
Three XOR-Lemmas | An ExpositionOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, IsraelFirst version July 1991revised November 27, 1995

AbstractWe provide an exposition of three Lemmas which relate general properties of distributionswith the exclusive-or of certain bit locations.The �rst XOR-Lemma, commonly attributed to U.V. Vazirani, relates the statisticaldistance of a distribution from uniform to the maximum bias of the xor of certain bit posi-tions. The second XOR-Lemma, due to U.V. Vazirani and V.V. Vazirani, is a computationalanalogue of the �rst. It relates the pseudorandomness of a distribution with the di�cultyof predicting the xor of bits in particular or random positions. The third Lemma, due toGoldreich and Levin, relates the di�culty of retrieving a string and the unpredictability ofthe xor of random bit positions. The most notable XOR Lemma { that is the so-called YaoXOR Lemma is not discussed here.The proofs presented here di�er from the proofs presented in the original works. Fur-thermore, these proofs are believed to be simpler, of wider applicability and yield somewhatbetter results. Credits for these improved proofs and their presentation are only partiallydue to author, and are mainly due to several other researchers.

PrefaceThe existence of ECCC motivated me to revise this �ve-year old survey and make it widelyaccesssible. The �rst two chapters are taken frommy old survey (TR-681 of the C.S. Dept. ofthe Technion, Israel, 1991). For the third chapter, I've used a revision of parts from mybook on \Foundations of Cryptography" (fragements of this book are available from ECCC).As stated in the abstract, Yao's XOR-Lemma is not one of the XOR Lemmas surveyedhere. I would like to call the reader's attention to a survey of Yao's XOR-Lemma which hasappeared as ECCC TR95-050 (co-authored by Noam Nisan, Avi Wigderson and myself).

1

Contents1 The Information Theoretic XOR-Lemma 31.1 Introduction : 31.2 Preliminaries: the XOR-Lemma and vector spaces : : : : : : : : : : : : : : 41.3 Proof of the XOR-Lemma : 41.4 Discussion : 52 The Computational XOR-Lemma 62.1 Introduction : 62.1.1 The Computational XOR-Proposition : : : : : : : : : : : : : : : : : 72.1.2 The Computational XOR-Lemma : 82.2 Proof of the Computational XOR-Proposition : : : : : : : : : : : : : : : : : 82.3 Application to pseudorandom generators for bounded space : : : : : : : : : 102.3.1 A construction for a speci�c expansion constant : : : : : : : : : : : 102.3.2 Construction for any expansion constant : : : : : : : : : : : : : : : : 123 A Hard-Core Predicate for all One-Way Functions 143.1 Introduction : 143.2 De�nition : 153.3 The main result and its proof : 163.4 Hard-Core Functions : 19
2

Chapter 1The Information TheoreticXOR-LemmaThe Information Theoretic XOR-Lemma, commonly attributed to U.V. Vazirani relates twomeasures of the \randomness" of distributions over n-bit long strings.� The statistical di�erence from uniform; namely, the statistical di�erence (variationdi�erence) between the \target" distribution and the uniform distribution.� The maximum bias of the xor of certain bit positions; namely, the bias of a 0-1 randomvariable obtained by taking the exclusive-or of certain bits in the \target" distribution.It is well known that the statistical di�erence from uniform is bounded above by 2n timesthe maximum bias of the xor's. Several researchers have noticed that the factor in thebound can be improved to p2n. We provide a four line proof of this fact. We also explainthe reason for the popularity of the worse bound.The proof presented here has appeared as an appendix in [2].1.1 IntroductionLet � be a an arbitrary probability distribution over f0; 1gn and let � denote the uniformdistribution over f0; 1gn (i.e., �(x) = 2�n for every x 2 f0; 1gn). Let x = x1 � � �xn andN def= 2n. The XOR-Lemma relates two \measures of closeness" of � and �.� The statistical di�erence (\variation di�erence") between � and �; namely,stat(�) def= Xx j�(x)� �(x)j� The \maximum bias" of the exclusive-or of certain bit positions in strings chosenaccording to the distribution �; namely,maxbias(�) def= maxS 6=; j�(fx : �i2Sxi = 0g)� �(fx : �i2Sxi = 1g)jThe XOR-Lemma, commonly attributed to U.V. Vazirani [16]1, states that stat(�) � N �maxbias(�). The proof is based on viewing distributions as elements in an N -dimensional1The special case where the maxbias is zero appears in Chor et. al. [5]3

vector space and observing that the two measures considered by the lemma are merely twonorms taken with respect to two di�erent orthogonal bases. Hence, the XOR-Lemma followsfrom a (more general and quite straightforward) technical lemma which relates norms takenwith respect to di�erent orthonormal bases. It turns out that stat(�) � pN �maxbias(�).It seems that the previously inferior bound was due to a less careful way of using the sameunderlying ideas.As motivation to the XOR-Lemma, we point out that it has been used in numerousworks (e.g., Vazirani [16], Naor and Naor [12]). In a typical application, �rst a upperbound is proved on the maxbias of the constructed distribution and then the XOR-Lemmais applied to derive a bound on the statistical di�erence from the uniform distribution.1.2 Preliminaries: the XOR-Lemma and vector spacesProbability distributions over f0; 1gn are functions from f0; 1gn to the reals. Such functionsform a N -dimensional vector space. The standard basis, denoted K, for this space isthe orthonormal basis de�ned by the "Kroniker functions" (i.e., the Boolean functionsfk� : � 2 f0; 1gng where k�(x) = 1 if x = �). The statistical di�erence between twodistributions equals the norm L-1 of their di�erence taken in the above K basis. On theother hand, the maxbias of a distribution equals the maximum "Fourier coe�cient" of thedistribution, which in turn corresponds to the max-norm (norm L-1) of the distributiontaken in a di�erent basis. The basis is de�ned by the functions fbS : S � f1; 2; :::; nggwherebS(x) = (�1)�i2Sxi . Note that bS(x) = 1 if the exclusive-or of the bits fxi : i 2 Sg is 0and bS(x) = �1 otherwise. The new basis is orthogonal but not orthonormal. We henceconsider the normalized basis, denoted F , consisting of the functions fS = 1pN bS.Notation: Let B be an orthonormal basis and r an integer. We denote by NBr (v) the normL-r of v with respect to the basis B. Namely, NBr (v) = (Pe2Bhe; vir)(1=r), where he; vi isthe absolute value of the inner product of the vectors e and v. We denote by NB1(v) thelimit of NBr (v) when r!1 (i.e., NB1(v) is maxe2Bhe; vi).Clearly, stat(�) = NK1 (� � �) whereas maxbias(�) = pN �NF1(� � �). Following is aproof of the second equality. Let �(x) = �(x)� �(x). Clearly, maxbias(�) = 0 and hencemaxbias(�) = maxbias(�). Also Px �(x) = 0. We getmaxbias(�) = maxS 6=; j�(fx : bS(x)=1g)� �(fx : bS(x)=�1g)j= maxS 6=; jXx bS(x) � �(x)j= pN �maxS jXx fS(x) � �(x)j= pN �NF1(�)1.3 Proof of the XOR-LemmaThe XOR-Lemma follows from the following technical lemmaTechnical Lemma: For every two orthogonal bases A and B and every vector vNA1 (v) � N �NB1(v)4

