), and using the valid s;’s in the reconstruction. An alternative implementation amounts
to securely computing the recovery functionality associated with the above VSS; that is,

((3,0), (s2,02,€), ey (S, p2,€)) — (0,..,0) (3.23)

where the Lh.s of Eq. (3.23) is in the range of the VSS functionality applied to ((o,1™),1",...,1™).
In other words, o appears as output if there are ¢ = [m/2] values ¢;’s so that the s;; match the
corresponding commitments and ¢ = Ry, +((41, 84, ), .., (%, S5, )). Clearly, Eq. (3.23) can be securely
implemented in the first malicious model, but one may show that the natural implementation is also
secure in the second malicious model. (In the natural implementation we mean one which does not
abort the execution, unless more than m — ¢ parties abort.)

Comment: We stress that when one applies the two (multi-party) compilers one after the other,
the random-pad to which the second compiler refers is the one of the protocol for the first malicious
model (not the one of the original protocol of the semi-honest model). The random-pad of the
protocol compiled for the first malicious model includes the coins of the original protocol, the coins
generated by the precompiler (i.e., for selecting a public-key instance, and for running the encryption
and decryption algorithms), and the coins generated by the first compiler for the input-commit phase
and for the implementation of the various functionalities.

Another comment: Applying the two compilers one after the other is indeed wasteful. For
example, we enforce proper emulation (via the authenticated-computation functionality) twice; first
with respect to the semi-honest protocol, and next with respect to the protocol resulting from the
first compiler. Thus, the proper emulation of the action of the semi-honest protocol is enforced twice;
first with respect to the random-pad selected in the coin-generation phase of the first compiler, and
next with respect to the sharing of it. It follows that more efficient protocols for the second malicious
model could be derived by omitting the authenticated-computation protocols generated by the first
compiler. Similarly, one can omit the input-commit phase in the first compiler.

3.3.3.3 Analysis of the compiler

Our aim is to establish
Theorem 3.3.19 (Restating the second half of Theorem 3.3.1): Suppose that trapdoor permutation
exist. Then any m-ary functionality can be securely computable in the second malicious model (using

ounly point-to-point communication lines). Furthermore, security holds even if the adversary can read
all communication among honest players.
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As will be shown below, given a protocol as guaranteed by Theorem 3.3.12, the second compiler
produces a protocol which securely computes (in the second malicious model) the same functionality.
Thus, for any functionality f, the compiler transforms protocols for securely computing f in the
first malicious model (in the semi-honest model) into protocols for securely computing f in the
second malicious model. This suffices to establish Theorem 3.3.19, yet it does not say what the
compiler does when given an arbitrary protocol (i.e., one not provided by Theorem 3.3.12). In order
to analyze the action of the second compiler, in general, we introduce the following model which is a
hybrid of the semi-honest and the malicious models. We call this new model, the second-augmented
semi-honest model. Unlike the (first) augmented semi-honest model (used in the analysis of the first
compiler), the new model allows the dishonest party to select its random-pad arbitrarily, but does
not allow it to abort.

Definition 3.3.20 (the second-augmented semi-honest model): Let I be a multi-party protocol. A
coordinated strategy for parties I is admissible as a second-augmented semi-honest behavior (w.r.t II)
if the following holds.

Entering the execution: Depending on their initial inputs and in coordination with each other,
the parties in I may enter the execution with any input of their choice.

Selection of random-pad: Depending on the above and in coordination with each other, the par-
ties in I may set their random-pad arbitrarily.

Proper message transmission: In each step of I, depending on its view so far, the designated
(by II) party sends a message as instructed by II. We stress that the message is computed
as II instructs based on the party’s possibly modified input, and its random-pad selected above,
possibly not uniformly. That is, in case the party belongs to I we refer to its input and random-
pad as set above.

Output: At the end of the interaction, the parties in I produce outputs depending on their entire
view of the interaction. We stress that the view consists of their initial inputs, their choice of
random-pads, and all messages they received.

