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ABSTRACT: The wideapplicabilityof zero-knowledge interactive proofs comes from the pos-

sibility of using these proofs as subroutines in cryptographic protocols. A basic question con-

cerning this use is whether the (sequential and/or parallel) composition of zero-knowledge proto-

cols is zero-knowledge too. We demonstrate thelimitations of the composition of zero-

knowledge protocols by proving that the original definition of zero-knowledge is not closed under

sequential composition; and that even the strong formulations of zero-knowledge (e.g. black-box

simulation) are not closed under parallel execution.

We present lower bounds on the round complexity of zero-knowledge proofs, with significant

implications to the parallelization of zero-knowledge protocols. We prove that 3-round interac-

tive proofs and constant-round Arthur-Merlin proofs that are black-box simulation zero-

knowledge exist only for languages in BPP. In particular, it follows that the "parallel versions" of

the first interactive proofs systems presented for quadratic residuosity, graph isomorphism and

any language in NP, are not black-box simulation zero-knowledge, unless the corresponding

languages are in BPP. Whether these parallel versions constitute zero-knowledge proofs was an

intriguing open question arising from the early works on zero-knowledge. Other consequences

are a proof ofoptimality for the round complexity of various known zero-knowledge protocols,

and the necessity of using secret coins in the design of "parallelizable" constant-round zero-

knowledge proofs.

hhhhhhhhhhhhhhh
Research was partially supported by the Fund for Basic Research Administered by the Israeli
Academy of Sciences and Humanities.
Preliminary version appeared in theProc. of the 17th ICALP, Lecture Notes in Computer Science,
Vol. 443, Springer Verlag, pp. 268-282, 1990.
* Work done while the author was with the Department of Computer Science, Technion, Haifa,
Israel.



- 2 -

1. INTRODUCTION

In this paper we investigate the problem of composing zero-knowledge proof sys-

tems. Zero-knowledge proof systems, introduced in the seminal paper of Goldwasser,

Micali and Rackoff [GMR1], are efficient interactive proofs which have the remarkable

property of yielding nothing but the validity of the assertion. Namely, whatever can be

efficiently computed after interacting with a zero-knowledge prover, can be efficiently

computed on input a valid assertion. Thus, a zero-knowledge proof is computationally

equivalent to an answer of a trusted oracle.

A basic question regarding zero-knowledge interactive proofs is whether their com-

position remains zero-knowledge. This question is not only of theoretical importance, but

is also crucial to the utilization of zero-knowledge proof systems as subprotocols inside

cryptographic protocols. Of particular interest are sequential and parallel composition.

Candidate "theorems" (whose correctness we investigate) are:

Sequential Composition:Let Π1 andΠ2 be zero-knowledge proof systems for languages

L1 andL2 respectively. Then, on inputx1 f x2, executing firstΠ1 on x1 and afterwards

executingΠ2 onx2, constitutes a zero-knowledge interactive proof system forL1 fL2.

Parallel Composition:Let Π1 andΠ2 be as above. Then, on inputx1 f x2, executing con-

currently Π1 on input x1 and Π2 on x2, constitutes a zero-knowledge interactive proof

system forL1 fL2. (Concurrent execution means that thei-th message of the composed

protocol consists of the concatenation of thei-th messages inΠ1 andΠ2, respectively).

Sequential Composition

Soon after the publication of the [GMR1] paper, several researchers noticed that the

formulation of zero-knowledge proposed therein (hereafter referred as theoriginal for-

mulation) is probably not closed under sequential composition. In particular, Feige and

Shamir [Fei] proposed a protocol conjectured to be a counterexample to the Sequential

Composition "Theorem". In this paper we use the ideas of [Fei] and new results on pseu-

dorandom distributions [GK], to prove that indeed theoriginal formulation of zero-

knowledge is not closed under sequential composition. Our proof is independent of any

intractability assumption. It applies to the notion ofcomputationalzero-knowledge (see

Section 2), and uses computationally unbounded provers. (So far no proof exists for the

same result with provers limited to polynomial-time, or for statistical or perfect zero-

knowledge.)

The reader should be aware that the Sequential Composition Theorem was proven

(by Goldreich and Oren [GO, Ore]) for a stronger ("non-uniform") formulation of zero-
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knowledge suggested by several authors (cf. [Fei, GMR2, GO, Ore, TW]). The Sequen-

tial Composition Theorem is crucial to the utilization of zero-knowledge interactive

proofs in cryptographic applications and in particular to the construction of cryptographic

protocols for playing any computable game [Yao,GMW2].