This technical lemma has a three line proofEQ (1): For every orthogonal basis A,NA1 (v) � pN �NA2 (v)EQ (2): For every pair of orthonormal bases A and B,NA2 (v) = NB2 (v)EQ (3): For every orthogonal basis B,NB2 (v) � pN �NB1(v)Hence we get,XOR-Lemma (Revised): stat(�) � pN �maxbias(�).Proof: By the abovestat(�) = NK1 (� � �) � N �NF1(� � �) = pN �maxbias(�)1.4 DiscussionThe inferior bound, stat(�) � N �maxbias(�), has been derived by using one of the followingtwo bounds instead of our Technical Lemma� NA1 (v) � pNNB1 (v) � pN �NNB1(v). The �rst inequality is proved similarly to theproof of our Technical Lemma (using NB2 (v) � NB1 (v) instead of EQ (3)). The secondinequality is trivial. Each of the two inequalities is tight, but their conjunction iswasteful.� NA1 (v) � N �NA1(v) � N � pNNB1(v). The second inequality is proved similarly tothe proof of our Technical Lemma (using NA1(v) � NA2 (v) instead of EQ (1)). The�rst inequality is trivial. Again, each of the inequalities is tight, but their conjunctionis wasteful.
5

Chapter 2The Computational XOR-LemmaWe provide an exposition of the computational XOR-Lemma. By computational XOR-Lemma we refer to the assertion that a distribution on \short" strings is pseudorandomif and only if the xor of any of its bits is unpredictable. This Lemma was �rst proved byU.V. Vazirani and V.V. Vazirani. The proof we present here is taken from the paper ofGoldreich and Levin. We demonstrate the applicability of the computational XOR-Lemmaby using it to construct pseudorandom generators with linear expansion factor which aresecure against small (yet linear) bounded space.2.1 IntroductionThis chapter is concerned the relation between two types of computationally restrictedtests of randomness. To be more precise, we are concerned with the pseudorandomnessof a random variable Y given some partial information represented by an related randomvariable X . For sake of simplicity we write X = f(R) and Y = g(R) where f and g are�xed functions and R is a random variable uniformly distributed on strings of some length.Tests of the �rst type are algorithms which, on input a pair (x; y), output a single bit.We consider the probability that the test outputs 1 given that x = f(r) and y = g(r) wherer is selected uniformly and compare it to the probability that the test outputs 1 given thatx = f(r) as before and y is selected (independently and) uniformly among the strings oflength jg(r)j. We call the absolute value of the di�erence between these two probabilities,the distinguishing gap of the test.Tests of the second type are algorithms which, on input a string f(r), output a single bit.The output is supposed to be the inner-product (mod 2) of the string g(r) with some �xedstring � (which is not all-zero). We consider the probability that the algorithm outputs thecorrect value given that r is selected uniformly. We call the absolute value of the di�erencebetween the success probability and the failure probability, the advantage of the algorithm.Note that the inner-product (mod 2) of g(r) and � equals the exclusive-or of the bits in g(r)which are located in positions corresponding to the 1 bits of �. Hence, tests of the secondtype try to predict the xor of bits in g(r) which are in speci�ed bit locations.Vazirani and Vazirani [18] proved that if the tests are restricted to run in probabilisticpolynomial-time and the length of g(r) is logarithmic in the length of f(r) then the twotypes of tests are equivalent in the following sense: (for every polynomial-time computablefunctions f and g) there exists a test of the �rst type with a non-negligible distinguishing6

gap if and only if there exists a test of the second type with a non-negligible advantage1.A di�erent proof has appeared in Goldreich and Levin [8]. The interesting direction is, ofcourse, the assertion that if there exists a test of the �rst type with a non-negligible distin-guishing gap then there exists a test of the second type with a non-negligible advantage2.This assertion is hereafter referred to as the computational xor-lemma.The purpose of this chapter is to present a clear proof of the computational xor-lemmaand to point out its applicability to other resource bounded machines. Our presentationfollows the proof presented in [8], where all obvious details are omitted. Hence, the onlyadvantage of our presentation is in its redundancy.2.1.1 The Computational XOR-PropositionTo prove the computational xor-lemma, we present a particular algorithm, denoted G,which (given f(r)) tries to predict a speci�ed xor of the bits of g(r). The predictor G usesas subroutine a test, T , which (on input f(r) and y) distinguishes a random y from y = g(r).In particular, the predictor, on input x and a subset S, selects y at random, runs the teston inputs x and y, and output �i2Syi if T (x; y) = 1 and the complement bit otherwise.The following proposition, lower bounds the advantage of the predictor G in terms of thedistinguishing gap of the test T .Computational XOR-Proposition: Let f and g be arbitrary functions each mappingstrings of the same length to strings of the same length. Let T be an algorithm (of the �rsttype). Denote p def= Pr[T (f(r); g(r)) = 1]and q def= Pr[T (f(r); y) = 1]where the probability is taken over all possible choices of r 2 f0; 1gm and y 2 f0; 1gjg(r)jwith uniform probability distribution. Let G be an algorithm that on input � and x, selectsy uniformly in f0; 1gj�j, and outputs T (x; y)�1�(y; �)2, where (y; �)2 is the inner productmodulo 2 of y and �. Then,Pr[G(�; f(r)) = (g(r); �)2] = 12 + p� q2j�j � 1where the probability is taken over all possible choices of r 2 f0; 1gm and � 2 f0; 1gjg(r)j �0jg(r)j with uniform probability distribution.A full proof of the proposition is presented in Section 2.Remarks� Algorithm G has almost the same complexities as T , with the exception that G musttoss few more coins (to select �). Hence, G is randomized even in case T is determin-istic.1A function � : N 7! R is non-negligible if there exists a polynomial p such that for all su�ciently largen we have �(n) > 1=p(n).2The opposite direction follows by noting that a test of a second type can be easily converted into atest of the �rst type: just run the predicting algorithm and compare its outcome with the actual xor of thecorresponding bits. 7

