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1 IntroductionThe power of randomness in computation is amajor issue in all aspects of computer-science,and is yet to be fully understood. There aremany cases in which there are tremendous gapsbetween the complexities, or even possibili-ties of deterministic and randomized computa-tions (e.g. routing [BH,V], Byzantine agree-ments [FLP,B,FL,FM], Communication Com-plexity [Y2,PS,MS]).A method of `smoothing' these gaps is tomeasure the `quantity of randomization' ofan algorithm, thus substituting the qualitativequestion \Is the algorithm deterministic or ran-domized?" by the quantitative question \Howmuch randomization does the algorithm use?".A standard method for quantifying randomiza-tion is measuring the size of the sample-space,or in other words the length of the random in-put. We initiate a quantitative study of ran-domness in a computationally simple model:Communication Complexity.The communication complexity of a functionf , as de�ned by Yao [Y2], measures the mini-mum number of bits that have to be transferedbetween two parties in order to compute f(x; y),when one party has x and the other has y.Although for most functions randomizationdoes not help [AFR], a tremendous gap be-tween the two models of computation exists forsome functions. For instance, Yao [Y2] showedthat n bits of communication are needed in or-1



der to deterministically compute the identityfunction (ID(x; y) = 1 i� x = y), and Paturiand Simon [PS] showed a randomized protocolthat uses only two bits of communication andcomputes ID (with probability greater than 12).In view of these gaps between the commu-nication complexities of deterministic and ran-domized protocols, this model seems to be aconvenient test-�eld for a quantitative investi-gation of the power of randomness in computa-tion.We show a tradeo� between the amount ofrandomness required by a protocol for com-puting a function, and the number of bits ex-changed by the parties while executing the pro-tocol. This tradeo� may be interpreted in twoalternative ways. One interpretation is as alower bound on the number of bits exchangedby parties using a speci�c number of coin-tosses(namely as a lower bound on the communica-tion complexity of a function, depending on thelength of the random input). The other inter-pretation (which is used in this paper) is as alower bound on the number of coin-tosses usedby a protocol as a function of the number ofbits exchanged. It can be seen that the lowerbound on the number of coin-tosses used in theprotocol increases gradually from zero up to amaximum value (which is at most n), as thegiven number of bits exchanged decreases fromthe deterministic communication complexity ofthe function to the randomized one.We consider the following variants of themodel: the communication may be one-way,or two-way (with any number of rounds), andthe random input may be shared by both par-ties, or split into two parts, each available toone party only. Other parameters consideredare the deterministic communication complex-ity of the function being computed, and the ad-vantage over 12 achieved by the protocol. Thebounds hold for any protocol that computes afunction with probability greater than 12 anddoes not depend heavily on the advantage over

12 achieved by the protocol.The tradeo� is tight in all these models andfor all possible values of the deterministic com-munication complexity. We construct a se-quence of functions that cover the range of allpossible deterministic communication complex-ities. For each function, computation modeland a given number of bits to be exchanged, weshow a protocol that meets the correspondinglower bound up to a multiplicative constant.A tradeo� between randomness and commu-nication complexity was independently investi-gated by [FJM]. They consider the expectedcommunication complexity of `Las Vegas' pro-tocols (i.e., no error allowed, as opposed toour `Monte Carlo' model), in the two-way, lo-cal coins model. In their setting, they show atight tradeo� similar to the one presented inthis paper1.Note that a quantitative study of randomnesswas carried out in the context of oblivious rout-ing [KR,KPU], and for cashing algorithms [RS].Organization. In section 2 we de�ne themodels and the parameters to be discussed.Section 3 contains the lower bounds for the fourmodels. In section 4 we present functions andprotocols for these functions that demonstratethe tightness of the bounds. Finally, we usean observation of Babai and Newman [BN] toshow that the number of coin-tosses used in anyprotocol can be reduced up to a value depend-ing only on the advantage over 12 achieved bythe protocol.2 PreliminariesLet f : f0; 1gn�f0; 1gn ! f0; 1g and let P1 andP2 be two parties having inputs x; y 2 f0; 1gnrespectively, and communicating according to1In fact, the lower bounds of [FJM] can be derived,up to an additive constant, from the bound presented inpart (b) of Theorem 2 below. (They consider the rangeof more than pn bits exchanged, where n is the inputlength.)