Intuitively, the compiler transforms any protocol II into a protocol IT" so that executions of II" in the
second malicious model correspond to executions of II in the second augmented semi-honest model.
That is,

Proposition 3.3.21 (general analysis of the second multi-party compiler): Let II' be the m-party
protocol produced by the compiler of Construction 3.3.18, when given the protocol II. Then, there
exists a polynomial-time computable transformation of of polynomial-size circuit families A into
polynomial-size circuit families B describing admissible behaviors (w.r.t I1) in the second-augmented
semi-honest model (of Definition 3.3.20) so that for every I C [m] with |I| < m/2

{REAL (1,5)(T)}z = {REALD (1,4)(T)}5

Proposition 3.3.21 will be applied to protocols which securely compute a functionality in the first
malicious model. As we shall see below, for such specific protocols, the second augmented semi-honest
model (of Definition 3.3.20) can be emulated by the second ideal malicious model (of Definition 3.1.5).
Thus, Theorem 3.3.19 will follow. We start by establishing Proposition 3.3.21.
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Proof Sketch: Given a circuit, A, representing an adversarial behavior (in the first malicious
model), we present a corresponding circuit, B, admissible w.r.t II for the second augmented semi-
honest model. We stress two points. Firstly, whereas A may abort some parties, the adversary
B may not do so (as per Definition 3.3.20). Secondly, we may assume that the number of parties
controlled by A (and thus by B) is less than m/2 (as nothing is required otherwise).

Machine B will use A as well as the ideal-model adversaries (as per Definition 3.1.2) derived
from the behavior of A in the various subprotocols invoked by II’. Furthermore, machine B will also
emulate the behavior of the trusted party in these ideal-model emulations (without communicating
with any trusted party — there is no trusted party in the augmented semi-honest model). Thus, the
following description contains again an implicit special-purpose composition theorem (see discussion
in the proof of Proposition 2.3.15).

Entering the execution and selecting a random-pad: B invokes A (on the very input sup-
plied to it), and decides with what input and random-pad to enter the execution of II. Towards
this end, machine B emulates execution of the sharing phase of II', using A (as subroutine).
Machine B supplies A with the messages it expects to see, thus emulating the honest parties
in IT', and obtains the messages sent by the parties in I (i.e., those controlled by A).

Specifically, B emulates the executions of the VSS protocol, in attempt to obtain the bits
shared by the parties in I. The emulation of each such VSS-execution is done by using the
malicious ideal-model adversary derived from (the real malicious adversary) A. We stress
that in accordance to the definition of VSS (i.e., security in the first malicious model), the
ideal-model adversary derived from A is in the first malicious model, and may abort some
parties. Note that (by Definitions 3.1.4 and 3.1.2) this may happen only if the initiator of
the VSS is dishonest. In case any of these executions initiated by some party aborts, all
input and random-pad bits of this party are set to the default value (as in the corresponding
abort-handling of IT"). Details follow.

e In an execution of VSS initiated by an honest party (i.e., in which an honest party plays
the role of Party 1 in VSS), machine B obtains the corresponding augmented shares
(available to I).!? Machine B will use an arbitrary value, say 0, as input for the current
emulation of the VSS (as the real value is unknown to B). Machine B derives the ideal-
model adversary, denoted A’, which emulates to the behavior of A — given the history so
far — in the corresponding execution of VSS (in II'). We stress that since the initiating
party of the VSS is honest, A’ cannot abort any party.

Invoking the ideal-model adversary A’, and emulating both the honest (ideal-model)
parties and the trusted party, machine B obtains the outputs of all parties (i.e., and in
particular the output of the initiating party). That is, machine B obtains the message
that the parties controlled by A’ would have sent to the trusted party (i-e., 1), emulate
the sending of message (0,1™) by the initiating party, and emulates the response of the
trusted oracle (i.e., uniformly selects p € {0,1}* and @, and computes the outputs as in
Eq. (3.19)—(3.22)).

Specifically, when emulating the j*® VSS initiated by Party 4, machine B generates and
records (pj—,wé), and concatenates the emulation of the VSS (i.e., the final view of the

parties in I as output by A’) to the history of the execution of A.

12 These will be used in the emulation of future message-transmission steps.
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e In an execution of VSS initiated by a party in I (i.e., a dishonest party plays the role
of Party 1 in VSS), machine B obtains the corresponding (input or random-pad) bit of
the initiator as well as randomization used in the commitment to it. As before, first B
derives the ideal-model adversary, denoted A’, which corresponds to the behavior of A —
given the history so far — in the corresponding execution of the VSS.

Suppose that we are currently emulating the j** instance of VSS initiating by Party i,
and the the j*® bit in the initial input/random-pad of Party i is 0. Then, B invokes A’
on input (¢,1"), and emulating both the honest (ideal-model) parties and the trusted
party, machine B obtains the outputs of all parties (including the commitment handed
to parties not in I). A key point is that machine B has obtained, while emulating the
trusted party, the input handed by A’ to the trusted party. This bit is recorded as the
70 bit of Party i.