� Clearly, there exists a non-zero string � for which Pr[G(�; f(r))= (g(r); �)2] = 12 +p�q2j�j�1 , where the probability is taken over all possible choices of r 2 f0; 1gm withuniform probability distribution. A string � with approximately such a performancecan be found by sampling a string � and evaluating the performance of algorithmG with � as its �rst input. This requires ability to compute the functions f and gon many randomly selected instances (and collect the statistics). One should verifythat this added complexity can be a�orded. On the other hand, one should note that�nding an appropriate � (i.e. on which G has almost the average advantage) may notbe required (see remark below).2.1.2 The Computational XOR-LemmaAs corollary to the Computational XOR-Proposition, we getComputational XOR-Lemma:Let C be a class of randomized (or non-uniform) algo-rithms, such that C is closed under sequential application of algorithms and contains analgorithm for computing jg(r)j from f(r). Suppose that every algorithm in the class C,given f(r), can predict the xor of a (given) random subset of the bits of g(r) with (average)success probability bounded above by 12 + �. Then, for every algorithm, T , in the class CjPr[T (f(r); g(r)) = 1]� Pr[T (f(r); y) = 1]j < 2jg(r)j � �where r is selected uniformly in f0; 1gm, the string y is selected uniformly and independentlyin f0; 1gjg(r)j.Remarks� As motivation to the Computational XOR-Lemma, we point out that it has been usedin numerous works (e.g., Vazirani and Vazirani [18], Goldreich and Levin [8]). Anotherapplication of the Computational XOR-Lemma is presented in Section 3. In a typicalapplication, the pseudorandomness of a short string is proven by showing that everyxor of its bits is unpredictable (and using the Computational XOR-Lemma to arguethat this su�ces). As it follows that the xor of a (given) random non-empty subsetof the bits is unpredictable, the Computational XOR-Lemma can be used directlywithout �nding an appropriate � (as suggested by the previous remark).� In case there are no computational restrictions on the tests, a stronger statementknown as the XOR-Lemma can be proved: the statistical di�erence from uniformdoes not exceed p2jg(r)j times the maximum bias of a non-empty subset (see previouschapter).2.2 Proof of the Computational XOR-PropositionAll that is required is to evaluate the success probability of algorithm G. In the followinganalysis we denote Prx[P (x; y)] the probability that P (x; y) where x is taken according toa distribution to be understood from the context, and y is �xed. In case the predicate Pdepends on the test T , the probability will be taken also over the internal coin tosses of T .Hence, the coin tosses of T are implicit in the notation. The additional coin tosses of G,namely the string y, is explicit in the notation.Hence, we rewrite 8

p def= Prr[T (f(r); g(r)) = 1]q def= Prr;y[T (f(r); y) = 1]Recall that r is taken uniformly from f0; 1gm, whereas y is taken uniformly from f0; 1gjg(r)j.In the following analysis � is selected uniformly from B def= f0; 1gjg(r)j�0jg(r)j. Our aim is toevaluate Prr;�;y [G(�; f(r)) = (g(r); �)2]. We start by �xing an r 2 f0; 1gm and evaluatingPr�;y[G(�; f(r)) = (g(r); �)2]. We de�ne �� (resp., 6��) so that y��z hold i� (y; �)2 =(z; �)2 (resp., y 6��z i� (y; �)2 6= (z; �)2). We let n def= jg(r)j.By the de�nition of G (i.e., G(�; f(r) = T (x; y)�1�(y; �)2, where y 2 f0; 1gj�j is uniformlyselected by G) and elementary manipulations, we getsr def= Pr�;y[G(�; f(r)) = (g(r); �)2]= X�2B 1jBj � Pry[G(�; f(r)) = (g(r); �)2]= 1jBj �X�2B �12 � Pry[T (f(r); y) = 1jy��g(r)] + 12 � Pry[T (f(r); y) = 0jy 6��g(r)]�= 12 + 12jBjX�2B (Pry[T (f(r); y) = 1jy��g(r)]� Pry[T (f(r); y) = 1jy 6��g(r)])= 12 + 12jBj � 12n�1 �0@X�2B Xy��g(r)Pr[T (f(r); y) = 1]�X�2B Xy 6��g(r)Pr[T (f(r); y) = 1]1A= 12 + 12n � jBj �0@Xy X�2B s:t: y��g(r)Pr[T (f(r); y) = 1]�Xy X�2B s:t: y 6��g(r)Pr[T (f(r); y) = 1]1ARecall B = f0; 1gn� 0n. If y 6= g(r) then the number of � 2 B for which y 6��g(r) is 2n�1(and the number of � 2 B for which y��g(r) is 2n�1 � 1). If, on the other hand, y = g(r)then all � 2 B satisfy y��g(r). Hence, we getsr � 12 = 12njBj � Xy 6=g(r) �(2n�1 � 1) � Pr[T (f(r); y) = 1]� 2n�1 � Pr[T (f(r); y) = 1]�+ 12njBj � jBj � Pr[T (f(r); g(r)) = 1]= � 12njBj � Xy 6=g(r)Pr[T (f(r); y) = 1] + 12njBj � jBj � Pr[T (f(r); g(r)) = 1]= � 1jBjXy 12n � Pr[T (f(r); y) = 1] + 12njBj � (jBj+ 1) � Pr[T (f(r); g(r)) = 1]= � 1jBj � Pry[T (f(r); y) = 1] + 1jBj � Pr[T (f(r); g(r)) = 1]= 1jBj � (Pr[T (f(r); g(r)) = 1]� Pry[T (f(r); y) = 1])9

Hence, for every rPr�;y[G(�; f(r)) = (g(r); �)2] = 12 + Pr[T (f(r); g(r)) = 1]� Pry[T (f(r); y) = 1]jBjand so we have for uniformly chosen rPrr;�;y [G(�; f(r)) = (g(r); �)2] = 12 + Prr[T (f(r); g(r)) = 1]� Prr;y [T (f(r); y) = 1]jBjand the Proposition follows.2.3 Application to pseudorandom generators for boundedspaceWe apply the Computational XOR-Lemma to construct a pseudorandom generator withlinear stretching which withstands tests with linearly bounded space. Namely, the gen-erator on input a random string of length n outputs a pseudorandom string of length cnwithstanding tests of space en (e > 0 is a constant depending on the constant c > 1). Analternative construction is immediate from the techniques presented by Nisan in [13] (hint:use a constant number of hash functions). A third alternative construction was suggestedby Noam Nisan (private communication) based on the ideas in [3].The tests (or predictors) we consider are non-uniform bounded-space machines withone-way access to the input (i.e., the string they consider). Hence, these machines canbe represented by �nite automata. By an s(n)-space bounded machine we mean a �niteautomata with 2s(n) states given an input of length n. For sake of simplicity, we some-times discuss randomized automata. Clearly, randomness can be eliminated by introducing\more" non-uniformity.Following is an overview of our construction. We begin by presenting a generator whichextends seeds of length n into strings of length cn withstanding tests of space en, for aspeci�c value of c > 1 (and e > 0). This generator is based on three observations:� The unpredictability of the inner-product mod 2 of two vectors with respect to testswith space smaller than the length of these vectors.� The unpredictability, with respect to such machines, of the exclusive-or of bits re-sulting from the inner-product mod 2 of one vector and non-cyclic shifts of a secondvector. A machine predicting this exclusive-or can be transformed into a machinepredicting the inner product [8].� Using the computational XOR-Lemma to argue that the bits resulting from the variousinner-products are indistinguishable from random by space bounded machines.Next, we use this generator to construct, for every k > 1, a generator extending seeds oflength n into strings of length ckn withstanding tests of space (e=3)kn.2.3.1 A construction for a speci�c expansion constantThe constants c1; �1; c0; �0 in the following construction and analysis will be determined incourse of the analysis. In particular, c0 = 14 , �0 = 16 , c1 = 1 + c03 , and �1 = �03 , will do.10

