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1 IntroductionIn 1979, Carter and Wegman introduced the notion of universal hashing functions [9]. Though thesefunctions were introduced with data storage application in mind, they found many applications tocomplexity theory [30, 32, 34, 18, 17, 21, 22, 19, 20, 27, 28, 36]. This wide range of applicationsowns its existence to two related `random' properties of these succinct and e�ciently computablefunctions: the extraction and the mixing properties.For a family F of functions, each mapping n-bit strings to m-bit strings, the extraction prop-erty asserts the following. Every subset of K � 2m strings in the domain f0; 1gn, is mapped almostuniformly to the range f0; 1gm, by all but a small fraction of the functions in the family. Theparameter K > 1 determines the quality of the approximation to the uniform distribution and thefraction of bad functions in F (i.e. those that don't achieve this approximation). The extractionproperty is the heart of the Leftover Hash Lemma [21] and its precursors, which were key to numer-ous results, e.g. in saving randomness [22], weak random sources [36], pseudorandom generators[17, 21] and interactive proofs [18]. (Alternative function families with extraction property werepreviously constructed in [29], with a variety of other applications.)The mixing property is meaningful also in case m = n, and in fact it is commonly used withthis choice. Hence, we assume for simplicity that m = n. Loosely speaking, the mixing propertyasserts that, for all but a small fraction of the functions f in the family F , the membership inA � B of a pair (r; f(r)) with r being a random element from the domain, is essentially the sameas that of a random pair (r; s) of elements. The prime use of the mixing property is in the logspacepseudorandom generators of Nisan [27, 28].In the de�nitions above, there is an error parameter � (e.g. the fraction of bad functions,the distance from the uniform distribution etc.), which determines the quality of the mixing orextraction achieved by the family F . All the applications mentioned above take F to be a universalfamily of hash functions. This family achieves the best possible quality parameter: � is exponentiallysmall in m. However, while small enough for these applications, a universal family has to be large:exponential in n.But in some applications we may be content with a larger � (i.e. lower quality), say constant or1=poly(n). Can we use much smaller families F in this case and achieve similar random properties?A straightforward counting argument shows that there exist families F of size poly(1=�) (resp.,poly(n=�)) achieving the mixing (resp., extraction) properties with quality �. Note that thesebounds depend essentially only on the quality required, and not on the size of the domain.1.1 Our ResultsThe main contribution of this paper is in presenting explicit constructions of such families, thusyielding a trade-o� between the size of the family and the desired quality. The �rst constructionis for mixing, where we obtain a complete trade-o�. The second and third constructions are forextraction, where we (respectively) handle two extreme cases: when n�m� n and when m� n.Our constructions are relatively simple. The �rst two of them combine universal hashing andexpander graphs. (It is interesting to note that despite the similarity in these two constructions,the proofs are completely di�erent). The third construction uses small-bias probability spaces ofsmall size, and its analysis utilizes a new generalization of Lindsey's Lemma. We provide lower1



bounds to show that the �rst construction is nearly optimal, and the third is nearly optimal form = O(logn). By nearly optimal here we mean that the number of bits needed to describe amember of the family in our constructions is within a constant factor of the lower bound.Using the �rst construction we reduce the randomness complexity of two generic procedures asfollows:1. For sampling procedures, which use an asymptotically optimal number of sample points, theamount of randomness required to generate the sample points is reduced by a factor of 2,yielding an optimal result up-to a small additive term; and2. The randomness complexity of Nisan's \generalized logspace" generator [27], is reduced by alogarithmic factor.The second construction implies a randomness{e�cient leftover hash lemma, which is particularlyappealing in case n � m � n. The third construction turned out to be the main technical toolin the recent advances on constructing nearly optimal extractors1 for any m = �(n), on which weelaborate below.1.2 Previous, Concurrent and Subsequent WorkDespite the general interest in reducing the size of sample spaces achieving various random prop-erties, very little was done for the properties provided by universal hashing. The only previousresult achieving such a quality-size trade-o� is by Nisan and Zuckerman [29]. They deal with theextraction problem in the di�cult range m = �(n) (which we cannot handle), via an ingeniousconstruction, following earlier work of Zuckerman [36]. In addition, they applied their extractors toshow that poly(S) many random bits add no power at all to space(S) Turing machines. (Actually,they showed how to simulate poly(S) many random bits, in space(S) computations by using O(S)many random coins.)Srinivasan and Zuckerman [33] have independently discovered a construction similar to ourthird construction. Their construction is di�erent and its analysis is simpler than the analysis ofour construction. Furthermore, they have used such a construction as the main technical tool inreducing the size of extractors, for the range m = �(n).Subsequently, Zuckerman [37], using ideas from [35, 33], obtained nearly optimal results for theextraction problem in the range m = �(n). This construction has numerous applications which weshall not elaborate here.We stress that although all the above results improve on our second construction in case m =�(n), our second construction is better in case n�m� n (speci�cally, in case n�m � O(log 1=�)).1.3 ConventionsMost probabilistic expressions refer to explicitly de�ned random variables which are typically de-noted X; Y; Z; Un and �. In this case we writeProb(Boolean expression in these random variables)1An extractor is a family of functions having the extraction property.2



and it is understood that the probability space is the one used in the de�nition of these randomvariables. In a few cases, the probabilistic expression also involves a uniformly selected object, suchas f 2 F . In such a case we writeProbf2F (Boolean expression in these random variables and in f)1.4 OrganizationWe start by recalling the technical tools used in our proofs. The following three sections (Sec. 3{5)are devoted to the corresponding three constructions mentioned above. Each section starts with abrief intuitive summary of the results obtained. Next, comes a formal statement of the result, adescription of the construction which achieves it and an analysis of this construction. We concludeeach section with a relevant lower bound. In Section 6 we present the new sampling procedurementioned as an application above.2 Technical ToolsUniversal Hashing and Expanders are used in our �rst two constructions, whereas Small BiasProbability Spaces are used in the third. Expanders are also used in Section 6.2.1 Universal HashingLoosely speaking, universal families of hashing functions consist of functions operating on the samedomain-range pair so that a function uniformly selected in the family maps each pair of points ina pairwise independent and uniform manner. Speci�cally, a family, Hn;m, of functions from f0; 1gnto f0; 1gm, is called universal if for every x 6= y 2 f0; 1gn and �; � 2 f0; 1gm it holdsProbh2Hn;m(h(x)=� ^ h(y)=�) = 2�2mwhere the probability is taken over all choices of h 2Hn;m with uniform probability distribution.Several e�cient families of universal hashing functions are known [9]. The functions in thesefamilies can be described using O(n + m) bits and posses an e�cient (e.g., polynomial-time andeven logspace) evaluating algorithms. For example, linear transformations with Toeplitz2 matricesrequire only n+ 2m� 1 bits. The two main facts we will use about universal hash families are:Pairwise Independence. The set of random variables fh(x)jx 2 f0; 1gng de�ned by a randomh 2 H are pairwise independent and uniformly distributed in f0; 1gm.Leftover Hash Lemma. This fundamental lemma of [21] asserts that a random hash functionfrom a universal family will smooth min-entropy k whenever the range parameterm is smaller thank. More preciselyLemma 2.1 (Leftover Hash Lemma [21]): Let X be any random variable on f0; 1gn with min-entropy k (i.e., Prob(X=x) � 2�k for all x's). Then the distribution (h; h(X)), with h chosen atrandom from Hn;m, has (norm-1) distance 2�(k�m)=3 from the uniform distribution.2A Toeplitz matrix, T = (ti;j), satis�es ti;j = ti+1;j+1 , for all i; j.3