In case the emulated machine did not abort the initiator, machine B records the above
bit as well as the randomization used by VSS in committing to it, and concatenates the
emulation of the VSS to the history of the execution of A.

If A aborts Party ¢ in any of the invocation of VSS (initiated by it) then the input and
random-pad of Party ¢ are set to the default value (as in I1"). Otherwise, they are defined
as the concatenation of the bits of Party 7, retrieved as above.

Thus, inputs and random-pads are determined for all parties in I, depending only on their
initial inputs. (All this is done before entering the execution of II.) Furthermore, the view of
machine A in the sharing phase of II' has been emulated, and the randomizations used in the
sharing of all values have been recorded by B. (It suffices to record the randomization used
by honest parties, and the commitments made by dishonest ones; these will be used in the
emulation of the message-transmission steps of II'.)

Subsequent steps — message transmission: Machine B now enters the execution of II (with
inputs and random-pads for I-parties as determined above). It proceeds in this real execution
of II, along with emulating the corresponding executions of the authenticated-computation
functionality of Eq. (3.17) (which are invoked in II").

In a message-transmission step by an honest party in II, machine B obtains from this honest
party (in the real execution of II) a message, and emulates an execution of the authenticated-
computation protocol resulting in this message as output. In a message-transmission step by
dishonest party in II, machine B computes the message to be sent as instructed by II, based
on the input and random-pad determined above, and the messages obtained so far (in IT). In
addition, B emulates an execution of the authenticated-computation protocol resulting in this
message as output. The emulation of each execution of the authenticated-computation proto-
col, which securely computes (in the first malicious model) the functionality Eq. (3.17), is done
by using the malicious ideal-model adversary derived from A. The fact that in these emulations
machine B also emulates the trusted party allows it to set the outcome of the authenticated-
computation protocol to fit the message being delivered. The fact that a (dishonest) party
may abort some parties in these emulations of II' does not effect the real execution of II (and
is merely reflected in the transcript of these emulations). Details follow.

e In a message-transmission step by a honest party in II, machine B first obtains from this
party (in the real execution of IT) a message, denoted msg. This completes all that is done
in this step w.r.t communication in II.
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Next, machine B proceeds in emulating the corresponding message-transmission subpro-
tocol of II'. Firstly, machine B derives the ideal-model adversary, denoted A’, which
corresponds to the behavior of A — given the history so far — in the corresponding ex-
ecution of the authenticated-computation protocol (executed by protocol II'). Invoking
the ideal-model adversary A’, and emulating both the honest (ideal-model) parties and
the trusted party, machine B sets the trusted-party reply to equal msg. When emulating
the initiator, machine B provides the trusted party with dummy values for the input and
random-pad but with correct values for the publically available values (i.e., the previous
message posted in the execution of II).

The emulation is carried out so to produce output msg which does not necessarily equal the
output of the authenticated-computation functionality of Eq. (3.17) on the corresponding
inputs. However, the machine A’ used in the emulation cannot distinguish the two cases
(since the inputs which it gets in the two cases — commitments to the values known only
to a honest party — are computationally indistinguishable). Finally, B concatenates the
emulation of the authenticated-computation protocol to the history of the execution of
A. (Note that since the initiator of the authenticated-computation subprotocol is honest,
abort is not possible here, by definition of the first ideal model.)

e In a message-transmission step by a dishonest party in II, machine B first computes
the message to be sent according to II. This message is computed based on the input
and random-pad determined (and recorded) above, and the messages received so far (in
execution of IT). Denote the resulting message by msg. Machine B completes the execution
of this step in II by posting msg on the channel.

Next, machine B proceeds in emulating the corresponding message-transmission subpro-
tocol of IT'. Firstly, machine B derives the ideal-model adversary, denoted A’. Invoking
A" and emulating both the honest (ideal-model) parties and the trusted party, machine B
produces an emulation of the corresponding execution of the authenticated-computation
protocol.

By our new convention regarding inputs presented to this protocol, it follows that this
emulation either produces the very message msg or aborts the sender. In the latter case, we
emulate the abort-handling procedure of IT’. In both cases, B concatenates the emulation
of the authenticated-computation protocol (and possibly also the abort-handling) to the
history of the execution of A.

