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1 Introdu
tionIn the last de
ade, the area of property testing has attra
ted mu
h attention (see, e.g., a 
ouple of re
entsurveys [R1, R2℄). Loosely speaking, property testing typi
ally refers to sub-linear time probabilisti
algorithms for de
iding whether a given obje
t has a predetermined property or is far from any obje
thaving this property. Su
h algorithms, 
alled testers, obtain lo
al views of the obje
t by makingadequate queries; that is, the obje
t is seen as a fun
tion and the testers get ora
le a

ess to thisfun
tion (and thus may be expe
ted to work in time that is sub-linear in the length of the obje
t).Following most work in the area, we fo
us on the query 
omplexity of property testing, measured asa fun
tion of the size of the obje
t as well as the desired proximity to satisfying the property (measuredby the proximity parameter). Interestingly, many natural properties 
an be tested in 
omplexity thatonly depends on the proximity parameter; examples in
lude linearity testing [BLR℄, and testing variousgraph properties in two natural models (e.g., [GGR, AFNS℄ and [GR1, BSS℄, respe
tively). On theother hand, properties for whi
h testing requires essentially maximal query 
omplexity were provedto exist too; see [GGR℄ for arti�
ial examples in two models and [BHR, BOT℄ for natural examplesin other models. In between these two extremes, there exist natural properties for whi
h the query
omplexity of testing is logarithmi
 in the obje
t's size (e.g., monotoni
ity [EKK+, GGL+℄), a squareroot of it (e.g., bipartiteness in the bounded-degree model [GR1, GR2℄), and possibly other 
onstantpowers of it (see [FM, PRR℄).1.1 Our main resultsOne natural question that arises is whether there exist properties of arbitrary query 
omplexity. Weanswer this question aÆrmatively, proving the existen
e of a ri
h hierar
hy of query 
omplexity 
lasses.Su
h hierar
hy theorems are easiest to state and prove in the generi
 
ase (treated in Se
tion 2): Looselyspeaking, for every sub-linear fun
tion q, there exists a property of fun
tions over [n℄ that is testableusing q(n) queries but is not testable using o(q(n)) queries.Similar hierar
hy theorems are proved also for two standard models of testing graph properties:the adja
en
y representation model (of [GGR℄) and the in
iden
e representation model (of [GR1℄). Forthe in
iden
e representation model (a.k.a the bounded-degree graph model), we show (in Se
tion 3)that, for every sub-linear fun
tion q, there exists a property of bounded-degree N -vertex graphs that istestable using q(N) queries but is not testable using o(q(N)) queries. Furthermore, one su
h property
orresponds to the set of N -vertex graphs that are 3-
olorable and 
onsist of 
onne
ted 
omponents ofsize at most q(N).The bulk of this paper is devoted to hierar
hy theorems for the adja
en
y representation model(a.k.a the dense graph model), where the 
omplexity is stated as a fun
tion of the number of verti
es(rather than as a fun
tion of the number of all vertex pairs, whi
h is the representation size). Ourmain results for the adja
en
y matrix model are:1. For every sub-quadrati
 fun
tion q, there exists a graph property � that is testable in q queries,but is not testable in o(q) queries. Furthermore, for \ni
e" fun
tions q, it is the 
ase that � is inP and the tester 
an be implemented in poly(q)-time. (See Se
tion 4.)2. For every sub-quadrati
 fun
tion q, there exists a monotone graph property � that is testable inO(q) queries, but is not testable in o(q) queries. (See Se
tion 5.)In Se
tion 6 we address a re�ned issue that has been ignored above. Spe
i�
ally, we note that all ourlower bounds refer to two-sided error testers, whereas the upper bounds for testing generi
 fun
tions(Se
tion 2) and for testing graphs in the in
iden
e representation model (Se
tion 3) are demonstratedusing one-sided error testers, whi
h only make these separations stronger. In 
ontrast, the foremen-tioned upper bounds for testing graphs in the adja
en
y matrix model (presented in Se
tions 4 and 5)1



use two-sided error testers. In Se
tion 6 we modify the 
onstru
tion of Se
tion 4 in order to obtainone-sided error testers (while the lower bounds still hold for two-sided error testers). However, thelatter result loses some additional features of the former results; see Se
tion 8 for further dis
ussion.Conventions. For sake of simpli
ity, we state all results while referring to query 
omplexity as afun
tion of a size parameter that is polynomially related to the obje
t's size (i.e., in the 
ase of generi
Boolean fun
tions the size parameter is the size of the fun
tion's domain, but in the 
ase of graphs thesize parameter is the number of verti
es). In other words, we 
onsider a �xed (
onstant) value of theproximity parameter, denoted �. In su
h 
ases, we sometimes use the term �-testing, whi
h refers totesting when the proximity parameter is �xed to �. All our lower bounds hold for any suÆ
iently smallvalue of the proximity parameter, whereas the upper bounds hide a (polynomial) dependen
e on (there
ipro
al of) this parameter. In general, bounds that have no dependen
e on the proximity parameterrefer to some (suÆ
iently small but) �xed value of this parameter.A remotely related prior work. In 
ontrast to the foregoing 
onventions, we mention here aresult that refers to graph properties that are testable in (query) 
omplexity that only depends onthe proximity parameter. This result, due to [AS3℄, establishes a (very sparse) hierar
hy of su
hproperties. Spe
i�
ally, [AS3, Thm. 4℄ asserts that for every fun
tion q there exists a fun
tion Q anda graph property that is �-testable in Q(�) queries but is not �-testable in q(�) queries. (We note thatwhile Q depends only on q, the dependen
e proved in [AS3, Thm. 4℄ is quite weak (i.e., Q is larger thana non-
onstant number of 
ompositions of q), and thus the hierar
hy obtained by setting qi = Qi�1 fori = 1; 2; ::: is very sparse.)1.2 Our te
hniquesThe proofs of the hierar
hy theorems for the generi
 
ase (treated in Se
tion 2) and for the in
iden
erepresentation graph model (treated in Se
tion 3), are quite straightforward. In 
ontrast, the treatmentof the dense graph model is signi�
antly more involved. We dis
uss the sour
e of trouble next.Given that properties of maximal query 
omplexity are known in ea
h of the testing models that we
onsider, a natural idea towards proving hierar
hy theorems is to 
onstru
t properties that 
orrespondto repetitions of the original properties; that is, ea
h obje
t in the new property 
onsists of a suitablenumber of obje
ts, ea
h belonging to the original property. Straightforward implementations of thisidea work in the generi
 
ase and in the in
iden
e representation graph model, but not in the densegraph model (treated in Se
tion 4). The point is that a naive repetition of a graph 
reates a graphthat is not dense.Nevertheless, repla
ing straightforward repetition by the graph blow-up operation allows us to obtainthe desired hierar
hy theorem (for the dense graph model). Loosely speaking, the graph blow-upoperation repla
es ea
h vertex of the original graph by an independent set (of a predetermined size),and repla
es ea
h edge by a 
omplete bipartite graph between the two 
orresponding independent sets.Indeed, the graph blow-up operation does seem to �t our needs, but a 
areful analysis is required forobtaining the desired result. One sour
e of trouble is that the blow-up operation does not ne
essarilypreserve distan
es; indeed the relative distan
e between the blow-up of G1 and G2 is at most therelative distan
e between the original graphs, but the naive assumption that it 
an not be smalleris false. In Se
tion 4 we over
ome this diÆ
ulty by showing that for 
ertain graphs, whi
h we 
alldispersed, the blow-up does preserve the original distan
es (up to a 
onstant fa
tor).1 Thus, we �rstredu
e the testing of the original property to testing a 
orresponding property that refers to dispersed1Subsequent to the initial posting of our work [GKNR℄, this result was superseded by Pikhurko, who showed that thedistan
e is a
tually preserved, up to a 
onstant fa
tor, for any graph [P, Se
. 4℄.2



graphs. (An n-vertex graph is 
alled dispersed if the neighbor sets of any two verti
es di�er on at least
(n) elements.)Using dispersed graphs also helps us in upper bounding the 
omputational 
omplexity of our tester.In parti
ular, the use of dispersed graphs allows us to re
over the 
anoni
al labeling of an unlabeledgraph, whi
h is helpful whenever a graph property (viewed as a set of labeled graphs) is obtained bya 
losure under isomorphism of some set of labeled graphs (
f. [GGR℄). (For details see Se
tion 7.)When trying to obtain a result for monotone graph properties, we en
ounter another te
hni
aldiÆ
ulty. The diÆ
ulty is that the testers we wish to 
onstru
t rely on the existen
e of lo
al stru
turesin the graphs that have the property, whereas the standard 
onstru
tions of hard-to-test monotonegraph properties (
f. [GT℄) tend to la
k any lo
al stru
ture, sin
e the property should be preservedunder arbitrary edge additions. We demonstrate that the latter 
on
lusion is a bit hasty, by showingthat a lo
al stru
ture 
an be essentially maintained as long as the edge density does not ex
eed somethreshold, whereas we 
an in
lude in the property all graphs that have edge density that ex
eeds thisthreshold. (For details see Se
tion 5.)A third type of diÆ
ulty arises in Se
tion 6, where we seek to 
onstru
t one-sided error testers.This requires avoiding the need to test that sets are of (approximately) the same size, whi
h leads usto use a generalized form of graph blow-up. Spe
i�
ally, while under the blow-up used so far (i.e., inSe
tions 4 and 5) ea
h vertex is repla
ed by an independent set of the same size, in Se
tion 6 we use ageneralized blow-up in whi
h these independent sets may have di�erent sizes. This requires establishingyet another distan
e preservation (under (generalized) blow-up) result.Remotely related prior work. The graph blow-up operation is well-known in 
ombinatori
s, andwas used before also in the 
ontext of testing properties of dense graphs (see, e.g., [A, AS1, AS2,BCL+℄). To the best of our knowledge, the aspe
ts of graph blow-up that we study in this work (i.e.,the preservation of distan
es and eÆ
ient re
onstru
tion of the original graph) were not addressedbefore.1.3 OrganizationSe
tions 2 and 3 present hierar
hy theorems for the generi
 
ase and for the bounded-degree graphmodel, respe
tively. The bulk of this paper provides hierar
hy theorems for graph properties in theadja
en
y matrix model. The basi
 hierar
hy theorem regarding this model is presented in Se
tion 4,whereas in Se
tion 5 we obtain su
h a theorem for monotone graph properties. In Se
tion 6 we modifythe hierar
hy theorem of Se
tion 4 in a di�erent dire
tion, obtaining a result for one-sided error testing(but losing some additional features of the former theorem).We mention that our results for graph properties in the adja
en
y matrix model use the existen
eof graph properties that are in P and have maximal query 
omplexity. This result is presented inSe
tion 7, building on a prior 
onstru
tion of [GGR℄, whi
h only asserted su
h properties in NP .2 Properties of Generi
 Fun
tionsIn the generi
 fun
tion model, the tester is given ora
le a

ess to a fun
tion over [n℄, and distan
ebetween su
h fun
tions is de�ned as the fra
tion of (the number of) arguments on whi
h these fun
tionsdi�er. In addition to the input ora
le, the tester is expli
itly given two parameters: a size parameter,denoted n, and a proximity parameter, denoted �.De�nition 1 Let � = Sn2N �n, where �n 
ontains fun
tions de�ned over the domain [n℄ def= f1; :::; ng.A tester for a property � is a probabilisti
 ora
le ma
hine T that satis�es the following two 
onditions:3



1. The tester a

epts ea
h f 2 � with probability at least 2=3; that is, for every n 2 N and f 2 �n(and every � > 0), it holds that Pr[T f (n; �)=1℄ � 2=3.2. Given � > 0 and ora
le a

ess to any f that is �-far from �, the tester reje
ts with probabilityat least 2=3; that is, for every � > 0 and n 2 N , if f : [n℄ ! f0; 1g� is �-far from �n, thenPr[T f (n; �) = 0℄ � 2=3, where g is �-far from �n if, for every g 2 �n, it holds that jfi 2 [n℄ :f(i) 6= g(i)gj > � � n.We say that the tester has one-sided error if it a

epts ea
h f 2 � with probability 1; that is, for everyf 2 � and every � > 0, it holds that Pr[T f (n; �)=1℄ = 1.When � > 0 is �xed, we refer to the residual ora
le ma
hine T (�; �) by the term �-tester. We also usethe 
orresponding term �-testing �.De�nition 1 does not spe
ify the query 
omplexity of the tester, and indeed an ora
le ma
hine thatqueries the entire domain of the fun
tion quali�es as a tester (with zero error probability...). Needlessto say, we are interested in testers that have signi�
antly lower query 
omplexity. Re
all that [GGR℄asserts that in some 
ases su
h testers do not exist; that is, there exist properties that require linearquery 
omplexity. Building on this result, we show:Theorem 2 For every q : N ! N that is onto and at most linear, there exists a property � of Booleanfun
tions that is testable (with one-sided error) in q +O(1) queries, but is not testable in o(q) queries(even when allowing two-sided error).A
tually, here as well as in all other hierar
hy theorems, it suÆ
es to require that q has a dense rangein the sense that there exists a 
onstant 
 su
h that for every m 2 N there exists n 2 N su
h thatm � q(n) � 
m.Proof of Theorem 2: We start with an arbitrary property �0 of Boolean fun
tions for whi
h testingis known to require a linear number of queries (even when allowing two-sided error). The existen
eof su
h properties was �rst proved in [GGR℄. Given �0 = Sm2N �0m, we de�ne � = Sn2N �n su
hthat �n 
onsists of \dupli
ated versions" of the fun
tions in �0q(n). Spe
i�
ally, for every f 0 2 �0q(n),we de�ne f(i) = f 0(i mod q(n)) and add f to �n, where i mod m is (non-standardly) de�ned as thesmallest positive integer that is 
ongruent to i modulo m,The query 
omplexity lower bound for � follows from the 
orresponding bound of �0. Spe
i�
ally,approximate membership of f 0 in �0m 
an be tested by emulating the testing of an imaginary fun
tionf : [n℄ ! f0; 1g de�ned su
h that m = q(n) and f(i) = f 0(i mod m); that is, testing f 0 w.r.t �0m isperformed by testing f w.r.t �n, while emulating ora
le a

ess to f by making 
orresponding queriesto f 0. Clearly, if f 0 2 �0m then f 2 �n, whereas if f 0 is �-far from �0m then f is bn=m
�mn � �-far from �n.Assuming without loss of generality that q(n) � n=2, we have bn=m
 �m � n=2. Thus, a o(q(n))-queryora
le ma
hine that distinguishes the 
ase that f 2 �n from the 
ase that f is (�=2)-far from �n, yieldsa o(m)-query ora
le ma
hine that distinguishes the 
ase that f 0 2 �0m from the 
ase that f 0 is �-farfrom �0m. We 
on
lude that an 
(m) lower bound on �-testing �0m implies an 
(q(n)) lower bound on(�=2)-testing �n.The query 
omplexity upper bound for � follows by using a straightforward tester that essentiallyre
onstru
ts the underlying fun
tion and 
he
ks whether it is in �0. Spe
i�
ally, on input n; � anda

ess to f : [n℄ ! f0; 1g, we test whether f is a repetition of some fun
tion f 0 : [q(n)℄ ! f0; 1g in�0q(n). This is done by 
ondu
ting the following two steps:1. Repeat the following basi
 
he
k O(1=�) times: Uniformly sele
t j 2 [q(n)℄ and r 2 [bn=q(n)
�1℄,and 
he
k whether f(r � q(n) + j) = f(j). 4