Construction 1: Let pj(r1r2 � � �r2n) def= rjrj+1 � � �rj+n�1 and b(x; s) def= Pni=1 xisi mod 2.Consider the function g :f0; 1g3n 7!f0; 1gc0n de�ned by g(x; r) = b(x; p1(r)) � � �b(x; pc0n(r)).We consider the generator g1(x; r) = (x; r; g(x; r))This generator expands seeds of length 3n into strings of length 3n + c0n = c1 � 3n.Clearly, the function g can be computed by an n-space machine. The robustness of thegenerator against �0n-space machines follows from the following three claims.Claim 1: Let A be an automaton with q states, and x; y be uniformly and independentlyselected in f0; 1gn. Then Prx;y(A(x; y) = b(x; y)) < 12 +r2q2nproof (adapted from [3]): By Lindsey Lemma (see [6] , p. 88),j Xx2X;y2Y b(x; y)jX j � jY j � 12 j � s 2njX j � jY jConsider a partition of the set of all possible x's according to the state in which the au-tomaton is after reading x (i.e. the �rst half of its input), resulting in sets X1; X2; :::; Xq.Note that for every x1; x2 2 Xj and every y, we have A(x1; y) = A(x2; y). For each Xi, letY �i denote the sets of y's for which A(x; y) = � given that x 2 Xi. It follows thatjPrx;y(A(x; y) = b(x; y))� 12 j < qXi=1 X�2f0;1gPrx;y(x 2 Xi ^ y 2 Y �i) �s 2njXij � jY �i jThe claim follows. 2Claim 2: Let S � f1; 2; :::;mg, where m < n. Suppose that automaton AS has q statesand let p def= Prx;r(AS(x; r) = �i2Sb(x; pi(r)))where the probability is taken over all random choices of x 2 f0; 1gn and r 2 f0; 1g2n. Then,there exists an automaton A with q � 22m states satisfyingPrx;y(A(x; y) = b(x; y))� pwhere the probability is taken over all random choices of x; y 2 f0; 1gn.proof (adapted from [8]): Following is a construction of a randomized automaton A (ran-domization can be eliminated via non-uniformity). On input x; y, the predictor A produces arandom string r 2 f0; 1g2jyj satisfying yi =Pj2S ri+j�1 mod 2, for every i � n. This is doneby setting the bits of r in increasing order so that rk is randomly selected if k � t def= max(S),rk is set to yk�t+1 �Pj2S�ftg rk�t+j mod 2 for k = t; t+ 1; :::; t+ n� 1, and rk is randomlyselected for k � t+n. Hence, �j2Spj(r) = y, where �j2Svj denotes the bit-by-bit exclusiveor of the vectors vj (j 2 S). The predictor A runs AS(x; r) and obtains a prediction for�j2Sb(x; pj(r)) = b(x;�j2Spj(r)) = b(x; y). The predictor uses at most 2m more space thanGS , and the claim follows. 2 11

Claim 3: For every automaton, T , with q statesjPr(T (x; r; g(x; r)) = 1)� Pr(T (x; r; y) = 1)j < 2jg(r)j �s2q � 22c0n2nwhere xr is selected uniformly in f0; 1g3n, the string y is selected uniformly in f0; 1gjg(x;r)j.proof: Immediate by combining Claims 1 and 2, and the Computational XOR-Lemma. 2Setting c0 = 14 and �1 = 16 , we conclude that any �1n-space bounded machine can distinguishg1(x; r) (xr 2 f0; 1g3n) from a uniformly chosen string of length (3+c0)n with gap boundedby 2��1n. Hence, for constants c1 = 1+ 112 and e1 = 118 , we have a generator extending stringsof length n to strings of length c1n so that no �1n-space bounded machine can distinguishg1(x; r) (xr 2 f0; 1gn) from a uniformly chosen string of length c1n with gap > 2��1n. Wesay that g1 has expansion factor c1 and security constant e1.2.3.2 Construction for any expansion constantTo achieve greater expansion we apply the generator again on small blocks of its output.This idea is taken from [7], but its usage in our context is restricted since in lower levelthe generator will be applied to shorter strings (and not to strings of the same length asdone in [7]). The fact that in lower levels the generator is applied to shorter strings playsa key role in the proof that the resulting generator is indeed pseudorandom with respect toappropriate space-bounded machines.In the sequel we show how to convert generators with expansion factor c into generatorswith expansion factor c2. Larger expansion factors are obtained by repeated application ofthe construction.Construction 2: Let g be a generator with expansion factor c and security constant e.We construct a generator g2 with expansion factor c2 and security constant e23 as follows:g2(s) = g(r1) � � �g(rt), where r1 � � �rt = g(s), jrjj = e2 � jsj (for all 1�j� t), and t = 2c=e.To prove that the generator g2 has security e23 we consider a hybrid distribution H whichresults by selecting at random a string of length cn, partitioning it into t blocks (each oflength e2n), and applying the generator g to each of them. First we show that H is hard todistinguish from random strings of length c2n. Next, we show that H is hard to distinguishfrom the strings that g2 generates on input a random seed of length n.Claim 4 (indistinguishability of H and random): Suppose that automaton T has q statesand let pH def= Prs1���st(T (g(s1) � � �g(st)) = 1) and pR def= Prr1 ���rt(T (r1 � � �rt) = 1), where theprobability is taken over all random choices of s1; :::; st 2 f0; 1g e2n and r1; :::; rt 2 f0; 1g ce2 n.Then, there exists an automaton T 0 with q states satisfyingjPrs(T 0(g(s)) = 1)� Prr(T 0(r) = 1)j � jpH � pRjtwhere the probability is taken over all random choices of s 2 f0; 1g e2n and r 2 f0; 1g ce2 n.Hence, if q � e22 n then jpR � pH j < t � 2� e22 n < 122�e23 n.proof: De�ne, for every 0� i� t, pi def= Prr1 ���risi+1���st(T (r1 � � �rig(si+1) � � �g(st)) = 1), wherethe probability is taken over all random choices of r1; :::; ri 2 f0; 1g ce2 n and si+1; :::; st 2f0; 1g e2n. Namely, pi is the probability that T outputs 1 on input taken from a hybriddistribution consisting of i \random" blocks and t � i \pseudorandom" blocks. Clearly,12