a randomized protocol � in order to computef(x; y). Denote the output of the protocol oninput x; y as �(x; y). (Namely, �(x; y) is a ran-dom variable determined by the coin tosses of�.)Consider the following two parameters.� The communication may be one-way ortwo-way. In the one-way model, party P1sends a message to P2, and party P2 decideson the output. In the two-way model, theparties take turns on sending messages, un-til a party sends a special symbol `halt' andoutputs the protocol answer. (We assumethat the messages transfered between theparties are pre�x-free.)� The coins tosses used in the protocol maybe local or shared. The outcome of a lo-cal coin is known only to the party toss-ing it, while the outcome of a shared coinis known to both parties without need ofcommunication.Clearly, local coins can be emulated by sharedcoins (and a one-way protocol is a special caseof a two-way protocol).In the shared coins models, let r� denote thenumber of coin-tosses used during the executionof � on the worst input pair:r� def= maxx;y2f0;1gn r�(x; y);where r�(x; y) is the number of coin tosses in �on input (x; y). In the local coins models let r1�(r2�) denote the number of coin-tosses used byP1 (P2) during the execution of � on the worstinput pair.A protocol � computes a function f with ad-vantage �� if �� > 0, where�� = minx;y2f0;1gnProb(�(x; y) = f(x; y))� 12 :(The probability is taken over the coin tosses of�.)

Letm� def= maxx;y2f0;1gn;r2f0;1gr�(x;y) m�(x; y; r);where m�(x; y; r) is the number of bits trans-fered in protocol � on input x; y and coin-tossesr. In order to measure the tightness of thebounds we use the following notation. LetRm;�(f) (Rim;�(f), for i 2 f1; 2g) denote theminimum of r� (ri�) over all protocols � thatcompute f with advantage at least �, using uptom communication-bits (namelym� � m, and�� � �).De�ne the one-way (two-way) determinis-tic communication complexity of a function f ,denoted as C1!2D (f) (C1*)2D (f)), as the mini-mum of m� over all deterministic one-way (two-way) protocols � that compute f . (Note thatC1!2D (f) is the logarithm of the number of dis-tinct rows in the matrix representation of f .2)A function is non-degenerate if all the rows(columns) in the matrix representation of f aredistinct. For simplicity of presentation we con-sider only non-degenerate functions. However,the following discussion can be easily extendedto all f .In the sequel x̂ will denote the integer thatthe binary representation of which is x, ande 2R D will denote that element e is chosenat random from domain D, with uniform prob-ability distribution.3 Lower boundsWe show lower bounds on Rm;�(f), in the dif-ferent models of computation. The proofs ofthe bounds use either combinatorial arguments(counting the number of vectors of a particulartype), or simulations (of a randomized protocolby a deterministic one).Table 1 contains the bounds for the four mod-els.2All the logarithms in this paper are of base 2.



Table 1: A summary of the boundsone-way two-waylocal coins R1m;�(f) � n2m � 1 Rim;�(f) � n2m � 1; i = 1; 2R1m;�(f) � log � n(1��=2)m� R1m;�(f) + R2m;�(f) � log C1*)2D (f)m �11�2� !shared coins Rm;�(f) � log � nm�11�2�� Rm;�(f) � log C1*)2D (f)m �11�2� !Rm;�(f) � log � n2m��m�3.1 The one-way, local coins modelTheorem 1 Let f : f0; 1gn � f0; 1gn ! f0; 1gbe a non-degenerate function, and let � be aone-way, local coins protocol that computes fwith advantage �. Then,�2r1�+2m��12r1� �� �22r1�+2m��1�22r1� � � 2n: (1)Approximating (1), we derive the followingtwo inequalities, which hold simultaneously:(a) r1� � n2m� � 1(b) r1� � log( n(1��=2)m� ):The �rst inequality is stronger for 0 < m� <logn � log logn, and the second for logn <m� < n :Proof. Consider an enumeration of all possible(up to 2m� ) messages. Let pxi denote the proba-bility that party P1 sends the i-th message (de-noted as msgi) on input x, and qyi the probabil-ity that P2, on input y and having receivedmsgifrom P1, outputs 1. Let ~px def= (px1 � � �px2m� ) and~qy def= (qy1 � � �qy2m� ). Then, Prob(�(x; y) = 1) =P2m�i=1 pxi � qyi .Consider two di�erent inputs x; x0 2 f0; 1gn.Since f is non-degenerate, there exists y suchthat f(x; y) 6= f(x0; y). Since � computes f ,we have that