2. Using q(n) queries, 
onstru
t f 0 : [q(n)℄ ! f0; 1g su
h that f 0(i) def= f(i), and 
he
k whether f 0is in �0. Note that 
he
king whether f 0 is in �0 requires no queries, and that the 
orresponding
omputational 
omplexity is ignored here.Note that this (non-adaptive) ora
le ma
hine has query 
omplexity q(n) +O(1=�), and it a

epts anyf 2 � with probability 1. On the other hand, if f is a

epted with probability at least 2=3, thenthe re
onstru
ted f 0 must be in �0 (otherwise Step 2 would have reje
ted with probability 1) and fmust be �-
lose to the repetition of this f 0 (otherwise ea
h iteration of Step 1 would have reje
ted withprobability at least �=2, where we again use q(n) � n=2). Thus, in this 
ase f is �-
lose to �, whi
hestablishes the upper bound on the query 
omplexity of testing �. The theorem follows.Comment. Needless to say, Boolean fun
tions over [n℄ may be viewed as n-bit long binary strings.Thus, Theorem 2 means that, for every sub-linear q, there are properties of binary strings for whi
hthe query 
omplexity of testing is �(q). Given this perspe
tive, it is natural to 
omment that su
hproperties exist also in P. This 
omment 
an be proved by starting with the hard-to-test propertyasserted in Theorem 7. A
tually, starting with the hard-to-test property asserted in [LNS℄ (whi
h is inL), we obtain a hierar
hy theorem for testing properties that are in L.3 Graph Properties in the Bounded-Degree ModelThe bounded-degree model refers to a �xed (
onstant) degree bound, denoted d � 2. An N -vertexgraph G = ([N ℄; E) (of maximum degree d) is represented in this model by a fun
tion g : [N ℄ � [d℄ !f0; 1; :::; Ng su
h that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if v has lessthan i neighbors. (For simpli
ity, we assume here that the neighbors of v appear in arbitrary order inthe sequen
e g(v; 1); :::; g(v;deg(v)), where deg(v) def= jfi : g(v; i) 6= 0gj.) Distan
e between graphs ismeasured in terms of their aforementioned representation; that is, as the fra
tion of (the number of)di�erent array entries (over dN). Graph properties are properties that are invariant under renamingof the verti
es (i.e., they are a
tually properties of the underlying unlabeled graphs).Re
all that [BOT℄ proved that, in this model, testing 3-Colorability requires a linear number ofqueries (even when allowing two-sided error). Building on this result, we show:Theorem 3 In the bounded-degree graph model, for every q : N ! N that is onto and at most linear,there exists a graph property � that is testable (with one-sided error) in O(q) queries, but is not testablein o(q) queries (even when allowing two-sided error). Furthermore, this property is the set of N -vertexgraphs of maximum degree d that are 3-
olorable and 
onsist of 
onne
ted 
omponents of size at mostq(N).Proof: A
tually, we may start with an arbitrary property �0 that satis�es the following two 
onditions:1. Testing �0 requires a linear number of queries (even when allowing two-sided error).2. The property �0 is downward monotone; that is, if G0 2 �0 then any subgraph of G0 is in �0. Inparti
ular, the single-vertex graph is in �0.Indeed, by [BOT℄, 3-Colorability is su
h a property. Given �0 = Sn2N�0n, we de�ne � = SN2N �Nsu
h that �N is the set of all N -vertex graphs that 
onsist of 
onne
ted 
omponents that are ea
h in�0 and have size at most q(N); that is, ea
h 
onne
ted 
omponent in any G 2 �N is in �0n for somen � q(N) (i.e., n denotes this 
omponent's size).The query 
omplexity lower bound for � follows from the 
orresponding bound of �0. Spe
i�
ally,approximate membership of the n-vertex graph G0 in �0n 
an be tested by setting N su
h that q(N) = n5



and emulating the testing of the N -vertex graph G obtained by taking t def= bN=q(N)
 
opies of G0 (andadditional N � t � q(N) isolated verti
es). Clearly, if G0 2 �0n then G 2 �N . On the other hand, if G0is �-far from �0n then G is t�nN � �-far from �N (be
ause, by the downward monotoni
ity of �0, it suÆ
esto 
onsider the number of edges that must be omitted from G in order to obtain a graph in �N ). Asin the proof of Theorem 2, we may assume that t � n � N=2, and 
on
lude that in the latter 
ase Gis (�=2)-far from �N . Thus, a o(q(N))-query ora
le ma
hine that distinguishes the 
ase that G 2 �Nfrom the 
ase that G is (�=2)-far from �N , yields a o(n)-query ora
le ma
hine that distinguishes the
ase that G0 2 �0n from the 
ase that G0 is �-far from �0n. The desired 
(q(N)) lower bound follows.The query 
omplexity upper bound for � is obtained by using a tester that sele
ts at random astart vertex s in the input N -vertex graph and tests that s resides in a 
onne
ted 
omponent that is in�0n for some n � q(N). Spe
i�
ally, on input N; � and a

ess to an N -vertex graph G, we repeat thefollowing test O(1=�) times.1. Uniformly sele
t a start vertex s, and explore its 
onne
ted 
omponent untill either en
ounteringq(N) + 1 verti
es or dis
overing that the 
onne
ted 
omponent has at most q(N) verti
es.2. Denoting the number of en
ountered verti
es by n, reje
t if n > q(N). Similarly reje
t if theen
ountered graph is not in �0n.The query 
omplexity of this ora
le ma
hine is O(d � q(N)=�), whi
h is O(q(N)) when both d and � > 0are 
onstants. Clearly, this ora
le ma
hine a

epts any G 2 � with probability 1. In analyzing itsperforman
e on graphs not in �, we 
all a start vertex bad if it resides in a 
onne
ted 
omponent that iseither bigger than q(N) or not in �0. Note that if G has more than �N bad verti
es, then the foregoingtester reje
ts with probability at least 2=3. Otherwise (i.e., G has fewer than �N bad verti
es), G is�-
lose to �, be
ause we 
an omit all edges in
ident to bad verti
es and obtain a graph in �. Thetheorem follows.Comment. The 
onstru
tion used in the proof of Theorem 3 is slightly di�erent from the one usedin the proof of Theorem 2: In the proof of Theorem 3 ea
h obje
t in �N 
orresponds to a sequen
e of(possibly di�erent) obje
ts in �0n, whereas in the proof of Theorem 2 ea
h obje
t in �N 
orrespondsto multiple 
opies of a single obje
t in �0n. While Theorem 2 
an be proved using a 
onstru
tion thatis analogous to one used in the proof of Theorem 3, the 
urrent proof of Theorem 2 provides a betterstarting point for the proof of the following Theorem 4.4 Graph Properties in the Adja
en
y Matrix ModelIn the adja
en
y matrix model, an N -vertex graph G = ([N ℄; E) is represented by the Boolean fun
tiong : [N ℄� [N ℄! f0; 1g su
h that g(u; v) = 1 if and only if u and v are adja
ent in G (i.e., fu; vg 2 E).Distan
e between graphs is measured in terms of their aforementioned representation; that is, as thefra
tion of (the number of) di�erent matrix entries (over N2). In this model, we state 
omplexities interms of the number of verti
es (i.e., N) rather than in terms of the size of the representation (i.e.,N2). Again, we fo
us on graph properties (i.e., properties of labeled graphs that are invariant underrenaming of the verti
es).Re
all that [GGR℄ proved that, in this model, there exist graph properties for whi
h testing requiresa quadrati
 (in the number of verti
es) query 
omplexity (even when allowing two-sided error). It wasfurther shown that su
h properties are in NP. Slightly modifying these properties, we show that they
an be pla
ed in P; see Se
tion 7. Building on this result, we show:Theorem 4 In the adja
en
y matrix model, for every q : N ! N su
h that N 7! bpq(N)
 is ontoand at most linear, there exists a graph property � that is testable in q queries, but is not testable6



in o(q) queries. (Both the upper and lower bounds refer to two-sided error testers.) Furthermore, ifN 7! q(N) is 
omputable in poly(logN)-time, then � is in P, and the tester is relatively eÆ
ient inthe sense that its running time is polynomial in the total length of its queries.We stress that, unlike in the previous results, the positive part of Theorem 4 refers to a two-sided errortester. This is fair enough, sin
e the negative side also refers to two-sided error testers. Still, one mayseek a stronger separation in whi
h the positive side is established via a one-sided error tester. Su
ha separation is presented in Theorem 6 (alas the positive side is established via a tester that is notrelatively eÆ
ient).Outline of the proof of Theorem 4. The basi
 idea of the proof is to implement the strategyused in the proof of Theorem 2. The problem, of 
ourse, is that we need to obtain graph properties(rather than properties of generi
 Boolean fun
tions). Thus, the trivial \blow-up" (of Theorem 2)that took pla
e on the truth-table (or fun
tion) level has to be repla
ed by a blow-up on the vertexlevel. Spe
i�
ally, starting from a graph property �0 that requires quadrati
 query 
omplexity, we
onsider the graph property � 
onsisting of N -vertex graphs that are obtained by a (N=pq(N))-fa
torblow-up of pq(N)-vertex graphs in �0, where G is a t-fa
tor blow-up of G0 if the vertex set of G 
an bepartitioned into t-sized sets that 
orrespond to the verti
es of G0 su
h that the edges between these setsrepresent the edges of G0; that is, if fi; jg is an edge in G0, then there is a 
omplete bipartite betweenthe ith set and the jth set, and otherwise there are no edges between this pair of sets. (In parti
ular,there are no edges inside any set.)Note that the notion of \graph blow-up" does not o�er an easy identi�
ation of the underlyingpartition; that is, given a graph G that is as a t-fa
tor blow-up of some graph G0, it is not ne
essaryeasy to determine a partition of the vertex set of G (into t-sized sets) su
h that the edges betweenthese (t-sized) sets represent the edges of G0. Things may be
ome even harder if G is merely 
lose toa t-fa
tor blow-up of some graph G0. We resolve these as well as other diÆ
ulties by augmenting thegraphs of the starting property �0.The proof of Theorem 4 is organized a

ordingly: In Se
tion 4.1, we 
onstru
t � based on �0 by�rst augmenting the graphs and then applying graph blow-up. In Se
tion 4.2 we lower-bound the query
omplexity of � based on the query 
omplexity of �0, while 
oping with the non-trivial question of howdoes the blow-up operation a�e
t distan
es between graphs. In Se
tion 4.3 we upper-bound the query
omplexity of �, while using the aforementioned augmentations in order to obtain a tight result (ratherthan an upper bound that is o� by a polylogarithmi
 fa
tor).4.1 The blow-up property �Our starting point is any graph property �0 = Sn2N �0n for whi
h testing requires quadrati
 query
omplexity. Furthermore, we assume that �0 is in P. Su
h a graph property is presented in Theorem 7(see Se
tion 7, whi
h builds on [GGR℄).The notion of graphs that have \substantially di�erent vertex neighborhoods" is 
entral to ouranalysis. Spe
i�
ally, for a real number � > 0, we say that a graph G = (V;E) is �-dispersed if theneighbor sets of any two verti
es di�er on at least � � jV j elements (i.e., for every u 6= v 2 V , thesymmetri
 di�eren
e between the sets fw : fu;wg 2 Eg and fw : fv; wg 2 Eg has size at least � � jV j).We say that a set of graphs is dispersed if there exists a 
onstant � > 0 su
h that every graph in theset is �-dispersed. (Our notion of dispersibility has nothing to do with the notion of dispersers, whi
hin turn is a weakening of the notion of (randomness) extra
tors (see, e.g., [S℄).)The augmentation. We �rst augment the graphs in �0 su
h that the resulting graphs are dispersed,while the augmentation amounts to adding a linear number of verti
es. The fa
t that these resultinggraphs are dispersed will be useful for establishing both the lower and upper bounds. The augmentation7



is performed in two steps. First, setting n0 = 2dlog2(2n+1)e 2 [2n + 1; 4n℄, we augment ea
h graphG0 = ([n℄; E0) by n0 � n isolated verti
es, yielding an n0-vertex graph H 0 = ([n0℄; E0) in whi
h everyvertex has degree at most n� 1. Next, we augment ea
h resulting n0-vertex graph H 0 by an n0-vertex
lique and 
onne
t the verti
es of H 0 and the 
lique verti
es by a bipartite graph that 
orresponds to aHadamard matrix; that is, the ith vertex of H 0 is 
onne
ted to the jth vertex of the 
lique if and onlyif the inner produ
t modulo 2 of i� 1 and j � 1 (viewed as (log2 n0)-bit long strings) equals 1. Thus,ea
h n0-vertex graph H 0 yields a 2n0-vertex graph that 
ontains H 0 one one side, a 
lique on the otherside, and a \Hadamard-based" bipartite graph 
onne
ting them (see Figure 1).We denote the resulting set of (unlabeled) graphs by �00 (and sometimes refer to �00 as the set ofall labeled graphs obtained from these unlabeled graphs). We show that �00 is dispersed and inheritsthe fundamental features of �0.
G’

H’ n’-vertex clique

i

j

Figure 1: The two stage augmentation of �0. The verti
es i and j are 
onne
ted if and only if the innerprodu
t modulo 2 of the binary representations of i� 1 and j � 1 equals 1.Claim 4.1 The graph property �00 satis�es the following 
onditions.1. The set �00 is dispersed; that is, the resulting 2n0-vertex graphs have vertex neighborhoods thatdi�er on at least n � n0=4 verti
es.2. Testing �00 requires a quadrati
 number of queries.3. The set �00 is in P.Proof: We �rst show that the resulting 2n0-vertex graphs have vertex neighborhoods that di�er onat least n � n0=4 verti
es. Consider the graph obtained by augmenting the n-vertex graph G0, andlet H 0 be the intermediate n0-vertex graph derived from G0. Then, verti
es in H 0 neighbor (at most)n0=2 
lique verti
es, whereas verti
es in the 
lique neighbor all other n0� 1 
lique verti
es. Thus, thesetypes of verti
es di�er on at least (n0=2) � 1 > n� 1 neighbors. As for any two verti
es in H 0, by theuse of the Hadamard bipartite graph, their neighborhood in the 
lique disagrees on n0=2 > n verti
es.An analogous 
laim holds with respe
t to any two verti
es of the 
lique.Proving that testing �00 requires a quadrati
 number of queries is done by redu
ing testing �0 totesting �00; spe
i�
ally, �-testing membership in �0n redu
es to �0-testing membership in �002n0 , wheren0 � 4n and �0 = �=64. The redu
tion merely emulates an 2n0-vertex graph by making queries to the
orresponding n-vertex graph (while answering some queries (i.e., those that are not 
on�ned to theoriginal graph) a

ording to the 
onstru
tion and without issuing any queries). Note that, sin
e theoriginal graph o

upies an n=2n0 � 1=8 fra
tion of the augmented graph, the relative distan
e to theproperty is redu
ed by a fa
tor of at most 64.Finally, note that the hypothesis that �0 2 P implies that �00 is also in P, be
ause it is easy todistinguish the verti
es of the original graph from the verti
es added to it, sin
e the 
lique verti
es8



have degree at least n0 � 1 whereas the verti
es of G0 have degree at most (n � 1) + (n0=2) < n0 � 1(and isolated verti
es of H 0 have neighbors only in the 
lique). On
e this is done, we 
an verify thatthe original graph is in �0 (using �0 2 P), and that the additional edges 
orrespond to a Hadamardmatrix. 2Applying graph blow-up. Next, we apply an (adequate fa
tor) graph blow-up to the augmentedset of graphs �00. A
tually, for simpli
ity of notation we assume, without loss of generality, that�0 = Sn2N �0n itself is dispersed, and apply graph blow-up to �0 itself (rather than to �00). Given adesired 
omplexity bound q : N ! N , we �rst set n = pq(N), and next apply to ea
h graph in �0nan N=n-fa
tor blow-up, thus obtaining a set of N -vertex graphs denoted �N . (Indeed, we assume forsimpli
ity that both n = pq(N) and N=n are integers.) Re
all that G is a t-fa
tor blow-up of G0 if thevertex set of G 
an be partitioned into t-sized sets, 
alled 
louds, su
h that the edges between these
louds represent the edges of G0; that is, if fi; jg is an edge in G0, then there is 
omplete bipartitebetween the ith 
loud and the jth 
loud, and otherwise there are no edges between this pair of 
louds.This yields a graph property � = SN2N �N .Let us �rst show that � is in P. The proof that the query 
omplexity of testing � indeed equals�(q) is undertaken in the next two se
tions.Claim 4.2 The graph property � is in P.Proof: The proof relies on the hypothesis that �0 is dispersed, or rather on the fa
t that ea
h vertexin ea
h G0 2 �0 has a distin
t set of neighbors. This fa
t allows us to 
luster verti
es (in a graphresulting from a blow-up of any su
h G0) a

ording to their neighbor set. Spe
i�
ally, given any N -vertex graph G, we �rst 
luster its verti
es a