2.2 ExpandersAn (N; d; �)-expander is a d-regular graph with N vertices so that the absolute value of all eigenval-ues (except the biggest one) of its adjacency matrix is bounded by �. A (d; �)-family is an in�nitesequence of graphs so that the nth graph is a (2n; d; �)-expander. We say that such a family is ef-�ciently constructible if there exists a log-space algorithm which given a vertex, v, in the expanderand an index i 2 [d] def= f1; :::; dg, returns the ith neighbor of v. We �rst recall that for d = 16 andsome � < 16, e�ciently constructible (16; �)-families do exist (cf., [16])3.In our applications we use (parameterized) expanders satisfying �d < � and d = poly(1=�),where � is an application-speci�c parameter. Such (parameterized) expanders are also e�cientlyconstructible. For example, we may obtain them by taking paths of length O(log(1=�) on anexpander as above. Speci�cally, given a parameter � > 0, we obtain an e�ciently constructible(D;�)-family satisfying �D < � and D = poly(1=�) as follows. We start with a constructible(16; �)-family, set k def= log16=�(1=�) = O(log 1=�) and consider the paths of length k in each graph.This yields a constructible (16k; �k)-family, and both �k16k < � and 16k = poly(1=�) indeed hold.To obtain the best constants in Sections 3, 4 and 6.2, one may use e�ciently constructibleRamanujan Graphs [24]. Furthermore, using Ramanujan Graphs is essential for our proof of The-orem 6.5. Ramanujan Graphs satisfy � � 2pd and so, setting d = 4=�, we obtain �d < �, where� is an application-speci�c parameter. Here some minor technicalities arise as these graphs aregiven only for certain degrees and certain sizes. Speci�cally, they can be e�ciently constructed for12 � qk � (q2k � 1) vertices, where q � d� 1 � 1 mod 4 and d � 1 being a quadratic residue moduloq (cf., [3, Sec. II]). Still, �xing d and �; N , we may �nd a q satisfying the above conditions with12 � qk � (q2k � 1) 2 [(1 � �) �N;N ], in time polynomial in 1=�. This de�nes a Ramanujan Graphwhich is adequate for all our applications (and speci�cally, for the proof of Theorem 6.5).The Expander Mixing Lemma. The following lemma is folklore and has appeared in manypapers. Loosely speaking, the lemma asserts that expander graphs (for which d � �) have theproperty that the fraction of edges between two large sets of vertices approximately equals theproduct of the densities of these sets. This property is called mixing.Lemma 2.2 (Expander Mixing Lemma): Let G = (V;E) be an expander graph of degree d and �be an upper bound on the absolute value of all eigenvalues, save the biggest one, of the adjacencymatrix of the graph. Then for every two subsets, A;B � V , it holds���� j(A�B) \EjjEj � jAjjV j � jBjjV j ���� � �pjAj � jBjd � jV j < �dThe lemma (and a proof) appears as Corollary 2.5 in [6, Chap. 9].3The are minor technicalities which can be easily �xed. Firstly, the Gaber{Galil expanders are de�ned (only) forgraph sizes which are perfect squares [16]. This su�ces for even n's. For odd n's, we may use a trivial modi�cation,such as taking two copies of the graph of size 2n�1 and connecting each pair of corresponding vertices. Finally, weadd multiple edges so that the degree becomes 16, rather than being 14 for even n's and 15 for odd n's.4



The Expander Smoothing Lemma. Random walks on expander graphs are known to increasethe entropy of a distribution very fast. That is, if one starts with some (non-uniform) distributionon the vertices of the expander and takes a short random walk then one arrives at a distributionwhich is closer to uniform. The following lemma refers to the e�ect of a single random step. Itfollows easily by the standard techniques of dealing with random walks on expander graphs (cf.,[1, 6]).Lemma 2.3 (Expander Smoothing Lemma): Let G = (V;E), d and � be as in the previous lemma.Let X be a random variable, distributed over V , so that Prob(X=v) � KjV j , for every v2V , and Ydenote the vertex reached from X by following a uniformly chosen edge. ThenXv2V ����Prob(Y =v)� 1jV j ���� � �d � pK � 1Proof: Let N def= jV j, and let x denote the N -dimensional probability vector de�ned by X (i.e.,xi def= Prob(X = i)). Let A denote the Markov process de�ned by traversing a uniformly selectededge in G; namely, the matrix A is the adjacency matrix of the graph G, normalized by division byd. Denote the eigenvalues of A by �1; :::; �N, and note that �1 = 1 and j�ij � �d , for every i > 1. Weconsider the orthogonal eigenvector basis, e1; :::; eN, where eie>i = 1N for each i, e1 = ( 1N ; :::; 1N ), andwrite each vector as a linear combination of the vectors in this basis. Denote by ci the coe�cientof x in the direction of ei. We start by bounding Pi c2i as followsXi c2i � 1N = (Xi cie>i ) � (Xi cie>i )>= x � x>= Xi x2i� NK � �KN �2getting Pi c2i � K. It is also easy to see that c1 = 1. We now consider the di�erences vector,denoted z, representing the deviation of the random variable Y from the uniform distribution.z> def= Ax> � e>1= A(Xi ciei)> � e>1= Xi>1 �icie>iRecall that the lemma claims an upper bound on the norm-1 of z. Instead, we start by providinga bound on its norm-2: Xi z2i = Xi>1 �2ic2ieie>i� 1N � ��d�2Xi>1 c2i� 1N � ��d�2 � (K � 1)5



Maximizing the sum of the jzij's, subject to the above bound, the lemma follows.2.3 Small Probability Spaces with the Small Bias PropertyThe following de�nition of small-bias sample spaces implies the informal de�nition in Section 5.Both de�nitions are legitimate generalizations of the de�nition of small-biased sample spaces forthe binary case (and indeed they are equivalent for p = 2).De�nition 2.4 Let t be an integer, p be a prime and ! be a pth root of unity (in the complex �eld).A set S � GF (p)t is said to have � bias (sample space for GF (p)t) if, for every t-long sequence(a1; :::; at) of elements in GF (p), so that not all ai's are zero, the expectation of (the magnitude of)!Pti=1 aisi, taken over all (s1; :::; st) 2 S with uniform distribution, is bounded above by �. That is,Exp(s1;:::;st)2S �!Pti=1 aisi� � �The following theorem, due to G. Even [14], is obtained by generalizing a construction of Alonet. al. [4]. Speci�cally, Even generalizes the LFSR construction by considering sequences overGF (p) (rather than over GF (2)).Theorem 2.5 [14, 15]: For every integer t, prime p and � > 0, there exists an e�ciently con-structible �-bias sample space for GF (p)t of size (2t=�)2.3 Tiny Families of Functions with Mixing PropertiesRecall that a function f is mixing for subsets A and B of the domain if membership in A�B of apair (r; f(r)), with r being a random element in the domain, occurs roughly as often as it would fora random pair (r; s) of elements. The main result of this section is the explicit construction of an �-mixing family of size poly(1=�). Here � stands both for distance from truly random behavior, as wellas the fraction of bad functions which do not achieve this distance. We state the precise theorem,then describe the construction. We prove that our family has optimal size up to a polynomial, andpresent an application: saving randomness in the generalized logspace model of [27]. We concludewith a di�erent perspective of this result, advocated by Linial.3.1 Main resultTheorem 3.1 (The Mixing Family): Let n be an integer and � > 2�n=O(1). Then, there exists afamily of functions, each mapping f0; 1gn to itself, satisfying the following properties.� succinctness: the family contains a polynomial in 1� number of functions, and each functionis represented by a unique string of length l(�) = O(log 1� ).� e�cient evaluation: There exists a logspace algorithm that, on input a description of a functionf and a string x, returns f(x). 6