Parallel Composition

Parallel composition of interactive proofs is widely used as a means of decreasing

the error probability of proof systems, while maintaining the number of rounds. Of

course one would be interested in applying these advantages of parallelism to zero-

knowledge protocols as well. Parallelism is also used in multi-party protocols in which

parties wish to prove (the same and/or different) statements to various parties con-

currently. Unfortunately, we show in this paper a counterexample to the Parallel Compo-

sition "Theorem". Namely, we introduce a pair of protocols which are (computational)

zero-knowledge with respect to the strongest known definitions (including the non-

uniform formulation discussed above and the "black-box simulation" formulation dis-

cussed bellow) yet their parallel composition is not zero-knowledge (not even in the

"weak" sense of the original [GMR1] formulation). Also in this case, our proof does not

rely on any unproven hypotheses; on the other hand it uses in an essential way the

unbounded computational power of the prover and the computational notion of zero-

knowledge. Based onintractability assumptions, Feige and Shamir [FS2] show a perfect

zero-knowledge protocol with a polynomial-time prover which fails parallel composition.

Our results below on 3-round zero-knowledge proofs imply a similar result but our case

requires a super-logarithmic number of repetitions while in [FS2] two repetitions suffice.

By the above result we have ruled out the possibility of proving that particular

interactive proofs are zero-knowledge by merely arguing that they are the result of paral-

lel composition of various zero-knowledge protocols. But this does not resolve the ques-

tion whether concrete cases of composed interactive proofs are zero-knowledge. In par-

ticular, since the first presentation of the results in [GMR1] and [GMW1] it was repeat-

edly asked whether the "parallel versions" of the interactive proofs presented for Qua-

dratic Residuosity, Graph Isomorphism and for any language in NP are zero-knowledge.

Round complexity of zero-knowledge proofs

In this paper we prove a general result concerning the round complexity of zero-

knowledge interactive proofs which, in particular, resolves the question ofparallelization

of the above mentioned protocols. This general result states thatonly BPP languages

have 3-round interactive proofs which are black-box simulation zero-knowledge.1 Since
hhhhhhhhhhhhhhh

1 This result applies to interactive proofs in which the prover can convince the verifier of
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the parallel versions of the above examples are 3-round interactive proofs (with negligi-

ble cheating probability for the prover) it follows that these interactive proofs cannot be

proven zero-knowledge using black-box simulation zero-knowledge, unless the

corresponding languages are in BPP. This (negative) result is proven for computational

zero-knowledge proofs and therefore applies to statistical and perfect zero-knowledge as

well.

Loosely speaking, we say that an interactive proof for a languageL is black-box

simulation zero-knowledgeif there exists a (probabilisticpolynomial-time) universal

simulator which using any (even non-uniform) verifierV* as a black box, produces a pro-

bability distribution which is polynomially indistinguishable from the distribution of

conversations of (the same)V* with the prover, on inputs inL. This definition of zero-

knowledge is more restrictive than the original one which allows each verifierV* to have

a specific simulatorSV* . Nevertheless, allknown zero-knowledge protocols are also

black-box simulation zero-knowledge. This fact cannot come as a surprise since it is hard

to conceive of a way of taking advantage of the full power of the more liberal definition.

It is not plausible that our result could be extended to 4-round interactive proofs

since such proofs are known for languages believed to be outside BPP. The protocols for

Quadratic Non-Residuosity [GMR1] and Graph Non-Isomorphism [GMW1] are such

examples. In addition, zero-knowledge interactive proofs of 5 rounds are known for Qua-

dratic Residuosity and Graph Isomorphism [BMO1], and assuming the existence of

claw-free permutations there exist 5-round zero-knowledge interactive proofs for any

language in NP [GKa]. Moreover, our results extend to zero-knowledgearguments2, for

which Feige and Shamir [FS] presented (assuming the existence of one-way functions) a

4-round protocol for any language in NP. Our result implies that the round complexity of

this protocol is optimal (as long as BPP≠ NP).

hhhhhhhhhhhhhhh
accepting a false assertion with only negligible probability. The above mentioned languages have
3-round zero-knowledge interactive proofs in which the prover has a significant (e.g. constant)
probability of cheating.

2 Interactivearguments(also known as "computationally sound proofs" and "computationally
convincing protocols") differ from an interactive proof system in that the soundness condition of
the system is formulated with respect toprobabilistic polynomial-timeprovers, possibly with
auxiliary input (see [BCC]). Namely,efficientprovers cannot fool the verifier into accepting an
input not in the language, except with negligible probability.
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Constant Round Arthur-Merlin Proofs

When restricting ourselves to Arthur-Merlin interactive proofs, we can extend the

above result to any constant number of rounds. We show thatonly BPP languages have

constant-round Arthur-Merlin proofs which are also black-box simulation zero-

knowledge.