Note that each message-transmission step is implemented in polynomial-time. Each message
posted is computed exactly as instructed by II. (We stress again that the emulations of aborting
in IT" have no effect on the execution of B in II.)

Output: Machine B just outputs whatever machine A outputs given the execution history composed
(emulated) as above.

Clearly, machine B (described above) implements a second-augmented semi-honest behavior with
respect to II. It is left to show that

{REALI (1,4)(T)}7 = {REALn (1,5)(T) }= (3.24)

There are two differences between the two ensembles referred to in Eq. (3.24):
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L. In the first distribution (i.e., REALy (a,7)(T)), secure (in first malicious model) protocols im-
plementing VSS and authenticated-computation (of Eq. (3.19)—(3.22) and Eq. (3.17), respec-
tively) are executed; whereas in the second distribution (i.e., REALy (g, 1)(Z)) these executions
are emulated using the corresponding ideal-model adversaries.

2. The emulation of Eq. (3.17) in REAL (g, 1)(T) is performed with a potentially wrong input.

However, these differences are computationally indistinguishable, as shown in the analogous part of
the proof of Proposition 2.3.15. W

Proof of Theorem 3.3.19: Given an m-ary functionality f, let II be an m-party protocol, as
guaranteed by Theorem 3.3.12, for securely computing f in the first malicious model. (Actually,
we need merely a protocol operating in the broadcast channel communication model.) We now
apply the compiler of Construction 3.3.18 to II and derive a protocol IT'. By Proposition 3.3.21, any
polynomial-size circuit family A can be efficiently transformed into a polynomial-size circuit family
B describing admissible behavior (w.r.t IT) in the second-augmented semi-honest model so that for
every I C [m] with |I| < m/2

{REALr (1,4)(T)}7 = {REAL,(1,5)(T)}7 (3.25)

Note that B represents a benign form of adversarial behavior which is certainly allowed by the
first malicious model.!> Thus, by the guarantee regarding II, the circuit family B can be efficiently
transformed into a polynomial-size circuit family C' describing an adversary in the first ideal model
so that for every I C [m)]

{REALp (1,5)(T)}7 = {IDEAL(l)f,(I,C)(j)}E (3.26)

Note that since B does not abort any of the parties (as it operates in the second-augmented semi-
honest model), neither does C. Thus, for this C, the first ideal model is equivalent to the second
(i.e., IDEAL(l)ﬂ(LC)(E) = IDEAL(Z)“LC)(E)). Combining all the above, we get (for every I C [m]
with |I] < m/2),

{(rEALY (1 ) (@) )5 = {i0eaL®) ) o) @))5 (3.27)
We are almost done. The only problem is that II" operates in the single broadcast channel communi-
cation model. This problem is resolved by the postcompiler mentioned in Section 3.3.1. Specifically,

we implement the broadcast channel over the point-to-point communication model using (authenti-
cated) Byzantine Agreement (cf., Construction 3.3.3).

13 The malicious behavior of B amounts to replacing inputs and selecting a random-pad arbitrarily, rather than
uniformly. Otherwise, B follows the protocol II.
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Chapter 4

Extensions and Notes

This chapter is still in the process of writing, and the following should be considered merely as
fragments.

4.1 Reactive systems

The main results of the previous chapters can be extended to reactive systems in which each party
interacts with a high-level process (or application). The high-level process supplies each party with
a sequence of inputs, one at a time, and expect to receive from the party corresponding outputs.
That is, a reactive system goes through (an unbounded number of) iterations of the following type

e Parties are given inputs for the current iteration. We denote the input given to Party ¢ in
(4)

it

iteration j by x

e Depending on the current inputs, the parties are supposed to compute outputs for the current
iteration. That is, the outputs in iteration j are determined by the inputs of the j*" iteration
(4)

(i-e., the z;”"’s for all ’s).