� mixing property: For every two subsets A;B � f0; 1gn, all but at most an � fraction of thefunctions f in the family satisfyjProb(Un2A ^ f(Un)2B)� �(A)�(B)j � �where �(S) def= jSj2n denotes the density of the set S and Un is a random variable uniformlydistributed over f0; 1gn.Using Ramanujan Graphs as expanders and Toeplitz matrices as Universal Hashing, in the con-struction below, one may obtain l(�) = 7 log2(1=�) +O(1).3.2 The ConstructionThe construction make used of two basic tools which are frequently used for saving randomness:universal hashing functions and expander graphs (see Section 2). We start by setting the parametersfor the expander graph and the universal hashing family to be used.The expander graph. We use an e�ciently constructible expander graph, denoted G, of degreed, second eigenvalue �, and vertex set f0; 1gn, so that �d � �2 and d = poly(1=�). For everyi 2 [d] def= f1; 2:::; dg and v 2 f0; 1gn, denote by gi(v) the vertex reached by moving along the ithedge of the vertex v.The universal hashing family. We consider a universal family, denoted H , of hash functions,each mapping l def= 3 log2(2=�)-bit long strings to [d] (where [d] = f0; 1gm, for some m, as d is apower of 2). Namely, a uniformly chosen function h 2 H maps each string � 2 f0; 1gl uniformlyinto [d] so that every two strings are mapped in an independent manner.Our construction. We now de�ne the functions in our family, denoted F . For each hashingfunction h 2 H , we introduce a function f 2 F de�ned byf(v) def= gh(lsb(v)(v)where lsb(v) returns the l least signi�cant bits of v 2 f0; 1gn. Namely, f(v) is the vertex reachedfrom v by following the ith edge of v, where i is the image of the l least signi�cant bits of v underthe function h. (We remark that our choice of using the l least signi�cant bits is arbitrary and anyother e�cient partition of f0; 1gn into 2l parts, of approximately the same size, will do.)3.3 AnalysisThe technical tools used in our analysis are the Expander Mixing Lemma (Lemma 2.2) and thepairwise independence of images under Universal Hashing functions.Clearly, the family F satis�es the succinctness and e�ciency requirements (of Theorem 3.1).We now turn to prove that it satis�es the mixing property. Towards this end we �x two arbitrarysets A and B. We �rst observe that by the Expander Mixing Lemma, it holds that���� jf(x; i) : x2A ^ gi(x)2Bgjd � 2n � �(A)�(B)���� < �d � �2 (1)7



Let ei(A;B) def= 2�n � jfx 2A : gi(x)2Bgj (2)Thus, Eq. (1) can be rewritten as�����1d � dXi=1 ei(A;B)� �(A)�(B)����� � �2 (3)Overview. Eq. (3) states that 1dPi ei(A;B) is a good approximation of �(A)�(B). If, for mosti 2 [d], each ei(A;B) were a good approximation to �(A)�(B) then we would be done. But, wedon't know whether this property holds. Instead, we partition A into a small number of subsets,denoted A�'s, associate a random i� 2 [d] with each such A� and consider how well P� ei�(A�; B)approximates P� �(A�)�(B) = �(A)�(B). We show that when the i�'s are uniformly distributedin a pairwise independent manner, as is the case when setting i� = h(�) for one uniformly chosenh 2 H , the approximation is good with high probability.Returning to the formal proof, we consider a partition of A into L def= 2l subsets so that A� =fx 2 A : lsb(x) = �g, for every � 2 f0; 1gl. We de�ne L random variables, �0l; :::; �1l, so that ��represents the density of the set fx 2A� : gh(�)(x) 2 Bg (in f0; 1gn). Note that the ��'s are alldetermined by the choice of h, and thus the probability space is uniform over all choices of h 2 H .Alternatively, since lsb(x) = � for every x 2 A�, we can write�� = 2�n � jfx 2A� : gh(lsb(x))(x) 2 BgjObserve that the set fx 2A : gh(lsb(x))(x) 2 Bg can be written as :[� fx 2A� : gh(lsb(x))(x) 2 Bg.Thus, P� �� = 2�n � jfx 2A : gh(lsb(x))(x) 2 Bgj and the mixing property (to be proven) can berephrased as asserting Prob0@������ X�2f0;1gl �� � �(A) � �(B)������ > �1A � � (4)where the probability space is over all possible choices of h 2 H (or, equivalently of f 2 F ). Thisclaim is very appealing since each �� is expected to approximate �(A�) � �(B). Indeed, Eq. (4)follows by combining the two items of the next lemma.Lemma 3.2 Let the ��'s be as above and I def= f0; 1gl. Then�����X�2I Exp(��)� �(A)��(B)����� < �2 (5)Prob �����X�2I �� �X�2IExp(��)����� > �2! < � (6)Proof: Using the fact that h(�) is uniformly distributed on [d] and recalling the de�nition of ��,we have Exp(��) = 1d � dXi=1 jfx 2 A� : gi(x)2Bgj2n8



Using A = :[� A� and Eq. (2), we haveX�2IExp(��) = 1d � dXi=1 P�2I jfx 2 A� : gi(x)2Bgj2n= 1d � dXi=1 ei(A;B)Using Eq. (3), we establish Eq. (5).Next we use Chebyshev Inequality to prove Eq. (6): here we use the fact that the ��'s arepairwise independent (since the h(�)'s are pairwise independent).Prob �����X�2I �� �X�2IExp(��)����� > �2! < Var(P� ��)(�=2)2� 4 �P�Exp(�2�)�2Using P� Exp(�2�) � P� �(A�)2 � L � ( 1L)2, and the de�nition of L (= 8=�3), we upper bound theabove by 4�2 � 1L = �=2, and so Eq. (6) follows.3.4 Lower BoundTheorem 3.3 A family with mixing property of accuracy �, must have size at least q4� .Proof: Otherwise, let F = ffi : 1� i� tg be a family of functions over f0; 1gn, contradicting theclaim. We construct a graph with vertex set f0; 1gn and edges set f(x; f(x)) : x2f0; 1gn ^ f 2Fg.Clearly, the graph has an independent set of size N=t, where N def= 2n. Consequently, there aretwo sets, A and B, each of cardinality N=2t, so that there exists no function f 2 F for which bothx 2 A and f(x) 2 B. On the other hand, �(A) � �(B) = (1=2t)2, and the theorem follows (even forthe special case of hitting A� B when �(A) � �(B) � �).3.5 Application to Generalized Random LogspaceIn [27], Nisan considered the problem of saving randomness in a context in which m randomizedalgorithms are executed and their output is fed to an s-space bounded machine which then producesa �nal Boolean output. (Actually, the problem is not a�ected if the s-space machine is allowed tohave output of length bounded by O(s).) For simplicity, assume that each of the algorithms usesn coin ips. The obvious way of running the entire procedure requires m � n coin ips. In case weare willing to tolerate an � additive error/deviation in the �nal output, more randomness-e�cientsolutions are possible. In particular, Nisan showed [27] that the randomness complexity can bedecreased to O(maxfn; s+ log(m=�)g � logm)Replacing the universal hash functions used in [27] by our family of mixing functions, we note thatthe above problem can be solved with randomness complexityn+ O((s+ log(m=�)) � logm)We remark that in many applications n � s + log(m=�). For these cases, our improvement yieldsa logarithmic reduction in the randomness complexity.9