ording to their neighborhood, and 
he
k whether thenumber of 
lusters equals n = pq(N). (Note that if G 2 �N , then we obtain exa
tly n (equal sized)
lusters, whi
h 
orrespond to the n 
louds that are formed in the N=n-fa
tor blow-up that yields G.)Next, we 
he
k that ea
h 
luster has size N=n and that the edges between these 
lusters 
orrespond tothe blow-up of some n-vertex graph, denoted G0. Finally, we 
he
k whether G0 is in �0n, while relyingon the fa
t that �0 2 P. 24.2 Lower-bounding the query 
omplexity of testing �In this se
tion we prove that the query 
omplexity of testing � is 
(q). The basi
 idea is redu
ingtesting �0 to testing �; that is, given a graph G0 that we need to test for membership in �0n, we test itsN=n-fa
tor blow-up for membership in �N , where N is 
hosen su
h that n = pq(N). This approa
hrelies on the assumption that the N=n-fa
tor blow-up of any n-vertex graph that is far from �0n resultsin a graph that is far from �N . (Needless to say, the N=n-fa
tor blow-up of any graph in �0n results ina graph that is in �N .)Unfortunately, as shown by Arie Matsliah, the aforementioned assumption does not hold in thestri
t sense of the word (i.e., it is not true that the blow-up of any graph that is �-far from �0 resultsin a graph that is �-far from �).2 However, for our purposes it suÆ
es to prove a relaxed version of theaforementioned assumption that only asserts that for every �0 > 0 there exists an � > 0 su
h that the2Matsliah's proof refers to two 4-vertex graphs and their 2-fa
tor blow-up. Spe
i�
ally, let G be a 4-vertex graph that
onsists of a triangle and an isolated vertex, and H 
onsists of a mat
hing of size two, denoted ff1; 2g; f3; 4gg. Then,the (absolute) distan
e between G and H is 3 edges (be
ause at least two edges must be dropped from the triangle andone edge added to be in
ident the isolated vertex). On the other hand, it is not hard to see that the 2-fa
tor blow-upsof G and H are at distan
e of at most 10 < 4 � 3 edges. For example, 
onsider an mapping of the eight verti
es, denotedf10; 100; 20; 200; 30; 300; 40; 400g, of the 2-fa
tor blow-up of H to four 
louds su
h that vertex i0 is mapped to 
loud i, whereasvertex 100 is mapped to the 1st 
loud, vertex 200 is mapped to the 4th 
loud, vertex 300 is mapped to the 2nd 
loud, andvertex 400 is mapped to the 3rd 
loud. Then, dropping the edges f30; 400g; f30; 40g; f300; 400g and adding 12 � 5 = 7 edgesamong the 1st, 2nd and 4th 
louds, we obtain a 2-fa
tor blow-up of G.9



blow-up of any graph that is �0-far from �0 results in a graph that is �-far from �. Below we prove thisassertion for � = 
(�0) and rely on the fa
t that �0 is dispersed. (We mention that in Appendix B ofour te
hni
al report [GKNR℄, we present a more 
ompli
ated proof that holds for arbitrary �0 (whi
hneed not be dispersed), but with � = 
(�0)2. Our result was superseded by Oleg Pikhurko, who showedthat the distan
e is a
tually preserved up to a fa
tor of three [P, Se
. 4℄.)Lemma 4.3 There exists a universal 
onstant 
 > 0 su
h that the following holds for every n; �0; � andevery pair of (unlabeled) n-vertex graphs, (G01; G02). If G01 is �-dispersed and �0-far from G02, then forany t the (unlabeled) t-fa
tor blow-up of G01 is 
� � �0-far from the (unlabeled) t-fa
tor blow-up of G02.Using Lemma 4.3 we infer that if G0 is �0-far from �0 then its blow-up is 
(�0)-far from �. Thisinferen
e relies on the fa
t that �0 is dispersed (and on Lemma 4.3 when applied to G02 = G0 and everyG01 2 �0).Proof of Lemma 4.3: The hypothesis that G01 is dispersed is used here in order to argue that thedistan
e between the blow-ups of G01 and G02 is approximately maximized when mapping 
louds ofthe �rst blown-up graph to 
louds of the se
ond blown-up graph (rather than splitting 
louds of the�rst graph among 
louds of the se
ond graph). Note that the non-triviality of the preservation ofdistan
es under blow-up arises merely from the possibility that the 
loud-stru
ture is not preserved bythe mapping that witnesses a minimal distan
e between blown-up graphs.Let G1 (resp., G2) denote the (unlabeled) t-fa
tor blow-up of G01 (resp., G02), and 
onsider a bije
tion� from the verti
es of G1 = ([t � n℄; E1) to the verti
es of G2 = ([t � n℄; E2) that minimizes the size ofthe set (of violations) f(u; v) 2 [t � n℄2 : fu; vg2E1 i� f�(u); �(v)g =2E2g: (1)Clearly, if � were to map to ea
h 
loud of G2 only verti
es that belong to a single 
loud of G1 (equiv.,for every u and v that belong to the same 
loud of G1 it holds that �(u) and �(v) belong to the same
loud of G2), then G2 would be �0-far from G1 (sin
e the fra
tion of violations under su
h a mappingequals the fra
tion of violations in the 
orresponding mapping of G01 to G02). The problem, however,is that it is not 
lear that � behaves in su
h a ni
e manner (and so violations under � do not dire
tlytranslate to violations in mappings of G01 to G02). Still, using the hypothesis that G01 is dispersed, weshow that things 
annot be extremely bad.Spe
i�
ally, we 
all a 
loud of G2 good if at least (t=2) + 1 of its verti
es are mapped to it (by�) from a single 
loud of G1, and 
all it bad otherwise. Letting � denote the fra
tion of violations inEq. (1) (i.e., the size of this set divided by (tn)2), we �rst show that at least (1 � (3�=�)) � n of the
louds of G2 are good.Assume, towards the 
ontradi
tion, that G2 
ontains more that (6�=�) � n bad 
louds. Consideringany su
h a (bad) 
loud, we observe that it must 
ontain at least t=3 disjoint pairs of verti
es thatoriginate in di�erent 
louds of G1 (i.e., for ea
h su
h pair (v; v0) it holds that ��1(v) and ��1(v0)belong to di�erent 
louds of G1).3 Re
all that the edges in G2 respe
t the 
loud stru
ture of G2 (whi
hin turn respe
ts the edge relation of G02). But verti
es that originate in di�erent 
louds of G1 di�er onat least � � tn edges in G1. Thus, every pair (v; v0) (in this 
loud of G2) su
h that ��1(v) and ��1(v0)belong to di�erent 
louds of G1 
ontributes at least � � tn violations to Eq. (1).4 It follows that the set3This pairing is obtained by �rst 
lustering the verti
es of the 
loud of G2 a

ording to their origin in G1. By thehypothesis, ea
h 
luster has size at most t=2. Next, observe that taking the union of some of these 
lusters yields a set
ontaining between t=3 and 2t=3 verti
es. Finally, we pair verti
es of this set with the remaining verti
es. (A betterbound of bt=2
 
an be obtained by using the fa
t that a t-vertex graph of minimum degree t=2 
ontains a Hamiltonian
y
le.)4For ea
h su
h pair (v; v0), there exist at least � � tn verti
es u su
h that exa
tly one of the (unordered) pairsf��1(u); ��1(v)g and f��1(u); ��1(v0)g is an edge in G1. Re
alling that for every u, the pair fu; vg is an edge in G2 ifand only if fu; v0g is an edge in G2, it follows that for at least � � tn verti
es u either (��1(u); ��1(v)) or (��1(u); ��1(v0))is a violation. 10



in Eq. (1) has size greater than 3�n� � t3 � �tn = � � (tn)2in 
ontradi
tion to our hypothesis regarding �.Having established that at least (1 � (3�=�)) � n of the 
louds of G2 are good and re
alling that agood 
loud of G2 
ontains a stri
t majority of verti
es that originates from a single 
loud of G1, we
onsider the following bije
tion �0 from the verti
es of G1 to the verti
es of G2: For ea
h good 
loud gof G2 that 
ontains a stri
t majority of verti
es from 
loud i of G1, we map all verti
es of the ith 
loudof G1 to 
loud g of G2, and map all other verti
es of G1 arbitrarily.Note that violations under �0 that o

ur among good 
louds of G2 
an be 
harged to violationsthat exist under �. Spe
i�
ally, if there is a violation under �0 between the ith and jth (good) 
loudsof G2, then the majority of the verti
es in the ith 
loud form violations under � with the majorityof the verti
es in the jth 
loud. Thus, su
h t2 violations under �0 are 
harged to the 
orrespondingti � tj violations under �, where ti; tj > t=2. It follows that the number of violations under �0 is upper-bounded by four times the number of violations o

uring under � between good 
louds of G2 (i.e., atmost 4 � � � (tn)2) plus at most (3�=�) � n � t2n violations 
reated with the remaining (3�=�) � n (bad)
louds.The foregoing holds, in parti
ular, for any bije
tion �0 that maps to ea
h remaining (i.e., bad) 
loudof G2 verti
es that originate in a single 
loud of G1. This �0, whi
h maps 
omplete 
louds of G1 to
louds of G2, yields a mapping of G01 to G02 that has at most (4� + (3�=�)) � n2 violations. Re
allingthat G01 is �0-far from G02, we 
on
lude that 4�+(3�=�) > �0, whi
h implies � > ��0=7. The 
laim follows(sin
e � is the minimal value su
h that G1 is �-
lose to G2). 2Using Lemma 4.3, we are ready to establish the 
(q) lower bound on the query 
omplexity of testing�.Proposition 4.4 Any tester for � has query 
omplexity 
(q).Proof: Re
all that Lemma 4.3 implies that if G0 is �0-far from �0, then its blow-up is 
(�0)-far from �.Using this fa
t, we 
on
lude that �0-testing of �0 redu
es to 
(�0)-testing of �. Thus, a quadrati
 lowerbound on the query 
omplexity of �0-testing �0n yields an 
(n2) lower bound on the query 
omplexity of
(�0)-testing �N , where n = pq(N). Hen
e, we obtain an 
(q) lower bound on the query 
omplexityof testing �, for some 
onstant value of the proximity parameter. 24.3 An optimal tester for property �In this se
tion we prove that the query 
omplexity of testing � is at most q (and that this 
an be metby a relatively eÆ
ient tester). We start by des
ribing this (alleged) tester.Algorithm 4.5 On input N and proximity parameter �, and when given ora
le a

ess to a graphG = ([N ℄; E), the algorithm pro
eeds as follows:1. Setting �0 def= �=3 and 
omputing n pq(N).2. Finding n representative verti
es; that is, verti
es that reside in di�erent alleged 
louds, whi
h
orresponds to the n verti
es of the original graph. This is done by �rst sele
ting s def= O(log n)random verti
es, hereafter 
alled the signature verti
es, whi
h will be used as a basis for 
lusteringverti
es (a

ording to their neighbors in the set of signature verti
es). Next, we sele
t s0 def=O(��2 � n logn) random verti
es, probe all edges between these new verti
es and the signatureverti
es, and 
luster these s0 verti
es a

ordingly (i.e., two verti
es are pla
ed in the same 
lusterif and only if they neighbor the same signature verti
es). If the number of 
lusters is di�erent11



from n, then we reje
t. Furthermore, if the number of verti
es that reside in ea
h 
luster isnot (1 � �0) � s0=n, then we also reje
t. Otherwise, we sele
t (arbitrarily) a vertex from ea
h
luster, and pro
eed to the next step, while referring to these n verti
es as the representatives ofthe 
orresponding 
lusters.3. Note that the signature verti
es (sele
ted in Step 2) indu
e a 
lustering of all the verti
es of G.Referring to this 
lustering, we 
he
k that the edges between the 
lusters are 
onsistent with theedges between the representatives. Spe
i�
ally, we sele
t uniformly O(1=�) vertex pairs, 
lusterthe verti
es in ea
h pair a

ording to the signature verti
es, and 
he
k that their edge relationagrees with that of their 
orresponding representatives. That is, for ea
h pair (u; v), we �rst �ndthe 
luster to whi
h ea
h vertex belongs (by making s queries per ea
h vertex), determine the
orresponding representatives, denoted (ru; rv), and 
he
k (by two queries) whether fu; vg 2 E i�fru; rvg 2 E. (Needless to say, if one of the newly sele
ted verti
es does not reside in any of then existing 
lusters, then we reje
t.)4. Finally, using �n2� < q(N)=2 queries, we determine the subgraph of G indu
ed by the n represen-tatives. We a

ept if and only if this indu
ed subgraph is in �0.Note that, for 
onstant value of �, the query 
omplexity is dominated by Step 4, and is thus upper-bounded by q(N). (In general, the query 
omplexity is o(q(N)=�2) + (q(N)=2) = O(q(N)=�2).) Fur-thermore, for 
onstant �, the above algorithm 
an be implemented in time poly(n � logN) = poly(q(N) �logN). We 
omment that the Algorithm 4.5 is adaptive, and that a straightforward non-adaptiveimplementation of it has query 
omplexity (that is dominated by) �s02� = O(n logn)2 = eO(q(N)).Remark 4.6 In fa
t, a (non-adaptive) tester of query 
omplexity eO(q(N)) 
an be obtained by a simpleralgorithm that sele
ts a random set of s0 verti
es and a

epts if and only if the indu
ed subgraph is �0-
lose to being a (s0=n-fa
tor) blow-up of some graph in �0n. Spe
i�
ally, we 
an 
luster these s0 verti
esby using them also in the role of the signature verti
es. Furthermore, these verti
es (or part of them)
an also be designated for use in Step 3. We note that the analysis of this simpler algorithm does notrely on the hypothesis that �0 is dispersed.We now turn to analyzing the performan
e of Algorithm 4.5. We note that the proof that this algorithma

epts, with very high probability, any graph in �N relies on the hypothesis that �0 is dispersed. (In
ontrast, the proof that Algorithm 4.5 reje
ts, with very high probability, any graph that is �-far from�N does not rely on this hypothesis.) Also note that Algorithm 4.5 has a two-sided error probability,whi
h emerges from the approximations 
ondu
ted in Step 2.Proposition 4.7 Algorithm 4.5 
onstitutes a tester for �.Proof: We �rst show that any graph in �N is a

epted with very high probability. Suppose thatG 2 �N is a N=n-fa
tor blow-up of G0 2 �0n. Relying on the fa
t that �0 is dispersed we note that,for every pair of verti
es in G0 2 �0n, with 
onstant probability a random vertex has a di�erent edgerelation to the members of this pair. Therefore, with very high (
onstant) probability, a random set ofs = O(logn) verti
es yields n di�erent neighborhood patterns for the n verti
es of G0. It follows that,with the same high probability, the s signature verti
es sele
ted in Step 2 indu
e n (equal sized) 
lusterson the verti
es of G, where ea
h 
luster 
ontains the 
loud of N=n verti
es (of G) that repla
es a singlevertex of G0. Thus, with very high (
onstant) probability, the sample of s0 = O(��2 �n log n) additionalverti
es sele
ted in Step 2 hits ea
h of these 
lusters (equiv., 
louds) and furthermore has (1� �0) � s0=nhits in ea
h 
luster. We 
on
lude that, with very high (
onstant) probability, Algorithm 4.5 does notreje
t G in Step 2. Finally, assuming that Step 2 does not reje
t (and we did obtain representativesfrom ea
h 
loud of G), Algorithm 4.5 never reje
ts G 2 � in Steps 3 and 4.12