p0 = pH whereas pt = pR, and there exists 0� i� t � 1 such that jpi � pi+1j � jp0�ptjt . Thetest T 0 is obtained from T as follows. Fix a sequence r1; :::; ri 2 f0; 1g ce2 n and si+2; :::; st 2f0; 1g e2n maximizing the distinguishing gap between the ith and i+1st hybrids. The startingstate of test T 0 is the state to which T arrives on input r1; :::; ri. The accepting states (i.e.states with output 1) of test T 0 are the state from which T reaches its accepting state whenreading the string si+2; :::; st. Clearly, T 0 has at most q states and distinguishes r 2 f0; 1g ce2 nfrom g(s) (for s 2 f0; 1g e2n) with gap � jpH�pR jt . Using the security hypothesis for g, therest of the claim follows. 2Claim 5 (indistinguishability of H and the output of g2): Suppose that automaton T has qstates and let pG def= Prs(T (g2(s)) = 1) and pH def= Prr1 ���rt(T (g(r1) � � �g(rt)) = 1), where theprobability is taken over all random choices of s 2 f0; 1gn and r1; :::; rt 2 f0; 1g e2n. Then,there exists an automaton T 0 with q � 2 e2n states satisfying jPrs(T 0(g(s)) = 1)�Prr(T 0(r) =1)j � pG � pH , where the probability is taken over all random choices of s 2 f0; 1gn andr 2 f0; 1gcn. Hence, if q � e2n then jpG � pH j < 2�en < 122�e23 n.proof: The test T 0 is obtained from T as follows. On input � 2 f0; 1gcn (either random orpseudorandom), the test T 0 breaks � into t blocks, �1; :::; �t, each of length e2n. Then T 0computes � = �1 � � ��t so that �i = g(�i), and applies T to the string �. (T 0 accepts � i� Taccepts �.) If � is taken from the uniform distribution, then the resulting � is distributedaccording to H . On the other hand, if � is taken as the output of g on random seed s,then � = g2(s). The test T 0 distinguishes the above cases with gap � jpH � pGj, and can beimplemented using q � 2 e2n states. Using the security hypothesis for g, the rest of the claimfollows. 2Note that the test constructed in the proof of Claim 5, evaluates g on strings of length e2n.Combining Claims 4 and 5, we conclude that the generator g2 has security constant e23 .

13

Chapter 3A Hard-Core Predicate for allOne-Way FunctionsA theorem of Goldreich and Levin relates two computational tasks. The �rst task is invert-ing a function f ; namely given y �nd an x so that f(x) = y. The second task is predicting,with non-negligible advatage, the exclusive-or of a subset of the bits of x when only givenf(x). More precisely, it has been proved that if f cannot be e�ciently inverted then givenf(x) and r it is infeasible to predict the inner-product mod 2 of x and r better than obvious.We present an alternative proof to the original proof as appeared in [8]. The new proof,due to Charlie Racko�, has two main advantages over the original one: it is simpler toexplain and it provides better security (i.e., a more e�cient reduction of inverting f topredicting the inner-product). The new proof was inspired by the proof in [1].3.1 IntroductionThe following text has been reproduced from [8].One-way functions are fundamental to many aspects of theory of computation. Looselyspeaking, one-way are those functions which are easy to evaluate but hard to invert.However, many applications such as pseudorandom generators (see [Blum Micali 82,Yao 82]) and secure probabilistic encryption (see [Goldwasser Micali 82]) require thatthe function has a \hard-core" predicate b. This b(x) should be easy to evaluate on inputx, but hard to guess (with a noticeable correlation) when given only the value of f(x).Intuitively, the hard-core predicate \concentrates" the one-wayness of the function in astrong sense.Clearly, only one-way functions may have hard-core predicates. A natural question ofpractical and theoretical importance is whether every one-way function has one. So faronly partial answers have been given:1. In [Blum Micali 82] it is proved that if the discrete exponentiation function is one-way then it has a hard-core predicate.1 Analogous results for the RSA and Rabinfunctions (i.e. raising to a power and squaring modulo an integer, respectively)have been shown in [Alexi Chor Goldreich Schnorr 84].2. In [Yao 82] it is proved that any one-way function f can be used to constructanother one-way function f� which has a hard-core predicate. The function f�partitions its input into many shorter inputs and applies f to each of them in1This result has been generalized to all Abelian groups in [Kaliski 88].14

parallel (i.e. f�(x1 : : :xk3) = f(x1) : : : f(xk3), kxik = k). (For a more re�nedanalysis see [Levin 87].)The drawback of the �rst set of results is that they are based on a particular intractabil-ity assumption (e.g. the hardness of the discrete logarithm problem). The second resultconstructs a predicate with security not bounded by a constant power of the securityof f .In this paper we resolve the above question by providing every one-way function witha hard-core predicate. More speci�cally, for any time limit s (e.g. s(n) = n, or s(n) =2pn), the following tasks are equivalent for probabilistic algorithms running in times(kxk)O(1):1. Given f(x) �nd x for at least a fraction s(kxk)�O(1) of the x's.2. Given f(x) and p; kpk=kxk, guess the Boolean inner-product B(x; p) of x and pwith a correlation (i.e. the di�erence between the success and failure probabilities)of s(kxk)�O(1).For any polynomial time computable f; b, there is always the smallest (within a polyno-mial) such s called the security of f and b, respectively. The security is a constructiblefunction, can be computed by trying all small guessing algorithms, and is assumed togrow very fast (at least n1=o(1)).3.2 De�nitionA polynomial-time function f is called one-way if any e�cient algorithm can invert it onlywith negligible success probability. A polynomial-time predicate b is called a hard-core of afunction f if all e�cient algorithm, given f(x), can guess b(x) only with success probabilitywhich is negligibly better than half. To simplify our exposition, we associate e�ciency withpolynomial-time and negligible functions as such decreasing smaller than 1=poly(n). By Unwe denote a random variable uniformly distributed over f0; 1gn. For simplicity we consideronly length preserving functions.De�nition 1 (one-way �unction): A one-way function, f , is a polynomial-time computablefunction such that for every probabilistic polynomial-time algorithm A0, every polynomialp(�), and all su�ciently large n'sPr (f(A0(Yn))=Yn) < 12 + 1p(n)where Yn = f(Un).De�nition 2 (hard-core predicate): A polynomial-time computable predicate b : f0; 1g� 7!f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithmA0, every polynomial p(�), and all su�ciently large n'sPr (A0(f(Un))=b(Un)) < 12 + 1p(n)15