Arthur-Merlin interactive proofs, introduced by Babai [Bab], are interactive proofs

in which all the messages sent by the verifier are the outcome of his coin tosses. In other

words, the verifier "keeps no secrets from the prover". Our result is a good reason to

believe that the only feasible way of constructing constant-round zero-knowledge

interactive proofs is to let the verifier use "secret coins". Indeed, the above mentioned

constant-round zero-knowledge proofs, as well as the constant round statistical zero-

knowledge proofs of [BMO2], use secret coins. Thus, secret coins do help in the zero-

knowledge setting. This should be contrasted with the result of Goldwasser and Sipser

[GS] which states that Arthur-Merlin interactive proofs areequivalentto general interac-

tive proofs (as far as language recognition is concerned). They show that any language

having a general interactive proof ofk rounds, has also an Arthur-Merlin proof ofk

rounds. Using our result we see that in the zero-knowledge setting such a preservation of

rounds (when transforming IP into AM) is not plausible (e.g., Graph Non-Isomorphism).

Our result concerning Arthur-Merlin proofs is tight in the sense that the languages

considered above (e.g. Graph Non-Isomorphism, every language in NP) have unbounded

(i.e. ω(n)-round, for every unbounded functionω:N→N) Arthur-Merlin proof systems

which are black-box simulation zero-knowledge. In particular, we get that bounded

round Arthur-Merlin proofs which are black-box zero-knowledge exist only for BPP,

while unbounded round proofs of the same type exist for all PSPACE (if one-way func-

tions exist [IY, B*, Sha]). That is, while thefinite hierarchyof languages having black-

box zero-knowledge Arthur-Merlin proofs collapses to BPP (= AM(0)), the correspond-

ing infinite hierarchycontains all of PSPACE. This implies (assuming the existence of

one-way functions) a separation between the two hierarchies.

Organization: In Section 2 we outline the definitions of interactive proofs and zero-

knowledge, and introduce some terminology and notation used through the paper. Sec-

tion 3 presents the definitions and results concerning pseudorandom distributions that are

used for disproving the composition theorems. In Sections 4 and 5 we present these dis-

proofs for the case of sequential and parallel composition, respectively. Finally, in Sec-

tion 6 we present the lower bounds on the round complexity of black-box simulation

zero-knowledge proofs. We stress that this last section is technically independent from
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sections 3,4 and 5, and can be read without going through these sections.

2. PRELIMINARIES

The notions of interactive proofs and zero-knowledge were introduced by

Goldwasser, Micali and Rackoff [GMR1]. Here, we give an informal outline of these

notions. For formal and complete definitions, as well as the basic results concerning

these concepts, the reader is referred to [GMR1, GMW1, GMR2].

An interactive proofis a two-party protocol in which a computationally unrestricted

prover, P, interacts with a probabilistic polynomial-timeverifier, V, by exchanging mes-

sages. Both parties share a common inputx. At the end of the interaction the verifier

computes a predicate depending on this input and the exchanged messages in order to

acceptor reject the inputx. Such a protocol, denoted<P,V >, is called aninteractive

proof for a language Lif the following two conditions hold:

Completeness property:For any positive constantc and sufficiently longx ∈ L,

Prob(V accepts x) > 1− | x | −c.

Soundness property:For any positive constantc and sufficiently longx ∈| L,

Prob(V accepts x) < | x | −c, no matter how the prover behaves during the protocol.

(The above probabilities are taken over the coin tosses of both the prover and

verifier).

In other words we require that on inputs belonging toL the probability that the proverP

"convinces"V to accept the common input is almost 1, while on inputs outsideL there is

no prover that can foolV into accepting, except with negligible probability.

Note: Notice that we define an interactive proof to have a negligible probability of error.

Some authors define this probability to be just a constant (e.g.1/3). The latter is

motivated by the fact that constant error interactive proofs can be converted into negligi-

ble error proofs by parallel repetition. However, in the setting of zero-knowledge interac-

tive proofs our results show that such parallel repetition may sacrifice the zero-

knowledge property.

An interactive proof in which thehonestverifier chooses all its messages at random (i.e.

with uniform probability over the set of all strings of same length as the message) is

called anArthur-Merlin interactive proof [Bab]. That is, in an Arthur-Merlin proof sys-

tem the only non-trivial computation carried out by the honest verifier is the evaluation

of a polynomial-time predicate at the end of the interaction, in order to decide the accep-

tance or rejection of the input to the protocol. We say that such a verifier usespublic

coins. (Notice that there is no "public coin" restriction on the cheating verifiers).
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We say that an interactive proof hask rounds if there are a total ofk messages (alter-

nately) exchanged between the prover and verifier during the protocol (i.e. we count mes-

sages from both parties). In general, the numberk can be a functionk ( | x | ) of the input

length. The notation IP(k) stands for the class of languages havingk-round interactive

proofs, and AM(k) for languages havingk-round Arthur-Merlin interactive proofs.