jProb(�(x; y) = 1)�Prob(�(x0; y) = 1) j� 2�.Since 0 � pxi ; qyi � 1, we have~px � ~px0 def= P2m�i=1 j pxi � px0i j �� jP2m�i=1 pxi � qyi �P2m�i=1 px0i � qyi j � 2�:Thus, the protocol implies the existence of 2ndistinct vectors ~px such that for every x; x0, wehave ~px � ~px0 � 2�.However, since party P1 tosses only r1� coins,each probability pxi may be assigned only 2r1�+1di�erent values: fi � 2�r1� j0 � i � 2r1�g. More-over,we have P2m�i=1 pxi = 1. Thus, the numberof distinct such vectors is at most the numberof possibilities to partition 2r1� elements among2m� cells, namely �2r1�+2m��12r1� �.We estimate the maximum size of a set Sof probability vectors satisfying for each pair~p � ~p0 � 2�, in the following way. For every suchvector ~p, the number of vectors ~p0 such that~p � ~p0 < � is at least the number of possibili-ties to partition �22r� elements among 2m� cells,namely � �22r1�+2m��1�22r1� �. Thus, for every proba-bility vector (out of the �2r1�+2m��12r1� � possible)appearing in set S, there exist � �22r1�+2m��1�22r1� � dis-tinct vectors that may not appear in S. TheTheorem follows. 2Note that there is no bound on r2�, as willbecome clear in section 4.1.1.



3.2 The two-way, local coins modelTheorem 2 Let f : f0; 1gn � f0; 1gn ! f0; 1gbe a non-degenerate function, and let � be atwo-way, local coins protocol that computes fwith advantage �. Then the following inequali-ties hold simultaneously:(a) ri� � n2m� � 1 for i 2 f1; 2g(b) r1� + r2� � log C1*)2D (f)m� �11�2� !Proof. Part (a). Consider a conversation,con = u1 � v1 � : : : uk � vk, between the partieswhere uj is the message sent by P1 in round jof the conversation, vj is the subsequent mes-sage of P2, and k is the number of rounds.(The parsing is unique since the messages arepre�x-free.) Let pxj (con) denote the probabilitythat P1 sends uj on input x, if the conversa-tion was the corresponding pre�x of con, and letpx(con) def= Qkj=1 pxj (con). Consider an enumer-ation of all the (up to 2m�) conversations, andlet ~px def= (px(con1) : : :px(con2m� )). Let qy(con)and ~qy be similarly de�ned, with respect to P2.Let Cx;y1 be the set containing all the conver-sations after which the output of the protocol,on input x; y, is 1. Thus, Prob(�(x; y) = 1) =Pcon2Cx;y1 px(con) � qy(con).Following the lines of the proof of Theorem1, we conclude that there exist 2n distinct suchvectors. However, since each element in the vec-tor ~px (~qy) may be assigned only 2r1�+1 (2r2�+1)di�erent values, there exist at most (2r1�+1)2m�distinct such vectors ~px, and at most (2r2�+1)2m�distinct vectors ~qy. Part (a) follows.Part (b). This inequality is derived from thepossibility to simulate a randomized protocol� by a deterministic one, going over the coin-tosses of �. Note that it is su�cient to go overmore than a (1� 2�)-fraction of the coin-tossesof �. 2