Remark: Theorem 6.2 follows as a special case of the above (alas with a more complicatedconstruction).3.6 A Di�erent PerspectiveThe mixing property of families of functions should not be confused with the mixing propertyof graphs. Yet, the two are related as we shall see below. We say that a graph has a goodmixing property if for every two subsets of vertices the fraction of edges connecting these subsets isapproximately equal to the product of the densities of these subsets. Clearly, a family of functionsover f0; 1gn, with good mixing, induces a regular multi-graph4 with good mixing. The converse isnot obvious. Speci�cally, it was not even known whether the edges of some small degree graph withgood mixing property (e.g., an expander) can be so colored that they induce a family of functionswith a good mixing property.Let us try to clarify the nature of this problem. Consider a d-degree expander with vertex-setV def= f0; 1gn, and some d-coloring of its edges. For every two sets of vertices, A and B, denote byEi(A;B) the set of edges of color i that connect a vertex in A to a vertex in B. By the ExpanderMixing Lemma, it follows that the average of jEi(A;B)jjV j , taken over all 1� i� d, is approximatelyjAjjV j � jBjjV j . The question is whether jEi(A;B)jjV j is approximately jAjjV j � jBjjV j , for almost all 1� i�d. One caneasily verify that, in general, the answer is negative. Speci�cally, for Cayley Graph expanders (e.g.,[25, 5, 16, 24]), there are sets A and B for which there exist no i such that jEi(A;B)jjV j approximatesjAjjV j � jBjjV j (e.g., consider the cosets obtained by omitting one generator). The problem raised by NatiLinial was to construct an expander for which the mixing property holds for most colors (and notonly on the average).We resolve the above problem by presenting a transformation which takes an arbitrary (edge-colored) expander and produces an (edge-colored) expanders for which the mixing property holdsfor most colors (as required above). Our transformation preserves the vertex set and the expansionproperties of the original expander, but increases the degree by a polynomial factor (i.e., from dto poly(d)). Although the transformation is not explicitly presented in this paper, it can be easilyderived from the description above.4 Tiny Families Extracting High Min-entropyRecall that the extraction property, for a family of functions each mapping n-bit strings to m-bitstrings, means that each subset of K � 2m strings in f0; 1gn is mapped almost uniformly to f0; 1gm,by all but a small fraction of the functions in the family. We consider the extraction problem intwo special cases: the case where m is very small (in the next section) and the case m is veryclose to n (in this section). Actually, we consider a generalization of the extraction problem torandom variables with an upper bound, of 1K�2m , on the probability function. Such a bound iscalled min-entropy (cf., Chor and Goldreich [10]).De�nition 4.1 (min-entropy): Let X be a random variable. We say that X has min-entropy k ifProb(X=x) � 2�k, for each x.4A multi-graph is a graph in which parallel edges are allowed.10



Here we treat the case of random variables with min-entropy n � k with k � n. We constructa family of poly(2k=�) functions mapping f0; 1gn to f0; 1gm, where m = n � O(k). For each suchrandom variable, all but a � fraction of the functions, when applied to it, yield a random variablewhich is �-close to uniform (in norm-1). Loosely speaking, this means that these functions are ableto \smoothen" almost the entire min-entropy; speci�cally, min-entropy n� k is mapped to almostuniform distribution over the strings of length n� O(k).In a typical use of this extraction, most notably the applications of the leftover hash lemma,� = 2�
(k). In these cases the size of our family is poly(1=�) which is optimal by the lower boundbelow.4.1 Main ResultTheorem 4.2 (Extractors for High Min-Entropy): Let k < n and m < n � k be integers, and� > maxf2�(m�O(k))=O(1); 2�(n�m�O(k))=O(1)g. (In particular, m < n � O(k).) Then, there exists afamily of functions, each mapping f0; 1gn to f0; 1gm, satisfying the following properties.� succinctness: the family contains a polynomial in 2k� number of functions, and each functionis represented by a unique string of length l(k; �) = O(k + log 1� ).� e�cient evaluation: There exists a logspace algorithm that, on input a description of a functionf and a string x, returns f(x).� extraction property: For every random variable X 2 f0; 1gn of min-entropy n� k, all but an� fraction of the functions f in the family satisfy12 � X�2f0;1gm jProb(f(X)=�)� 12m j � �That is, we may extract m = n�O(k)�O(log(1=�)) bits from min-entropy n�k, and the extracteddistribution is �-close to uniform. Using Ramanujan Graphs as expanders and Toeplitz matricesas Universal Hashing, in the construction below, one may obtain l(k; �) = 4k+ 20 log2(1=�) +O(1)and m = n� 2k � 12 log2(1=�)�O(1).4.2 The constructionAgain, we use universal hashing functions and expander graphs. This time we use an e�cientlyconstructible expander graph, G, of degree d (power of two), second eigenvalue �, and vertex setf0; 1gm, so that �d � �24�2k=2 (and d = poly(2k=�)). As before, for every i 2 [d] def= f1; 2:::; dg andv 2 f0; 1gm, denote by gi(v) the vertex reached by moving along the ith edge of the vertex v. Theuniversal family, denoted H , contains hash functions each mapping (n�m)-bit long strings to [d].Our construction. We now de�ne the functions in our family, denoted F . For each hashingfunction h 2 H , we introduce a function f 2 F de�ned byf(x) def= gh(lsb(x))(msb(x))11



where lsb(x) returns the n�m least signi�cant bits of x 2 f0; 1gn, and msb(x) returns the m mostsigni�cant bits of x. Namely, f(x) is the vertex reached from the vertex v def= msb(x) by followingthe ith edge of v, where i is the image of the n�m least signi�cant bits of x under the function h.(Again, our choice of using the n�m least signi�cant bits is arbitrary.)We remark that one may use any family of extractors with the appropriate parameters insteadof the universal family H used above. In fact, in preliminary versions of this work we have used theextractors of [29] in order to derive alternative constructions with size kO(log(1=�). However, thesealternative constructions are subsumed by Zuckerman's recent work [37].4.3 AnalysisDespite the apparent similarity to the construction for mixing, the analysis of the current construc-tion is completely di�erent. In particular, it is based on \stronger" technical tools: the ExpanderSmoothing Lemma and the Leftover Hash Lemma.Clearly, the family F satis�es the succinctness and e�ciency requirements. We now turn toprove that it satis�es the extraction property. We �x an arbitrary random variable X 2 f0; 1gn, ofmin-entropy n�k, and consider the distribution (f; f(X)), when f is randomly chosen in F . Oncewe bound the statistical di�erence between (f; f(X)) and (f; Um) by �2, where Um is the uniformdistribution over f0; 1gm, the theorem follows (by a counting argument).Lemma 4.3 Let X and f 2 F be as above. Then, the statistical di�erence between (f; f(X)) and(f; Um) is bounded above by �2.Proof: Let Z be a random variable representing the distribution on the m most signi�cant bitsof X ; i.e., Z = msb(X). For each z 2 f0; 1gm, let Yz be a random variable representing thedistribution on lsb(X) conditioned on Z = z; i.e., X is the concatenation of Z and YZ . We call badthose z's in f0; 1gm for which Yz has `too small' min-entropy. Namely, for � > 0 to be �xed later,let the set of bad pre�xes be denoted byB� def= fz2f0; 1gm : 9y s.t. Prob(Yz=y) > �gThe reader can easily verify, using the min-entropy bound on X , thatProb(Z2B�) < 2m�(n�k)� (7)(As otherwise, there exists z 2 B� (the most probable z 2 B�) and y 2 f0; 1gn�m (the most probabley for Yz) so that Prob(X=zy) = Prob(Z=z) � Prob(Yz=y) > 2m�(n�k)��2m � � = 2�(n�k).) Also, it canbe veri�ed that for every z Prob(Z=z) � 2�(m�k) (8)(As otherwise, there exists y 2 f0; 1gn�m so that Prob(X=zy) > 2�(m�k) � 2�(n�m) = 2�(n�k).)We now turn to bound the statistical di�erence between the distributions (f; f(X)) and (f; Um),where f is uniformly distributed in F . Denote the statistical di�erence between distributions D1and D2 by �[D1; D2] (i.e., �[D1; D2] def= 12P� jProb(D1 = �) � Prob(D2 = �)j). Some useful12



