
On the Security of Modular Exponentiationwith Application to the Construction of Pseudorandom Generators�Oded GoldreichDepartment of Computer Scienceand Applied MathematicsWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.il
Vered RosenDepartment of Computer Scienceand Applied MathematicsWeizmann Institute of ScienceRehovot, Israel.veredr@wisdom.weizmann.ac.ilDecember 5, 2000AbstractAssuming the inractability of factoring, we show that the output of the exponentiationmodulo a composite function fN;g(x) = gx mod N (where N = P � Q) is pseudorandom, evenwhen its input is restricted to be half the size. This result is equivalent to the simultaneoushardness of the upper half of the bits of fN;g, proven by H�astad, Schrift and Shamir. Yet,we supply a di�erent proof that is signi�cantly simpler than the original one. In addition, wesuggest a pseudorandom generator which is more e�cient than all previously known factoringbased pseudorandom generators.

Keywords: Modular exponentiation, discrete logarithm, hard core predicates, simultaneous se-curity, pseudorandom generator, factoring assumption.�This write-up is based on the Master Thesis of the second author (supervised by the �rst author).0

1 IntroductionOne-way functions play an extremely important role in modern cryptography. Loosely speaking,these are functions which are easy to evaluate but hard to invert. A number theoretic function whichis widely believed to be one-way, is the exponentiation function over a �nite �eld. Its inverse, thediscrete logarithm function, is the basis for numerous cryptographic applications. Most applicationsuse a �eld of prime cardinality, though many of them can be adapted to work in other algebraicstructures as well.A concept tightly connected to one-way functions is the notion of hard-core predicates, intro-duced by Blum and Micali [BM]. A polynomial-time predicate b is called a hard-core of a functionf , if all e�cient algorithm, given f(x), can guess b(x) with success probability only negligibly bet-ter than half. Blum and Micali showed the importance of hard-core predicates in pseudorandombit generation. Speci�cally, they showed that the modular exponentiation function over a �eld ofprime cardinality, fP;g(x) = gx mod P , has a hard-core predicate, and used it in order to constructa pseudorandom bit generator. The study of hard-core predicates of fP;g has culminated in thework of H�astad and N�aslund [HN], showing that all bits of fP;g are individually secure.1.1 Hard core functionsThe concept of a hard-core function (or the simultaneous security of bits) is a generalization ofhard-core predicates. Intuitively, a sequence of bits associated to a one-way function f is said to besimultaneously secure, if no e�cient algorithm can gain any information about the given sequenceof bits in x, given only f(x). Proving the simultaneous security of a sequence of bits (rather thana single bit) in fP;g is a desirable result, enabling the construction of more e�cient pseudorandomgenerators as well as improving other applications. However, the best known result regardingthe simultaneous security of bits in fP;g is due to Long and Wigderson [LW], Kalisky [Kal] andPeralta [P], who showed that O(log n) bits are simultaneously secure, where n is the size of themodulus P .Stronger results were demonstrated when the modulus was taken to be a composite, thus al-lowing to relate (simultaneous) hardness of bits to the factoring problem. Denote by fN;g theexponentiation modulo a composite function, de�ned as fN;g(x) = gx mod N , where N is an n-bitcomposite equal to the multiplication of two large primes and g is an element in the multiplicativegroup mod N . H�astad, Schrift and Shamir showed that under the factoring intractability assump-tion, all the bits in fN;g are individually hard, and that the upper dn2 e bits and lower dn2 e bits aresimultaneously hard [HSS].In the same setting (and under the same assumption that factoring is hard), we show that noe�cient algorithm can tell apart fN;g(r) from fN;g(R), where r is a random dn2 e-bit string and R isa random n-bit string 1. That is, one can work with an exponent x of half the size, and still obtainan element which \seems random" to all e�cient algorithms. Note that all the cryptographic toolsthat use exponentiation in Z�N (and base their security on the discrete logarithm assumption) cangreatly bene�t from this fact, since the time consumed for exponentiation grows linearly with thesize of the exponent (and is thus cut by a factor of two). Our result is in fact equivalent to the resultof H�astad et.al. [HSS] on the simultaneous hardness of the upper dn2 e bits of fN;g. Nevertheless,we give an alternative proof for it while using some of their ideas and techniques. Our approachsigni�cantly simpli�es the proof given in [HSS] and sheds a new light on it.1As a matter of fact, in the exact formulation of our result, R is uniformly distributed over the range of naturalssmaller than the order of g (in the group Z�N). However, the above claim (with R uniformly distributed in f0; 1gn)holds as well, as an implication of Lemma 3.3. 1

Another implication of our work (to be further discussed below) is the construction of a pseu-dorandom bit generator based on the computational indistinguishability of fN;g(r) from fN;g(R).Our generator is somewhat more e�cient than all previously known factoring based pseudorandomgenerators.1.2 An e�cient Pseudorandom generatorThe notion of a pseudorandom bit generator, introduced by Blum and Micali [BM], plays a centralrole in cryptography. It enables the user to expand a short random seed into a longer sequence ofbits, that can be used in any e�cient application instead of a truly random bit sequence. Blum andMicali presented a pseudorandom bit generator based on the discrete log problem. Using the factthat the exponentiation function over a �eld of prime cardinality has a hard-core predicate, theysuggested an iterative generator that yields one bit of output per each exponentiation. Furthermore,they conceived a general paradigm that constructs an iterative pseudorandom generator, given anylength preserving one-way permutation f , and a hard-core predicate b for f .The Blum-Blum-Shub pseudorandom generator [BBS], hereafter referred to as the \BBS gen-erator", is based on the above paradigm, taking f to be the modular squaring function, where themodulus N is a Blum integer.2 Since, as shown by Rabin [R1], the problem of factoring N can bereduced to the problem of extracting square roots in the multiplicative group mod N , the functionf is a one-way function assuming the intractability of factoring Blum integers. Additionally, Blum,Blum and Shub showed that f induces a permutation over the set of quadratic residues in themultiplicative group mod N , and using the results of Alexi et.al. [ACGS] and Vazirani and Vazi-rani [VV], this implies that the least signi�cant bit constitutes a hard-core predicate for f . TheBBS generator is by far more e�cient than the Blum-Micali generator.3 In particular, for everypolynomial P (�), the BBS generator stretches an n-bit seed into a P (n)-bit pseudorandom stringusing P (n) modular multiplications.Another generator whose pseudorandomness is based on factoring, was suggested by H�astad,Schrift and Shamir [HSS] (and will be referred to as the \HSS generator"). The HSS generator relieson the simultaneous hardness of half of the bits in the exponentiation modulo a composite functionfN;g. Loosely speaking, the HSS generator takes an n-bit random seed x (where n is the size ofthe modulus N), and outputs fN;g(x) followed by the lower half of the bits of x.4 Observe thatfrom an n-bit seed, the HSS generator obtains 1:5n bits of output, using n modular multiplicationson the worst case, and 0:5n modular multiplications on the average case (assuming that the termsg20; : : : ; g2n are pre-computed together with the other parameters of the generator).Even though our main result is equivalent to the simultaneous hardness of half of the bits infN;g, our result gives rise to a pseudorandom generator that is (in a sense) more natural than theHSS generator, as well as more e�cient than it. Informally, we suggest a generator that takes arandom seed x of size dn=2e, and outputs fN;g(x). Observe that our generator doubles the lengthof its input. In particular, it obtains n bits of output from an 0:5n-bit seed using 0:5n modularmultiplications on the worst case, and 0:25n modular multiplications on the average case (onceagain, we assume that the terms g20; : : : ; g2dn=2e are pre-computed).2A Blum integer is equal to the multiplication of two primes of equal size, each congruent to 3 mod 4.3The Blum-Micali generator obtains each bit of output at the cost of one modular exponentiation that is imple-mented by n modular multiplications, as opposed to one modular multiplication per output bit needed by the BBSgenerator.4As a matter of fact, in order to achieve true pseudorandomness, universal hashing is applied. The actual con-struction will be presented in Section 4. 2