3.3 The main result and its proofTheorem 3 Let f be an arbitrary (strong) one-way function, and let g be de�ned byg(x; r) def= (f(x); r), where jxj = jrj. Let b(x; r) denote the inner-product mod 2 of thebinary vectors x and r. Then the predicate b is a hard-core of the function g.In other words, the theorem states that if f is strongly one-way then it is infeasible toguess the exclusive-or of a random subset of the bits of x when given f(x) and the subsetitself. We point out that g maintains properties of f such as being length-preserving andbeing one-to-one. Furthermore, an analogous statement holds for collections of one-wayfunctions with/without trapdoor etc.Proof: The proof uses a \reducibility argument". This time inverting the function fis reduced to predicting b(x; r) from (f(x); r). Hence, we assume (for contradiction) theexistence of an e�cient algorithm predicting the inner-product with advantage which is notnegligible, and derive an algorithm that inverts f with related (i.e. not negligible) successprobability. This contradicts the hypothesis that f is a one-way function.Let G be a (probabilistic polynomial-time) algorithm that on input f(x) and r tries topredict the inner-product (mod 2) of x and r. Denote by "G(n) the (overall) advantage ofalgorithm G in predicting b(x; r) from f(x) and r, where x and r are uniformly chosen inf0; 1gn. Namely, "G(n) def= Pr (G(f(Xn); Rn) = b(Xn; Rn))� 12where here and in the sequel Xn and Rn denote two independent random variables, eachuniformly distributed over f0; 1gn. Assuming, to the contradiction, that b is not a hard-coreof g means that exists an e�cient algorithm G, a polynomial p(�) and an in�nite set N sothat for every n2N it holds that "G(n) > 1p(n) . We restrict our attention to this algorithmG and to n's in this set N . In the sequel we shorthand "G by ".Our �rst observation is that, on at least an "(n)2 fraction of the x's of length n, algorithmG has an "(n)2 advantage in predicting b(x;Rn) from f(x) and Rn. Namely,Claim 3.1: there exists a set Sn � f0; 1gn of cardinality at least "(n)2 � 2n such that for everyx 2Sn, it holds that s(x) def= Pr(G(f(x); Rn)=b(x;Rn)) � 12 + "(n)2This time the probability is taken over all possible values of Rn and all internal coin tossesof algorithm G, whereas x is �xed.Proof: The observation follows by an averaging argument. Namely, write Exp(s(Xn)) =12 + "(n), and apply Markov Inequality.2In the sequel we restrict our attention to x's in Sn. We will show an e�cient algorithmthat on every input y, with y = f(x) and x 2 Sn, �nds x with very high probability.Contradiction to the (strong) one-wayness of f will follow by noting that Pr(Un2Sn) � "(n)2 .A motivating discussionConsider a �xed x2Sn. By de�nition s(x) � 12+ "(n)2 > 12+ 12p(n) . Suppose, for a moment,that s(x) > 34+ 12p(n) . In this case (i.e., of s(x) > 34 + 1poly(jxj)) retrieving x from f(x) isquite easy. To retrieve the ith bit of x, denoted xi, we randomly select r 2 f0; 1gn, and16

compute G(f(x); r) and G(f(x); r�ei), where ei is an n-dimensional binary vector with 1in the ith component and 0 in all the others, and v�u denotes the addition mod 2 of thebinary vectors v and u. Clearly, if both G(f(x); r) = b(x; r) and G(f(x); r�ei) = b(x; r�ei),then G(f(x); r)�G(f(x); r�ei) = b(x; r)�b(x; r�ei)= b(x; ei)= xisince b(x; r)�b(x; s) � Pni=1 xiri + Pni=1 xisi � Pni=1 xi(ri + si) � b(x; r�s) mod 2. Theprobability that both equalities hold (i.e., both G(f(x); r) = b(x; r) and G(f(x); r�ei) =b(x; r�ei)) is at least 1�2 �(14� 1poly(jxj)) > 1� 1poly(jxj) . Hence, repeating the above proceduresu�ciently many times and ruling by majority we retrieve xi with very high probability.Similarly, we can retrieve all the bits of x, and hence invert f on f(x). However, the entireanalysis was conducted under (the unjusti�able) assumption that s(x) > 34+ 12p(jxj) , whereaswe only know that s(x) > 12+ 12p(jxj) .The problem with the above procedure is that it doubles the original error probability ofalgorithm G on inputs of form (x; �). Under the unrealistic assumption, that the G's erroron such inputs is signi�cantly smaller than 14 , the \error-doubling" phenomenon raises noproblems. However, in general (and even in the special case where G's error is exactly 14)the above procedure is unlikely to invert f . Note that the error probability of G can notbe decreased by repeating G several times (e.g., G may always answer correctly on threequarters of the inputs, and always err on the remaining quarter). What is required is analternative way of using the algorithm G, a way which does not double the original errorprobability of G. The key idea is to generate the r's in a way which requires applyingalgorithm G only once per each r (and xi), instead of twice. The good news are that theerror probability is no longer doubled. since we only need to use G to get an \estimate" ofb(x; r�ei). The bad news are that we still need to know b(x; r), and it is not clear how wecan know b(x; r) without applying G. The answer is that we can guess b(x; r) by ourselves.This is �ne if we only need to guess b(x; r) for one r (or logarithmically in jxj many r's),but the problem is that we need to know (and hence guess) b(x; r) for polynomially manyr's. An obvious way of guessing these b(x; r)'s yields an exponentially vanishing successprobability. The solution is to generate these polynomially many r's so that, on one handthey are \su�ciently random" whereas on the other hand we can guess all the b(x; r)'s withnon-negligible success probability. Speci�cally, generating the r's in a particular pairwiseindependent manner will satisfy both (seemingly contradictory) requirements. We stressthat in case we are successful (in our guesses for the b(x; r)'s), we can retrieve x with highprobability. Hence, we retrieve x with non-negligible probability.A word about the way in which the pairwise independent r's are generated (and thecorresponding b(x; r)'s are guessed) is indeed in place. To generate m = poly(n) manyr's, we uniformly (and independently) select l def= log2(m + 1) strings in f0; 1gn. Let usdenote these strings by s1; :::; sl. We then guess b(x; s1) through b(x; sl). Let use denotethese guesses, which are uniformly (and independently) chosen in f0; 1g, by �1 through �l.Hence, the probability that all our guesses for the b(x; si)'s are correct is 2�l = 1poly(n) .The di�erent r's correspond to the di�erent non-empty subsets of f1; 2; :::; lg. We computerJ def= �j2Jsj . The reader can easily verify that the rJ 's are pairwise independent and eachis uniformly distributed in f0; 1gn. The key observation is thatb(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj)17