We now turn to the 
ase that G is �-far from �N , where we need to show that G is reje
ted withhigh 
onstant probability (say, with probability 2/3). We will a
tually prove that if G is a

epted withsuÆ
iently high 
onstant probability (say, with probability 1/3), then it is �-
lose to �N . We 
all a setof s verti
es good if (when used as the set of signature verti
es) it indu
es a 
lustering of the verti
es ofG su
h that n of these 
lusters are ea
h of size (1� 2�0) �N=n. Note that good s-vertex sets must exist,be
ause otherwise Algorithm 4.5 reje
ts in Step 2 with probability at least 1� exp(
(�2=n) � s0) > 2=3.Fixing any good s-vertex set S, we 
all a sequen
e of n verti
es R = (r1; :::; rn) well-representing if(1) ri resides in the ith aforementioned 
luster, (2) the subgraph of G indu
ed by R is in �0n, and (3)when 
lustering the verti
es of G a

ording to S, at most �0 fra
tion of the vertex pairs of G have anedge relation that is in
onsistent with the 
orresponding verti
es in R. That is, 
ondition (3) requiresthat at most �0 fra
tion of the vertex pairs in G violate the 
ondition by whi
h fu; vg 2 E if and only iffri; rjg 2 E, where u resides in the ith 
luster (w.r.t S) and v resides in the jth 
luster. Now, note thatthere must exist a good s-vertex set S that has a well-representing n-vertex sequen
e R = (r1; :::; rn),be
ause otherwise Algorithm 4.5 reje
ts with probability at least 2=3. (Spe
i�
ally, if a � fra
tionof the s-vertex sets are good (but have no 
orresponding n-sequen
e that is well-representing), thenStep 2 reje
ts with probability at least (1� �) � 0:9 and either Step 3 or Step 4 reje
t with probability� �min((1 � (1� �0)
(1=�)); 1) > 0:9�.)Fixing any good s-vertex set S and any 
orresponding R = (r1; :::; rn) that is well-representing, we
onsider the 
lustering indu
ed by S, denoted (C1; ::::; Cn;X), where X denotes the set of (untypi
al)verti
es that do not belong to the n �rst 
lusters. Re
all that, for every i 2 [n℄, it holds that ri 2 Ciand jCij = (1 � 2�0) � N=n. Furthermore, denoting by i(v) the index of the 
luster to whi
h vertexv 2 [N ℄ nX belongs, it holds that the number of pairs fu; vg (from [N ℄ nX) that violate the 
onditionfu; vg 2 E i� fri(u); ri(v)g 2 E is at most �0 � �N2 �. Now, observe that by modifying at most �0 � �N2 � edgesin G we 
an eliminate all the aforementioned violations, whi
h means that we obtain n sets with edgerelations that �t some graph in �0n (indeed the graph obtained as the subgraph of G indu
ed by R,whi
h was not modi�ed). Re
all that these sets are ea
h of size (1� 2�0) �N=n, and so we may need tomove 2�0N verti
es in order to obtain sets of size N=n. This movement may 
reate up to 2�0N � (N � 1)new violations, whi
h 
an be eliminated by modifying at most 2�0 � �N2 � additional edges in G. Using� = 3�0, we 
on
lude that G is �-
lose to �N . The proposition follows. 2Con
lusion. We just showed that Algorithm 4.5 satis�es the upper bound requirements of Theo-rem 4; that is, it is a (relatively eÆ
ient) tester for � and has query 
omplexity O(q). Re
alling thatProposition 4.4 establishes a 
orresponding 
(q) lower bound, we 
omplete the proof of Theorem 4.5 Revisiting the Adja
en
y Matrix Model: Monotone PropertiesIn 
ontinuation to Se
tion 4, whi
h provides a hierar
hy theorem for generi
 graph properties (in theadja
en
y matrix model), we present in this se
tion a hierar
hy theorem for monotone graph properties(in the same model). We say that a graph property � is monotone if adding edges to any graph thatresides in � yields a graph that also resides in �. (That is, we a
tually refer to upward monotoni
ity,and an identi
al result for downward monotoni
ity follows by 
onsidering the 
omplement graphs.)5Theorem 5 In the adja
en
y matrix model, for every q : N ! N as in Theorem 4, there exists amonotone graph property � that is testable in O(q) queries, but is not testable in o(q) queries.Note that Theorem 5 refers to two-sided error testing (just like Theorem 4). Theorems 4 and 5 arein
omparable: the former provides graph properties that are in P (and the upper bound is establishedvia relatively eÆ
ient testers), whereas the latter provides graph properties that are monotone.5We stress that these notions of monotoni
ity are di�erent from the notion of monotoni
ity 
onsidered in [AS3℄, wherea graph property � is 
alled monotone if any subgraph of a graph in � is also in �.13



Outline of the proof of Theorem 5. Starting with the proof of Theorem 4, one may want to applya monotone 
losure to the graph property � (presented in the proof of Theorem 4). (Indeed, this is theapproa
h used in the proof of [GT, Thm. 1℄, where a monotone 
losure of a set of graphs S yields theset of all graphs that are obtained from any graph G of S by adding any number of edges to G.) Undersuitable tuning of parameters, this allows to retain the proof of the lower bound, but the problem isthat the tester presented for the upper bound fails. The point is that this tester (i.e., Algorithm 4.5)relies on the stru
ture of graphs obtained via blow-up, whereas this stru
ture is not maintained by themonotone 
losure.One possible solution, whi
h assumes that all graphs in � have approximately the same edge density,is to augment the monotone 
losure of � with all graphs that have signi�
antly larger edge density,where the 
orresponding threshold on the number of edges is denoted T . Intuitively, in this way, we
an a�ord a

epting any graph that has more than T edges, and handle graphs with fewer edges byrelying on the fa
t that in this 
ase the blow-up stru
ture is essentially maintained (be
ause only fewedges are added).Unfortunately, implementing this idea is not straightforward: On the one hand, we should set thethreshold high enough so that the lower bound proof still holds, whereas on the other hand su
h asetting may destroy the lo
al stru
ture of a 
onstant fra
tion of the graph's verti
es. The solution tothis problem is to use an underlying property �0 that supports \error 
orre
tion" (i.e., allows re
overingthe original stru
ture even when a 
onstant fra
tion of it is destroyed as above).The proof of Theorem 5 
opes with the aforementioned diÆ
ulties by a 
areful implementationof the stated ideas. In Se
tion 5.1, we 
onstru
t a monotone property � by 
ombining the blow-upoperation with monotone (upward) 
losure and augmenting � with all suÆ
iently dense graphs. InSe
tion 5.2 we lower-bound the query 
omplexity of � by showing that for graphs of non-ex
essivemaximal degree the distan
e to the property analyzed in Se
tion 4.2 is linearly related to the distan
eto the monotone property �. Finally, in Se
tion 5.3, we upper-bound the query 
omplexity of � byanalyzing the stru
ture of the graphs in � that are not too dense.5.1 The monotone property �Our starting point is a graph property �0 = Sn2N �0n for whi
h testing requires quadrati
 query
omplexity. Furthermore, we assume that this property satis�es the additional 
onditions stated in thefollowing 
laim.Claim 5.1 There exists a graph property �0 = Sn2N�0n for whi
h testing requires quadrati
 query
omplexity. Furthermore, for every 
onstant Æ > 0 and all suÆ
iently large n, it holds that every graphG0 = ([n℄; E0) in �0n satis�es the following two (lo
al) 
onditions:1. Every vertex has degree (0:5 � Æ) � n; that is, for every v 2 [n℄ it holds that fu : fv; ug 2 E0g hassize at least (0:5 � Æ) � n and at most (0:5 + Æ) � n.2. Every two di�erent verti
es neighbor at least (0:75� Æ) � n verti
es; that is, for every v 6= w 2 [n℄it holds that fu : fv; ug 2 E0 _ fw; ug 2 E0g has size at least (0:75 � Æ) � n.Moreover, pairs of graphs in �0n are related by the following two (global) 
onditions:3. Every two non-isomorphi
 graphs in �0n di�er on at least 0:4 ��n2� vertex pairs; that is, if G01; G02 2�0n are not isomorphi
, then G01 is 0:4-far from G02.4. Graphs in �0n that are isomorphi
 via a mapping that �xes less than 90% of the verti
es di�er onat least 0:01 � �n2� vertex pairs; that is, if G01; G02 2 �0n are isomorphi
 via � su
h that jfi 2 [n℄ :�(i) 6= igj > 0:1n, then G01 is 0:01-far from G02, where here we 
onsider distan
e between labeledgraphs (or rather their adja
en
y matri
es). 14



In addition, with probability 1� o(1), a random n-vertex graph is 0:4-far from �0n.Note that the graphs in �0 are 2 � (0:25� 2Æ)-dispersed, be
ause j�(u) n�(v)j = j�(u)[�(v)j � j�(v)j �(0:75 � Æ)n� (0:5 + Æ)n = (0:25 � 2Æ)n.Proof of Claim 5.1: The graph property presented in the proof of [GGR, Prop. 10.2.3.1℄ (see alsoSe
tion 7) 
an be easily modi�ed to satisfy the foregoing 
onditions. Re
all that this property isobtained by sele
ting K def= exp(�(n2)) random graphs and 
onsidering the n! isomorphi
 
opies ofea
h of these graphs. Note that ea
h of the \basi
" K graphs satis�es the two lo
al 
onditions withprobability at least 1�n2 �exp(�
(Æ2n)). Omitting the relatively few ex
eptional graphs (whi
h violateeither of these two 
onditions), we obtain a property that satis�es both lo
al 
onditions and maintainsthe query-
omplexity lower bound. (Indeed, the query-
omplexity lower bound is not harmed, be
auseit is established by 
onsidering the uniform distribution over the set of basi
 graphs (whi
h hardly
hanges).)Turning to the global 
onditions, whi
h refer to the pairwise distan
es between graphs in �0n,we distinguish two 
ases. In the 
ase that G01; G02 2 �0n are not isomorphi
, they arise from twoindependently sele
ted basi
 graphs, and so with probability at least 1� exp(�
(n2)) > 1� o(j�0nj�2)these two graphs are 0:4-far from one another. (The hidden 
onstant in the de�nition of K is smallenough su
h that j�0nj = n!�K is o(exp(n2=2000)), whereas the 
onstant hidden in the Omega expressionis greater than 0:001.) Applying the union bound (over all pairs in �0n), this establishes Condition 3.It is left to 
onsider pairs of graphs as in Condition 4 (i.e., graphs G01; G02 2 �0n su
h that thereexists an isomorphism � of G01 to G02 su
h that � �xes less than 90% of the verti
es). Thus, we
onsider an arbitrary permutation � (over [n℄) that �xes less than 0:9n of the domain (i.e., jfi 2[n℄ : �(i) 6= igj > 0:1n). Next, we 
onsider an arbitrary set I � [n℄ su
h that jIj = 0:03n and�(I) = f�(i) : i 2 Ig does not interse
t I. For a random n-vertex graph G0 = ([n℄; E0), with probabilityat least 1� exp(�
(n2)) > 1� o((n!2 �K)�1), the sets f(u; v) 2 I � ([n℄ n (I [ �(I)) : fu; vg 2 E0g andf(u; v) 2 I � ([n℄ n (I [ �(I)) : f�(u); �(v)g 2 E0g di�er on at least 0:01n2 entries (sin
e the expe
teddi�eren
e is 0:03n � 0:9n=2 > 0:013n2). Thus, the �-isomorphi
 
opy of G0 is 0:01-far from G0 (whereboth are viewed as labeled graphs). Applying the union bound (over all the basi
 graphs and all 
hoi
esof � and I), we establish Condition 4, and the 
laim follows. 2The monotone 
losure and augmentation (yielding �). In the following des
ription, we set� > 0 to be a suÆ
iently small 
onstant (e.g., smaller than 0.00001) su
h that the lower boundestablished in Theorem 4 holds for proximity parameter 100� (i.e., � def= �4=100, where �4 is a value ofthe proximity parameter for whi
h Theorem 4 holds). Needless to say, �0 satis�es the four 
onditionsof Claim 5.1 also when we �x Æ to equal �. Given a desired 
omplexity bound q : N ! N , we setn = pq(N) and de�ne �N su
h that G = ([N ℄; E) 2 �N if and only if (at least) one of the followingtwo 
onditions holds:(C1) The graph G has at least (0:5 + 2�) � �N2 � edges.(C2) Ea
h vertex in G has degree at least (0:5��)�N and G is an \approximate (monotone) blow-up"of some graph in �0n; that is, there exists a partition of the vertex set of G (i.e., [N ℄) into n equal-sized sets, denoted (V1; :::; Vn), and a graph G0 = ([n℄; E0) 2 �0n su
h that for every fi; jg 2 E0and every u 2 Vi and v 2 Vj either fu; vg 2 E or the degree of either u or of v in G ex
eeds0:52 �N .Note that Condition (C2) mandates that ea
h edge fi; jg 2 E0 is repla
ed by a 
omplete bipartite graphover Vi�Vj, with the possible ex
eption of edges that are in
ident at verti
es of degree ex
eeding 0:52�N(in G). We stress that Condition (C2) does not require that for fi; jg 62 E0 the bipartite graph overVi� Vj is empty, but in the 
ase that Condition (C1) does not hold these bipartite graphs will 
ontain15



few edges (be
ause the edges mandated by Condition (C2) leave room for few super
uous edges, whentaking into a

ount the upper bound on the number of edges that is implied by the violation ofCondition (C1)).Note that the property � = SN2N �N is monotone (sin
e Conditions (C1) and (C2) are ea
hmonotone). Also observe that �N 
ontains the N=n-fa
tor blow-up of any graph in �0n, be
ause anysu
h blow-up satis�es Condition (C2). (Indeed, su
h a blow-up does not satisfy Condition (C1), sin
eea
h vertex in the blow-up has degree at most (0:5 +�) �N .)On the 
onstant �. Re
all that � was �xed to be a small positive 
onstant that is related to the
onstant hidden in Theorem 4 (i.e., the lower bound in this theorem should hold when the proximityparameter is set to any value that does not ex
eed 100�). In addition, we will assume that � is smallerthan various spe
i�
 
onstants (e.g., in the proof of Claim 5.2 we use � < 0:0001). In general, setting� = 0:000001 satis�es all these 
onditions. We also note that in our positive result (i.e., the analysis ofthe optimal tester) we will assume that the proximity parameter � is signi�
antly smaller than � (e.g.,� < �=1000); this is not really a limitation, be
ause, for any 
onstant �0 > 0, the tester may alwaysreset its proximity parameter to min(�; �0).5.2 Lower-bounding the query 
omplexity of testing �In this se
tion we prove that the query 
omplexity of testing � is 
(q). We shall do this by buildingon [GGR, Prop. 10.2.3.1℄ and Se
tion 4.2. Spe
i�
ally, 
ombining the approa
h of Se
tion 4.2 with theanalysis of [GGR, Prop. 10.2.3.1℄, we 
onsider the following two distributions (D1) and (D2):(D1) The distribution obtained by applying an Nn -fa
tor blow-up to a random n-vertex graph (i.e., toa graph sele
ted uniformly among all n-vertex graphs).(D2) The distribution obtained by applying an Nn -fa
tor blow-up to a graph sele
ted uniformly in �0n,where �0n is as asserted in Claim 5.1 (with respe
t to Æ = �).Combining [GGR, Prop. 10.2.3.1℄ and Lemma 4.3, we 
laim that, with high probability, a graph sele
teda

ording to distribution (D1) is far (i.e., 100�-far) from the support of distribution (D2), whereasdistinguishing the two distributions requires 
(q) queries. Spe
i�
ally, we re
all that, with high prob-ability, a random n-vertex graph (as underlying distribution (D1)) is 0:4-far from any graph in �0n.By Lemma 4.3, the 
orresponding blow-ups preserve this distan
e (up to a 
onstant fa
tor), and thus(with high probability) a graph sele
ted a

ording to distribution (D1) is far from the support of dis-tribution (D2). We also note that the proof of [GGR, Prop. 10.2.3.1℄ refers to these two underlyingdistributions on n-vertex graphs, and establishes that they are indistinguishable by o(n2) queries. Itfollows that the blow-up distributions (i.e., (D1) and (D2)) are indistinguishable by o(q(N)) queries.Re
alling that �N 
ontains the support of distribution (D2), it suÆ
es to show here that, with highprobability, a graph sele
ted a

ording to distribution (D1) is far from �N (rather than merely far fromthe support of (D2)). This 
laim suÆ
es, be
ause by using it we obtain a distribution that is typi
allyfar from �N and yet is indistinguishable by o(q(N)) queries from a distribution on �N (indeed (D2)itself).The 
laim that distribution (D1) is typi
ally far from �N is proved by �rst observing that, with highprobability, a graph sele
ted in distribution (D1) has maximum degree smaller than (0:5+�) � (N �1).The proof is 
on
luded by showing that if su
h a graph (i.e., of the foregoing degree bound) is 100�-farfrom the support of distribution (D2), then it is �-far from �N .Claim 5.2 Suppose that G has maximum degree smaller than (0:5+�) � (N �1) and that G is �-
loseto �N . Then, G is 64�-
lose to the support of distribution (D2).16