3.3 The shared coins modelsTheorem 3 Let f : f0; 1gn � f0; 1gn ! f0; 1gbe a non-degenerate function, and let � be aone-way, shared coins protocol that computes fwith advantage �. Then,r� � log nm� � 11� 2� !Proof. The proof uses the same simulationtechnique as in part (b) of Theorem 2. How-ever, here the resulting deterministic protocolis one-way, and C1!2D (f) = n. 2(A similar result is achieved using a combinato-rial argument.)Theorem 4 Let f : f0; 1gn � f0; 1gn ! f0; 1gbe a non-degenerate function, and let � be atwo-way, shared coins protocol that computes fwith advantage �. Then the following inequali-ties hold simultaneously.(a) r� � log C1*)2D (f)m� �11�2� !(b) 22m�+r�2m��2r� ( 2r��2r�) � 2n:Part (b) yields (after approximation),r� � log� n2m� � ��m�� :Note that the �rst bound is stronger for smallervalues of r�, and the second for larger values ofr�. The crossing point of the bounds is deter-mined by C1*)2D (f).Proof. Part (a) is identical to part (b) in theproof of Theorem 2.Part (b). Consider a conversation con =u1 � v1 � : : : uk � vk, between the parties. Letpxr(con) denote if P1 `is willing to go along'con, on input x and coin-tosses r. Namely,pxr(con) = 1 if on input x and coin-tosses r andfor every j, party P1 sends uj if the conversationis the corresponding pre�x of con. Otherwise,pxr(con) = 0. Consider an enumeration of all



the possible conversations and coin-tosses andlet Mx be the 2r� � 2m� boolean matrix whereMxi;j = pxrj (coni). Clearly, for every two distinctrows x; x0 in the function table, the correspond-ing matrices Mx;Mx0 di�er by at least 2�2r�rows.However, there are only 22m� �2r� distinct suchmatrices M . Moreover, the number of distinctmatrices that di�er from a given matrix by atmost �2r� rows is at least 2m��2r� � 2r��2r��. Part (b)follows. 24 ProtocolsWe demonstrate the tightness of our lowerbounds (summarized in Table 1) by showingprotocols for non-degenerate functions. We dothis separately for the one-way and the two-waycases.4.1 Tightness of the bounds for one-way communicationThe tightness of the bounds for the one-waycases is demonstrated by showing two familiesof one-way protocols for the identity function(i.e. ID(x; y) = 1 i� x = y), one in the localcoins model and the other in the shared coinsmodel. Both families consist of protocols pa-rameterized by the maximum number of bitsexchanged by the parties (denoted as m0). Theprotocols meet the corresponding bounds, up toa multiplicative factor, for all possible values ofm0.Thus, the tightness of the bounds of Theo-rems 1 and 3 (the one-way cases) is established.4.1.1 Local coinsThe protocol uses as building blocks two knownprotocols for ID:� The following protocol is due to [RY],and will be denoted as �RY . On inputx; y 2 f0; 1gn, party P1 chooses at random

a prime p in [n; 4n], and sends (p; x̂mod p)to P2. Party P2 outputs 1 i� (x̂ mod p) =(ŷ mod p).It is easy to verify that if x 6= y thenProb(�(x; y) = 0) � 23 � o(1). (Thereare (3 � o(1)) nlogn primes in [n; 4n] and ifx � y modulo more than nlogn of the primesthen x = y.) If x = y then �(x; y) = 1.Clearly, m�RY = 2 logn � log logn + 4,r1�RY = log n� log logn+ 2, and r2�RY = 0.� The following protocol is a slight modi�ca-tion of a protocol presented in [PS], andwill be denoted �PS . The parties use 3 dif-ferent messages. Let pxi denote the prob-ability that P1 sends the ith message oninput x, and qyi the probability that P2, oninput x and having received the ith mes-sage, outputs 1. On inputs x; y 2 f0; 1gn,let~px = cx�cos� x̂�2n+1� ; sin� x̂�2n+1� ; 1�where cx is a normalization constant, and~qy = 12(1 + cos � ŷ�2n+1� ; 1 + sin � ŷ�2n+1� ;1� cos � �2n+2 � ):It is easy to verify that if x = y then 12 +2�2n�6 � Prob(�(x; y) = 1) � 12 + 2�2n�4,and if x 6= y then Prob(�(x; y) = 0) �12+2�2n�5. (Note that 13 � cx � 12 for all x,and that �24 < cos� < �22 for 0 < � < �2 .)Note that we may approximate the prob-abilities by multiples of 2�2n�8, and letr1�PS = r2�PS = 2n+ 8.The combined protocol with parameter m0,operates as follows on inputs x; y 2 f0; 1gn.� For m0 � 2 logn � log logn + 4. We par-tition the input to blocks of length k (tobe computed)3 and execute �RY on each3Assume that k divides n. Otherwise the last blockwill be shorter.