inequalities used below are �[g(D1); g(D2)] � �[D1; D2], for every function g, and �[D1; D3] ��[D1; D2] + �[D2; D3]. We haveExpf2F (�[(f; f(X)); (f;Um)]) = Expf2F (�[f(X); Um]) (9)� Expf2F (�[f(X 0); Um]) + �[X;X 0] (10)where X 0 is the random variable induced by X conditioned on Z 62 B� . By Eq. (7), �[X;X 0] <2�(n�m�k)� , and it is left only to bound the other term in Eq. (10).Let A be the matrix representing the transition probabilities in a random step on the graphG; i.e., Ap describes the probability distribution after one random step on the graph G, startingwith the distribution p. Here and in the sequel, we abuse notation and refer to random variablesand distributions as vectors in the natural manner (i.e., the ith component of the vector p is p(i)and the ith component of the vector X is the probability that X = i). Each column in A has dnon-zero entries and each such entry holds the value 1d . For every h 2 H , let Ah be the matrix thatresults from A by modifying the non-zero entries as follows. The ith non-zero entry in column z ischanged from 1d to Prob(h(Yz)= i). Note that AhZ equals gh(YZ)(Z) which in turn equals f(X) forthe function f associated with the hashing function h. Thus, letting Z 0 = msb(X 0), we getExpf2F (�[f(X 0); Um]) = Exph2H (�[AhZ0; Um]) (11)� �[AZ0; Um] + Exph2H(�[AhZ 0; AZ0]) (12)� �[Z 0; Z] + �[AZ;Um] + Exph2H(�[AhZ 0; AZ0]) (13)The �rst term in Eq. (13) is bounded by Eq. (7). Fixing � def= �68d (as the min-entropy bound of goodYz 's) and using the Leftover Hash Lemma (Lemma 2.1) we get, for each z 62 B� ,Exph2H(�[h(Yz); �])< 3p�d = �22where � is uniformly distributed over f1; :::; dg. Recalling the de�nition of Ah, this means that theexpected di�erence between corresponding entries in the matrices A and Ah is at most �2=2. Thus,for every probability vector p (and in particular for p corresponding to Z 0),Exph2H(�[Ahp; Ap]) < �22This yields a bound on the third term in Eq. (13). It is left to bound the second term; that is�[AZ;Um]. This is done using the Expander Smoothing Lemma (Lemma 2.3), while relying on themin-entropy bound of Eq. (8). We get�[AZ;Um] < �d � p2k � �24Combining all the above bounds, we getExpf2F (�[(f; f(X)); (f; Um)]) < 2 � 2�(n�m�k)� + �22 + �24 (14)Recalling that d = (2k� )c and � = �68d = �6+c23+ck , and using n�m� k = 6+ ck + (8 + c) � log(1=�), the�rst term in Eq. (14) is bounded by �2=4, and the lemma follows.13



4.4 Lower BoundWe conclude by observing that a lower bound of [29] (i.e., [29, Thm 3]) implies that, for � = 2�
(k),our construction is optimal. This holds even when trying to extract just one bit. Speci�cally, anyfamily of functions from f0; 1gn to f0; 1g, with extraction property of accuracy � < 0:5 with respectto random variables of min-entropy n � k � n� 1, must have size at least maxfk + 1; (1=�)� 1g.5 Tiny Families Extracting Low Min-EntropyHere we treat the case of random variables with min-entropy k, for k � n. We construct a familyof poly(2kn=�) functions mapping f0; 1gn to f0; 1gm, where m = 
(k). (Again, � is the accuracyparameter.) Loosely speaking, this means that these functions are able to \smoothen" a constantfraction of the min-entropy; speci�cally, min-entropy k is mapped to almost uniform distributionover the strings of length 
(k).5.1 Main ResultTheorem 5.1 (Extractors for Low Min-Entropy): Let 3m < k < n and � > 2�(k�2m�9)=5. Thereexists a family of functions, each mapping f0; 1gn to f0; 1gm, satisfying the following properties.� succinctness: the family contains a polynomial in 2mn� number of functions, and each functionis represented by a unique string of length l(m; �; n) = O(m+ log n� ).� e�cient evaluation: There exists a logspace algorithm that, on input a description of a functionf and a string x, returns f(x).� extraction property: For every random variable X 2 f0; 1gn of min-entropy k, all but an �fraction of the functions f in the family satisfy12 � X�2f0;1gm jProb(f(X)=�)� 12m j � �That is, we may extract m = 12 � (k � 9 � 5 log2(1=�)) bits from min-entropy k, and the extracteddistribution is �-close to uniform. In fact, l(m; �; n) = 4m+ 10 log2(1=�) + 2 log2 n+ O(1).5.2 The ConstructionWe use a construction of small probability spaces with small bias. Intuitively, we consider a primep � 2m and a construction of t def= nm random variables, (�1; :::; �t), each distributed over GF (p) withthe following small bias property:for every t-long sequence (a1; :::; at) of elements in GF (p), so that not all ai's are zero, therandom variablePti=1 ai�i is almost uniformly distributed overGF (p) (i.e., its statisticaldistance from uniform is small).The actual condition is given in De�nition 2.4. Typically, such random variables are de�ned bythe uniform distribution over some sample space S � GF (p)t. We will use such a sample space,S, for bias �0 = poly(�=p) (to be speci�ed later). Hence, using the sample space of [4, 14], we havejSj = poly(n=�0) = poly(n � p=�) = poly(n2m=�). 14



Our construction. The functions in our family, denoted F , correspond to the samples in thesmall-bias space. Namely, for each (s1; :::; st) 2 S, we introduce the function f 2 F de�ned byf(x) def= tXi=1 sixiwhere xi is the ith coordinate in x 2 GF (p)t and the arithmetic is in GF (p). The functions, sode�ned, map GF (p)t to GF (p). Standard modi�cations can be applied to derive functions mappingf0; 1gn to f0; 1gm (recall p � 2m and pt � 2n).5.3 AnalysisOur analysis uses the fact that the construction of small{bias spaces of [4, 14] satis�es a bound on anexponential sum related to the above intuitive motivation to small{bias spaces (see De�nition 2.4).We then prove a Lindsey{like lemma on near-orthogonal vectors and combine it with the boundabove to give the result.Suppose, on the contrary to the extraction property, that for some random variable X =(X1; :::; Xt) 2 GF (p)t with min-entropy k, and for an � fraction of the f 's in F , the randomvariable f(X) is �-away (in variation distance) from the uniform distribution. Then, it follows thatthere is a subset S0 � S of � � jSj sequences so that, for each �s def= (s1; :::; st) 2 S0, the randomvariable Pti=1Xisi is �-away from the uniform distribution. Namely, for every �s def= (s1; :::; st) 2 S0,12 � p�1Xj=0 �����Prob tXi=1 Xisi = j! � 1p ����� � � (15)Let v be a zero-sum p-dimensional vector with norm-1 greater than 2� (here v represents thedi�erence between the probability function of Pti=1Xisi and the uniform distributional function).Then, the norm-2 of v def= (v1; :::; vp) is at least pp � (2�=p)2 = 2�=pp. Passing to the Fourier basis(i.e., in which the jth vector is p�1=2 �(!j; !2j; :::; !pj) with ! being a pth root of unity), we representv by v̂ = (v̂1; :::; v̂p), where v̂j = 1ppPi !ij � vi. The norm-2 of v and v̂ are equal, and thus themax-norm of v̂ is at least 2�=pppp = 2�=p. Let kck denote the magnitude of the complex number c. Itfollows that there exists a j so that pp � kv̂jk = kPi vi!jik � 2�=pp and this j cannot be p (sincePi vi!pi = Pi vi = 0). Applying this argument to the vector representing the di�erence betweenthe probability function ofPti=1Xisi and the uniform distributional function, we conclude that forevery �s def= (s1; :::; st) 2 S0 there exists some j 2 f1; :::; p�1g, so that2�pp � Xi  Prob tXk=1Xksk = i! � 1p! � !ij= Xi Prob tXk=1Xksk = i! � !ij= Exp �!jPtk=1Xksk�It follows that for some j 2 f1; :::; p� 1g there exists a subset S 00 � S 0 of cardinality jS0jp�1 > �p � jSj,so that for every �s def= (s1; :::; st) 2 S 00Exp �!jPti=1Xisi� � 2�pp (16)15