Proof: Let C (standing for 
orre
t) be a graph in �N that is 
losest to G. Then, C has less thanN �(0:5+�)(N�1)2 + � � �N2 � = (0:5 + 2�) � �N2 � edges, and thus C must satisfy Condition (C2) in thede�nition of �N . Let G0 = ([n℄; E0) and (V1; :::; Vn) be as required in Condition (C2), and let H denotethe set of verti
es that have degree greater than 0:52 �N in C.
G C B

Π

G’

∆

approx. mono.
blow-up perfect 

blow-upFigure 2: The graph G, its 
losest 
orre
tion to �, denoted C, and the 
orresponding perfe
t blow-upB. Consider the distan
e between G and the blow-up of G0, denoted B (standing for blow-up); seeFigure 2. Ea
h vertex in H 
ontributes at most N units to this distan
e (between G and B), but its
ontribution to the distan
e between G and C is at least 0:52 � N � (0:5 + �) � N > N=60 (whereasthe total distan
e between G and C is at most �N2). Thus, the total 
ontribution of verti
es in H(to the distan
e between G and B) is less than 60�N2. We stress that this 
ount in
ludes pairs ofverti
es that 
ontain at least one element in H, and thus it remains to upper-bound the 
ontributionof pairs that reside entirely within [N ℄ n H. We upper-bound the 
ontribution of verti
es in [N ℄ n H(to the distan
e between G and B) by the sum of (1) their 
ontribution to the distan
e between G andC (whi
h is obviously upper-bounded by �N2), and (2) their 
ontribution to the distan
e between Cand B.In analyzing (2), we note that a pair (u; v) 2 ([N ℄nH)2 that is 
onne
ted inB must also be 
onne
tedin C, and so (2) 
ounts the number of pairs (u; v) 2 ([N ℄ nH)2 that are 
onne
ted in C but not in B.Furthermore, the value of (2) equals the di�eren
e between the number of edges of the subgraph of Bindu
ed by [N ℄ nH and the subgraph of C indu
ed by [N ℄ nH. Re
all that the average vertex degreeof verti
es in the graph C is at most (0:5 +�) �N +�N = (0:5 + 2�) �N , whereas in B verti
es havedegree at least (0:5��) �N . If these averages were holding for the subgraphs indu
ed by [N ℄nH, thenwe 
ould have upper bounded the value of (2) by ((0:5 + 2�) �N � (0:5��) �N) � (N � jHj) < 3�N2.A
tually, as we shall see next, the gap between these averages may only in
rease when we move to thesubgraphs indu
ed by [N ℄ n H. Spe
i�
ally, the number of edges with at least one endpoint in H islarger in C than it is in B, be
ause the number of edges in
ident at any vertex of H is greater than0:52 � N in C (by de�nition of H) and at most (0:5 + �) � N in B (by B's degree bound). Thus, thedi�eren
e in the average degree between the subgraphs (of C and B) indu
ed by [N ℄ n H is at most(0:5 + 2�) �N � (0:5 ��) �N = 3�N , and so the value of (2) is at most 3�N2.It follows that the total 
ontribution (to both (1) and (2)) of verti
es in [N ℄ nH is at most 4�N2.Hen
e, G is 64�-
lose to B, and the 
laim follows (be
ause B is in the support of (D2)). 2Proposition 5.3 Any tester for � has query 
omplexity 
(q).Proof: The 
laim follows by 
ombing all fa
ts stated above. Re
all that, by [GGR, Prop. 10.2.3.1℄,distinguishing the distributions (D1) and (D2) requires 
(q) queries. On the other hand, by [GGR,Prop. 10.2.3.1℄ and Lemma 4.3, with high probability, a graph sele
ted a

ording to distribution (D1)17



is 100�-far from the support of distribution (D2). With high probability, su
h a (random) graph hasmaximum degree smaller than (0:5 + �)(N � 1), and so by Claim 5.2 it is (100�=64)-far from �N .Re
alling that distribution (D2) resides on �N , it follows that any tester for � must distinguish thedistributions (D1) and (D2), and the proposition follows. 25.3 An optimal tester for property �In this se
tion we prove that the query 
omplexity of testing � is O(q). Before des
ribing the (alleged)tester, we analyze the stru
ture of graphs that satisfy Condition (C2) but do not satisfy Condition (C1).Denoting this set by � = SN2N �N , re
all that �N 
ontains N -vertex graphs that are in �N and haveaverage degree below (0:5 + 2�) �N . Sin
e these graphs have minimum degree at least (0:5 ��) �N ,they may 
ontain relatively few verti
es of degree ex
eeding 0:52 �N (i.e., the number of su
h verti
esis at most O(�N)). We 
all su
h verti
es (i.e., of degree ex
eeding 0:52 �N) heavy. As we show next,the fa
t that almost all verti
es in G 2 �N are not heavy implies that the edges among these non-heavy verti
es (in any G) essentially determine a unique graph G0 2 �0n su
h that G is an approximateblow-up of G0. Moreover, this determines a unique partition of the non-heavy verti
es of G to 
loudsthat 
orrespond to the verti
es of G0. That is:Lemma 5.4 Let G = ([N ℄; E) 2 �N and H denote the set of heavy verti
es of G (i.e., verti
es havingdegree that ex
eeds 0:52 � N). Then, up to a reordering of the indi
es in [n℄, there exists a uniquepartition of [N ℄ n H into n sets, denoted V 01 ; :::; V 0n, and a unique graph G00 = (fi 2 [n℄ : V 0i 6= ;g; E00)su
h that the following 
onditions hold:1. G00 is an indu
ed subgraph of some graph in �0n (i.e., there exists G0 = ([n℄; E0) 2 �0n su
h thatfi; jg 2 E00 if and only if V 0i 6= ;, V 0j 6= ; and fi; jg 2 E0).2. For every fi; jg 2 E00 and every u 2 V 0i and v 2 V 0j it holds that fu; vg 2 E.3. Verti
es in the same V 0i di�er on at most 0:05N of their neighborhoods, whereas verti
es thatreside in di�erent V 0i di�er on at least 0:45N neighbors.4. Ea
h V 0i has size at most N=n, and at most 0:01n sets (i.e., V 0i 's) are empty.Furthermore, the 
laim holds even if G has minimum degree that is only above (0:5 � 2�) �N (ratherthan above (0:5 ��) � N) and its average degree is smaller than (0:5 + 3�) � N (rather than smallerthan (0:5 + 2�) �N).Proof: We shall fo
us on the main 
laim, and the furthermore part will follow by observing that theargument is a
tually insensitive to the value of � (as long as the latter is small enough). We �rst notethat jHj < 150�N , be
ause jHj � 0:52N + (N � jHj) � (0:5 ��)N < (0:5 + 2�)N2.The mere existen
e of a partition (V 01 ; :::; V 0n) and of a graph G00 that satis�es the foregoing four
onditions follows from the fa
t that G satis�es Condition (C2). Spe
i�
ally, let (V1; :::; Vn) and G0be as guaranteed by Condition (C2), and let V 0i def= Vi n H for every i 2 [n℄. Then, (V 01 ; :::; V 0n) andthe subgraph of G0 that is indu
ed by fi 2 [n℄ : V 0i 6= ;g satisfy all the foregoing 
onditions. Inparti
ular, verti
es in [N ℄ nH have neighbors (in [N ℄ nH) as mandated by G0, and may have at most0:52N � ((0:5 � �)N � jHj) < 0:02N + 151�N < 0:021N additional neighbors. Thus, verti
es inthe same Vi nH may di�er on at most 2 � 0:021N + jHj < 0:05N of their neighbors, whereas verti
esthat reside in di�erent Vi n H's must di�er on at least (0:5 � 4�) � N � (2 � 0:021N + jHj) > 0:45Nneighbors. Clearly, ea
h V 0i has size at most N=n. Using jHj < 150�N yet again, we 
on
lude that atmost jHj=(N=n) < 150� � n < 0:01n sets V 0i are empty (sin
e ea
h empty V 0i 
ontains N=n elements ofH). 18



Having established the existen
e of suitable obje
ts, we now turn to establish their uniqueness;that is, we shall establish the uniqueness of both the partition of [N ℄ n H and the graph G00, up to areordering of the index set [n℄.We start by 
onsidering an arbitrary n-way partition of [N ℄ n H that satis�es the four 
onditionsof the 
laim. Referring to the foregoing partition (V1; :::; Vn), we show that two verti
es u; v 2 [N ℄ nH
an be pla
ed in the same set of this n-wise partition (of [N ℄ n H) if and only if they reside in thesame set Vi. This follows by the \
lustering" 
ondition asserted in Item 3 (sin
e verti
es in the sameVi nH may di�er on at most 0:05N of their neighbors, whereas verti
es that reside in di�erent Vi nH'smust di�er on at least 0:45N neighbors). Thus, the partition of [N ℄ n H is uniquely determined, upto a reordering of the index set [n℄. Let us denote this partition by (V 01 ; :::; V 0n); indeed, the sequen
e(V 01 ; :::; V 0n) is a permutation of the sequen
e (V1 n H; :::; Vn n H), and here we arbitrarily �x su
h apermutation (ordering of [n℄).Note that so far we have only used the 
ondition in Item 3, and this allowed us to uniquely determinethe sequen
e (V 01 ; :::; V 0n) (up to reordering of [n℄). Using the other 
onditions (i.e., those in Items 2and 4), we show that this sequen
e uniquely determines the subgraph G00, whi
h is an indu
ed subgraphof some G0 2 �0n.Re
all that, by Item 2, any un
onne
ted pair of verti
es (u; v) 2 V 0i � V 0j mandates that the pair(i; j) 
annot be 
onne
ted in G0. Sin
e there are at most (0:5 + 2�) � �N2 � edges in G and at mostjHj � N pairs that interse
t H, we 
on
lude that the number of un
onne
ted pairs in Si 6=j V 0i � V 0jis at least (0:5 � 2�) � N2 � jHj � N �Pi jV 0i j2 > (0:5 � 153�) � N2, be
ause jV 0i j � N=n by Item 4(and n = !(1)). Using Item 4 again, this for
es at least (0:5 � 153�) � n2 un
onne
ted pairs in G0.Re
alling that G0 2 �0n has average degree at most (0:5+�) �n, this leaves us with sla
kness of at most154� � n2 vertex pairs. Thus, any two graphs in �0n that satisfy Item 2, must be 154�-
lose. Re
allingthat non-isomorphi
 graphs in �0n are 0:4-far apart, this determines G0 up to isomorphism. A
tually,referring to the last 
ondition in Claim 5.1, we 
on
lude that G0 is determined up to an isomorphismthat �xes more than 90% of the verti
es (be
ause otherwise these graphs are 0:01-far). We shall shownext that this (90%-�xing isomorphism) uniquely determines G00.Suppose towards the 
ontradi
tion that there exist two di�erent graphs G001 and G002 that satisfy the
onditions of the 
laim, and let i be a vertex in G001 that is mapped by the isomorphism to j 6= i inG002 . As we show next, this situation indu
es 
on
i
ting requirements on the neighbors of verti
es inV 0i and V 0j ; that is, it requires too many shared neighbors (when 
ompared to the shared neighborsof i and j in G0). Spe
i�
ally, by applying Item 2 to G001 , the neighbors of ea
h vertex in V 0i should
ontain all verti
es in V 0k su
h that k is 
onne
ted to i in G001 . Similarly, by applying Item 2 to G002 , theneighbors of ea
h vertex in V 0j should 
ontain all verti
es in V 0k su
h that k is 
onne
ted to j in G002 .However, sin
e the isomorphism �xes more than 90% of the verti
es, it must be the 
ase that for 90%of k 2 [n℄ it holds that i is 
onne
ted to k in G001 i� j is 
onne
ted to k in G002 . It follows that ea
h pairof verti
es in V 0i � V 0j must share more than ((0:5�O(�)) � n� 0:1n) � (N=n)� jHj > 0:3N neighbors,whi
h 
ontradi
ts the postulate (regarding G0 whi
h implies) that ea
h su
h pair 
an share at most(2 � (0:5 +�) � n� (0:75 ��) � n) � (N=n) + jHj < 0:3N neighbors. The 
laim follows. 2Testing the property �. Having established Lemma 5.4, we are now ready to present the (alleged)tester for �. Intuitively, the tester �rst 
he
ks whether the input graph satis�es Condition (C1), andif the input is found to be 
(�)-far from satisfying Condition (C1) then it is tested for Condition (C2).Indeed, the 
ore of this tester refers to the latter part (i.e., testing �), and is obtained by suitableadaptations of Algorithm 4.5. In parti
ular, sin
e we 
annot expe
t to identify representatives fromall 
louds (i.e., some sets V 0i in Lemma 5.4 may be too small or even empty), we settle for obtainingrepresentatives from at least a 1 � 
(�) fra
tion of the identi�able 
louds (whi
h leads to using, as abasis, the simpli�ed version of Algorithm 4.5 that is dis
ussed in Remark 4.6).19



Algorithm 5.5 On input N and proximity parameter �, and when given ora
le a

ess to a graphG = ([N ℄; E), the algorithm pro
eeds as follows, after setting �0 def= �=10 and n def= pq(N):1. Estimating the edge density of G. Using a sample of O(��2) vertex pairs, we estimate the edgedensity of G and a

ept if this estimate ex
eeds 0:5+2�� 2�0. We pro
eed to the next steps onlyif the edge density of G is estimated to be less than 0:5 + 2�� 2�0, in whi
h 
ase we may assumethat the edge density of G is a
tually less than 0:5 + 2�� �0.2. Estimating the minimum degree of G. Using a sample of eO(��2) verti
es, we estimate the min-imum degree in G; that is, we pi
k O(��1) verti
es and estimate their degrees using an auxil-iary sample of eO(��2) verti
es. If we �nd a vertex that we estimate to have degree less than(0:5 � � � �0) � N , then we reje
t. We pro
eed to the next steps only if we failed to �nd su
ha vertex, in whi
h 
ase we may assume that all but at most �0N verti
es have degree ex
eeding(0:5 ��� 2�0) �N .3. Finding representative verti
es. We start by sele
ting a sample, denoted S, of s def= O(��2n)random verti
es, and estimating their individual degrees in G by their individual degrees in thesubgraph indu
ed by S. We let S0 � S denote the set of verti
es for whi
h the estimated degree isless than (0:52 � �0) �N . We pro
eed only if jS0j > 0:99s, and otherwise we halt and reje
t.Next, we 
luster the verti
es in S0 as follows. Probing all �jS0j2 � possible edges between theseverti
es, we 
luster these verti
es su
h that ea
h 
luster 
ontains verti
es having neighbor setsthat di�er on at most 0:06s verti
es in S0. Spe
i�
ally, we asso
iate to ea
h vertex an jS0j-dimensional Boolean ve
tor that indi
ates whether or not it neighbors ea
h of the verti
es in S0,and 
onsider the metri
 de�ned by Hamming distan
e between these ve
tors. S
anning the verti
esof S0, we put the 
urrent vertex in an existing 
luster if it is 0:06-
lose to the 
enter of this 
luster,and open a new 
luster with the 
urrent vertex as its 
enter otherwise (i.e., if the 
urrent vertex
annot be �t to any existing 
luster).If the number of 
lusters, denoted n0, is greater than n, then we reje
t. Otherwise, we sele
t atrandom a representative from ea
h 
luster, and denote by ri the representative of the ith 
luster.4. Determining an adequate subgraph of a graph in �0n. Let R = fri : i 2 [n0℄g and let GR denotethe subgraph of G indu
ed by R (i.e., by the set of representatives sele
ted above). We try todetermine a graph G0 2 �0n su
h that the subgraph of G0 indu
ed by [n0℄, denoted G00 = ([n0℄; E00),is 
onsistent with GR in the sense that if fi; jg 2 E00 then fri; rjg 2 E (equiv., the pair (ri; rj)is 
onne
ted by an edge in GR). If either su
h a graph G0 does not exist or G00 is not uniquelydetermined, then we halt and reje
t.5. Testing the indu
ed 
lustering of the verti
es of G. The set R suggests a 
lustering of the verti
esof G a