block, using the same prime for all theblocks. Namely:Let x = x1 : : : xnk , and y = y1 : : :ynk , whereeach xi, yi is of length k.Party P1: Choose a prime p 2R [k; 4k].compute xp = (x̂1 mod p)�: : :�(x̂nk mod p).Send (p; xp) to P2.Party P2: Compute yp = (y1 mod p) � : : :�(ynk mod p). Output 1 i� yp = xp.It can be veri�ed that for these values ofm0, �� > 17m� = (nk + 1) log 4k � log log kr1� = log � 4klog k� :Setting k to be the largest integer such thatm� � m0, and using Theorem 1 (part (b)),we get r1� �R1m�;��(ID) � 3.� For m0 � logn � log log n + 4. For thesevalues of m0, the parties execute �PS on(xp; yp) instead of having party P1 send xpto P2. Namely:Party P1: Choose a prime p 2R [k; 4k].Compute xp = (x̂1 mod p) � : : : � (x̂nk modp). Send p to P2 and execute �PS on xp.Party P2: compute yp = (ŷ1 mod p) � : : : �(ŷnk mod p). Execute �PS on yp.Using the lower and upper bounds on ��PS ,it can be veri�ed that for these values ofr0, �� � 2� 52nk logkr1� = �2nk + 1� log 4k � log log k + 8m� = log k � log log k + 4Setting k to be the smallest integer suchthat m� � m0, and using Theorem 1 (part(a)), we get that r1�=R1m�;��(ID) � 32 +o(1), for all k.� For logn � log log n + 4 < m0 < 2 logn �log logn + 4. For these values of m0, usethe previous case with k = n (namely one

block). According to Theorem 1 (part (b))we have r1�=R1m�;��(ID) � 3 + o(1).4.1.2 Shared coinsFirst we note that n + 1 shared coins are suf-�cient for computing any function with advan-tage 2�n, exchanging one bit. (If the �rst ncoin-tosses are equal to the input of P1, it sends`1' and P2 computes the function value. Oth-erwise P1 sends `0' and P2 outputs the valueof the remaining coin.) However, this methodcannot be modi�ed to use smaller amounts ofcoin-tosses.We show a one-way, shared coins protocol forID. Given a limit of m0 bits to be exchanged,the parties use log( nm0 ) + 2 coin-tosses, and in-terpret the �rst log( nm0 ) coins as an integeri 2R (1 : : : nm0 ). Let the inputs be partitionedto nm0 blocks x = x1 : : : x nm0 and y = y1 : : : y nm0 ,such that jyjj = jxjj = m0.Party P1: Send xi to P2.Party P2: If xi 6= yi output 0. Otherwise, ifi = 1 output 1 with probability 34 , and if i 6= 1,output 1 with probability 12 . These randomchoices are implemented using the two remain-ing shared coins.It can be veri�ed that �� � m04n . Accordingto Theorem 3, we have that in this model r� �Rm�;��(ID) � 2.4.2 Tightness of the bounds for two-way communicationThe bounds for the two-way models behave dif-ferently for m� < logn and logn < m� < n.In the �rst case, the bounds depend only onthe input length n and on m�. The bound ofTheorem 2 (local coins) is similar to that ofTheorem 1 (the corresponding one-way model),thus its tightness is already established. In or-der to establish the tightness of the bound ofTheorem 4 (shared coins), we de�ne and showa family of protocols for the PO function (seesection 4.2.1).