Assume, without loss of generality that j = 1. By partitioning these sequences according to theapproximate direction of the exponential sum and applying a pigeon-hole argument, we obtain aset B � S 00 of cardinality 
(�jSj=p) so that 1jBj X(s1;:::;st)2B Exp�!Pti=1Xisi� = 
(�=pp)Speci�cally, we may partition the vectors according quarters of the plain and consider the directionwhich resides in the middle of the quarter with the largest number of vectors. This yields, B � S0so that jBj � 14 � jS 00j � �4p � jSj (17) 1jBj X(s1;:::;st)2B Exp�!Pti=1Xisi� � p22 � 2�pp = p2 � �pp (18)Contradiction follows by contrasting Eq. (18) with the following lemma, which generalizes Lindsey'sLemma (cf., [13, p. 88] and [2]).Lemma 5.2 (A Generalized Lindsey's Lemma): Let A be an N -by-M matrix of complex numbers,so that each row has inner-product5 with itself equal to M and each pair of di�erent rows haveinner-product bounded (in magnitude) by �0M . Let u be an N -dimensional probability vector witheach components bounded above by �, and v be an M -dimensional probability vector with eachcomponents being either 1K or zero. Then,kuAv>k � s(�0 + �) � MKLindsey's Lemma is obtained from the above by requiring the rows of A to be orthogonal (i.e.,�0 = 0) and considering only \at" distributions (i.e., each ui being either � or 0).6Proof: Denote, � def= kuAv>k. Then, using Cauchy Schwartz Inequality, we get�2 � (v � v>) � ((uA) � (uA)>)= 1K � ((Xi uiAi) � (Xi uiAi)>)where Ai is the ith row of the matrix A and ui is the ith entry of the vector u. Using the hypothesisconcerning the inner-product of the rows of A we obtain the bound�2 � 1K �0@Xi 6=j uiuj�0M +Xi u2iM1A5Note that inner-product of complex vectors is de�ned as component-wise complex multiplication of one vectorby the conjugate of the other.6The standard formulation refers to matrices with �1 entries and asserts that the sum of elements in any L-times-K generalized sub-matrix is bounded by pLKM . Instead, our formulation bounds the sum normalized by the areaof the sub-matrix (i.e., divided by L �K, with L = 1=�). 16



< MK �0@�0Xi;j uiuj +Xi u2i1AUsing Pi;j uiuj = (Pi ui)2 = 1 and Pi u2i �Pi ui � � = �, we get �2 � MK � (�0 + �) and the lemmafollows.Contradiction to Eq. (18) follows by considering the pt-by-jSj matrix with rows corresponding toelements of GF (p)t and columns corresponding to elements of S. The (x; s)th entry in this matrixconsists of !Pti=1 xisi, where x = (x1; :::; xt) 2 GF (p)t and s = (s1; :::; st) 2 S. Let u be a vectordescribing the probability distribution of the random variable X (i.e., ux = Prob(X = x)) and� = 2�k (the upper bound on probability for X). Let v be the (normalized) vector characterizingthe set B (i.e., vs equals 1jBj if s 2 B and 0 otherwise). Note that the inner-product of di�erent rowscorresponding to sequences x = (x1; :::; xt) and y = (y1; :::; yt) equalsPs2S !Pti=1(xi�yi)�si, which, byconstruction of the sample space S, has magnitude bounded by �0jSj. Letting A = (!Pti=1 xisi)x;s,we have kuAv>k =  Xx2GF (p)tXs2S ux � !Pti=1 xisi � vs=  Xx2GF (p)tXs2B 1jBj � Prob(X=x) � !Pti=1 xisi= Xs2B 1jBj � Exp(!Pti=1 Xisi)We are now ready to apply Lemma 5.2: Here, M = jSj, K = jBj � �4p � jSj (by Eq. (17)),� = 2�k � �34p2 (by Theorem's hypothesis and assuming p � 2m), and �0 def= �35p2 (de�ned herepreserving �0 = poly(�=p)). Applying the lemma we get 1jBj X(s1;:::;st)2BExp(!Pti=1Xisi) � s(�0 + �) � MK< vuut �32p2 � jSj�4p � jSj= p2 � �ppwhich contradicts Eq. (18).There is still a minor technicality to be addressed: how do we achieve a mapping to f0; 1gm(rather than to GF (p)). This is resolved by letting p � 2m=� (still pt � 2n) and mapping GF (p) tof0; 1gm in the natural manner (i.e., each range element having ��1� 1 elements). The increase in ponly e�ects the condition 2�k � �34p2 which still holds assuming p < 2m+1=� and using the hypothesis� > 2�(k�2m�4)=5. The approximate mapping of GF (p) to f0; 1gm yields and additional extractiondeviation of � (totaling to 2�). Substituting �=2 for �, the theorem follows.17



5.4 Lower BoundTo illustrate that our construction is near optimal when k = O(logn) we recall a lower boundof [29] (already mentioned in Section 4.4). We stress that the bound holds even when trying toextract just one bit.Theorem 5.3 [29, Thm. 3]: A family of functions from f0; 1gn to f0; 1g, with extraction propertyof accuracy � < 0:5 with respect to random variables of min-entropy k � n � 1, must have size atleast maxfn� k + 1; (1=�)� 1g.We note that the BPP simulation of [33] mentioned in the introduction uses an extracting familyfor this value of the parameter k.6 A New Sampling ProcedureIn many settings repeated sampling is used to estimate the average value of a huge set of values.Namely, there is a value function � de�ned over a huge space, say � :f0; 1gn 7! [0; 1], and one wishesto approximate �� def= 12n Px2f0;1gn �(x). To this end, one may randomly select a small sample set Sand compute 1jSjPx2S �(x). Using a sample of O(1=�2) uniformly and independently selected points,one gets, with constant probability, an approximation that is within an additive factor of � fromthe correct average. In fact, a set of O(1=�2) points selected in a pairwise-independent and uniformmanner yields the same quality of approximation. Whereas generating t totally independent randompoints in f0; 1gn requires t � n unbiased coin ips, one can generate t pairwise-independent randompoints using only 2 � n unbiased coin ips [11]. Using the new family of mixing functions, we wereable to reduce the randomness complexity of the approximation problem to n+O(log(1=�)), whilemaintaining the number of sample points (up-to a multiplicative constant).De�nition 6.1 (sampler): A sampler is a randomized algorithm that on input parameters n (length),� (accuracy) and � (error), and oracle access to any function � :f0; 1gn 7! [0; 1], outputs, with prob-ability at least 1� �, a value that is at most � away from �� def= 12n Px2f0;1gn �(x). Namely,Prob(jsampler�(n; �; �)� �� j > �) < �where the probability is taken over the internal coin tosses of the sampler.Theorem 6.2 There exists a poly(n; ��1; ��1)-time sampler which� makes O( 1��2 ) oracle queries; and� tosses n+ O(log(1=�)) + O(log(1=�)) coins.Our original proof of Theorem 6.2 used the mixing functions guaranteed by Theorem 3.1. Inretrospect, we realized that the construction amounts to uniformly selecting a vertex in an expanderhaving vertex set f0; 1gn and degree poly(1=��), and averaging over the values observed in a pairwiseindependent O(1=�2�)-long sequence of the neighbors of this vertex. Furthermore, for the specialcase of Boolean functions, an optimal sampler utilizes a Ramanujan graph of degree O(1=�2�) and18