The following table compares the three factoring based generators discussed above, each havingthe same security parameter n (the size of the modulus N). Note that the \cost" column refers tothe average number of multiplications done in every application of the generator, and the \amortizedcost" column refers to the average number of multiplications divided by the number of additionaloutput bits of the generator (i.e., the amortized cost is the cost divided by the di�erence betweenthe output length and the seed length).5seed length output length cost amortized costBBS construction n P(n) (8P) P(n) P (n)P (n)�n � 1HSS construction n 1.5n 0.5n 0:5n1:5n�n = 1Our construction 0.5n n 0.25n 0:25nn�0:5n = 0:5An additional point is that our generator (as well as the HSS generator) has an e�cient parallelimplementation in time O(log n). 6 This is opposed to the BBS generator which is not known tohave a fast parallel implementation (i.e., any faster than the straightforward sequential implemen-tation).1.3 OrganizationThe rest of this work is organized as follows: Basic de�nitions and notations are given in Section 2.In Section 3 we state and prove the main theorem (regarding the pseudorandomness of exponenti-ation with a short exponent), show its equivalence to the [HSS] result (and discuss the di�erencebetween the two proofs). In Section 4 we address the issue of constructing a pseudorandom gener-ator based on results as ours and [HSS].2 PreliminariesProbability Ensembles: Let I be a countable index set. A probability ensemble indexedby I is a sequence of random variables indexed by I. Namely, X = fXigi2I , where the Xi's arerandom variables, is a probability ensemble indexed by I.In our applications, we use IN as an index set, and let each Xn (in an ensemble of the formfXngn2IN) range over strings of length n. In particular, we denote by Un the random variable thatis uniformly distributed over f0; 1gn.Statistical Di�erence: A basic notion from probability theory is the statistical di�erence be-tween probability ensembles fXngn2IN and fYngn2IN. The statistical di�erence measures the dis-5Even though the correct way to compare the above generators is with respect to the same security parameter,one might consider a comparison with respect to the same seed length. In order to do that we must normalize theinput/output sizes of our generator so that its seed length will be n. Thus, the output produced by our generatorwill be of length 2n, the cost will be 0:5n and the amortized cost will again be 0:5 multiplications per an additionaloutput bit. Note however, that the size of the security parameter in our construction will be twice its size in the BBSand the HSS constructions. Thus, our construction will be safer. On the other hand, each multiplication will involvetwice as big numbers.6The parallel implementation uses dn=2e processors P1; : : : ; Pdn=2e, where the input of each processor Pi is thei'th bit of the seed, si, and the output is the multiplication of the values g2i�1�si contributed by each processor.3

tance between distributions and is de�ned to beSD(Xn; Yn) = 12 �X� jPr[Xn = �]� Pr[Yn = �]jProbability ensembles fXngn2IN and fYngn2IN are called statistically close if their statisticaldi�erence is negligible in n (we say that a function � : IN! [0; 1] is negligible if for every positiveconstant c and all su�ciently large n's, �(n) < 1nc).Computational Indistinguishability: A weaker notion of closeness between probability en-sembles is the notion of indistinguishability by all e�cient algorithms. When no e�cient algorithm(that may be probabilistic) can tell apart the two ensembles, we call them computationally indis-tinguishable. Formally,De�nition 2.1 We say that two ensembles fXngn2N and fYngn2N are computationally indis-tinguishable, if for every probabilistic polynomial-time algorithm D, for every positive constant cand for all su�ciently large n'sjPr[D(Xn; 1n) = 1]� Pr[D(Yn; 1n) = 1]j < 1ncA notation: Let A be a �nite set, then a 2R A denotes that the element a is uniformly chosenfrom the set A (i.e. with probability 1jAj).2.1 Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is a deterministic algorithm that stretches a randomseed (i.e. input) into a longer bit sequence which is \pseudorandom". A pseudorandom bit sequenceis de�ned as computationally indistinguishable from the uniform distribution (thus for all practicalpurposes we can use the output of the generator instead of a truly random string).De�nition 2.2 A pseudorandom generator is a deterministic polynomial-time algorithm, G,satisfying the following two conditions:1. There exists a function l(n) : n ! n satisfying that l(n) > n for all n 2 N , such thatjG(s)j = l(jsj) for all s 2 f0; 1g�.2. The ensembles fG(Un)gn2N and fUl(n)gn2N are computationally indistinguishable.2.2 The Factoring AssumptionWe denote by Nn the set of all n-bit integers N = P � Q, where P and Q are two odd primes ofequal size. The collection Nn can be sampled e�ciently. Speci�cally, given input 1n, it is possibleto pick a random element in Nn in polynomial time (using a polynomial number of coin tosses).The problem of factoring integers is widely believed to be intractable. Integers belonging to theset Nn are considered to be particularly hard to factor. Note that Nn is a non-negligible fractionof all n-bit integers. Currently, the best algorithm known can factor an integer picked randomlyfrom Nn in (heuristic) running-time of e1:92n1=3 log n2=3 .4

Assumption 1 [Factoring Assumption] Let A be a probabilistic polynomial-time algorithm. Thereis no constant c > 0 such that for all su�ciently large n'sPr [A(P �Q) = P] > 1ncwhere N = P �Q is picked uniformly from Nn.2.3 The group Z�NDenote by Z�N the multiplicative group that consists of all the naturals which are smaller than Nand are relatively prime to it. We represent the elements in Z�N by binary strings of size n = dlogNe.Notations:� Let x < N , and let 1 � j � i � n. We denote by xi the i'th bit in the binary representationof x, and by xi;j the substring of x including the bits from position j to position i.� Denote by ordN (g) the order of an element g in Z�N , which is the minimal k � 1 for whichgk = 1 (mod N).� Denote by hgi the subgroup of Z�N generated by g. That is, hgi is the set of all elements ofthe form gx mod N for some x < N .� Denote by Pn the set of pairs hN; gi where N 2 Nn and g 2 Z�N . Note that Pn is e�cientlysamplable.We now de�ne the exponentiation modulo a composite function and its inverse the discretelogarithm modulo a composite function.De�nition 2.3 Let hN; gi be a pair in Pn. We de�ne he exponentiation modulo a compositefunction fN;g : f0; 1g� ! hgi to be fN;g(x) = gx mod N .De�nition 2.4 Let hN; gi be a pair in Pn. We de�ne the discrete log modulo a composite functionDLN;g : hgi ! [0; ordN (g)), where DLN;g(y) is de�ned to be the unique natural x < ordN (g) forwhich fN;g(x) = y.3 Exponentiation with a short exponent is pseudorandomWe introduce two probability ensembles, which we show to be computationally indistinguishableassuming the intractability of factoring.De�nition 3.1 Let hN; gi be a uniformly distributed pair in Pn, let R be uniformly distributed in[0; ordN (g)) and let r be uniformly distributed in f0; 1gdn2 e. We denote by Fulln the distributionhN; g; gR mod Ni and by Halfn the distribution hN; g; gr mod Ni.Theorem 3.2 The ensembles fHalfngn2N and fFullngn2N are computationally indistinguishable.
5

********************** (3)

(2)

(1)***************

*****************************i � n=2m � nn=2
Figure 1: We denote random bits by '*' and the length of the binary expansion of ordN (g) by m.No. (1), (2), (3) show the exponents of Halfn, Fulln and the hybrid Hin, respectively.We use the hybrid technique in order to prove the indistinguishability of Fulln and Halfn. Fori's between dn2 e and n + !(log n) we de�ne a hybrid distribution in the following way: The i'thhybrid, denoted Hin, will consist of triplets of the form hN; g; gx mod Ni, where hN; gi is uniformlydistributed in Pn and x is uniformly distributed in f0; 1gi (see Figure 1).For a speci�c choice of a pair hN; gi in Pn we denote by HiN;g the distribution gx mod N wherex is uniformly distributed in f0; 1gi. (From now on we omit the expression \mod N" whenever itis clear from the context).Clearly, Hdn=2en = Halfn. Note that the distribution Hn+!(log n)n is statistically close to Fulln,as asserted by the following claim:Claim 3.2.1 The distributions Fulln and Hn+!(log n)n are statistically close.Proof: Let M denote 2n+!(log n). M can be written as k � ordN (g) + r where k is an integer and0 � r < ordN (g). We now calculate the statistical di�erence between the distributions Fulln andHn+!(log n)n . Note that the �rst equality is implied from the fact that in fN;g(x) the exponent x isreduced modulo ordN (g).SD(Fulln;Hn+!(log n)n) = 12 hr � �k+1M � 1ordN (g)�+ (ordN (g) � r) � � 1ordn(g) � kM �i= 12 h(ordN (g) � 2r) � � 1ordn(g) � kM �+ rM i= 12 h(ordN (g) � 2r) � rM �ordN (g) + rM i� rMSince rM < NM � 2n2n+!(log n) , we have that SD(Fulln;Hn+!(log n)n) is negligible in n. 2Consequently, if there exists a probabilistic polynomial-time algorithm D, that distinguishesthe ensemble Halfn from Fulln, then D distinguishes (almost) as well Halfn from Hn+!(log n)n . Asthe total number of hybrids is polynomial in n, a non-negligible gap between the extreme hybridstranslates into a non-negligible gap between a pair of neighboring hybrids. Taking advantage ofthe structure of two neighboring hybrids, we use the distinguisher D in order to factor a compositein Nn, and thus contradict Assumption 1. In the following, let n be a su�ciently large natural andlet i belong to the set fdn2 e;:::;n+!(log n)g.Lemma 3.3 (Main Lemma) Suppose that the gap between the acceptance probability of D onthe hybrids Hin and Hi+1n is greater than 1nc . Then, with probability at least 18nc we can factor acomposite N , uniformly distributed in Nn. 6