Hence, our guess for the b(x; rJ)'s is �j2J�j , and with non-negligible probability all ourguesses are correct.Back to the formal argumentFollowing is a formal description of the inverting algorithm, denoted A. We assume, forsimplicity that f is length preserving (yet this assumption is not essential). On input y(supposedly in the range of f), algorithm A sets n def= jyj, and l def= dlog2(2n�p(n)2+1)e, wherep(�) is the polynomial guaranteed above (i.e., �(n) > 1p(n) for the in�nitely many n's in N).Algorithm A uniformly and independently select s1; :::; sl 2 f0; 1gn, and �1; :::; �l 2 f0; 1g.It then computes, for every non-empty set J � f1; 2; :::; lg, a string rJ �j2Jsj and abit �J �j2J�j. For every i2 f1; :::; ng and every non-empty J � f1; ::; lg, algorithm Acomputes zJi �J�G(y; rJ�ei). Finally, algorithm A sets zi to be the majority of the zJivalues, and outputs z = z1 � � �zn. (Remark: in an alternative implementation of the ideas,the inverting algorithm, denoted A0, tries all possible values for �1; :::; �l, and outputs onlyone of resulting strings z, with an obvious preference to a string z satisfying f(z) = y.)Following is a detailed analysis of the success probability of algorithm A on inputs ofthe form f(x), for x 2 Sn, where n 2 N . We start by showing that, in case the �j's arecorrect, then the with constant probability, zi = xi for all i2 f1; :::; ng. This is proven bybounding from below the probability that the majority of the zJi 's equals xi.Claim 3.2: For every x 2 Sn and every 1� i�n,Pr�jfJ : b(x; rJ)�G(f(x); rJ�ei) = xigj > 12 � (2l � 1)� > 1� 12nwhere rJ def= �j2Jsj and the sj 's are independently and uniformly chosen in f0; 1gn.Proof: For every J , de�ne a 0-1 random variable �J , so that �J equals 1 if and onlyif b(x; rJ)�G(f(x); rJ�ei) = xi. The reader can easily verify that each rJ is uniformlydistributed in f0; 1gn. It follows that each �J equals 1 with probability s(x), which byx2Sn, is at least 12+ 12p(n) . We show that the �J 's are pairwise independent by showing thatthe rJ 's are pairwise independent. For every J 6= K we have, without loss of generality,j 2 J and k 2 K � J . Hence, for every �; � 2 f0; 1gn, we havePr �rK=� j rJ=�� = Pr �sk=� j sj=��= Pr �sk=��= Pr �rK=��and pairwise independence of the rJ 's follows. Let m def= 2l� 1. Using Chebyshev's Inequal-ity, we getPr XJ �J � 12 �m! � Pr jXJ �J � (12+ 12p(n)) �mj � 12p(n) �m!< Var(�f1g)(12p(n))2 � (2n � p(n)2)< 14(12p(n))2 � (2n � p(n)2)= 12n 18

The claim now follows. 2Recall that if �j = b(x; sj), for all j's, then �J = b(x; rJ) for all non-empty J 's. In this casez output by algorithm A equals x, with probability at least half. However, the �rst eventhappens with probability 2�l = 12n�p(n)2 independently of the events analyzed in Claim 3.2.Hence, in case x2Sn, algorithm A inverts f on f(x) with probability at least 14p(jxj) (whereas,the modi�ed algorithm, A0, succeeds with probability � 12). Recalling that jSnj > 12p(n) � 2n,we conclude that, for every n 2 N , algorithm A inverts f on f(Un) with probability at least18p(n)2 . Noting that A is polynomial-time (i.e., it merely invokes G for 2n � p(n)2 = poly(n)times in addition to making a polynomial amount of other computations), a contradiction,to our hypothesis that f is strongly one-way, follows.Improving the E�ciency of the Inverting AlgorithmIn continuation to the proof of Theorem 3, we present guidelines for a more e�cient invertingalgorithm. In the sequel it will be more convenient to use arithmetic of reals instead of thatof Boolean. Hence, we denote b0(x; r) = (�1)b(r;x) and G0(y; r) = (�1)G(y;r).1. Prove that for every x it holds that Exp(b0(x; r) � G0(f(x); r + ei)) = s0(x) � (�1)xi,where s0(x) def= 2 � (s(x)� 12).2. Let v be an l-dimensional Boolean vector, and let R be a uniformly chosen l-by-nBoolean matrix. Prove that for every v 6= u 2 f0; 1gl it holds that vR and uR arepairwise independent and uniformly distributed in f0; 1gn.3. Prove that b0(x; vR) = b0(xRT ; v), for every x 2 f0; 1gn and v 2 f0; 1gl.4. Prove that, with probability at least 12 , there exists � 2 f0; 1gl so that for every1 � i � n the sign of Pv2f0;1gl b0(�; v)G0(f(x); vR + ei)) equals the sign of (�1)xi.(Hint: � def= xRT .)5. Let B be an 2l-by-2l matrix with the (�; v)-entry being b0(�; v), and let gi be an 2l-dimensional vector with the vth entry equal G0(f(x); vR+ei). The inverting algorithmcomputes zi Bgi, for all i's, and forms a matrix Z in which the columns are thezi's. The output is a row that when applying f to it yields f(x). Evaluate the successprobability of the algorithm. Using the special structure of matrix B, show that theproduct Bgi can be computed in time l � 2l.Hint: B is the Sylvester matrix, which can be written recursively asSk = Sk�1Sk�1Sk�1Sk�1 !where S0 = +1 and M means ipping the +1 entries of M to �1 and vice versa.3.4 Hard-Core FunctionsWe have just seen that every one-way function can be easily modi�ed to have a hard-corepredicate. In other words, the result establishes one bit of information about the preimagewhich is hard to approximate from the value of the function. A stronger result may saythat several bits of information about the preimage are hard to approximate. For example,19

we may want to say that a speci�c pair of bits is hard to approximate, in the sense thatit is infeasible to guess this pair with probability signi�cantly larger than 14 . In general, apolynomial-time function, h, is called a hard-core of a function f if no e�cient algorithmcan distinguish (f(x); h(x)) from (f(x); r), where r is a random string of length jh(x)j. Weassume for simplicity that h is length regular (see below).De�nition 4 (hard-core function): Let h : f0; 1g� 7! f0; 1g� be a polynomial-time com-putable function, satisfying jh(x)j = jh(y)j for all jxj = jyj, and let l(n) def= jh(1n)j. Thefunction h : f0; 1g� 7! f0; 1g� is called a hard-core of a function f if for every probabilisticpolynomial-time algorithm D0, every polynomial p(�), and all su�ciently large n'sjPr (D0(f(Xn); h(Xn))=1)� Pr �D0(f(Xn); Rl(n))=1� j < 1p(n)where Xn and Rl(n) are two independent random variables the �rst uniformly distributedover f0; 1gn, and the second uniformly distributed over f0; 1gl(n),Theorem 5 Let f be an arbitrary strong one-way function, and let g2 be de�ned by g2(x; s) def=(f(x); s), where jsj=2jxj. Let c > 0 be a constant, and l(n) def= dc log2 ne. Let bi(x; s) denotethe inner-product mod 2 of the binary vectors x and (si+1; :::; si+n), where s = (s1; :::; s2n).Then the function h(x; s) def= b1(x; s) � � �bl(jxj)(x; s) is a hard-core of the function g2.The proof of the theorem follows by combining a proposition concerning the structureof the speci�c function h with a general lemma concerning hard-core functions. Looselyspeaking, the proposition \reduces" the problem of approximating b(x; r) given g(x; r) tothe problem of approximating the exclusive-or of any non-empty set of the bits of h(x; s)given g2(x; s), where b and g are the hard-core and the one-way function presented in theprevious section. Since we know that the predicate b(x; r) cannot be approximated fromg(x; r), we conclude that no exclusive-or of the bits of h(x; s) can be approximated fromg2(x; s). The general lemma states that, for every \logarithmically shrinking" function h0(i.e., h0 satisfying jh0(x)j = O(log jxj)), the function h0 is a hard-core of a function f 0 if andonly if the exclusive-or of any non-empty subset of the bits of h0 cannot be approximatedfrom the value of f 0.Proposition 6 Let f , g2 and bi's be as above. Let I(n) � f1; 2; :::; l(n)g, n 2 N, be anarbitrary sequence of non-empty subsets, and let bI(jxj)(x; s) def= �i2I(jxj)bi(x; s). Then, forevery probabilistic polynomial-time algorithm A0, every polynomial p(�), and all su�cientlylarge n's Pr �A0(g2(U3n)) = bI(n)(U3n)� < 12 + 1p(n)Proof: The proof is by a \reducibility" argument. It is shown that the problem of ap-proximating b(Xn; Rn) given (f(Xn); Rn) is reducible to the problem of approximatingbI(n)(Xn; S2n) given (f(Xn); S2n), where Xn, Rn and S2n are independent random vari-able and the last is uniformly distributed over f0; 1g2n. The underlying observation is that,for every jsj = 2 � jxj, bI(x; s) = �i2Ibi(x; s) = b(x;�i2Isubi(s)20