Arguably, a more general reactive system is one in which the outputs of the j** iteration may depend
also on previous iterations. In particular, one may require that the outputs of the 5" iteration depend
on the inputs of the ;' iteration, as well as the outputs of all previous iterations. A more flexible
and general way of casting a reactive system is to explicitly introduce a global state, and assert
that each iteration of the system depends on the global state and the current inputs, while possibly
updating the global state. (The global state may include all past inputs and outputs.) Thus, we
view reactive systems as iterating the following steps

e Parties are given inputs for the current iteration (i.e., again, in the j'® iteration Party i is
given input CCEJ)). In addition, there is a global state: The global state at the beginning of the
j* iteration is denoted s(7).

e Depending on the current inputs and the global state, the parties are supposed to compute
outputs for the current iteration as well as update the global state. That is, the outputs in

Ej)’s, for all #’s, and s/). The new global state, s7+1) s

iteration j are determined by the x
determined similarly (i.e., also based on #'7)’s and s()).
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But who is to “hold” the global state? As our aim is secure computations, we do not want the global
state to be held by any single party. Instead, the global state will be held by all of the parties, in a
“secret sharing” manner. Thus, we need to modify the above exposition a little. In each iteration,
each party will start with two inputs and end with two outputs: The first input (resp., output) is
the outside input (resp., output) of the current iteration, whereas the second input (resp., output)
is the party’s share in the starting (resp., ending) global state. Thus, we review reactive systems
(for the third time), this time as iterating the following

e Parties are given inputs for the current iteration, as well as shares in the current global state.

That is, the j*P iteration starts when each Party i is given the outside input ng) and holds
(9)

i

share in the global state. The latter share is denoted s

e Depending on the current inputs and (the shares of) the global state, the parties are supposed
to compute outputs for the current iteration as well as the (shares of the) new global state.
That is, Party ¢ obtains an output to be handed to the outside as well as an updated share,
s§j+1), in an updated global state. (We stress that the computation conducted in the ;%

() ()

: )

i 25

iteration depends only on the values (z i=1,..,m")

This brings the problem of secure reactive computation quite close to the domain of problems dis-
cussed in previous chapters, except that it is not clear what happens if a malicious party corrupts its
share in the global state. To overcome the problem we should specify an error correcting mechanism
for the shares of the global state. This mechanism should be part of the functionality underlying
the computation in each iteration. Details follow.

The actual definition. We start by defining functionalities which capture the second point of
view described above. Such functionalities, referred to as idealized reactive functionalities captured
the mapping of m inputs and one global state into corresponding outputs and a new global state.
That is, an idealized reactive m-party functionality is a randomized process mapping (m + 1)-ary
tuples to (m + 1)-ary tuples, where the last element in each tuple corresponds to the global state.
Let f be such a functionality, then the iterative process defined by f should be clear from the above
discussion.!

In order to define the actual reactive functionality, we specify a randomized sharing process,
denoted share, and an error-correcting recovery process, denoted reconst. A minimalistic requirement
from these processes is that reconst(share(s)) = s holds for every s. In general, we will employ a
sharing/reconstruction process which has an error correction guarantee corresponding to the one
employed by Secret Sharing schemes. Actually, if we employ a sharing process as in a Verifiable Secret
Sharing (see Section 3.3.3.1) then the reconstruction process is straightforward (since commitments
to each share are public knowledge, as per Definition 3.3.16). For simplicity, we just adopt this
convention (i.e., sharing via VSS and reconstructing in the obvious way). Thus, employing a (¢, m)-
VSS we have for every (si,...,S,,) in the range of share(:) and every (s},...,s!,) so that [{i : s, =
sit| > t,

reconst(s},...,s! ) =s (4.1)

Y ¥m

L Starting with a (possibly empty) initial global state, s the iterations are as follows: In the 5B iteration, each

.. . j . . def j j . .
Party 7 is handed an input, :EEJ), and hands back the i*? element in = f(azg]), ...,wg]), S(])). The global state in the
end of the 5 iteration (which serves as the start state for the next iteration; i.e., the state s(j+1)) is the last element
of 7.
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Given a (t,m)-VSS as above, we define for every idealized functionality f, a corresponding reactive
m-party functionality, denoted f’, with threshold ¢. Intuitively, f’ is an m-ary functionality which
takes m pairs, each being an outside input and a share of a global state, and generates m pairs, each
being an outside output and a share of a new global state: f' first reconstructs the global state, then
applies f to the outside inputs and the global state deriving outputs and a new global state, and
finally generates shares for the new global state. That is, for every input-sequence zy, ..., ,, every
global state s, and every (s}, ...,s!,) so that at least ¢ of the s} match the corresponding elements of
share(s),

def

fl((.Tl,S;_),...,(.Z‘m,S:n)) = ((y1,21),---,(ym,2m)) ) where (42)
(Y1 ey Ym»2)  —  f(T1,.0r, T, reconst(sy, ..., sh.)) and 4.3
(21, .y 2m) <« share(z) (4.4)

Interpreting the results. By the results of Chapter 3, the above reactive m-party functionality
is securely computable in the two malicious models (as well as in the semi-honest model).> Thus,
we conclude that any reactive computation can be conducted securely in each of the following three
models:

1. A semi-honest model in which any subset may collude (even when the colluding parties are in
majority). (Here we use a reactive m-party functionality with threshold m, a corresponding
Secret Sharing scheme,® and invoke Theorem 3.2.10.)