3.1 Factoring vs Discrete Logarithm in Z�NIt turns out that there is a tight connection between factoring N and revealing the discrete logarithmof a certain element in Z�N . In order to factor a random integer N = P �Q in Nn, it is su�cient to�nd the discrete log of gN for a randomly chosen g 2 Z�N . This is due to the following trivial fact:Fact 1 Let hN; gi belong to Pn (say that N = P �Q). Then, if ordN (g) > P + Q� 1, the discretelogarithm S = DLN;g(gN) is equal to P +Q� 1.Proof: Recall that the order of g divides the order of the group Z�N , equal to '(N) = (P �1)(Q�1).Therefore, gN = gN�'(N) = gP+Q�1 (mod N). Consequently, if ordN (g) > P + Q � 1 thenS = P +Q� 1. 2The following proposition, established by H�astad et al. [HSS], claims that an element pickedrandomly in Z�N is very likely to be of high order:Proposition 3.4 (H�astad et al.) Let hN; gi be uniformly distributed in Pn, where N = P � Q.Then, Pr �ordN (g) < 1nk � (P � 1)(Q� 1)� � O� 1n(k�4)=3�The only use we make of the above proposition, is to show that with very high probability, ordN (g)cannot be too small. Speci�cally, Proposition 3.4 implies that with overwhelming probabilityordN (g) is greater than P +Q� 1. Therefore, as was �rst observed by Chor [Chor], we can solvethe two equations P +Q� 1 = S (according to Fact 1) and P �Q = N for the unknowns P and Qand thus factor N .3.2 Proof of Main LemmaThe proof of Lemma 3.3 is basically a reduction. We show how to use the algorithm D thatdistinguishes Hin and Hi+1n in order to calculate S and thus factor N .3.2.1 Using D to discover the (i+ 1)st bit of the exponentLet Wn � Pn be the set of pairs hN; gi in Pn for which it holds that D distinguishes HiN;g andHi+1N;g with advantage at least 12nc . A standard averaging argument shows that the probability thata pair hN; gi chosen at random from Pn is in the set Wn is at least 12nc .>From now on we consider the case where hN; gi belongs to the set Wn, and therefore satis�es���Pr[D(N; g; gx) = 1jx 2R f0; 1gi]� Pr[D(N; g; gx) = 1jx 2R f0; 1gi+1]��� � 12nc (1)Observe thatPr[D(N; g; gx) = 1jx 2R f0; 1gi+1] = 12 � Pr[D(N; g; gx) = 1jx 2R f0; 1gi] +12 � Pr[D(N; g; g2i+x) = 1jx 2R f0; 1gi] (2)>From 1 and 2 we obtain the following:���Pr[D(N; g; gx) = 1jx 2R f0; 1gi]� Pr[D(N; g; g2i+x) = 1jx 2R f0; 1gi]��� � 1nc (3)7

Denote by HiN;g the distribution g2i+x where x is drawn uniformly from f0; 1gi. Another wayto state Inequality 3 is to say that the distinguisher D has advantage at least 1nc in distinguishingthe distributions HiN;g and HiN;g. Let � and be the acceptance probabilities of D on input takenfrom HiN;g and HiN;g, respectively. That is, let� def= Pr[D(N; g; gx) = 1jx 2R f0; 1gi] (4)and def= Pr[D(N; g; g2i+x) = 1jx 2R f0; 1gi] (5)Without loss of generality assume that > �. Note that good approximations of � and can beeasily obtained (in polynomial-time) by performing a-priori tests on D, using samples taken fromHiN;g and HiN;g.In the sequel we use the distinguisher D as an oracle, that enables us to \peek" into a 1-bitwindow on the (i+ 1)st location of an unknown exponent of length (i+ 1). Speci�cally, we use Din order to derive the (i+ 1)st bit of an (i+ 1)-bit string x, given gx.3.2.2 Discovering S - a naive implementationSuppose for a moment that we had a \perfect" oracle, that given input Z = gx, where x is of length(i+ 1), would supply us, with success probability 1, the (i+ 1)st bit of x. It would then enable usto extract x, using two simple operations:Shifting to the left: By squaring Z we shift x by one position to the left.Zeroing the j'th bit: By dividing Z by g2j�1 we zero the j'th position in x, in case it is knownto be 1.Therefore, we extract x from the most signi�cant to the least signi�cant bit by \moving" it underthe (i+1)st window. Speci�cally, we query the oracle and determine the (i+1)st bit of x and zeroit in case it equals 1. Next we shift x by one position to the left, query again the oracle to discoverthe next bit and so on.As was explained earlier, we try to factor N by discovering S = DLN;g(gN). An importantproperty of S is that with overwhelming probability its length is dn=2e+1, and is therefore smallerthan i+ 1. We can thus manipulate Y = gN = gS (mod N) and discover S.However, as the oracle might give us erroneous answers and all we are guaranteed is that thereis a �� gap (which is greater than 1nc) between the probability to get a correct 1-answer and theprobability to get an erroneous 1-answer, our implementation needs to be more careful.3.2.3 Discovering S - the actual implementationWe must randomize our queries to the oracle and learn the correct answer by comparing theproportion of 1-answers with � and . A straightforward way to learn the (i + 1)st bit of x givenZ, would be to query the oracle on polynomially many random multiples Z � grk for known rk'schosen uniformly from f0; 1gi, and based on the fraction of 1-answers to decide between 0 and 1.However this approach fails, since despite our knowledge of rk, we cannot tell whether a carry fromthe addition of the i least signi�cant bits of the known rk and the unknown x e�ects the (i+ 1)stbit of their sum. Thus we cannot gain any information on the (i+ 1)st bit of x from the answer ofthe oracle on Z � grk . 8

We now give a rough description of a procedure that resolves this di�culty and computes S.The procedure consists of dn=2e + 1 stages, where on the j'th stage we create a list Lj which is asubset of f0; : : : ; 2j � 1g. We want two invariants to hold for the list Lj:1. Lj contains an element e such that S � e � 2l(j) belongs to the set f0;:::;2l(j)�1g, where l(j) def=dn2 e+ 1� j. (In other words, we want e to be equal to Sdn2 e+1;l(j)).2. The size of Lj is small, that is, it contains up to a polynomial number of values (where thepolynomial is set a-priori).Thus, on the (dn=2e + 1)st stage, we will have a polynomial-size list that contains S.The values in each list are kept sorted. The transition from the (j�1)st list to the jth list is doneas follows: We �rst let Lj contain all the values v such that v = 2u or v = 2u+1 where u is in Lj�1,thus making the size of Lj twice the size of Lj�1. Obviously, by this we maintain the �rst invariantspeci�ed above. In case the size of Lj exceeds the polynomial bound we �xed, we use repeatedlythe Trimming Rule in order to throw candidates out of Lj until we are within the maximal sizeallowed. The Trimming Rule never throws away the correct candidate (i.e. Sdn2 e+1;l(j)).3.2.4 Keeping the size of Lj boundedSuppose that we decide to trim Lj whenever the di�erence between the largest candidate in it,denoted by vjmax, and the smallest candidate in it, denoted by vjmin, exceeds a certain polynomial,say n� (for some constant �). At least one of the values vjmax, vjmin is not the correct valueSdn2 e+1;l(j). Therefore the trimming rule (to be de�ned in the sequel) may throw one of them outof the list. For this purpose, we are going to de�ne a new secret S0, for which gS0 can be e�cientlycomputed given Y = gS , vjmax and vjmin. We will examine a certain position in it (which is afunction of j), henceforth referred to as the crucial position (and shortly denoted cp). Essentially,S0 will have the following properties:1. If vjmin is the correct candidate (i.e. Sdn2 e+1;l(j) = vjmin) then the cp-bit in S0 is 0, so are thed� log ne bits to its right, and so are all the bits to its left.2. If vjmax is the correct candidate (i.e. Sdn2 e+1;l(j) = vjmax) then the cp-bit in S0 is 1, the d� log nebits to its right are all 0's, and so are all the bits to its left.Consequently, in these two situations we will be able to perform the randomization we wanted. We�rst shift S0 to the left until the cp-bit is placed in the (i + 1)st location (by repeated squaring).We then multiply the result by gr for some randomly chosen r 2 f0; 1gi. The probability to havea carry into the (i + 1)st location from the addition of r and the shifted S0, is no more than 1n�(a carry might occur only when ri;i�d� log ne = 11 : : : 1). Hence, by using a polynomial number ofqueries to the oracle (with independently chosen r's) we are able to deduce the value of the cp-bitby comparing the fraction of 1-answers with � and .As the value of the cp-bit is revealed, we can discard one of the candidates vjmin or vjmax fromthe list: If cp = 1 we are guaranteed that vjmin is not correct, and if cp = 0 we are guaranteed thatvjmax is not correct.Note that in case neither vjmax nor vjmin are correct, we cannot ensure that the d� log ne bits tothe right of the cp-bit in S0 will be zeros, so a carry may reach the (i+ 1)st position. Thus we canget the frequency of 1-answers altogether di�erent from � and . Yet in that case, it is ok for thetrimming rule to discard either one of the extreme values from the list.We proceed with a formal presentation of the proof.9