ording to their neighbors in the set R. Spe
i�
ally, for any vertex v 2 [N ℄ of degree atmost 0:52 �N , we let �(v) = i if v is 0:06-
lose to the representative ri and is 0:4-far from all otherrepresentatives. Otherwise (i.e., if no su
h i exists), then �(v) = ?. Referring to this 
lustering(i.e., the 
lustering a

ording to �), we 
he
k whether it is indeed adequate (both with respe
t tosize and �tting G00) by taking a sample of t = O(��2n log(1=�)) verti
es.In the following sub-steps, the degrees of individual verti
es in the latter sample are estimated bytaking an additional sample of O(��2 log t) verti
es for ea
h vertex.(a) We 
he
k that all but at most an �0 fra
tion of the verti
es that have degree at most 0:52 �Nare uniquely 
lustered and that ea
h of these verti
es resides in a 
luster that has size atmost (1 + �0)N=n. That is, using an auxiliary sample of O(��2n log(1=�)) verti
es, we 
he
kthat for ea
h su
h vertex v that is estimated to have degree at most (0:52 � �0) � N , it holds20



that �(v) 2 [n0℄, and that at least a 1 � �0 fra
tion of these verti
es are 
lustered so that forevery i 2 [n0℄ at most (1+ �0)=n fra
tion of the verti
es v satisfy �(v) = i. We reje
t if eithersu
h an un
lusterable vertex v is found or some 
luster is too big.(b) We 
he
k that the edges between the 
lusters are 
onsistent with the edges between the 
or-responding verti
es of G00. Spe
i�
ally, we sele
t uniformly O(1=�) vertex pairs, 
luster theverti
es in ea
h pair a

ording to �, and 
he
k that their edge relation agrees with that oftheir 
orresponding representatives in the sense that ea
h vertex pair must be 
onne
ted ifthe 
orresponding pair of �-indi
es is 
onne
ted in G00. That is, for ea
h pair (u; v), we �rstestimate the degree of ea
h vertex and pro
eed only if both estimates are below (0:52� �0) �N .Next, we �nd the 
luster to whi
h ea
h vertex belongs, and reje
t if f�(u); �(v)g 2 E00 holdsbut fu; vg 62 E.(The 
ondition in Step 5b may be interpreted as not reje
ting if either �(u) = ? or �(v) = ?; butwe 
an also reje
t in this 
ase, as in Step 5a.)We a

ept if and only if none of the foregoing 
he
ks led to reje
tion.The query 
omplexity of Algorithm 5.5 is domianted by Steps 3 and 5, whi
h use �jS0j2 � = O(��2n)2 =O(��4q(N)) and (t + O(1=�)) � (n0 + O(��2 log t)) = O(��4n2 log2(1=�)) queries, respe
tively. We nowturn to analyzing the performan
e of Algorithm 5.5.Proposition 5.6 Algorithm 5.5 
onstitutes a tester for �.Proof: We �rst verify that any graph in �N is a

epted with very high probability. Note �rst that ifG 2 �N satis�es Condition (C1), then Step 1 a

epts with very high probability. The same holds if Ghas average degree at least (0:5+2�� �0)N . Thus, we fo
us on the 
ase that G 2 �N , and furthermoreassume that G has average degree less than (0:5 + 2� � �0)N . Needless to say, Step 2 is unlikely toreje
t G (be
ause G has minimum degree at least (0:5 ��)N).Regarding the sample S taken in Step 3, with very high probability, the degree of ea
h sample vertexin G is approximated up-to a relative term of ��0 by this vertex's degree in the subgraph indu
ed byS. The same holds with respe
t to the number of neighbors that ea
h su
h vertex has in any n �xedsets, where we 
are about the sets Vi asso
iated with G 2 �N . Letting H, (V 01 ; :::; V 0n) and G00 be as inLemma 5.4, we note that with high probability the sample S0 taken in Step 3 is 
lustered a

ordingly(i.e., the ith 
luster 
onsists of V 0i \ S0, where here we 
onsider a possible reordering of the sequen
e of
lusters). (Here we allow also empty 
lusters in order to obtain a sequen
e of n 
lusters.) Furthermore,the subgraph G00 �ts the indu
ed graph GR in the sense that G00 satis�es the 
ondition in Step 4 (i.e.,if fi; jg is an edge in G00 then fri; rjg 2 E). Moreover, with high probability, G00 passes the 
he
ks inStep 5b (be
ause the auxiliary samples taken in Step 5 are also 
lustered a

ording to the Vi's). Thus,Steps 3 and 5 are unlikely to reje
t G (be
ause, with probability at least 1��, the ith 
luster is assigneda (N�1 � jV 0i j � �0)=n fra
tion of the verti
es sampled in Step 3 and in Step 5).To show that Step 4 is also unlikely to reje
t G, we need to show that, with high probability,the graph G00 is the only adequate graph that �ts the set R. The latter is proved by 
onsidering an(imaginary) set I sele
ted at random su
h that I in
ludes a single uniformly distributed element fromea
h set Vi. Observe that, with high probability (i.e., probability at least 1 � exp(�
(n))) over the
hoi
e of I, the N=n-fa
tor blow-up of the subgraph GI is approximately in �N , and so applying (thefurthermore part of) Lemma 5.4 to this blow-up of GI guarantees the uniqueness of G00 (with respe
tto GI).6 That is, G00 is the only n0-vertex graph that is an indu
ed subgraph of some graph in �0n and�ts GI (i.e., if fi; jg is an edge in G00 then either the 
orresponding edge is in GI or at least one of itsendpoints is in H). We now 
onsider R as being derived from I by repla
ing ea
h vertex in Vi \H by6Here we use (0:5��� �)N > (0:5� 2�)N , whi
h follows from the hypothesis � � �.21



a uniformly 
hosen vertex in V 0i = Vi nH, and note that this repla
ement may only in
rease the set of
onstraints involved in the \�tting 
ondition" (i.e., if some graph did not �t GI , then it will also not�t the 
orresponding GR).7 It follows that G00 is the only graph that �ts GR, and so Step 4 is unlikelyto reje
t G. We 
on
lude that G is unlikely to be reje
ted by any step, and thus it is a

epted (withhigh probability).We now turn to the 
ase that G is �-far from �, where we need to show that G is reje
ted with, say,probability 2/3. We will a
tually prove that if G is a

epted with probability 1/3, then it is �-
lose to�N . We may assume that G has average degree below (0:5+2���)N , sin
e otherwise the 
laim followseasily. Thus, with high probability, the graph G is not a

epted by Step 1, and so we may use the fa
tthat G is a

epted by virtue of not violating the subsequent 
he
ks (of Steps 2{5). In parti
ular, byvirtue of Step 2, we may assume that at most �0N verti
es of G have degree below (0:5 �� � 2�0)N ,whi
h means that we 
an meet the degree lower bound (of �) by adding at most 3�0N2 edges. Let S0,r1; :::; rn0 and G00 be as determined in Steps 3 and 4. (Indeed, here we use the fa
t that G00 is uniquelydetermined by S, and that the same holds with respe
t to the distribution of r1; :::; rn0 .) Then, byvirtue of Step 5, we obtain a 
lustering of at least (1� �0)N verti
es that approximately �ts the graphG00 in the sense that they reside in 
lusters that have ea
h size at most (1 + 2�0)N=n and the numberof missing edges between these 
lusters is at most �0N2. By moving m def= 3�0N verti
es and adding atmost mN + �0N2 edges, we obtain a partition of the verti
es into n equal sized sets that perfe
tly �tG00, and it follows that G is (3 + 4) � �0-
lose to �N . 2Con
lusion. We just showed that Algorithm 5.5 satis�es the upper bound requirements of Theo-rem 5; that is, it is a tester for � and has query 
omplexity O(q). Re
alling that Proposition 5.3establishes a 
orresponding 
(q) lower bound, we 
omplete the proof of Theorem 5.6 Revisiting the Adja
en
y Matrix Model: One-Sided ErrorIn 
ontinuation to Se
tion 4, whi
h provides a hierar
hy theorem for two-sided error testing of graphproperties (in the adja
en
y matrix model), we present in this se
tion a hierar
hy theorem that refersto one-sided error testing. A
tually, the lower bounds will hold also with respe
t to two-sided error,but the upper bounds will be established using a tester with one-sided error.Theorem 6 In the adja
en
y matrix model, for every q : N ! N as in Theorem 4, there exists a graphproperty � that is testable with one-sided error in O(q) queries, but is not testable in o(q) queries evenwhen allowing two-sided error. Furthermore, � is in P.Theorems 4 and 6 are in
omparable: in the former the upper bound is established via relatively eÆ
ienttesters (of two-sided error), whereas in the latter the upper bound is established via one-sided errortesters (whi
h are not relatively eÆ
ient). (Unlike Theorem 5, both Theorems 4 and 6 do not providemonotone properties.)Outline of the proof of Theorem 6. Starting with the proof of Theorem 4, we observe that thesour
e of the two-sided error of the tester is in the need to approximate set sizes. This is unavoidablewhen 
onsidering graph properties that are blow-ups of some other graph properties, where blow-upis de�ned by repla
ing verti
es of the original graph by equal-size 
louds. The natural solution is to
onsider a generalized notion of blow-up in whi
h ea
h vertex is repla
ed by a (non-empty) 
loud ofarbitrary size. That is, G is a (generalized) blow-up of G0 = ([n℄; E0) if the vertex set of G 
an be7The key observation is that all 
onstraints that refer to a vertex in H (present in I) are trivially satis�ed. Thus, itdoes not matter whi
h verti
es are used to repla
e those in H, and it does not matter if we just omit these verti
es (asin 
ase that Vi nH = ;). 22



partitioned into n non-empty sets (of arbitrary sizes) that 
orrespond to the n verti
es of G0 su
h thatthe edges between these sets represent the edges of G0; that is, if fi; jg is an edge in G0 (i.e., fi; jg 2 E0),then there is a 
omplete bipartite between the ith set and the jth set, and otherwise (i.e., fi; jg 62 E0)there are no edges between this pair of sets.The proof of Theorem 6 builds on the proof of Theorem 4 (while deviating from it in some pla
es).In Se
tion 6.1, we 
onstru
t � based on �0 by applying the generalized graph blow-up operation. InSe
tion 6.2 we lower-bound the query 
omplexity of � based on the query 
omplexity of �0, while
oping with the non-trivial question of how does the generalized (rather than the standard) blow-upoperation a�e
t distan
es between graphs. In Se
tion 6.3 we upper-bound the query 
omplexity of �with respe
t to one-sided error testers.6.1 The (generalized) blow-up property �Our starting point is any graph property �0 = Sn2N �0n for whi
h testing requires quadrati
 query
omplexity. A
tually, we start with a graph property �0 for whi
h distinguishing a random n-vertexgraph from a graph uniformly distributed in �0n requires 
(n2) queries (
f. Se
tion 7, whi
h buildson [GGR℄). Furthermore, we assume that �0 is in P (as in Se
tion 4.1).Given a desired 
omplexity bound q : N ! N , we �rst set n = pq(N), and de�ne �N as the set ofall N -vertex graphs that are (generalized) blow-ups of graphs in �0n; that is, the N -vertex graph G isin �N if and only if G is a (generalized) blow-up of some graph in �0n.We note that, as in Se
tion 4, if �0 2 P (and ea
h vertex in ea
h graph in �0 has distin
t neighborset), then � 2 P. We 
omment that the latter impli
ation relies on the fa
t that the de�nition of(generalized) blow-up requires that ea
h vertex (of the original graph) is repla
ed by a non-empty
loud. For further dis
ussion see Remark 6.5.6.2 Lower-bounding the query 
omplexity of testing �In this se
tion we prove that the query 
omplexity of testing � is 
(q). As in Se
tion 4.2, the basi
idea is redu
ing testing �0 to testing �; that is, given a graph G0 that we need to test for membershipin �0n, we test its N=n-fa
tor blow-up for membership in �N , where N is 
hosen su
h that n = pq(N).(Needless to say, the N=n-fa
tor blow-up of any graph in �0n results in a graph that is in �N .) Note thatwe still use the \balan
ed" blow-up operation in our redu
tion, although �N 
ontains any generalizedblow-up (of any graph in �0n). Indeed, this redu
tion relies on the assumption that the N=n-fa
torblow-up of any n-vertex graph that is far from �0n results in a graph that is far from �N (and not onlyfrom graphs obtained from �0n by a \balan
ed" blow-up).Re
all that in Se
tion 4.2 we proved that for every �0 > 0 there exists an � > 0 su
h that the N=n-fa
tor blow-up of any graph that is �0-far from �0n is �-far from the N=n-fa
tor blow-up of any graph in�0n. Here we show that, in the relevant (for us) 
ase, the former graph is �-far from �N (i.e., far fromany generalized blow-up of any graph in �0n). Spe
i�
ally, sin
e the lower bound regarding testing �0refers to distinguishing a random n-vertex graph from a graph that is uniformly distributed in �0n, itsuÆ
es to 
onsider the 
ase that G0 is random. In parti
ular, in this 
ase, with high probability G0 isdispersed.Lemma 6.1 There exists a universal 
onstant 
 > 0 su
h that the following holds for every n; �0; � and(unlabeled) n-vertex graphs G01; G02. If G02 is �-dispersed and �0-far from G01, then for any t and everytn-vertex graph that is obtained by a generalized blow-up of G01 is 
�2 � �0-far from the t-fa
tor blow-upof G02.Using Lemma 6.1 we 
on
lude that if G0 is �-dispersed and �0-far from �0, then its generalized blow-upis 
(�0)-far from �. Spe
i�
ally, applying Lemma 6.1 to G02 = G0 and every G01 2 �0, we 
on
lude23



that with high probability the N=n-fa
tor blow-up of a random n-vertex graph G0 is 
(�0)-far from �(be
ause su
h a random graph is likely to be dispersed and �0-far from �0).We 
omment that the use of a balan
ed blow-up on one of the original graphs (in Lemma 6.1) isessential to the validity of the \approximate distan
e preservation" 
laim (of Lemma 6.1). In 
ontrast,note that the generalized blow-ups of an n-vertex 
lique and an n-vertex independent set may berelatively 
lose to one another. Similarly, the dispersity 
ondition is also essential (e.g., a balan
edblow-up of an n-vertex independent set is relatively 
lose to some generalized blow-up of an n-vertex
lique).Proof of Lemma 6.1: By Lemma 4.3, for a suitable 
onstant 
1, it holds that the t-fa
tor blow-upof G01 is 
1� � �0-far from the t-fa
tor blow-up of G02, denoted G2. Let G1 be an arbitrary (generalized)blow-up of G01 (see Figure 3). We need to prove that G1 is 
�2 � �0-far from G2. We 
onsider two 
asesregarding the amount of imbalan
e in the blow-up underlying G1, where G1 is 
alled a Æ-imbalan
edblow-up of G01 if the variation distan
e between the relative densities of the various 
louds in G1 andthe uniform sequen
e of densities is at most Æ (i.e., Pni=1 j�i � (1=n)j � 2Æ, where �i is the relative sizeof the ith 
loud in G1). (Indeed, 0-imbalan
e 
orresponds to the 
ase of a t-fa
tor blow-up (of G01), andany generalized blow-up of G01 is 1-imbalan
ed.)
G’1