2. A malicious model in which the honest parties are in majority. (Here we use a reactive m-party
functionality with threshold [m/2], a corresponding VSS, and invoke Theorem 3.3.19.)

3. A malicious model in which the honest parties may be in minority, but abort is not considered
a violation of security. (Here we use a reactive m-party functionality with threshold m, a
corresponding VSS, and invoke Theorem 3.3.12.)

(We comment that deriving secure reactive systems via an oblivious invocation of the above theorems
is somewhat wasteful, since the sharing and reconstruction processes are done in the protocols
produced by these theorems and so defining the reactive functionality is doing so will amount to
doing sharing/reconstruction twice.)

4.2 Perfect security in the private channels model

As shown in Chapter 3, general secure multi-party computation is achievable provided that trapdoor
permutations exist. It can be easily shown that the general results regarding the first malicious
model (i.e., Theorem 3.3.12) imply the existence of one-way functions, and so some computational
assumption is (currently) necessary in obtaining them. The same holds for the result regarding two-
party computation, even in the semi-honest model.* However, the results regarding honest majority
(i.e., Theorem 3.3.19) do not seem to imply the existence of one-way functions. Thus, the focus of
this section is on what can be achieved without making computational assumptions.

2 Recall that the results for the first malicious model (as well as for the semi-honest model) generalize the results
presented in Chapter 2 for the case m = 2.

3 There is no need to use VSS here.

4 For example, a private implementation of the Oblivious Transfer functionality implies the existence of one-way
functions.
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Moving away from computational assumptions requires and allows some changes in the model.
Firstly, we can no longer say (as said in Section 3.1) that a model in which adversaries can tap the
communication lines between honest parties is equivalent to one in which this is not allowed (or
considered): We do not know how to emulate private channels on insecure ones without using an
initial set-up (such as shared one-time pads per each pair of parties) or computational assumptions.
Thus, to allow any non-trivial result we must assume the existence of private channels between pairs
of parties. But making such an assumption and refraining from the use tools which provide only
computational security, we may aim at a higher level of security — specifically, perfect (or almost-
perfect) security. That is, in definitions such as Definitions 3.1.1, 3.1.4 and 3.1.6, we may replace
the requirement that the relevant ensembles are computationally indistinguishable by requiring that
they are statistically indistinguishable (or even identically distributed). Actually, in the malicious
models, one may even allow the adversaries to be computationally unbounded (i.e., be arbitrary
circuit families), but still insist that adversaries for the real model be efficiently transformed into
adversaries for the ideal model.

Main Results: We assume that honest parties are in majority, and that the adversaries cannot
tap the communication lines between the honest parties (i.e., “private channels”). We make no
computational assumptions and our notions of privacy and security are information theoretic (as
explained above). The main results are

1. Any m-party functionality can be privately computed in the semi-honest model (provided that
more than m parties are honest).

2. Any m-party functionality can be securely computed (in the second malicious model), provided
that more than 2m parties are honest.

Postulating also the existence of a broadcast channel (on top of the private point-to-point channels),
one can show that any m-party functionality can be securely computed (in the second malicious
model), provided that more than %m parties are honest [62]. We note that the extra assumption is
necessary since the broadcast functionality cannot be securely computed in a malicious model where
m /3 parties are faulty (and computationally unbounded).

Additional Results: We comment that few functions can be privately computed (in the private
channel model) also when the honest parties are not in majority. In case of Boolean function these
are exactly the m-ary functions which can be written as the XOR of m predicates, each applied to a
single argument [24].

4.3 Other models

Author's Note: Write about mobile adversaries, and adaptive security

Author's Note: Other settings include asynchronous, incoercible.

4.4 Other concerns

Author's Note: Number of rounds [72, 5, 54].