3.2.5 De�nition of S0 and cpRecall that l(j) = dn2 e + 1 � j. We de�ne the new secret S0 (which is a function of j, S vjmin andvjmax) to be S0 = & 2d� log ne+mvjmax � vjmin' � (S � vjmin � 2l(j))where m is a natural number. We will see that in the choice of m there is a tradeo� between therunning time and the probability of error: When m is large, the error probability is smaller. Onthe other hand, when m is small, the running-time is shorter (we will see that choosing m to bed� log ne will be adequate). Note that gS0 can be e�ciently evaluated given Y = gS , vjmin and vjmax.The Crucial Position in S0 is de�ned to becp = d� log ne+m+ l(j) + 1Since we decided to trim Lj whenever the di�erence between the extreme values in it exceeds n�,the trimming rule will be applied only for j's greater than d� log ne (for smaller j's vjmax and vjminwill not di�er by more than n�). Therefore, the maximal value for cp will be dn=2e+m+1. Thus,for i's smaller than dn=2e + m it occurs that cp is greater than i + 1. For these i's we have toguess the dn=2e +m � i � m most signi�cant bits of S (in order to keep the number of guessespolynomial, we restrict m to be logarithmic in n and prefered as small as possible).3.2.6 The actual algorithms and their analysisWe �rst describe the procedure \�nd S" that on input N 2 Nn and i (the index of the hybrid forwhich the acceptance probability of D on HiN;g and HiN;g di�ers by more than 1nc), �nds S. Weproceed with an analysis of the procedure which leads us to the exact formulation of the trimmingrule.Procedure \Find S":On input N and i execute the following steps:1. Let j0 = max(dn=2e +m� i; 0)).Recall that i � dn=2e, therefore j0 2 f0; : : : ;mg.2. If j0 > 0 guess the j0 most signi�cant bits of S, and let w 2 f0; : : : ; 2j0 � 1g denote the guess(if j0 = 0 let w def= 0).For each of these polynomial number of guesses do the following stages:3. Let Lj0 = fwg.4. For j = j0 + 1 to dn=2e + 1 do the following:(a) Let Lj def= f2u; 2u+ 1 : u 2 Lj�1g.Order the resulting list from the largest element vjmax to the smallest element vjmin.(b) If vjmax � vjmin > 2d� log ne (we are guaranteed that vjmax � vjmin � 2 � 2d� log ne by theprevious stage) use the trimming rule (to be speci�ed) repeatedly until the di�erencebetween the largest element in the list and the smallest one is no more than 2d� log ne.5. Check all values v 2 Ln2+1 and see whether gv equals Y . If such a value is found, then it is S.10

Two facts: We turn to make two observations which lead us to the formulation of the rule bywhich we trim Lj (assuming that 2d� log ne < vjmax � vjmin � 2d� log ne+1):Fact 2 Suppose that vjmin indeed equals Sdn=2e+1;l(j). Then, the cp-bit in S0 is 0, all the bits to itsleft are 0's, and the d� log ne bits to its right are 0's as well.Fact 3 Suppose that vjmax indeed equals Sdn=2e+1;l(j). Then, the cp-bit in S0 is 1, all the bits to itsleft are 0's, and the l def= min(d� log ne;m�1)� 1 bits to its right are 0's as well.Proof:(of Fact 2) Using vjmax � vjmin > 2d� log ne, observe thatS0 = �2d� logne+mvjmax�vjmin � � �vjmin � 2l(j) + Sl(j);1 � vjmin � 2l(j)�� 2m � Sl(j);1� 2m+l(j)= 2cp�d� logne�12Proof:(of Fact 3) Observe thatS0 = � 2d� log ne+mvjmax�vjmin � � �vjmax � 2l(j) + Sl(j);1 � vjmin � 2l(j)�= � 2d� log ne+mvjmax�vjmin � � �(vjmax � vjmin) � 2l(j) + Sl(j);1�= 2d� log ne+m+l(j) + � � (vjmax � vjmin) � 2l(j) + �2d� log ne+mvjmax�vjmin � � Sl(j);1where � = �2d� log ne+mvjmax�vjmin �� 2d� log ne+mvjmax�vjmin 2 [0; 1).Let U1 = � � (vjmax � vjmin) � 2l(j) and let U2 = �2d� logne+mvjmax�vjmin � � Sl(j);1.We can write S0 as S0 = 2cp�1 + U1 + U2Recall that 2d� log ne < vjmax � vjmin � 2 � 2d� log ne. Therefore, U1 � 2 � 2d� log ne+l(j) = 2cp�m andU2 � 2m+l(j) = 2cp�d� log ne�1. Also, both U1; U2 � 0.Consequently S0 is of the following form:� The cp-bit in S0 is 1 and all the bits to its left are 0's.� Let l = min(d� log ne;m�1)�1. Then the l bits to the right of the cp-bit in S0 are 0's.2 Fact 3 implies that we must choose m to be at least d� log ne, otherwise there wouldn't beenough 0's to the right of the cp-bit to enable the randomization. On the other hand, the larger m11

is, the more bits we have to guess in Step (1) of the procedure \Find S". We therefore set m to bed� log ne, and respectively de�neS0 = & 22d� lognevjmax � vjmin' � (S � vjmin � 2l(j))and cp = 2d� log ne+ l(j) + 1We now formally state the trimming rule:Trimming Rule:1. Shift S0 by i + 1 � cp bits to the left (by computing Y 0 = gS0�2i+1�cp) therefore placing thecrucial position in S0 on location i+ 1.2. Pick t(n) = n2c+4 random elements x1; : : : ; xt(n) 2 f0; 1gi.3. For each 1 � k � t(n) query the oracle on Y 0 � gxk (mod N) and denote by bk its answer (i.e.bk = D(gS0�2i+1�cp+xk)). Denote by M the mean Pt(n)k=1 bkt(n) .4. If M � (� + ��2) discard the candidate value vjmax from the list Lj . Otherwise (i.e. whenM > (� + ��2)) discard the candidate value vjmin.Note that the trimming rule is applied only for j's that are greater than j0+ d� log ne. Thus, i+1is always greater or equal to cp, making Step (1) in the trimming rule well de�ned.Using Cherno� bound one can show that the error probability of the trimming rule (i.e. theprobability that the correct value will be discarded from the list) is exponentially small (for theexact proof see Appendix A).Claim 3.4.1 The Procedure \Find S" combined with the Trimming Rule above can factor integerspicked randomly from Nn with probability greater than 18nc .Proof: As previously mentioned, for a pair hN; gi uniformly chosen from Pn (where N is equal toP �Q), the following two facts hold:1. With overwhelming probability ordN (g) > P +Q� 1.2. With probability greater than 12nc the pair hN; gi belongs to the set Wn.Therefore, given a random N = P �Q in Nn, we can pick g randomly in Z�N and with probabilityhigher than 14nc both of the above conditions hold. Hence, S will be equal to P+Q�1 (according toFact 1) and the algorithm D will have advantage of at least 12nc in distinguishing the distributionsHiN;g andHiN;g (see Equation 3). Since the probability of error by the trimming rule is exponentiallysmall, and since the trimming rule is used polynomially many times throughout the procedure \FindS", with probability greater than 18nc the value S will be found. 2Note that the procedure \Find S" together with the Trimming Rule yields at most 2j0 �2d� log ne �22d� log ne = nO(1) possible values for S, and is therefore polynomial time. Thus Claim 3.4.1 �nishesthe proof of Lemma 3.3. 12

3.3 Proof of Main TheoremWe now go back to Theorem 3.2, and prove it using Lemma 3.3. Assume that the gap between theacceptance probability of D on the extreme hybrids Hdn=2en and Hn+!(log n)n is greater than 1nd . Weconstruct an algorithm A that factors integers uniformly distributed in Nn. On input N , algorithmA picks a random i in fdn2 e;:::;n+!(log n)g and runs the procedure \Find S" on (N; i). By Lemma 3.3,the probability that \Find S" indeed factors N , is greater than one eight of the gap between theacceptance probabilities of D on Hin and Hi+1n , for a random i as above. Denote the number ofhybrids, bn=2c + !(log n), by m(n). Then, we have that for all su�ciently large n'sPr [A factors N] = 1m(n) n+!(log n)Xi=dn=2e Pr [\Find S" on input (N; i) factors N]� 1m(n) n+!(log n)Xi=dn=2e 18 � ���Pr[D(Hi+1n) = 1]� Pr[D(Hin) = 1]���� 1m(n) � 18 � ���Pr[D(Hn+!(log n)n) = 1]� Pr[D(Hdn=2en) = 1]���� 1nd+1thus contradicting Assumption 1.Remark: In fact, Theorem 3.2 holds even when the distribution Halfn is de�ned to includeall triplets of the form hN; g; gxi where hN; gi 2R Pn and x 2R f0; 1gdn=2e�O(log n) (rather thanx 2R f0; 1gdn=2e). The original proof should then be modi�ed so that in Step (1) of procedure\Find S", the index j0 may belong to the set f0;:::;m+O(log n)g (instead of being in f0;:::;mg). Thus,we need to guess more bits from S (in Step (2) of procedure \Find S" the j0 most signi�cant bitsof S are guessed), however the total number of possible guesses remains polynomial in n.3.4 Equivalence to the HSS resultTheorem 3.2 is actually equivalent to the result by [HSS] on the simultaneous hardness of the upperdn=2e bits in the exponentiation function fN;g. In order to show that, we discuss �rst an alternativeversion of Theorem 3.2. Recall the hybridHn+!(log n)n de�ned in the proof of Theorem 3.2, includingtriplets hN; g; gRi, where hN; gi is uniformly distributed in Pn and R is uniformly distributed inf0; 1gn+!(log n). Let us denote it by gFulln. The following is a corollary from Theorem 3.2 and fromClaim 3.2.1.Corollary 3.5 The probability ensembles fHalfngn2N and f gFullngn2N are computationally in-distinguishable.We show that Corollary 3.5 is equivalent to the result of [HSS]. But �rst, let us give the exactformulation of their result.De�nition 3.6 Let hN; gi be uniformly distributed in Pn, let x be uniformly distributed in f0; 1gnand let r be uniformly distributed in f0; 1gdn2 e. We de�ne the following probability distributions:Xn def= hN; g; fN;g(x); xn;dn=2ei13