1G

blow-up blow-up

G’2

2G

balanced
blow-up

generalized balanced

Figure 3: G01, G02, and their blow-ups.Case 1: G1 is a Æ-imbalan
ed blow-up of G01, where Æ = 
1��0=3. In this 
ase G1 is (
1� � �0 � 2Æ)-farfrom G2, be
ause G1 is 2Æ-
lose to a t-fa
tor blow-up of G01 (whereas the t-fa
tor blow-up of G01is 
1� � �0-far from G2).Note that, by the 
hoi
e of Æ, it holds that 
1� � �0 � 2Æ = Æ.Case 2: G1 is not a Æ-imbalan
ed blow-up of G01. In this 
ase, using the fa
t that G2 is a t-fa
tor blow-up of an �-dispersed graph, we prove that G1 is far from G2.Let �i denote the relative size of the ith 
loud in G1, and I = fi 2 [n℄ : �i > 1=ng denote theset of 
louds that are larger than in the uniform 
ase. Then, Pi2I �i > (jIj=n) + Æ. We 
onsiderthe most edge-�tting bije
tion � from the verti
es of G2 to the verti
es of G1, and lower-boundthe number of vertex pairs that do not preserve the edge relation (i.e., pairs (u; v) su
h thatfu; vg 2 E2 i� f�(u); �(v)g 62 E1). Observe that, for ea
h i 2 I, the ith 
loud of G1 must 
ontainat least (�i � (1=n)) �N=2 pairs of verti
es su
h that ea
h pair 
onsists of verti
es that reside indi�erent 
louds of G2 (be
ause this 
loud of G1 
ontains at most N=n verti
es that reside in thesame 
loud of G2).8 Ea
h su
h pair 
ontributes at least � � N units to the (absolute) distan
ebetween G1 and G2 (be
ause these verti
es must have the same neighbors in G1 whereas theirneighborhoods in G2 must have a disagreement rate of at least �). Thus, we lower-bound this8The lower bound on the number of pairs follows from the following 
laim: For b � t, if an urn 
ontains t balls su
hthat at most b balls have the same 
olor, then the urn must 
ontain at least (t� b)=2 disjoint pairs of mixed-
olored balls.The 
laim is proved by indu
tion on t. In the indu
tion step (assuming b < t), we take an arbitrary pair of balls withdi�erent 
olors, and are left with t� 2 balls (and at most b have the same 
olor).24



(absolute) distan
e by Xi2I (�i � (1=n))N2 � �N > Æ � �2 �N2and it follows that G1 is (Æ�=2)-far from G2.The 
laim follows by setting 
 = 
1=6 and noting that min(Æ; Æ�=2) = 
1�2�0=6. 2Proposition 6.2 Any tester for � has query 
omplexity 
(q).Proof: Re
all that Lemma 6.1 implies that if G0 is dispersed and �0-far from �0, then its (balan
ed)blow-up is 
(�0)-far from �. Sin
e a random n-vertex graph G0 is very likely to be dispersed, we inferthat the distan
e of the (balan
ed) blow-up of G0 from � is linearly related to the distan
e of G0 from�0. Using this fa
t, we 
on
lude that distinguishing graphs that are uniformly distributed in �0n fromrandom n-vertex graphs redu
es to testing membership in �N , where n = pq(N). Spe
i�
ally, ifG0 2 �0n then its (balan
ed) blow-up is in �N , whereas if G0 is �-far from �0n (as is likely to be the
ase when it is a random n-vertex graph) then its (balan
ed) blow-up is 
(�)-far from �N . Thus, aquadrati
 lower bound on the query 
omplexity of the distinguishing task regarding �0 implies an 
(q)lower bound on the query 
omplexity of testing �, for some 
onstant value of the proximity parameter.26.3 An optimal tester for property �In this se
tion we prove that the query 
omplexity of testing � is at most O(q) and that this 
anbe met by a one-sided error tester. In fa
t, essentially, we will use a straightforward tester, whi
hsele
ts uniformly a sample of O(pq) verti
es and a

epts if and only if the indu
ed subgraph is a(generalized) blow-up of some graph in �0. A
tually, sin
e some 
louds of the tested graph may not berepresented in the sample, we shall use a relaxed version of (generalized) blow-up that allows empty
louds. Equivalently, we shall 
he
k whether the indu
ed subgraph is a (generalized) blow-up of anindu
ed subgraph of some graph in �0.Algorithm 6.3 On input N and proximity parameter �, and when given ora
le a

ess to a graphG = ([N ℄; E), the algorithm pro
eeds as follows:1. The algorithm sets �0 def= �=3 and 
omputes n pq(N).2. The algorithm sele
ts uniformly a set of O(n=�) verti
es, denoted S, and inspe
ts the subgraph ofG indu
ed by S; that is, for every u; v 2 S, the algorithm 
he
ks whether fu; vg 2 E.3. The algorithm a

epts G if and only if the subgraph viewed in Step 2 is a generalized blow-up ofsome indu
ed subgraph of some graph in �0n.We stress that Step 3 does not require the subgraph viewed in Step 2 to be a generalized blow-up ofsome graph G0 2 �0n, but rather allows the former graph to be a generalized blow-up of any indu
edsubgraph of su
h G0. In other words, Step 3 refers to the following relaxation of the notion of ageneralized blow-up: the graph G is a relaxed blow-up of G0 if the vertex set of G 
an be partitionedinto sets (of arbitrary sizes) that 
orrespond to verti
es of G0 su
h that the edges between these setsrepresent the edges of G0. We stress that some of these sets may be empty (and, needless to say, insu
h a 
ase no edges are in
ident at these empty sets).The query 
omplexity of Algorithm 6.3 is �O(n=�)2 � = O(q(N)=�2). Note that this algorithm may notbe relatively eÆ
ient, sin
e we do not know of an eÆ
ient implementation of Step 3 (even if �0 2 P; seeRemark 6.5). Clearly, Algorithm 6.3 a

epts any graph in � with probability 1, be
ause being a relaxed25



blow-up of any graph G0 is hereditary (i.e., if G is a relaxed blow-up of G0, then any indu
ed subgraphof G is a relaxed blow-up of G0). It is left to show that Algorithm 6.3 reje
ts with probability 2/3 anygraph that is �-far from �.Let G be an arbitrary N -vertex graph that is �-far from �N , and let us 
onsider the sample S asbeing drawn in 2n iterations su
h that at ea
h iteration O(1=�) random verti
es are sele
ted. We denoteby Si the sample taken in iteration i, and by Gi the subgraph of G that is indu
ed by S(i) def= Sj2[i℄ Sj .We refer to the 
lustering of the verti
es of Gi a

ording to their neighbor sets su
h that two verti
esare in the same 
luster if and only if they have exa
tly the same set of neighbors. We shall show (seethe following Claim 6.4) that in ea
h iteration, with high 
onstant probability, either the number of
lusters in
reases or we obtain a subgraph that is not a relaxed blow-up of any graph in �0n. It followsthat, with overwhelmingly high probability, after 2n iterations we obtain a subgraph that is not arelaxed blow-up of any graph in �0n.Claim 6.4 Let G be an arbitrary N -vertex graph that is �-far from �N , and GS0 be the subgraph of Gindu
ed by S0. Let m denote the number of 
lusters in GS0 and suppose that m � n. Further supposethat GS0 is a relaxed blow-up of some graph in �0n. Then, for a randomly sele
ted pair of verti
esu; v 2 [N ℄, with probability 
(�), the number of 
lusters in the subgraph indu
ed by S0[fu; vg is greaterthan m.Note that if GS0 is not a relaxed blow-up of any graph in �0n, then neither is the subgraph indu
ed byS0 [ fu; vg. On the other hand, by Claim 6.4, if GS0 is a relaxed blow-up of some graph in �0n and weaugment S0 with O(1=�) random verti
es, then, with probability at least 2=3, the number of 
lustersin the resulting indu
ed subgraph is greater than m. Finally, note that if the number of 
lusters in agraph (e.g., GS) is greater than n, then this graph 
annot be a relaxed blow-up of any n-vertex graph(e.g., any graph in �0n). It follows that, with overwhelmingly high probability, the indu
ed subgraphGS is not a relaxed blow-up of any graph in �0n.Proof of Claim 6.4: By the hypothesis regarding GS0 , there exists G0 2 �0n su
h that GS0 is a relaxedblow-up of G0. We 
onsider a partition of the vertex set of GS0 to 
louds that 
orrespond to verti
esof G0 and denote by Cv the 
loud that 
orresponds to vertex v. Clearly, the verti
es in ea
h 
loudmust belong to the same 
luster, be
ause otherwise the (relaxed) blow-up 
ondition is violated. Thus,the 
louds are a re�nement of the partition of the vertex set of GS0 into 
lusters. On the other hand,without loss of generality, all the verti
es of ea
h 
luster may belong to a single 
loud, be
ause if Cvand Cw are 
louds of the same 
luster then we 
an move verti
es of Cw to Cv while maintaining 
loudsthat 
orrespond to verti
es of G0. We 
on
lude that, without loss of generality, the 
olle
tion of m
lusters equals the 
olle
tion of non-empty 
louds of GS0 , whi
h 
orrespond to an indu
ed subgraph ofG0, denoted G00 = (V 00; E00). Without loss of generality, we assume that V 00 = [m℄.We now 
onsider a 
lustering of the verti
es of the entire graph G a

ording to their neighborsin the set S0; that is, we 
luster the verti
es of G a

ording to their S0-neighborhood, where the S0-neighborhood of v equals �S0(v) def= fw2S0 : fv; wg2Eg. Note that some of these 
lusters extend theforegoing Cv's, whereas the other 
lusters, 
alled new, 
ontain verti
es that have S0-neighborhood thatare di�erent from the S0-neighborhoods of all verti
es in S0. If the number of verti
es that are pla
edin new 
lusters ex
eeds �N=4, then su
h a vertex is sele
ted with probability at least �=4 and the 
laimfollows immediately. Otherwise, we 
onsider an m-way partition, denoted (V1; :::; Vm), of the verti
esthat have the same S0-neighborhood as some verti
es of S0 su
h thatVi = fv : (8u2Ci) �S0(v) = �S0(u)g:By the hypothesis that G is �-far from �N and ���Si2[m℄ Vi��� � (1 � (�=4)) �N (and n=N < �=4), it mustbe the 
ase that (�=2) �N2 vertex pairs in Si;j2[m℄ Vi�Vj have edge relations that are in
onsistent with26



G00 (i.e., for su
h a pair (u; v) 2 Vi � Vj it holds that fu; vg 2 E i� fi; jg 62 E00).9 Hen
e, these pairshave edge relations that are in
onsistent with the edges between the 
orresponding Ci's (be
ause theverti
es in Si;j2[m℄Ci�Cj have edge relations that are 
onsistent with G00). Thus, with probability atleast �=2, for a random pair of verti
es fu; vg the edge relation between u and v does not �t the edgerelation between Ci and Cj , where i and j are the designated 
louds of u and v (i.e., u 2 Vi and v 2 Vj).It follows that the fug [ Ci (and fvg [ Cj) must be split when 
lustering the vertex set S0 [ fu; vga

ording to the neighborhoods in S0 [ fu; vg. Thus, the 
laim follows also in this 
ase. 2Remark 6.5 Re
all that the property � was obtained by a generalized blow-up of �0, whereas Step 3in Algorithm 6.3 refers to relaxed blow-ups of �0. Denoting the set of relaxed blow-ups of �0 by b�, wenote that �0 2 P implies b� 2 NP, but it is not 
lear whether b� 2 P even when �0 2 P. In fa
t, forsome �0 2 P, de
iding membership in the 
orresponding b� is NP-
omplete.10Con
lusion. We just showed that Algorithm 6.3 satis�es the upper bound requirements of Theo-rem 6; that is, it is a one-sided error tester for � and has query 
omplexity O(q). Re
alling thatProposition 6.2 establishes a 
orresponding 
(q) lower bound (also for two-sided testing), we 
ompletethe proof of Theorem 6.7 Hard-to-test Graph Properties in PIn this se
tion we strengthen the hardness results of [GGR℄ that refer to the existen
e of properties thatare hard to test (i.e., properties of N -vertex graphs for whi
h any tester must make 
(N2) queries).These properties were shown to be in NP. Here we modify the 
onstru
tions in order to obtain su
hproperties in P. The aforementioned results refer both to the model of generi
 fun
tions and to themodel of testing graph properties in the adja
en
y matrix model (a.k.a dense model).Let us �rst 
omment on the reasons that the original properties were only known to be in NP(rather than in P).11 In the �rst 
ase (i.e., the 
ase of generi
 fun
tions), the reason is the 
omplexityof re
ognizing possible outputs of an adequate pseudorandom generator (whi
h be
omes easy whengiven an adequate seed as an NP-witness). In the se
ond 
ase (i.e., the 
ase of graph properties),an additional reason stems from the fa
t that \
losure under isomorphism" is applied to the basi

onstru
tion, and so the problem of re
ognizing graphs that are isomorphi
 to graphs in a parti
ularset arises (and be
omes easy when given an adequate isomorphism as an NP-witness). Below, we shallavoid the use of NP-witnesses by augmenting the basi
 
onstru
tion in adequate ways.We 
omment that the additional monotone 
losure used in [GT, Se
. 3℄ (in order to obtain monotonegraph properties) introdu
es additional diÆ
ulties, whi
h we were not able to resolve (and thus the9Otherwise, we 
an obtain an m-way partition that is 
onsistent with G00 by 
hanging the edge relation of at most�N2 vertex pairs (i.e., at most (�=2) � N2 vertex pairs in Si;j2[m℄ Vi � Vj and at most all pairs with one element notin Si2[m℄ Vi). Similarly, we 
an obtain an n-way partition that is 
onsistent with G0 (by 
reating n �m new singleton
lusters and using n�m < �N=4). This violates the hypothesis that G is �-far from �N .10For any NP witness relation R, we show how to redu
e membership in SR def= fx : 9w (x;w)2Rg to testing whether a
onstru
ted graph is an indu
ed subgraph (or a relaxed blow-up) of some graph in an adequate set �0. We use the graphsin �0 to en
ode pairs in R, and use the 
onstru
ted graph to en
ode an input x that we need to 
he
k for membershipin SR. Ea
h graph in �0n will 
orrespond to a pair (x;w) 2 f0; 1gn+m su
h that the graph will 
onsist of (1) a 
liqueof 2(n +m) verti
es, (2) a sequen
e of n +m pairs of verti
es su
h that the ith pair is 
onne
ted i� the ith bit in xwequals 1, and (3) edges 
onne
ting the ith vertex in Part (2) to the i �rst verti
es of the 
lique. On input x 2 f0; 1gn,we 
onstru
t a (2(n +m) + 2n)-vertex graph Gx essentially as above, ex
ept that we do not in
lude the m last pairs ofPart (2). (Indeed, given x, we 
annot 
onstru
t the 
orresponding m pairs, sin
e we don't know w.) Note that Gx is anindu
ed subgraph (or a relaxed blow-up) of some graph in �0n if and only if x 2 SR.11The 
urrent des
ription is intended for readers who have some re
all of the aforementioned result. A self-
ontaineddes
ription follows. 27



graph properties that we obtain in this se
tion are not monotone). Furthermore, our te
hniques seemin
ompatible with monotoni
ity. The result we prove is stated next.Theorem 7 There exists a graph property in P for whi
h, in the adja
en
y matrix model, every testermust query a 
onstant fra
tion of the representation of the graph (even when invoked with 
onstantproximity parameter).Ba
kground: the GGR 
onstru
tion and two diÆ
ulties. The graph property for whi
h aquadrati
 query 
omplexity lower bound is proved in [GGR, Prop. 10.2.3.2℄ is de�ned in two steps.1. First, it is shown that 
ertain sample spa
es yield a 
olle
tion of Boolean fun
tions (i.e., a propertyof Boolean fun
tions) that is hard to test (i.e., any tester must inspe
t at least a 
onstant fra
tionof the fun
tion's values).On the one hand, the sample spa
e is relatively sparse (and thus a random fun
tion is far fromany fun
tion in the resulting 
olle
tion), but on the other hand it enjoys a strong pseudorandomfeature (and so its proje
tion on any 
onstant fra
tion of the 
oordinates looks random). Thus, thefun
tions in the 
lass (whi
h must be a