Author's Note: relative fairness in case of dishonest majority...
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4.5 Bibliographic Notes

Main sources. The main results presented in this manuscript are due to Yao [72] and Goldreich,
Micali and Wigderson [44, 45], treating two-party and multi-party, respectively. The chronological
order is as follows. In the first paper by Goldreich et. al. [44], it was shown how to construct zero-
knowledge proofs for any NP-assertion. The conference version of [44] also provided a rough sketch
of the compilation of protocols for the semi-honest model into protocols for the malicious model,
by “forcing” malicious parties to behave in a semi-honest manner. Assuming the intractability of
factoring, Yao’s paper [72] asserts the existence of secure protocols for computing any two-party
functionality (i.e., Theorem 2.3.1 above). The details of Yao’s construction are taken from oral
presentations of his work. Finally, the construction of protocols for the semi-honest model (i.e.,
Theorem 3.2.10 above) is due to the second paper of Goldreich et. al. [45]. Thus, Theorem 3.3.1 is
obtained by combining [44, 45].

Our presentation reverses the actual order in which all these results were discovered: Firstly, our
treatment of the two-party case is derived, via some degeneration, from the treatment of the multi-
party case. Secondly, we start by treating the semi-honest models, and only next compile protocols
for this protocol into protocols for the (“full-fledged”) malicious models. We note that our treatment
is essentially symmetric, whereas Yao’s original treatment of the two-party case [72] is asymmetric
(with respect to the two parties). The latter asymmetry has its own merits as demonstrated in [5, 59].

In constructing protocols for the semi-honest models, we follows the framework of Goldreich,
Micali and Wigderson [45], while adapting important simplifications due to Haber and Micali
(priv. comm., 1986) and Goldreich and Vainish [47]. In particular, Haber and Micali suggested
to consider arithmetic circuits over GF(2) rather than the (awkward) straight-line programs over
permutation groups considered in [45].5 The reduction of the private computation of the (multi-
party) multiplication gate emulation to OT] is due to [47]; in [45] the former was “implemented”
by invoking Yao’s general secure two-party computation result.

In presenting the “semi-honest to malicious” compilers (or the paradigm of “forcing” semi-honest
behavior), we follow the outline provided in [44, FOCS Ver., Sec. 4] and [45, Sec. 5]. The fundamental
role of zero-knowledge proofs for any NP-assertion, coin-tossing-into-the-well, and verifiable secret
sharing in these compilers has been noted in both sources.” Otherwise, both sources are highly terse
regarding these compilers and their analysis. Most of the current text is devoted to filling up the
missing details.

Tools. A variety of cryptographic tools is used in establishing the main results of this manuscript.
Firstly, we mention the prominent role of Oblivious Transfer in the protocols developed for the semi-
honest model.® An Oblivious Transfer was first suggested by Rabin [61], but our actual definition
and implementation follow the ideas of Even, Goldreich and Lempel [32] (as further developed in
the proceedings version of [44]).

Several ingredients play a major role in the compilation of protocols secure in the semi-honest
model into generally secure protocols (for the malicious models). These include zero-knowledge (ZK)

5 The reason that this strange computation model was used in [45] has to do with preliminary stages of their
research. In general, too little thought was put into the writing of [45], and this specific technical oversight is
symptomatic.

6 Indeed, this brute-force solution of [45] is also indicative of the little thought put into the writing of [45].

7 The fundamental role of (zero-knowledge) proofs-of-knowledge is not mentioned in the above sources, but was
known to the authors at the time. Some indication to this fact can be derived from [25].

8 This is true also for the original two-party solution of Yao [72]. Subsequent results, by Kilian [53] further
demonstrate the importance of Oblivious Transfer in this context.
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proofs and proofs-of-knowledge (POK), commitment schemes, verifiable secret sharing (VSS), and
secure coin-flipping.

Commitment — Commitment schemes are implicit in [11] (and later papers such as [44]). It seems
that an explicit definition was first given in [57], which shows how to construct such schemes
based on and one-way functions. The construction of commitment schemes based on 1-1 one-
way functions is folklore (cf., [38]). The latter construction suffices for the current text, which
anyhow assumes the existence of trapdoor permutations.

Coin-flipping — The notion of coin-flipping-into-the-well was introduced and implemented by Blum [11].
We follow him in our presentation of the vanilla versions (i.e., Definition 2.3.2 and Construc-
tion 2.3.3).

ZK — Zero-knowledge proof systems were introduced by Goldwasser, Micali and Rackoff [51]. The
construction of zero-knowledge proofs for any NP-assertion is due to Goldreich, Micali and
Wigderson [44]. Such proofs are the key-stone of the “forcing” paradigm, which in turn un-
derlies the construction of the “semi-honest to malicious” compilers.