lower bound [8] upper bound [8] algorithms (this paper)Boolean n+ log2(1=�) n + 2 log2(2=�) n+ O(log(1=�)) (Thm. 6.5)functions �2 log2(1=�)� log2 log2(1=�)�O(1)general n+ log2(1=�) n + 2 log2(2=�) n+ O(log(1=�))functions �2 log2(1=�)� log2 log2(1=�)�O(1) + log2 log2(1=�) +O(log(1=�)) (Cor. 6.3)Figure 1: The randomness complexity of samplers which make �( log(1=�)�2 ) queries. The previousbest algorithm (by [7]) had randomness complexity 2n+O(log(1=�)), provided � > 2�n.consists of uniformly selecting a single vertex and outputting the average of the function values onall its neighbors. Both these constructions are analyzed below.The sampler guaranteed in Theorem 6.2 is not optimal in its query complexity (speci�cally, thedependency on � is bad). However, this can be easily redeemed using a generic method of Bellareet al [7]: Given a sampler of query complexity q(n; �; �) and randomness complexity r(n; �; �) theyobtain a sampler having query complexity O(q(n; �; 0:1) � log(1=�)) and randomness complexityr(n; �; 0:1)+ O(log(1=�)). Applying their method to the sampler of Theorem 6.2, we obtainCorollary 6.3 There exists a poly(n; ��1; log(1=�))-time sampler which� makes O( log(1=�)�2 ) oracle queries; and� tosses n+ O(log(1=�)) + O(log(1=�)) coins.This sampler is optimal (up to a multiplicative factor) in its sample-complexity [8, Thm. 1], andamong the samplers with nearly optimal sample complexity it is optimal (up to the additive log-arithmic factors) in its randomness-complexity [8, Thm. 2]. Previously, e�cient samplers withoptimal sample-complexity were known only for twice the optimal randomness-complexity [7] (yet,[8] have proved non-constructively that \samplers" with sample and randomness complexities as inthe corollary do exist7). The known results are summarized in Figure 1.Remark: The randomness-complexity of the sampler asserted in Corollary 6.3 can be improvedfrom n+O(log(1=�))+O(log(1=�)) to n+O(log(1=�))+(2+o(1)) � log2(1=�)). This is done by usinga Ramanujan Expander (rather than an arbitrary expander) in the method of Bellare et al [7]. Asimilar comment holds with respect to Theorem 6.5 (below), where the randomness complexity canbe improved to n+ (2 + o(1)) � log2(1=�) (rather than n+ O(log(1=�))).6.1 A Sampler for the Boolean CaseWe start by presenting a sampler for the special case of Boolean functions. This simpler samplerhas even lower randomness complexity (speci�cally n instead of n + O(log(1=�))). Our samplingprocedure is exactly the one suggested by Karp, Pippinger and Sipser for hitting a witness set [23],yet the analysis is somewhat more involved. Furthermore, to get an algorithm which samples theuniverse only on O(1=��2) points, it is crucial to use a Ramanujan graph in role of the expander inthe Karp-Pippinger-Sipser method.7Actually, the non-constructive upper bound of [8, Cor. 2] is slightly better than the result of Corollary 6.3.19



De�nition 6.4 (Boolean sampler): A Boolean sampler is a randomized algorithm, denoted A,which satis�es Prob(jA�(n; �; �)� ��j > �) < �for every Boolean function � :f0; 1gn 7!f0; 1g.Theorem 6.5 There exists a poly(n; ��1; log(1=�))-time Boolean sampler which� makes O( log(1=�)�2 ) oracle queries; and� tosses n+ O(log(1=�)) coins.As in the general case, Theorem 6.5 will follow by employing the method of Bellare et. al. [7]to an even simpler sampler asserted in Lemma 6.6 (below). This latter sampling algorithm uses,in an essential way, an e�ciently constructible Ramanujan (expander) Graph [24]; namely, d-regular expanders with second eigenvalue, �, satisfying � � 2pd (rather than merely � < d1� 1O(1) ).Speci�cally, we use an expander of degree d = 4=��2 and associate the vertex set of the expanderwith f0; 1gn. (This is slightly inaccurate as we do not have explicit constructions of RamanujanGraphs of size 2n. Still we can e�ciently construct a Ramanujan Graph with N vertices where(1� �0) � 2n < N � 2n. Using this graph in our construction causes us to estimate the average valueof � taken over N of the 2n possible strings, but this average value is within �0 of ��.)The algorithm. The sampling algorithm consists of uniformly selecting a vertex, v, (of theexpander) and averaging over the values assigned (by �) to all the neighbors of v; namely,~� def= 1d Xu2N (v) �(u)where N (v) denotes the set of neighbors of vertex v.Lemma 6.6 The above sampling algorithm constitutes a Boolean sampler. It makes 4�2� oraclequeries, tosses n coins, and runs in time poly(n)�2� .Proof: The complexity bounds are obvious from the description of the algorithm. We turn to theanalysis of its estimates.We denote by B the set of bad choices for the algorithm; namely, the set of vertices that onceselected by the algorithm yield a wrong estimate. That is, v 2 B if������1d Xu2N (v) �(u)� �������� > �Denote by B0 the subset of v 2 B for which1d Xu2N (v) �(u) > �� + � (19)It follows that each v 2 B0 has �d too many neighbors in the set A def= fu : �(u)=1g; namely,jfu2N (v) : u2Agj > (�(A) + �) � d (20)20



where �(A) def= jAjN and N def= 2n. Using the Expander Mixing Lemma (Lemma 2.2) ones gets that� � �(B0) = ���� jB0j � (�(A) + �)ddN � �(B0) � �(A)����� ���� j(B0 �A) \ EjjEj � jAjjV j � jB0jjV j ����� �d � pjAj � jB0jN� 2pd �q�(A) � �(B0)and �(B0) � � ��(A) follows. Using a similar argument, we can show that �(B nB0) � � � (1��(A)).Thus, �(B) � � and the claim follows.6.2 Proof of Theorem 6.2Here we may use weaker expanders than in the simpler sample (above). Speci�cally, we use ane�ciently constructible expander graph of degree d and second eigenvalue � so that �d � q �5�64and d = poly(1=��). As above, we associate the vertex set of the expander with f0; 1gn. Here wealso use a sample space for sequences of pairwise independent elements uniformly distributed in[d]. In particular, we use sequences of length m def= 8�2� which can be e�ciently generated using2 log2 d = O(log(1=��)) random bits (cf., [11]).The sampler. We select uniformly a vertex v (in the expander graph) and a sequence of mpairwise-independent elements in [d], denoted, i1; :::; im. Together these de�ne m sampling points,denoted u1; :::; uj, where uj is the ithj neighbor of v. The estimate of the sampler is merely theaverage (of �) over the values at these uj's; namely,~� def= 1m mXj=1 �(uj)Clearly, the complexities are as claimed in Theorem 6.2. It is left to show that for every � :f0; 1gn 7![0; 1], Prob(j~� � ��j > �) < �We �rst observe that it su�ces to evaluate the behavior of the sampler on functions of the form� : f0; 1gn 7! f(i � 12) � �2 : i = 1; ::; 2��1g. Speci�cally, for every � : f0; 1gn 7! [0; 1], there existsa � : f0; 1gn 7! f(i � 12) � �2 : i = 1; ::; 2��1g so that j�(x) � �(x)j � �4 , 8x 2 f0; 1gn. Thus, bothj��(x)� ��(x)j � �4 and j~�(x)� ~�(x)j � �4 , and so it su�ces to prove the followingLemma 6.7 For every � :f0; 1gn 7!f(i� 12) � �2 : i=1; ::; 2��1gProb�j~�� ��j > �2� < �Proof: We �rst mimic the proof of Lemma 6.6 and show that for all but �=2 of the verticesv 2 f0; 1gn, 1d �Pu2N (v) �(u) is within �=4 of ��, where N (v) denotes the set of neighbors of vertex21