and Yn def= hN; g; fN;g(x); riTheorem 3.7 (H�astad et al.) The probability ensembles fXngn2N and fYngn2N are computa-tionally indistinguishable.73.4.1 The EquivalenceTheorem 3.8 Theorem 3.7 holds if and only if Corollary 3.5 holds.Proof: We show how to transform a probabilistic polynomial-time algorithm D that distinguishesthe ensemble fXng from fYng into a probabilistic polynomial-time algorithm D0 that distinguishesthe ensemble fHalfng from f gFullng, and vice versa.Transforming D into D0: On input hN; g; yi, pick z uniformly from f0; 1gdn=2e and run D onhN; g; y � gz�2dn=2e ; zi. Return D's answer as output. Observe that1. If hN; g; yi is taken from Halfn, then y = gr where r 2 f0; 1gdn=2e . Therefore, we havethat hN; g; gz�2dn=2e+r; zi is distributed as Xn.2. If hN; g; yi is taken from gFulln, then y = gR, where R 2 f0; 1gn+!(log n).Let � denote statistical closeness. Note that(Un+!(log n) + z � 2dn=2e) mod ordN (g) � Un+!(log n) mod ordN (g)� Un mod ordN (g)(the proof of each of the above transitions is similar to the proof of Claim 3.2.1). There-fore, hN; g; gz�2dn=2e+R; zi is statistically close to Yn.Thus, Theorem 3.7 is implied by Corollary 3.5.Transforming D0 into D: On input hN; g; y; zi, run D0 on hN; g; y=gz�2dn=2ei and output D0'sanswer. Observe that1. If hN; g; y; zi is taken from Xn, then y = fN;g(x) = gx and z = xn;dn=2e. Therefore,y=gz�2dn=2e = gxdn=2e;1 and thus hN; g; y=gz�2dn=2ei is uniformly distributed in Halfn.2. If hN; g; y; zi is taken from Yn, then y = fN;g(x) = gx and z is independent of x. Notethat(Un � z � 2dn=2e) mod ordN (g) = Un mod ordN (g) � z � 2dn=2e mod ordN (g)� Un+!(log n) mod ordN (g) � z � 2dn=2e mod ordN (g)= (Un+!(log n) � z � 2dn=2e) mod ordN (g)� Un+!(log n) mod ordN (g)Therefore, hN; g; y=gz�2dn=2ei is statistically close to gFulln.Thus, Theorem 3.7 implies Corollary 3.5.7Actually, the simultaneous hardness of the upper dn2 e in fN;g was de�ned di�erently by [HSS]. Their de�nitionstates that the two distributions h~xn;dn=2e; Zi and hr; Zi are computationally indistinguishable, where Z = gx (forx 2R Z�N), ~x = DLN;g(Z) and r 2R f0; 1gdn=2e. However, this de�nition is problematic: At least the most signi�cantbit in the �rst distribution, ~xn, will be always 0, since ordN (g) is always smaller than N=2. Hence the above twodistributions can be easily distinguished. 14

3.4.2 DiscussionOur proof of Theorem 3.2 simpli�es to a great extent the proof given by [HSS] to Theorem 3.7.Basically, this is due to the following reasons:1. Unlike in [HSS], we do not require that the order of g in Z�N will be very high (i.e. greaterthan 1nk � (P � 1)(Q � 1)). It su�ces that the order of g will be greater than P +Q� 1.2. We do not need to consider separately the O(log n) most signi�cant bits as done in [HSS](where a very complex proof is given for these bits).3. As a consequence from the di�erent nature of the oracles, the randomization conductedby us (randomizing the bottom i bits) is di�erent from the randomization done in [HSS](randomizing the full range [0; ordN (g))). Therefore many of the di�culties encountered inthe work of [HSS] are not relevant in our proof. For example, we do not need to avoid a wraparound the order of g.Further discussion of the above equivalence is given in [R, Sec. 3.3.3].4 Application to Pseudorandom GeneratorsAn immediate application of Theorem 3.2 is an e�cient factoring-based pseudorandom generatorwhich nearly doubles the length of its input. The key tool used is a construction by Goldreich andWigderson of a tiny family of functions which has good extraction properties [GW]. We also discusshow the parameters of the generator (a composite N 2 Nn and an element g 2 Z�N) can be chosenin a randomness-e�cient way (which is polynomial-time). In particular, we present a method ofchoosing a random n-bit prime using only a linear number of random bits. This translates to ahitting problem which can be solved e�ciently using methods described in [G2].4.1 Our construction vs. the HSS constructionLooking at Theorem 3.2, the �rst construction that comes to mind is a \pseudorandom generator"that takes a seed r of length dn=2e and outputs gr mod N (for a �xed pair hN; gi in Pn). However,the output of the above so-called "pseudorandom generator" is not really pseudorandom. Eventhough it is computationally infeasible to distinguish between it and the distribution gR mod N(for a random R in [0; ordN (g))), we are not guaranteed that it cannot be easily told apart from theuniform distribution on n-bit strings. The same applies for a "pseudorandom generator" implieddirectly by Theorem 3.7 (of [HSS]), which takes a seed x of length n, and outputs gx mod N followedby xdn=2e;1 (again, for �xed hN; gi in Pn).Denote by HalfN;g the distribution gr mod N , where r is uniformly distributed over strings oflength dn=2e, and by FullN;g the distribution gR mod N , where R is uniformly distributed over[0; ordN (g)). Observe that the \amount of randomness" that FullN;g encapsulates in it is high,in the sense that it does not assign a too large probability mass to any value. More formally, wemeasure the \amount of randomness" in terms of min-entropy.De�nition 4.1 Let X be a random variable. We say that X has min-entropy k, if for every x wehave that Pr(X = x) � 2�k.The distribution FullN;g has min-entropy greater than �, where� def= �(N; g) def= blog(ordN (g))c15

The following fact is an immediate consequence of Proposition 3.4:Fact 4 Let hN; gi be uniformly distributed in Pn, then � � n� 12 log2 n with negligible probability.Using hash functions which have good extracting properties, we are able to \smoothen" thedistribution FullN;g, and extract from it an almost uniform distribution over strings of lengthn � log2 n. To be more formal, we use a family of functions F having an extraction property,satisfying that for all but an � fraction of the functions in F , a distribution over strings of lengthn having min-entropy n � 12 log2 n is mapped to a distribution over strings of length n � log2 nwhich is �-close to uniform (we refer to �, which is generally taken to be negligible in n, as thequality-parameter of the extraction property achieved by F). The price we pay for the use inextractors, hides in a lower expansion factor of the pseudorandom generators. Speci�cally, we needto use a part of the random seed in order to choose a random function in the family F we areusing. Additionally, we lose a small quantity of pseudorandom bits when applying the extractingfunction.H�astad et.al. [HSS] used a universal family of hash functions [CW] in their construction of apseudorandom generator. The quality parameter achieved by this family of functions is exponen-tially small in n (and therefore has the best possible quality). However, a universal family of hashfunctions has to be large: exponential in n. Thus the number of random bits needed to generate(and represent) a function in this family is polynomial in n, resulting in a considerably large lossin the expansion factor of their generator.Instead, we use an explicit construction due to Goldreich and Wigderson [GW] of a family offunctions, which exhibits a trade-o� between the size of the family and the quality parameter �of the extraction property it achieves. Speci�cally, they demonstrate a construction of a family offunctions of size poly(n=�) achieving the extraction property with quality �. Taking, for example,� = n� log n, yields a family of functions of very good quality (not exponentially small in n but stillnegligible in n), where each function in the family can be represented using O(log2 n) bits.4.1.1 The HSS constructionWe present now the construction of the HSS pseudorandom generator. Even though the expansionfactor of the HSS-generator can be increased using the function families of [GW], we present theoriginal construction that uses universal hashing.Construction 4.2 ([HSS]): Let H��log2 nn be a universal family of hash functions which maps n-bitstrings to (�� log2 n)-bit strings, and suppose that every h 2 H��log2 nn is represented using 2n bits.The mapping GHSSN;g : f0; 1g3n ! f0; 1g3:5n�O(log2 n) is de�ned as follows:8Let x 2 f0; 1gn and let h 2 H��log2 nn . Then,GHSSN;g (h; x) def= �h; h(gx); xdn=2e;1�Note that applying the hash function causes a loss of O(log2 n) bits in the length of the output.Therefore, the fact that dn=2e bits are simultaneously hard in fN;g (and not just O(log2 n)) isessential for the construction of GHSSN;g , since the addition of the dn=2e least signi�cant bits to theoutput of the generator more than compensates for the loss of O(log2 n) bits. Observe that theexpansion factor obtained by the HSS-construction is approximately 76 (whereas using the [GW]construction one can improve it to approximately 32).8In fact, in the HSS construction, N is restricted to be the multiplication of two safe primes, see [HSS].16