where subi(s1; :::; s2n) def= (si+1; :::; si+n). Furthermore, the reader can verify that for everynon-empty I � f1; :::; ng, the random variable �i2Isubi(S2n) is uniformly distributed overf0; 1gn, and that given a string r 2 f0; 1gn and such a set I one can e�ciently select astring uniformly in the set fs : �i2Isubi(s) = rg. (Veri�cation of both claims is left as anexercise.)Now, assume to the contradiction, that there exists an e�cient algorithm A0, a polyno-mial p(�), and an in�nite sequence of sets (i.e., I(n)'s) and n's so thatPr �A0(g2(U3n)) = bI(n)(U3n)� � 12 + 1p(n)We �rst observe that for n's satisfying the above inequality we can �nd in probabilisticpolynomial time (in n) a set I satisfyingPr (A0(g2(U3n)) = bI(U3n)) � 12 + 12p(n)(i.e., by going over all possible I 's and experimenting with algorithm A0 on each of them).Of course we may be wrong here, but the error probability can be made exponentially small.We now present an algorithm for approximating b(x; r), from y def= f(x) and r. On inputy and r, the algorithm �rst �nds a set I as described above (this stage depends only onjxj which equals jrj). Once I is found, the algorithm uniformly select a string s so that�i2Isubi(s) = r, and return A0(y; s). Evaluation of the success probability of this algorithmis left as an exercise.Lemma 7 (Computational XOR Lemma): Let f and h be arbitrary length regular func-tions, and let l(n) def= jh(1n)j. Let D be an algorithm. Denotep def= Pr (D(f(Xn); h(Xn)) = 1) and q def= Pr �D(f(Xn); Rl(n)) = 1�where Xn and Rl are as above. Let G be an algorithm that on input y, S (and l(n)), selects runiformly in f0; 1gl(n), and outputs D(y; r)�1�(�i2Sri), where r = r1 � � �rl and ri 2 f0; 1g.Then, Pr (G(f(Xn); Il; l(n))=�i2Il(hi(Xn))) = 12 + p� q2l(n) � 1where Il is a randomly chosen non-empty subset of f1; :::; l(n)g and hi(x) denotes the ith bitof h(x).Proof: see previous chapter.It follows that, for logarithmically shrinking h's, the existence of an e�cient algorithm thatdistinguishes (with a gap which is not negligible in n) the random variables (f(Xn); h(Xn))and (f(Xn); Rl(n)) implies the existence of an e�cient algorithm that approximates theexclusive-or of a random non-empty subset of the bits of h(Xn) from the value of f(Xn)with an advantage that is not negligible. 21

Bibliography[1] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr, \RSA and Rabin Functions: CertainParts Are As Hard As the Whole", FOCS (1984) and SIAM Journ. on Computing, Vol.17, 1988, pp. 194-209.[2] N. Alon, O. Goldreich, J. Hastad and R. Peralta, \Simple Construction of Almost k-wise Indepedent Random Variables", Random Structures and Algorithms, Vol. 3, No.3, 1992.[3] Babai, L., N. Nisan, and M. Szegedy, \Multiparty protocols and logspace-hard pseu-dorandom sequences", 21st STOC, 1989, pp. 1{11.[4] Blum, M., and Micali, S., \How to Generate Cryptographically Strong Sequences ofPseudo-Random Bits", FOCS (1982); SIAM Journ. on Computing, Vol. 13, 1984, pp.850-864.[5] B. Chor, J. Friedmann, O. Goldreich, J. Hastad, S. Rudich and R. Smolansky, \TheBit Extraction Problem or t-Resilient Functions", Proc. of the 26th IEEE Symp. onFoundation Of Computer Science (FOCS), 1985, pp. 396-407.[6] Erdos, P., and J. Spenser, Probabilistic Methods in Combinatorics, Academic Press,New York, 1974.[7] Goldreich, O., S. Goldwasser, and S. Micali, \How to Construct Random Functions",Journ. of ACM, Vol. 33, No. 4, 1986, pp. 792-807.[8] Goldreich O., and L.A. Levin, \Hard-core Predicates for any One-Way Function", 21thSTOC, pp. 25{32, 1989.[9] Goldwasser, S., and S. Micali, \Probabilistic Encryption", STOC (1982); JCSS, Vol.28, No. 2, 1984, pp. 270-299.[10] B.S. Kaliski, Jr., "Elliptic Curves and Cryptography: A Pseudorandom Bit Generatorand Other Tools", Ph.D. Thesis, LCS, MIT, 1988.[11] L.A. Levin, \One-Way Function and Pseudorandom Generators", Combinatorica, Vol.7, No. 4, 1987, pp. 357-363. A preliminary version in STOC-85.[12] J. Naor and M. Naor, \Small-bias Probability Spaces: E�cient Constructions andApplications", 22nd STOC, 1990, pp. 213{223.[13] N. Nisan, \Pseudorandom Generators for Space-Bounded Computations", 22nd STOC,1990, pp. 204{212. 22

[14] M.O. Rabin, \Digitalized Signatures and Public Key Functions as Intractable as Fac-toring", MIT/LCS/TR-212, 1979.[15] R. Rivest, A. Shamir, and L. Adleman, \A Method for Obtaining Digital Signaturesand Public Key Cryptosystems", Comm. ACM, Vol. 21, Feb. 1978, pp 120-126[16] U.V. Vazirani, \Randomness, Adversaries and Computation", Ph.D. Thesis, EECS,UC Berkeley, 1986.[17] U.V. Vazirani, \E�ciency Considerations in Using Semi-random Sources", Proc. 19thACM Symp. on Theory of Computing, 1987, pp. 160-168.[18] U.V. Vazirani, and V.V. Vazirani, \E�cient and Secure Pseudo-Random Number Gen-eration", Proc. 25th IEEE Symp. on Foundation of Computer Science, 1984, pp. 458-463.[19] Yao, A.C., \Theory and Applications of Trapdoor Functions", Proc. of the 23rd IEEESymp. on Foundation of Computer Science, 1982, pp. 80-91.

23