v. We conclude by recalling that with probability at least 1� �2 a pairwise independent sample ofm vertices in N (v) approximates the above up-to �=4.Suppose, for simplicity, that � is such that t def= 2��1 is an integer. For every i=1; ::; t, letAi def= fv : �(v) = (i� 0:5) � �=2g (21)Bi def= �v : ���� jN (v) \Aijd � �(Ai)���� > �24 � (22)Observe that if v 62 [ti=1Bi then1d � Xu2N (v)�(u) = 1d � tXi=1(i� 0:5) � �2 � jN (v)\ Aij= tXi=1(i� 0:5) � �2 � ��(Ai)� �24 �= �� � 2=�Xi=1(i� 0:5) � �38= �� � �4Thus, the average value of the neighbors of each v 62 [ti=1Bi is within �4 of the the correct value ��.Next, we use the Expander Mixing Lemma (Lemma 2.2) as in the proof of Lemma 6.6 to derivea bound on the density of each Bi. Analogously, we partition Bi into B+i def= fv : jN (v) \ Aij >(�(Ai) + �2=4) � dg and B�i def= Bi nB+i , and get�24 � �(B+i ) = ����� jB+i j � (�(Ai) + �24 ) � ddN � �(B+i ) � �(Ai)������ ����� j(B+i � Ai) \ EjjEj � jAijjV j � jB+i jjV j ������ �d � qjAij � jB+i jN� s�5�64 �q�(A) � �(B+i )It follows that �(B+i ) � ��4 ��(Ai) and similarly �(B�i ) � ��4 �(1��(Ai)). Thus, �([ti=1Bi) � t� ��4 = �2 .Combined with the above we haveProbv2f0;1gn 0@������1d � Xu2N (v)�(u)� �������� > �41A � Probv2f0;1gn(v 2 [ti=1Bi) � �2 (23)where v is uniformly selected in f0; 1gn.Finally, we note that, for every v 2 f0; 1gn, if ui; :::; um are uniformly distributed in a pairwise-independent manner in N (v) thenProbu1;:::;um 0@������ 1m � mXi=1 �(ui)� 1d � Xu2N (v)�(u)������ > �41A � m � 14(m � �4)2 = �2 (24)where the equality is due to m = 8�2� . Combining Eq. (23) and Eq. (24), the lemma follows.22



AcknowledgmentsWe are grateful to the anonymous referees for their useful comments, and to Noga Alon for helpfuldiscussions.References[1] M. Ajtai, J. Komlos, E. Szemer�edi, \Deterministic Simulation in LogSpace", Proc. 19thSTOC, 1987, pp. 132{140.[2] N. Alon, \Eigenvalues, Geometric Expanders, Sorting in Rounds and Ramsey Theory",Combinatorica, 6 (1986), pp. 231{243.[3] N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth, \Construction of Asymptotically Good,Low-Rate Error-Correcting Codes through Pseudo-Random Graphs", IEEE Transactionson Information Theory 38 (1992), pp. 509{516.[4] N. Alon, O. Goldreich, J. Hastad, R. Peralta, \Simple Constructions of Almost k-wiseIndependent Random Variables", Journal of Random structures and Algorithms, Vol. 3, No.3, (1992), pp. 289{304.[5] N. Alon and V.D. Milman, �1, Isoperimetric Inequalities for Graphs and Superconcentrators,J. Combinatorial Theory, Ser. B 38 (1985), pp. 73{88.[6] N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., 1992.[7] M. Bellare, O. Goldreich, and S. Goldwasser \Randomness in Interactive Proofs", Compu-tational Complexity, Vol. 4, No. 4 (1993), pp. 319{354.[8] R. Canetti, G. Even and O. Goldreich, \Lower Bounds for Sampling Algorithms for Esti-mating the Average", IPL, Vol. 53, pp. 17{25, 1995.[9] L. Carter and M. Wegman, \Universal Classes of Hash Functions", J. Computer and SystemSciences , Vol. 18, pp. 143{154 (1979).[10] B. Chor and O. Goldreich, \Unbiased Bits from Sources of Weak Randomness and Prob-abilistic Communication Complexity", SIAM J. Comput., Vol. 17, No. 2, April 1988, pp.230{261.[11] B. Chor and O. Goldreich, \On the Power of Two{Point Based Sampling," Jour. of Com-plexity, Vol 5, 1989, pp. 96{106.[12] A. Cohen and A. Wigderson, \Dispensers, Deterministic Ampli�cation, and Weak RandomSources", 30th FOCS, 1989, pp. 14{19.[13] P. Erd�os and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, 1974.23



[14] G. Even, \Construction of Small Probability Spaces for Deterministic Simulation", M.Sc.thesis, Computer Science Department, Technion, Haifa, Israel, 1991. (In Hebrew, abstractin English)[15] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Veli�ckovi�c, \Approximations of GeneralIndependent Distributions", 24th STOC, pp. 10{16, 1992.[16] O. Gaber and Z. Galil, \Explicit Constructions of Linear Size Superconcentrators", JCSS,22 (1981), pp. 407-420.[17] O. Goldreich, H. Krawcyzk and M. Luby, \On the Existence of Pseudorandom Generators",SIAM J. on Computing, Vol. 22-6 (Dec. 1993), pp. 1163{1175.[18] S. Goldwasser and M. Sipser, \Private Coins versus Public Coins in Interactive Proof Sys-tems", Advances in Computing Research: a research annual, Vol. 5 (Randomness and Com-putation, S. Micali, ed.), pp. 73{90, 1989.[19] R. Impagliazzo and M. Luby, \One-Way Functions are Essential for Complexity BasedCryptography", 30th FOCS, pp. 230{235, 1989.[20] R. Impagliazzo and L.A. Levin, \No Better Ways to Generate Hard NP Instances thanPicking Uniformly at Random ", 31st FOCS, pp. 812-821, 1990.[21] R. Impagliazzo, L.A. Levin, and M.G. Luby, \Pseudorandom Generators from any One-WayFunctions", 21st STOC, pp. 12{24, 1989.[22] R. Impagliazzo and D. Zuckerman, \How to Recycle Random Bits", 30th FOCS, 1989, pp.248-253.[23] R.M. Karp, N. Pippinger and M. Sipser, \A Time-Randomness Tradeo�", AMS Conferenceon Probabilistic Computational Complexity , Durham, New Hampshire (1982).[24] A. Lubotzky, R. Phillips, P. Sarnak, \Explicit Expanders and the Ramanujan Conjectures",Proc. 18th STOC, 1986, pp. 240-246.[25] G.A. Margulis, \Explicit Construction of Concentrators", Prob. Per. Infor. 9 (4) (1973),71{80. (In Russian, English translation in Problems of Infor. Trans. (1975), 325{332.)[26] J. Naor and M. Naor, \Small-bias Probability Spaces: E�cient Constructions and Applica-tions", SIAM J. on Computing, Vol 22, 1993, pp. 838{856.[27] N. Nisan, \Pseudorandom Generators for Space Bounded Computation", Combinatorica 12(4), 1992, pp. 449{461.[28] N. Nisan, \RL � SC", Journal of Computational Complexity 4, 1994, pp. 1{11.[29] N. Nisan and D. Zuckerman, \Randomness is Linear in Space", to appear in JCSS. Prelim-inary version in 25th STOC, pp. 235{244, 1993.24



[30] M. Sipser, \A Complexity Theoretic Approach to Randomness", 15th STOC, 1983, pp.330{335.[31] M. Sipser, \Expanders, Randomness or Time vs Space", Structure in Complexity Theory(proceedings), 1986.[32] L. Stockmeyer, \The Complexity of Approximate Counting", 15th STOC, 1983, pp. 118{126.[33] A. Srinivasan and D. Zuckerman, \Computing with Very Weak Random Sources", 35thFOCS, pp. 264{275, 1994.[34] L. Valiant and V.V. Vazirani, \NP is as Easy as Detecting Unique Solutions", TheoreticalComputer Science, Vol. 47, 1986, pp. 85{93.[35] A. Wigderson, D. Zuckerman, \ Expanders that Beat the Eigenvalue Bound, Explicit Con-struction and Applications", Proc. of the 25th STOC, pp. 245{251, 1993. To appear inCombinatorica.[36] D. Zuckerman, \Simulating BPP Using a General Weak Random Source," Algorithmica,Vol. 16, pp. 367{391, 1996.[37] D. Zuckerman, \Randomness-Optimal Sampling, Extractors, and Constructive Leader Elec-tion", 28th STOC, 1996, pp. 286{295.

25