epted with high probability) look random to any testerthat inspe
t only a small 
onstant fra
tion of the fun
tion's values, whereas random fun
tionsare far from the 
lass (and should be reje
ted with high probability). This yields a 
ontradi
tionto the existen
e of a tester that inspe
t only a small 
onstant fra
tion of the fun
tion's values.2. Next, the domain of the fun
tions is asso
iated with the set of unordered pairs of elements in [N ℄,and the 
olle
tion of fun
tions is \
losed" under graph isomorphism (i.e., if a 
ertain fun
tion on�[N ℄2 � is in the 
olle
tion, then so is any fun
tion obtained from it by a relabeling of the elementsof [N ℄).The 
losure operation makes this 
olle
tion 
orrespond to a graph property (sin
e it is nowpreserved under isomorphism). The parameters are su
h that the resulting 
olle
tion (althoughlikely to be N ! times bigger than the original one) is still sparse enough (and so a random graphis far from it). On the other hand, the indistinguishability feature is maintained.The two diÆ
ulties dis
ussed above 
orrespond to these two steps. Firstly, while the (support of the)sample spa
e used in the proof of [GGR, Prop. 10.2.3.2℄ is in NP , it is not 
lear whether it is in P.Se
ondly, while NP-witnesses 
an be provided to prove that a given graph is isomorphi
 to a graphobtained in Step 1, it is not 
lear how to eÆ
iently verify su
h a 
laim without an NP-witness.Resolving the two diÆ
ulties (overview). The �rst diÆ
ulty is resolved by using an adequatepseudorandom generator for whi
h membership in the 
orresponding sample spa
e 
an be de
ided inpolynomial time. Spe
i�
ally, we shall use an adequate 
(n)-wise independen
e generator of n-bit longsequen
es rather than using a quite generi
 small-biased sample spa
e as done in the proof of [GGR,Prop. 10.2.3.2℄. (We mention that an alternative 
onstru
tion may be based on a spe
i�
 small-biasedgenerator; spe
i�
ally, on the �rst small-biased generator of [AGHP℄ (i.e., the one based on LFSRsequen
es).)The se
ond diÆ
ulty is resolved by augmenting the graphs (
onstru
ted in Step 1) in a way thatmakes the original graph easy to re
over from any relabeling of the resulting graph. Thus, applyingStep 2 to these augmented graphs yields a 
lass of graphs that is easy to re
ognize (by �rst re
overingthe original graph and then 
he
king whether it 
orresponds to a string in the sample spa
e).The a
tual 
onstru
tion. For every N , we start by 
onsidering an eÆ
iently 
onstru
tible d-wiseindependent sample spa
e over n-bit long strings, where n def= �N2 � and d def= 
(n). Spe
i�
ally, for28



some 
onstant Æ > 0, we use an expli
itly 
onstru
tible linear 
ode mapping 0:01n-bit long strings ton-bit strings su
h that every Æn positions in a generi
 
odeword are linearly independent (see [ABI℄).Su
h a 
ode is 
onstru
ted by 
onstru
ting a party-
he
k matrix that spans a 0:99n-dimensional ve
torspa
e (
alled the \dual 
ode") in whi
h ea
h ve
tor has Hamming weight at least Æn. We will use theparity-
he
k matrix of the (primary) 
ode in order to 
he
k membership in this 
ode.For ea
h sequen
e s = (s1; :::; sn) 2 f0; 1gn, we de�ne a graph Gs = ([N ℄; Es) by letting fi; jg 2 Esif and only if the (i; j)th bit of s equals 1, where we 
onsider any �xed (eÆ
iently 
omputable) orderof the elements in f(i; j) : 1 � i < j � Ng. We 
all the graph Gs good if s is in the aforementionedsample spa
e, and 
all it bad otherwise. We refer to ea
h su
h graph as basi
; that is, the set of basi
graphs in
ludes all good and bad graphs (and indeed in
ludes all N -vertex graphs). We highlightthe fa
t that the set of good graphs is re
ognizable in polynomial-time, be
ause the support of theaforementioned sample spa
e is re
ognizable in polynomial-time (and the set of all N -vertex graphs isin 1-1 
orresponden
e to the set of all n-bit strings).
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Figure 4: From Gs to G0s.Note that the set of good graphs is not likely to be 
losed under isomorphism, and thus this 
olle
tiondoes not 
onstitute a graph property. Following [GGR℄, we wish to 
onsider the \
losure" of the set ofgood graphs under isomorphism, but before applying this operation we augment the graphs in a waythat makes it easy to re
onstru
t their original labeling. Spe
i�
ally, for ea
h graph Gs = ([N ℄; Es),we 
onsider the augmented graph G0s = ([3N + 1℄; E0s) obtained by adding a 
lique of size 2N + 1 toGs and 
onne
ting the ith vertex of Gs to the �rst i verti
es in the 
lique; that is,E0s = Es [ ffu; vg : u; v 2 fN + 1; :::; 3N + 1gg [ ffi;N + jg : i 2 [N ℄ ^ j 2 [i℄g: (2)(See Figure 4.) Now, we 
onsider the set of �nal graphs obtained by \
losing" the set of augmentedgraphs under isomorphism. That is, for every s in the sample spa
e (equiv., an augmented graph G0sobtained from a good graph Gs) and every permutation � over [3N + 1℄, we 
onsider the �nal graphG0s;� = ([3N +1℄; Es;�) that is de�ned so that f�(u); �(v)g 2 Es;� i� fu; vg 2 E0s. By 
onstru
tion, theset of �nal graphs is 
losed under isomorphism, and so this 
olle
tion does 
onstitute a graph property.Furthermore, as is shown next, the augmentation guarantees that the set of �nal graphs is in P.To test whether a graph G = ([3N+1℄; E) is in the set of �nal graphs, we �rst attempt to re
onstru
tthe 
orresponding basi
 graph. We use the fa
t that given a �nal graph it is easy to determine whi
hvertex belongs to the basi
 graph (sin
e these verti
es have degree at most (N � 1) + N = 2N � 1,whereas ea
h 
lique vertex has degree at least 2N). Next, we determine the label of ea
h vertexin the basi
 graphs by 
ounting the number of its neighbors in the 
lique. (Needless to say, if thisre
onstru
tion fails, then G is not a �nal graph and we just reje
t it.) Finally, we 
he
k whether the29



resulting basi
 graph belongs to the set of good graphs (and whether the rest of the graph indeed �tsthe augmentation pro
edure).Showing that the �nal graphs are hard to test. Our aim is to show that the property ofbeing a �nal (3N + 1)-vertex graph 
annot be tested using o(N2) queries. We shall prove this 
laimby presenting two distributions on (3N + 1)-vertex graphs su
h that a tester of �nal graphs mustdistinguish these two distributions whereas no ma
hine that makes o(N2) queries 
an distinguish thesetwo distributions. The �rst distribution is 
on�ned to �nal graphs, whereas with high probability graphsin the se
ond distribution are 0:01-far from any �nal graph. Spe
i�
ally, the �rst distribution, denotedGN , is obtained by uniformly sele
ting a good N -vertex graph and augmenting it to an (3N +1)-graph(as done above). The se
ond distribution, denoted RN , is obtained by uniformly sele
ting a N -vertexgraph and augmenting it to a (3N + 1)-graph (again, as done above, ex
ept that here we apply thisaugmentation to all graphs). Throughout the rest of the argument, we asso
iate the two distributionswith random graphs drawn from them. We shall �rst show that, with high probability, RN is 0:01-farfrom the set of �nal graphs.Claim 7.1 The probability that RN is 0.01-
lose to some �nal (3N + 1)-vertex graph is o(1).Proof: The key observation is that the set of �nal graphs is very sparse. Spe
i�
ally, ea
h good graphgives rise to at most (3N + 1)! �nal graphs, whereas the number of good graphs is 20:01n = 20:01�(N2 ).Thus, the number of �nal graphs is at most 2(0:01+o(1))�(N2 ). Ea
h su
h graph is 0:01-
lose to at most2H2(0:01)�(3N+12 ) � 20:1�(3N+12 ) � 2(0:9+o(1))�(N2 ) graphs, where H2 denotes the binary entropy fun
tion(and H(0:01) < 0:1). Thus (for all suÆ
iently large N), the total number of graphs that are 0:01-
loseto the set of �nal graphs is smaller than 20:92�(N2 ). Sin
e RN is uniformly distributed on a set of 2(N2 )graphs, the 
laim follows. 2Next, we show that o(N2) queries do not allow distinguishing RN from GN .Claim 7.2 Let M be a probabilisti
 ora
le ma
hine that makes at most d = Æn � ÆN2=2 queries.Then, Pr[MRN (N) = 1℄ = Pr[MGN (N) = 1℄.Proof: Sin
e both distributions are obtained by applying the same �xed augmentation to some pre-liminary distributions, it suÆ
es to 
onsider queries to the preliminary distributions. Spe
i�
ally, letus denote by G0N the uniform distribution over good N -vertex graphs, and let R0N denote the uniformdistribution over all N -vertex graphs. Indeed, GN (resp., RN ) is obtained by applying the (�xed)augmentation of Eq. (2) to G0N (resp., R0N ), and ea
h query to GN (resp., RN ) 
an be answered eitherby using a 
onstant value or by making a single query to the 
orresponding G0N (resp., R0N ). Thus, itsuÆ
es to show that a ma
hine that makes at most d queries 
annot distinguish R0N from G0N .We identify �N2 �-bit long strings with N -vertex graphs (obtained as in the �rst stage of the 
on-stru
tion). Re
all that G0N denotes a graph uniformly sele
ted among all graphs in the sample spa
e;that is, it 
orresponds to a d-wise independent sequen
e of length n = �N2 �. So the 
laim redu
es toasserting that using d queries one 
annot distinguish between a d-wise independent sequen
e and auniformly distributed sequen
e, whi
h follows easily from the de�nition of d-wise independent samplespa
es (sin
e in su
h 
ases adaptive queries o�er no advantage). 2Con
lusion. Theorem 7 follows by 
ombining Claims 7.1 and 7.2 (with the fa
t that the set of �nalgraphs is in P).
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8 Con
luding CommentsFigure 5 provides a bird's eye view of the various hierar
hy theorems proved in this work, where bd-graphs denote bounded-degree graphs. The third 
olumn spe
i�es the type of error made by the testerthat establishes the upper bound; re
all that in all 
ases the lower bound refers to two-sided errortesters. The fourth 
olumn spe
i�es the 
omputational 
omplexity of the tester as a fun
tion of itsquery 
omplexity (e.g., poly-time means running time that is polynomial in the total length of thequeries made by the tester); this bound is stated expli
itly only in Theorem 4 (but is easily veri�edin all other 
ases). The monotone graph properties are listed in the �fth 
olumn as monotone in thedire
tion shown in the main text; we mention that monotoni
ity in the opposite dire
tion 
an be showntoo (see 
omment below). The weaker features of the results are indi
ated by itali
 (or by `{').property's tester's tester's property'sdomain error 
omplexity monotoni
ityThm 2 generi
 one-sided log-spa
e {Thm 3 bd-graphs one-sided in NP downwardsThm 4 dense graph two-sided poly-time {Thm 5 dense graph two-sided in PNP upwardsThm 6 dense graph one-sided in NP {Figure 5: All hierar
hy theorems at a glan
eReversing the dire
tion of monotoni
ity. As stated above, the dire
tion of monotoni
ity ofgraph properties 
an be reversed while preserving the query 
omplexity of testing. Three simple waysof obtaining this e�e
t are dis
ussed next.1. The simplest method, whi
h is only appli
able to the dense graph model, 
onsists of 
onsideringthe 
omplement graphs. That is, for a graph property �, we 
onsider the graph property �
 =fG
 : G 2 �g, where for G = ([N ℄; E) it holds that G
 = ([N ℄; ffu; vg : fu; vg 62 E).2. An alternative method, whi
h is only appli
able to the bounded-degree graph model, 
onsistsof 
onsidering a set of graphs with a maximum number of edges, whi
h means that upwardsmonotoni
ity holds va
uously (i.e., for a degree bound d, we 
onsider a set of d-regular graphs).But we need to make sure that this set of graphs yields a property that maintains the 
omplexityof the original one. Spe
i�
ally, starting with 3-Colorability, we 
onsider the set of 3-
olorabled-regular graphs (with an even number of verti
es). To see that this property is hard to test
onsider a transformation of arbitrary graphs of maximum degree d into d-regular graphs that(approximately) preserves the distan
e from 3-Colorability. For example, 
onsider taking two
opies of the original graph and 
onne
ting the two 
opies of ea
h vertex v of degree dv by d� dvgadgets, where ea
h gadget 
onsists of the 
omplete bipartite graph Kd;d with one edge omitted(so that the free endpoints 
an be used for 
onne
ting).3. A third method 
onsists of 
onsidering, for an arbitrary �xed �0 > 0, the property of being �0-farfrom the original property. That is, for a property � and �0 > 0, we 
onsider the propertyfar�0(�) that 
onsists of all obje
ts that are �0-far from �. This notion is appli
able to allmodels, and it holds that � � far�0(far�0(�)) (but equality does not ne
essarily hold). Thus, alower bound for �0-testing � does imply a 
orresponding lower bound for (�0-testing) far�0(�).However, the 
onverse does not ne
essarily hold, and the e�e
t of this transformation 
alls forfurther study. 31



Some open problems. An immediate gap, 
onspi
uous in Figure 5, arises from the fa
t that The-orem 3 refers to graph properties that are unlikely to be in P (and so they are unlikely to admit arelatively eÆ
ient tester). In fa
t, we do not know of a graph property in P that has maximal testing
omplexity in the bounded-degree model.Many more natural open problems arise in the dense graph model. In parti
ular, Theorems 4, 5and 6 (and their proofs) raise several natural open problems, listed next. We stress that all questionsrefer to the adja
en
y matrix graph model 
onsidered in Se
tions 4{6 (and Se
tion 7).1. Combining the features of all three hierar
hy theorems: Theorems 4, 5 and 6 provide in
omparablehierar
hy theorems, ea
h having an additional feature that the others la
k. Spe
i�
ally, Theorem 4refers to properties in P (and testing, in the positive part, is relatively eÆ
ient), Theorem 5 refersto monotone properties, and Theorem 6 provides one-sided testing (in the positive part). Is itpossible to have a single hierar
hy theorem that enjoys all three additional feature? Intermediategoals in
lude the following:(a) Hierar
hy of monotone graph properties in P: Re
all that Theorem 4 is proved by usingnon-monotone graph properties (whi
h are in P), while Theorem 5 refers to monotone graphproperties that are not likely to be in P. Can one 
ombine the good aspe
ts of both results?(b) Hard-to-test monotone graph property in P: Indeed, before addressing Problem 1a, oneshould ask whether a result analogous to Theorem 7 holds for a monotone graph property.Re
all that [GT, Thm. 1℄ provides a monotone graph property in NP that is hard-to-test.(
) One-sided versus two-sided error testers: Re
all that the positive part of Theorem 6 refersto testing with one-sided error, but these testers are not relatively eÆ
ient. In 
ontrast,the positive part of Theorem 4 provides relatively eÆ
ient testers, but these testers havetwo-sided error. Can one 
ombine the good aspe
ts of both results?2. Determining the exa
t e�e
t of the blow-up operation on the distan
e between graphs: Re
all thatthe proof of Theorem 4 relies on the preservation of distan
es between graphs under the blow-upoperation. While the partial results obtained in this work (regarding this matter) suÆ
e for theproof of Theorem 4, the problem seems natural and of independent interest.Re
all that Lemma 4.3 asserts that in some 
ases the distan
e between two unlabeled graphs ispreserved up to a 
onstant fa
tor by any blow-up (i.e., \linear preservation"), whereas Theorem 8of our te
hni
al report [GKNR℄ asserts a quadrati
 preservation for any pair of graphs. Also re
allthat it is not true that the distan
e between any two unlabeled graphs is perfe
tly preserved byany blow-up (see Footnote 2).In earlier versions of this work we raised the natural question of whether the distan
e betweenany two unlabeled graphs is preserved up to a 
onstant fa
tor by any blow-up. This question hasbeen re
ently resolved by Oleg Pikhurko, who showed that the distan
e is indeed preserved up to a
onstant fa
tor, spe
i�
ally a fa
tor of three [P, Se
. 4℄. Note that Arie Matsliah's 
ounterexampleto perfe
t preservation (presented in Footnote 2) shows that the said 
onstant fa
tor 
annot besmaller than 6=5. Indeed, determining the true 
onstant fa
tor remains an open problem.Subsequent work on graph blow-up. The blow-up operation plays a key role in a re
ent workof Fis
her and Rozenberg [FR℄, whi
h develops a te
hnique for obtaining testers (in the dense graphmodel) that a
t independently of the size of the input graph. A re
ent work of Avigad and Goldrei
h [1℄studies the 
omplexity of testing (generalized) graph blow-ups.
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