In the second case (logn < m� < n), thebounds depend also on the deterministic com-munication complexity, C1*)2D (f), of the func-tion being computed. Therefore, the tightnessof the bounds is demonstrated by showing afamily of functions, one for each possible valueof C1*)2D (f); for each function and a given num-ber of bits to be exchanged (denoted asm0), weshow a protocol for this function using a num-ber of coin-tosses that meets the correspondinglower bound (see section 4.2.2).Note that for functions f such thatC1*)2D (f) = n (e.g. ID), the one-way and thetwo-way bounds are similar up to a multiplica-tive constant for every value of m�, both in thelocal coins and the shared coins models. Wetherefore get that the one-way protocols for IDmeet also the corresponding two-way bounds,for all values of m�.4.2.1 The Pointer functionConsider the following function.PO(x; y) = 8>>>>><>>>>>: the ŷ-th bit in x if ŷ < nand x̂ � nthe x̂-th bit in y if x̂ < nand ŷ � n0 otherwise:It can be seen that4 C1*)2D (PO) = 2 + logn.A lower bound is due to the minimum numberof generalized rectangles in a decomposition ofPO (see [Y2] for details), and an upper boundis due to the deterministic special case of thefollowing protocol.We show a shared coins, two-way protocol forPO. This Protocol demonstrates the tightnessof the bound of Theorem 4 for 3 � m0 � logn,and will be used in the next section to showtightness for logn < m� < n.4A result by [PS] can be extended to show that eventhe unbounded error communication complexity of PO,in the local coins models, is at least log n.

Let x; y 2 f0; 1gn be the inputs, and letk = d n2m0�3 e. The parties use log k + 1 coin-tosses, in the following way. As the function isdivided into three regions, the parties �rst ex-change two bits in order to learn the region theirinputs are in. Without loss of generality, as-sume that ŷ < n and x̂ � n. Then, party P1 letsx = x1 : : : xk, jxij = nk . Let the parties interpretthe �rst log k shared coins as i 2R (0 : : :k � 1).Party P2: If ink � ŷ < (i+1)nk (namely if the ŷ-thbit in x is in the i-th block) then send 010�(ŷ� ink )to P1. Otherwise send 000.Party P1: If received 000 output the value of theremaining shared coin. Otherwise, output the(ŷ � ink )-th bit in xi (i.e. the ŷ-th bit in x).Clearly, m0 communication-bits are su�cient,and it can be veri�ed that �� = 12k . Ac-cording to part (b) in Theorem 4, we haver� �Rm�;��(PO) � 4.Note that a similar local coins protocol (P2sends i as well) is also tight with the correspond-ing bound.4.2.2 The hybrid functionsIn order to show the tightness of the boundsfor all values of C1*)2D (f), we de�ne a series ofhybrid functions, for logn � i � n:hi(x; y) = ( ID(x; y) if x̂ < 2i and ŷ < 2iPO(x; y) otherwiseIt can be easily seen that5 i � C1*)2D (hi) � i +2. The main contributor to the communicationcomplexity of each hybrid is the ID block, whilethe PO block is used to keep the function non-degenerate.Protocols for hi, parameterized by m0 (thenumber of bits to be exchanged), either in thelocal coins or the shared coins models, are animmediate combination of the corresponding5The bound r� � n2m� � 1 implies C1*)2D (f) � log nfor all non-degenerate functions f , thus this is the entirerange of possible communication complexities.



protocols for ID and PO. Namely, the par-ties �rst learn, using two bits of communica-tion, which region their inputs are in. Then theparties execute the appropriate protocol. It canbe easily veri�ed that for each hi and for boththe local and shared coins models, these com-bined protocols achieve the corresponding lowerbounds up to a multiplicative constant, in thesame manner as the protocols they consist ofdo.5 Reducing the number ofcoin-tossesThroughout the paper, we discussed the num-ber of coin-tosses used by the parties as a func-tion of the number of bits exchanged. (Namely,we showed lower bounds on r� as a function ofm� and speci�c protocols meeting that bound.)The following theorem shows that the numberof coin-tosses in any protocol can be reduced upto a value that depends only on the advantageachieved by the protocol, without increasing thenumber of communication-bits used.Theorem 5 Let f : f0; 1gn � f0; 1gn ! f0; 1gand let � be a protocol that computes f withadvantage �. Then, there exists a protocol �0(of the same model) such that m�0 = m� and(a) r�0 � logn + 2 log ��1� + 4 and ��0 = ��2(for the shared coins models)(b) r�0 � logn+ 2 log ��1� + 5 and ��0 = ��3(for the local coins models)Remark. This upper bound on r� as a functionof �� , combined with the lower bounds on r� as afunction of m� (in all the computation models),yields upper bounds on �� as a function of m�.The resulting bound for the local coins modelsis6 �� � 32pn � 2 n2m�+1 :6A similar bound can be achieved using known sim-ulation techniques.
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