4.1.2 Our constructionWe now present our construction of a pseudorandom generator achieving an expansion factor ofnearly 2. But �rst we give the exact formulation of the relevant result of [GW] (the constructionitself is presented in Appendix C).Theorem 4.3 (Extractors for High Min-Entropy [GW]): Let k < n and m < n � k be integers,and � > maxf2�(m�O(k))=O(1); 2�(n�m�O(k)=O(1))g. (In particular, m < n � O(k).) There exists afamily of functions, each mapping f0; 1gn to f0; 1gm, satisfying the following:� each function is represented by a unique string of length O(k + log(1�)).� there exists a logspace algorithm that, on input a description of a function f and a string x,returns f(x).� for every random variable X 2 f0; 1gn of min-entropy n � k, all but an �-fraction of thefunctions f in the family satisfy SD(f(X); Um) � �In particular, taking k = 12 log2 n, m = n � log2 n and � = n� log n, Theorem 4.3 implies theexistence of a family of functions F , mapping f0; 1gn to f0; 1gm, where each function f 2 F canbe represented by a string of length O(log2 n). We are now ready to exhibit our construction of apseudorandom generator which uses the family F .Construction 4.4 We de�ne the mapping GN;g : f0; 1gdn2 e+O(log2 n) ! f0; 1gn as follows:Let x 2 f0; 1gdn2 e and let f 2 F . Then,GN;g(f; x) def= (f; f(gx))Theorem 4.5 GN;g is a pseudorandom generator.Proof: Obviously GN;g is e�ciently computable (since every f 2 F can be evaluated in polynomialtime). Let F denote the random variable obtained by selecting uniformly a function f from thefamily F (although bearing the same name, it will be clear from the context whether we mean therandom variable F or the function family F). Observe thatGN;g(Udn2 e+O(log2 n)) � (F; F (HalfN;g))Un � (F;Um)Consider now the hybrid (F; F (FullN;g)). The theorem is directly implied from the following twoclaims:Claim 4.5.1 The ensembles f(F; F (HalfN;g))gn2Nand f(F; F (FullN;g))gn2Nare computationally indistinguishable. 17

Proof: The existence of an e�cient distinguisher D between the above ensembles implies the exis-tence of an e�cient distinguisher D0 between the ensembles Halfn and Fulln: On input hN; g; yi,the distinguisher D0 picks an extractor f uniformly from F and outputs D's answer on input(f; f(y)). 2Claim 4.5.2 The ensembles f(F; F (FullN;g))gn2Nand f(F;Um)gn2Nare statistically close.Proof: The third property of Theorem 4.3, ensures that for all but an �-fraction of the functions fin F , the statistical di�erence between the ensembles F (FullN;g) and Um is bounded from above by�. Thus, the statistical di�erence between (F; F (FullN;g)) and (F;Um) is no more than 2�. Since �was taken to be n� logn, we have that the ensembles (F; F (FullN;g)) and (F;Um) are statisticallyclose. 24.1.3 Increasing the expansion factor of the generatorThe pseudorandom generator described above almost doubles the length of its input. However,such a small expansion factor has limited value in practice. Still, it is well known that evena pseudorandom generator G producing n + 1 bits from an n-bit seed can be used in order toconstruct a pseudorandom generator G0 having any arbitrary polynomial expansion factor (see e.g.[G, Sec. 3.3 Thm. 3.3.3]). Unfortunately, the cost of the latter transformation is rather high:Producing each bit in G0's output requires one evaluation of G. Nevertheless, since our generatorGN;g has an expansion factor of nearly 2 to start with, we can do better than that: GN;g can beused to construct a generator G0N;g having an arbitrary polynomial expansion factor, such thatfor every n=2 � O(log2 n) bits of output, one evaluation of GN;g is required. We remark that theissue of increasing the expansion factor of GN;g is relevant mostly due to the need to randomly pickthe parameters N and g, which requires O(n) additional random bits (as will be explained in thesubsequent subsection). Our suggestion is to pick randomly N and g, set them once and for all,and construct a pseudorandom generator having a large expansion factor using this speci�c GN;g.This way the cost of picking N and g becomes negligible (compared to our \pro�t" from the newgenerator).We describe now how in general one uses a generator G : f0; 1gn ! f0; 1gn+l(n) (for an integerfunction l) to construct a generator G0 : f0; 1gn ! f0; 1gl(n)�p(n), for any arbitrary polynomial p(�).Construction 4.6 Let l : N ! N be an integer function satisfying l(n) > 0 for every n 2 N , letp(�) be a polynomial and let G : f0; 1gn ! f0; 1gn+l(n) be a deterministic polynomial-time algorithm.De�ne G0(s) = �1 : : : �p(n), where s0 def= s, the string si is the n-bit long su�x of G(si�1) and �i isthe l(n)-bit long pre�x of G(si�1), for every 1 � i � p(n) (i.e., �isi = G(si�1)).Theorem 4.7 If G is a pseudorandom generator then so is G0.18

Theorem 4.7 is a generalization of Theorem 3.3.3 proven in [G] (regarding a generator producingn+1 bits from an n bit seed). Observe that for every l(n) output bits of G0, one evaluation of G isrequired. Using our generator GN;g as the building block, we obtain a generator G0N;g that expandsinput of size n=2 + O(log2 n) to output of size nc using approximately ncn=2 applications of GN;g.Since evaluating GN;g costs approximately n4 modular multiplications, we have that G0N;g can beevaluated using approximately nc2 modular multiplications.4.2 An e�cient choice of the parameters (N and g)In order to use in practice the generator GN;g we need to generate the parameters N and g from aprimary seed in an \e�cient" way, where by \e�cient" we mean that both the running time andthe amount of randomness used should be as small as possible. The major challenge is to generatee�ciently two uniformly distributed primes P and Q, in order to obtain a random N = P �Q in Nn.A random element g in Z�N can be chosen using O(n) random coins by picking a random number inf0; 1gn+log2 n and reducing it modulo N (only with negligible probability the element obtained willnot be relatively prime to N). We describe now a general method by which we can pick a randomn-bit prime in polynomial time, using only a linear number of random coins.4.2.1 Picking a random n-bit prime using O(n) random bitsThe trivial algorithm to choose a random n-bit prime is to repeat the following two stages until aprime x is output.1. Choose a random integer x in f0; 1gn.2. Test whether x is a prime. If it is, stop and output x.Since the density of primes in f0; 1gn is approximately 1n , the expected number of times that theabove loop is performed is approximately n. Even assuming that we have a deterministic primalitytest, the above algorithm requires an expected O(n2) random bits. We now show how to performpoly(n) dependent iterations of the loop using only O(n) random bits (rather than doing O(n)independent iterations using O(n2) random bits). We will use, however, a probabilistic primalitytester of Bach [Bach], which is a randomness-e�cient version of the Miller-Rabin [M, R2] primalitytester.Theorem 4.8 (randomness e�cient primality tester [Bach]): There exists a probabilistic polyno-mial time algorithm that on input P uses jP j random bits so that if P is a prime then the algorithmalways accepts, and otherwise (i.e. P is a composite) the algorithm accepts with probability at most1pP .Combining the above procedures, we haveCorollary 4.9 There exists a probabilistic polynomial-time algorithm that uses 2n random coinssuch that1. with probability �(1n) outputs an n-bit prime. Furthermore, the probability to output a speci�cprime is 2�n.2. with probability 1��(1n)� exp(�n) outputs a special failure sign, denoted ?.3. with probability at most 2�n=2 outputs a composite.19