POK — The concept of a proof-of-knowledge was introduced in [51], and a satisfactory definition
was provided in [6]. It is folklore that all known zero-knowledge proofs for NP are actually
proofs-of-knowledge of the NP-witness. To simplify the exposition, we have introduced here
the notion of strong proofs-of-knowledge, and observed that some known zero-knowledge proofs
for NP are actually strong proofs-of-knowledge of the NP-witness.

VSS — Verifiable Secret Sharing was introduced by Chor, Goldwasser, Micali and Awerbuch [23],
as an enhancement of Shamir’s notion of secret sharing [67]. A relaxed notion with secrecy
threshold far below the recovery threshold was implemented in [23], based on specific com-
putational number theoretic assumptions. VSS with a single (arbitrary) threshold was first
implemented in [44] (by a direct application of the “forcing” paradigm).

In addition, we also used secure public-key encryption schemes, as defined by Goldwasser and Mi-
cali [50] and implemented based on any trapdoor permutation in [50, 70] (see also [12]), and signa-
ture schemes as defined in [52] and implemented based on any trapdoor permutation in [7] (see also
52, 58, 65]).

Other settings. The material in Section 4.1 is based on a terse high-level discussion in [45].

The material in Section 4.2 (i.e., perfect security in the private channels model) is based mainly
on [9, 22]. In particular, these papers were the first to obtain general secure multi-party computation
without making computational assumptions. In fact, an alternative exposition to ours could have
been provided by first presenting results for the private channels model (with or without broadcast),
and next compiling these results to a standard point-to-point network by using encryption (to
emulate private channels) and possibly signatures (to emulate broadcast). We stress that the latter
refers only to multi-party computations with honest majority.

Author's Note: Credits for section 4.3 include — mobile adversaries [60], asynchronous [§],
adaptive [4, 18], incoercible [19].

Author's Note: Credits for section 4.4 include — discussion of number of rounds [72, 5]
and fairness [3, 49].
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Definitional treatments. Our definitions follow the treatments of [49, 56, 2, 14, 15, 16], and are
most similar to those in [14, 15, 16]. From our point of view, which is focused on the constructions
(i-e., the protocols and their proof of security), these alternative definitional treatments are quite
similar. However, the reader is warned that, from a definitional point of view, [49, 56, 2, 14, 16]
offer quite different perspectives (alas all very appealing). Contrary to the opinion of some of the
authors of [49, 56, 2, 14, 16], we do not believe that there exists one CORRECT definitional approach
to this complex issue of defining secure multi-party computation. The fact that two appealing and
yet fundamentally incomparable notions of security were presented for m-party computations, with
m > 2, should serve as a warning.

4.6 Differences among the various versions

The first version of this manuscript was made public on June 11th 1998. In doing so, we chose
to make publically available a working draft which may have some errors, rather than wait till the
draft undergoes sufficiently many passes of critical reading. Subsequently, we have posted several
revisions of the above, where each revision was given a version number. The first version is thus
(retroactively) referred to as Version 1.0, and the current version is Version 1.4.

First revision (Version 1.1): In Version 1.0, it was claimed that the “simulator-based” definition
of privately computing is equivalent to the definition derived under the “ideal-vs-real” paradigm (cf.,
Proposition 2.1.3). This claim does hold for the computation of deterministic functionalities, but
may fail for randomized ones, unless one augments the “simulator-based” definition as done in this
version. All constructions proven (in Version 1.0) to privately compute a randomized functionality
under the weaker definition, do satisfy also the stonger definition (as shown in this version).

Second revision (Version 1.2): Correcting a minor error in Definition 2.1.1, and clarifying a
couple of points.

Third revision (Version 1.3): The original description of Step C1.3 in Construction 3.3.6 is
wrong. (This was mainly due to careless extension of the two-party case and is easily corrected.)
For the time being, we just explain the error and how to correct it.

Current revision (Version 1.4, Final): Pointing out two additional flaws in the original expo-

sition. Firstly, as explained in [55], the postcompiler (of Sec. 3.3.1) needs to use session-indentifiers

in its invocations of authentiacted Byzantine Agreement. Secondly, the implementation of Oblivious

Transfer (and all subsequent results) seem to required an enhanced notion of trapdoor permutations.
For better presentation, the reader is referred to [40, Chap. 7].
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