4.2.2 A hitting problemWe refer to the algorithm guaranteed from Corollary 4.9 as a black-box. We associate every strings 2 f0; 1g2n with the output of the black-box given s as its random coins. Denote by W the set ofstrings in f0; 1g2n which are associated with an n-bit prime. Corollary 4.9 implies that the densityof W within f0; 1g2n is �(1n). The problem of uniformly picking an n-bit prime translates to ahitting problem, where we need to �nd a string s 2W (which is subsequently used as random inputfor the black-box in order to yield a prime). An additional requirement is that the distribution ofprimes obtained in this way will be very close to uniform. Our goal now is to �nd an algorithmthat hits W , whose randomness complexity is linear in n. The methods we use are described in thesurvey of Goldreich [G2] on samplers and will be adapted to (and analyzed in) our speci�c setting.A pairwise-independent hitter Our �rst attempt uses a pairwise independent sequence of muniformly distributed strings in f0; 1g2n. Such a sequence can be generated in the following way:We associate f0; 1g2n with F def= GF (22n), and select independently and uniformly s; r 2 F . Welet the i'th element in the sequence be ei = s + i � r (with the arithmetic of F).9 It can be easilyseen that the generated sequence is indeed pairwise-independent.Theorem 4.10 (A pairwise-independent hitter): Let � be an error parameter satisfying that 1=�is polynomial in n. There exists an e�cient algorithm that uses 4n random coins for which thefollowing holds:� The probability to output a prime is at least 1� �.� The probability to output a composite is at most exp(�n).(With probability � � exp(�n) a failure sign ? is output.)� The probability to output a speci�c prime is at least 2�n and at most n� � 2�n.Proof: We generate m def= n� pairwise-independent samples e1; : : : ; em each uniformly distributedin f0; 1g2n, and run the black-box using each of the ei's as random bits. Clearly, this procedure ise�cient, since m is polynomial in n. Let�i def= (1 if the black-box (using ei as random bits) outputs a prime0 otherwiseCorollary 4.9 implies that the expectation of �i is 1n . Using Chebishev's Inequality we havePr mXi=1 �i = 0! � Pr �����mn � mXi=1 �i����� � mn !� m � 1n(1� 1n)(mn)2� �Regarding the probability to output a composite, using a union bound we getPr [a composite is output] = Pr[9i s.t. ei yields a composite]9Note that the number of pairwise independent strings one can generate in this way is limited to 22n � 1.20

� mXi=1 �Pr[ei yields a composite]� n� � exp(�n) = exp(�n)where the last inequality follows from the third item of Corollary 4.9 and from the fact that forevery i the point ei is uniformly distributed over f0; 1g2n.As for the probability that a speci�c prime p is output, the �rst item of Corollary 4.9 impliesthat for every i, the probability that p is output using ei as random coins is exactly 2�n (since eiis uniformly distributed). Thus,Pr[p is output] � Pr[e1 yields p] = 2�nOn the other hand, using a union bound,Pr[p is output] � mXi=1 �Pr[ei yields p] = n� � 2�nIf we were willing to settle with a polynomially small error � (i.e., � = 1poly(n)) then the abovealgorithm would be su�cient for us. However, in order to achieve an overwhelming probability ofsuccess (i.e., � = 2�n) we must take a somewhat more complex approach, which involves randomwalks on expander graphs (for de�nition and construction of expanders as well as the major theoremconcerning random walks on expanders see Appendix B).A combined hitter >From the pairwise independent hitter emerges another hitting problem:Let W 0 be the set of strings in f0; 1g4n, that when supplied to the pairwise-independent hitter(with a constant error parameter �) as a random seed, makes it hit W (i.e. yield a prime). >Fromthe �rst item of Theorem 4.10 we get that the density of W 0 within f0; 1g4n is greater than 1� �.Our new goal is to hit W 0 with an overwhelming probability of success.In order to do that, we generate a random walk on an expander with vertex set f0; 1g4n, and useeach of the vertices along the path as a seed for the pairwise-independent hitter. Taking advantageof the hitting property of expanders (see appendix B), we will have that a random walk of linearlength (in n) will be su�cient in order to hit W 0. Details follow.Theorem 4.11 There exists an e�cient algorithm which uses O(n) random coins such that thefollowing holds:� The probability that no prime is output is exp(�n).� The probability that a composite is output is exp(�n).� The probability that a speci�c prime is output is at least 2�n and at most O(n2) � 2�n.Proof: We use an explicit construction of expander graphs with vertex set f0; 1g4n, degree d andsecond eigenvalue � such that �=d < 0:1. We generate a random walk of (edge) length n on thisexpander using O(n) random coin ips (4n bits are used to generate the initial vertex and log dbits are used to obtain each additional vertex on the path). We use each of the vertices s1; : : : ; snalong the path as random coins for the pairwise-independent hitter which makes m = 3n trials21

(i.e., for every 1 � i � n we generate a pairwise-independent sequence ei1; : : : ; eim from si and runthe black-box using each one of the eij 's as random bits). Recall that W 0 was de�ned to be theset of coin tosses which make the pairwise-independent hitter output a prime. >From Item 1 ofTheorem 4.10 (with � = 1=3) we have that jW 0j=24n � 23 . Using Theorem B.2, the probability thatall vertices of a random path reside outside of W 0 is bounded from above by (0:34 + 0:1)n < 2�n.Thus, Pr[no prime is output] < 2�nLet us now compute the probability to output a composite.Pr [a composite is output] = Pr[9i s.t. si yields a composite]� nXi=1 �Pr[si yields a composite]� n � exp(�n)where the last inequality follows from the second item of Theorem 4.10 and from the fact that, forevery i, the seed si is uniformly distributed.In order to bound the probability that a speci�c prime p is output, observe that for every iand j, the point eij (i.e., the j'th point in the sequence of pairwise-independent strings generatedfrom si) is uniformly distributed in f0; 1gn. Thus,Pr[p is output] � Pr[e11 yields p] = 2�nOn the other hand, applying a union bound we getPr[p is output] � nXi=1 mXj=1Pr[eij yields p] = n �m � 2�n = 3n2 � 2�n
4.2.3 Using almost uniformly distributed primesAlthough the algorithm guaranteed from Theorem 4.11 does not yield uniformly distributed n-bitprimes, the distribution of the primes it outputs is close to being uniform, in a sense that is quitesu�cient for our needs: Denote by Dn the distribution of composites N = P �Q in Nn obtained bypicking the primes P and Q using the algorithm of Theorem 4.11, and consider a slightly di�erentfactoring assumption, in which N is distributed according to Dn. Observe that the revised factoringassumption holds if and only if the original factoring assumption (with N uniformly distributed inNn) holds: Let A be a probabilistic polynomial-time algorithm. Then, according to the third itemof Theorem 4.11,PN2Nn Pr[A factors N]2n � Pr[A factors N jN � Dn] � PN2Nn Pr[A factors N]2n=poly(n) (6)where N � Dn means that N is drawn according to the distribution Dn.Note that the size of Nn is approximately 2nn2 . Therefore,Pr[A factors N jN 2R Nn] = n22n XN2Nn Pr[A factors N] (7)22

>From 6 and 7 we have thatPr[A factors N jN 2R Nn]n2 � Pr[A factors N jN � Dn] � Pr[A factors N jN 2R Nn]n2=poly(n) (8)Thus, A does not violate the original factoring assumption if and only if it does not violate therevised factoring assumption.Another important observation is that in all our theorems (and in particular, in Theorem 3.2),the values N and g are �xed throughout the whole proof. Thus, these theorems still hold whenconsidering any distribution whatsoever of N (and g), provided that factoring is intractable forsuch a distribution.Therefore, we have that under the standard factoring assumption (with N uniformly distributedinNn), all our theorems hold even when the distribution of N is taken to beDn, and the distributionof g is uniform over Z�N .

23

References[ACGS] W. B. Alexi, B. Chor, O. Goldreich and C. P. Schnorr, RSA and Rabin functions: certain partsare as hard as the whole, SIAM J. Comput., vol. 17(2), 1988, pp. 194-209.[AKS] M. Ajtai, J. Komlos and E. Szemer�edi, Deterministic simulation in LogSpace, 19th ACM Sympo-sium on the Theory of Computing, 1987, pp. 132-140.[Bach] E. Bach, How to generate factored random numbers, SIAM J. Comput., vol. 17(2), 1988, pp. 179-193.[BBS] L. Blum, M. Blum and M. Shub, A Simple Secure Unpredictable Pseudo-Random Number Gen-erator, SIAM J. Comput., vol. 15, 1984, pp. 364-383.[BM] M. Blum and S. Micali, How to generate cryptographically strong sequence of pseudo-random bits,SIAM J. Comput., vol. 13, 1984, pp. 850-864.[Chor] B. Chor, Two issues in public key cryptography: RSA bit security and a new knapsack typesystem, MIT press, 1986.[CW] L. Carter and M. Wegman, Universal Hash Functions, Journal of Computer and System Science,Vol. 18, 1979, pp. 143-154.[CoWi] A. Cohen and A. Wigderson, Dispensers, Deterministic Ampli�cation, and Weak Random Sources,30th FOCS, 1989, pp. 14{19.[G] O. Goldreich, Foundations of Cryptography Fragments of a Book, 1995. publicized athttp://www.eccc.uni-trier.de/eccc-local/ECCC-Books/eccc-books.html (Electronic Collo-quium on Computational Complexity).[G2] O. Goldreich, A sample of samplers: A computational perspective on sampling, ECCC 4(020),1997.[GG] O. Gaber and Z. Galil, Explicit constructions of linear size superconcentrators, Journal of Com-puter and System Science, Vol. 22, 1981, pp.407-420.[GILVZ] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman, Security PreservingAmpli�cation of Hardness, Proc. of the 31st IEEE Symp. on Foundation of Computer Science(FOCS), 31st FOCS, pp. 318{326, 1990.[GW] O. Goldreich and A. Wigderson, Tiny families of functions with random properties: A quality-size trade-o� for hashing, Proceedings of the 26th Annual ACM Symposium on the Theory ofComputing, ACM, 1994, pp. 574-583.[HN] J. H�astad, M. N�aslund: The security of idividual RSA bits. Proc. of IEEE Symp. on Foundationsof Computer science, 1998.[HSS] J. H�astad, A.W. Schrift and A. Shamir, The discrete logarithm modulo a composite hides O(n)bits, J. of Computer and System Sciences, vol. 47, 1993, pp. 376-404.[Kah] N. Kahale, Eigenvalues and expansionsof regular graphs, Journal of the ACM 42(5), 1995, pp.1091-1106.[Kal] B. Kaliski, Jr. A pseudo-random bit generatorbased on elliptic logarithms. In A. Odlyzko, editor,Advances in Cryptology: Proceedings of CRYPTO '86, 1987, pp. 84-103.[LW] D.L. Long and A. Wigderson, The discrete logarithm Hides O(log n) bits, SIAM J. Computing,Vol. 17, No. 2, 1988, pp. 363-372. 24

[M] G. L .Miller, Riemann's hypothesis and tests for priamlity, JCSS, Vol. 13, 1976, pp. 300-317.[P] R. Peralta, Simultaneous security of bits in the discrete log, Advances in Cryptology - EURO-CRYPT '85 (LNCS 219), 1986, pp. 62-72.[R1] M. O. Rabin, Digitalized signatures and public-key functions as intractable as factorization, Tech-nical Report, TR-212, MIT Laboratory for Computer Science, 1979.[R2] M. O. Rabin, Probabilistic algorithm for testing primality, Jour. of Number Theory, Vol. 12, 1980,pp.128-138.[R] V. Rosen, On the security of modular exponentiation, technical report MCS00-20, Faculty ofMathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel, 2000.[VV] U. V. Vazirani and V. V. Vazirani, E�cient and secure pseudo-random number generators, Pro-ceeding of 25'th FOCS, 1984, pp.458-463.

25

Appendix A: Exact Analysis of Theorem 1We show that the probability of error by the trimming rule is exponentially small. Suppose wewant to trim the list Lj and that vjmin is the correct value Sdn2 e+1;l(j) (the analysis in the case wherevjmax is the correct value is analogous). Let � denote S0 shifted by i+ 1 � cp positions to the left,that is, let � = S0 � 2i+1�cp. By Fact 2 we have that � � 2i�d� log ne (since S0 � 2cp�d� log ne�1).Recall that bk is the oracle answer on the query g�+xk (see Step (3) of the trimming rule). Let usbound the expectation of bk:E(bk) = Pr hD(gxk+�) = 1j0 � xk � 2i � 1i= Pr hD(gxk+�) = 1j0 � xk � 2i � 1� �i � Pr �0 � xk � 2i � 1� �� +Pr hD(gxk+�) = 1j2i � 1� � < xk � 2i � 1i � Pr �2i � 1� � < xk � 2i � 1�Let yk = xk + �. Then,Pr hD(gxk+�) = 1j0 � xk � 2i � 1� �i = Pr �D(gyk) = 1j� � yk � 2i � 1�� 2i2i�� � Pr �D(gyk) = 1j0 � yk � 2i � 1� = ��2i2i��and therefore E(bk) � ��2i2i�� � 2i��2i + 1 � �2i = � + �2iA standard application of Cherno� bound yields:Pr hdiscard vjmini = Pr hPtk=1 bk > (� + ��2) � ti� Pr hjP bk �E(P bk)j > (� + ��2) � t�E(P bk)i= Pr [jP bk �E(P bk)j > � �E(P bk)]for � = (�+ ��2)t�E(P bk)E(P bk) .Since �2E(P bk)6 = [(�+ ��2)t�E(P bk)]26�E(P bk) � �(�+ ��2)t�(�+ �2i)t�26�(�+ �2i)t= (��2 � �2i)26(�+ �2i) � t � (12nc� 1n�)26(�+ 1n�) � t � nfor � = c+ 1 and for t � n2c+4.Therefore, the probability of discarding vjmin from the list Lj is smaller than 2�n. As mentionedabove, a similar argument holds for the second case, where the correct candidate is vjmax. Since forevery j0 � j � n=2 + 1 we use repeatedly the trimming rule for no more than n� times, the overallprobability of error is exponentially small.Appendix B: Expanders and Random WalksWe now de�ne expander graphs and families of expander graphs and describe an explicit construc-tion of expanders due to Gabber and Galil [GG]. We also state the major theorem concerningrandom walks on expanders. Our exposition follows that of Goldreich in [G2].26

B.1 ExpandersAn (N; d; �)-expander is a d-regular graph with N vertices so that the absolute value of all eigenval-ues (except the biggest one) of its adjacency matrix is bounded by �. A (d; �)-family is an in�nitesequence of graphs so that the nth graph is a (2n; d; �)-expander. We are interested in explicitconstructions of such families of graphs, which are e�ciently constructible, by which we mean thatthere exists a polynomial-time algorithm that on input n (in binary), a vertex v and an indexi 2 f1; : : : ; dg, returns the i'th neighbor of v.Gaber and Galil presented such a construction of a (d; �)-family of expanders, for d = 8 andfor some � < 8 [GG]. Their expanders, however, are de�ned only for graph sizes which are perfectsquares (i.e., only for even n's).Construction B.1 [Gaber-Galil] Let n = 2m. The graph Gn is de�ned as follows: The vertexset includes all pairs in Zm � Zm, and each node (x; y) is connected to the four nodes (x + y; y),(x+ y + 1; y), (x; x+ y) and (x; x+ y + 1).In our applications we use (parameterized) expanders satisfying �d < � and d = poly(1=�),where � is an application-speci�c parameter. Such (parameterized) expanders are also e�cientlyconstructible. For example, we may obtain them by taking paths of length O(log 1=�) on anexpander as in construction B.1. Speci�cally, given a parameter � > 0, we obtain an e�cientlyconstructible (D;�)-family satisfying �D < � and D = poly(1=�) as follows. We start with aconstructible (8; �)-family, set k def= log8=�(1=�) = O(log 1=�) and consider the paths of length kin each graph. This yields a constructible (8k; �k)-family, and both �k8k < � and 8k = poly(1=�)indeed hold.B.2 Random walks on ExpandersA fundamental discovery of Ajtai, Komlos, and Szemer�edi [AKS] is that random walks on expandergraphs provide a good approximation to repeated independent attempts to hit any arbitrary �xedsubset of su�cient density (within the vertex set). The importance of this discovery stems fromthe fact that a random walk on an expander can be generated using much fewer random coinsthan required for generating independent samples in the vertex set. Precise formulations of theabove discovery were given in [AKS, CoWi, GILVZ] culminating in Kahale's optimal analysis [Kah,Sec. 6].Theorem B.2 (Expander Random Walk Theorem [Kah, Cor. 6.1]): Let G = (V;E) be an ex-pander graph of degree d and � be an upper bound on the absolute value of all eigenvalues, save thebiggest one, of the adjacency matrix of the graph. Let V 0 be a subset of V and � def= jV 0j=jV j. Thenthe fraction of random walks (in G) of (edge) length ` which stay within V 0 is at most� � ��+ (1� �) � �d�`Appendix C: Tiny Families of FunctionsWe now present the explicit construction of Goldreich and Wigderson of tiny families of functionsdesigned for random variables with high min-entropy. Our exposition is taken from [GW].27

We describe a construction of a family of functions, each mapping f0; 1gn to f0; 1gm, such thatall but an �-fraction of them, map random-variables having min-entropy n � k to a distributionwhose distance from the uniform distribution is bounded by �.The construction uses an e�ciently constructible expander graph, G, of degree d (power of two),second eigenvalue �, and vertex set f0; 1gm, so that �d � �24�2k=2 (and d = poly(2k=�)). For everyi 2 [d] def= f1; 2:::; dg and v 2 f0; 1gm, denote by gi(v) the vertex reached by moving along the ithedge of the vertex v. The construction uses as well a universal hashing family, denoted H, thatcontains hash functions each mapping (n�m)-bit long strings to [d].Construction C.1 The family of functions, denoted F , is as follows: For each hashing functionh 2 H, we introduce a function f 2 F de�ned byf(x) def= gh(lsb(x))(msb(x))where lsb(x) returns the n�m least signi�cant bits of x 2 f0; 1gn, and msb(x) returns the m mostsigni�cant bits of x.Namely, f(x) is the vertex reached from the vertex v def= msb(x) by following the ith edge of v,where i is the image of the n�m least signi�cant bits of x under the function h.As proven in [GW], Construction C.1 above satis�es the requirements of Theorem 4.3 (stated inSection 4).

28