An interactive proof is calledzero-knowledgeif on input x ∈ L no probabilistic

polynomial-time verifier (i.e. one that may arbitrarily deviate from the predetermined

program) gains information from the execution of the protocol, except the knowledge

that x belongs toL. This means that any polynomial-time computation based on the

conversation with the prover can be simulated, without interacting with the real prover,

by a probabilistic polynomial-time machine ("the simulator") that getsx as its only input.

More precisely, let<P,V* >(x) denote the probability distribution generated by the

interactive machine (verifier)V* which interacts with the proverP on inputx ∈ L. We say

that an interactive proof iszero-knowledgeif for all probabilistic polynomial-time

machinesV* , there exists a probabilistic expected polynomial time algorithmMV* (called

thesimulator) that on inputsx ∈ L produces probability distributionsMV* (x) that are poly-

nomially indistinguishable from the distributions<P,V* >(x). (This notion of zero-

knowledge is also calledcomputational zero-knowledge). 3

The above formalization of the notion of zero-knowledge is taken from the original

paper by Goldwasser, Micali and Rackoff [GMR1]. Later, stronger formulations of

zero-knowledge were introduced in which the simulation requirement is extended to deal

with stronger verifiers [Fei, GMR2, GO, Ore, TW]. Namely, verifiers with non-uniform

properties, e.g. probabilistic polynomial-time verifiers which get an additionalauxiliary-

input tape, or verifiers modeled by polynomial-size circuits.

One further formulation of zero-knowledge is calledblack-box simulation zero-

knowledge [GO, Ore]. This formulation differs from the former by requiring the

existence of a ("universal") simulator that using any (non-uniform) verifierV* as a

black-box, succeeds in simulating the<P,V* > interaction. In other words, there exists a

probabilistic expected polynomial time oracle machineM such that for any polynomial

size verifierV* and forx ∈ L, the distributions<P,V* >(x) andMV*
(x) are polynomially

indistinguishable.
hhhhhhhhhhhhhhh

3 Other definitions were proposed in which it is required that the distribution generated by the
simulator is identical to the distribution of conversations between the verifier and the prover
(perfectzero-knowledge),or at least statistically close (statisticalzero-knowledge).See [GMR2]
for further details.
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Remark: A complete formalization of the notion of black-box simulation zero-

knowledge requires dealing with the following technical problem. The simulator usesV*

as a black-box. This means that the simulator is responsible, during the simulation pro-

cess, of feeding into the black-box the external parameters that determine the behavior of

V* . These parameters are the string representing the input to the protocol, the contents of

the random tape ofV* , and the messages of the prover. A problem arises when feeding

the random coins used byV* . Although the number of coin tosses used by a particular

verifier V* is bounded by a polynomial, there is nosingle polynomial that bounds this

number forall possible verifiers. On the other hand, the simulatorM runs (expected)

time that is bounded by a specific polynomial. So, how can this simulator manage to feed

a verifier requiring more coin tosses than this bound? In [BMO2] this problem is over-

come by stating the existence of two random tapes forM. The first is used in the regular

way for M’s computations. The second can be entirely fed byM into V* in a single step.

That is,M can feed the random coins for the black-box in an "intelligent way" as long as

the number of coins does not exceed the time capability ofM, beyond this number it can

only feed truly random bits. We stress that this formalization is general enough to

include allknownzero-knowledge proofs.

An alternative solution to the above problem is to have,for eachpolynomialp, a simula-

tor Mp which simulates all verifiersV* that use at mostp ( | x | ) random coins on any input

x. Clearly, the running time of the simulatorMp may depend on the polynomialp and

then the above difficulty is overcome. This second formulation is weaker than the one

proposed in [BMO2], but it suffices for the results proved in our paper and therefore

adopted here. (In fact our results of Section 6 only require the existence of a simulator

that simulates deterministic verifiers, i.e.Mp with p ≡ 0).

Based on the above remark we give our definition of black-box simulation zero-

knowledge.

Definition: An interactive proof<P,V > is calledblack-box simulation zero-knowledgeif

for every polynomialp, there exists a probabilistic expected polynomial time oracle

machineMp such that for any polynomial size verifierV* that uses at mostp (n) random

coins on inputs of lengthn, and forx ∈ L, the distributions<P,V* >(x) and Mp
V*

(x) are

polynomially indistinguishable.

Note: The notion of polynomial indistinguishability in the above definition can be for-

malized based on non-uniform polynomial size distinguishers, or uniform polynomial-

time distinguishers which have black-box access to the correspondingV* . Our results

apply to both formalizations.
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Terminology: Through this paper we use the termnegligiblefor denoting functions that

are (asymptoticly) smaller than one over any polynomial, and the termnon-negligiblefor

denoting functions that are greater than one over some fixed polynomial. More precisely,

a function f from nonnegative integers to reals is callednegligible if for all constantsc

and sufficiently largen, f (n) < n −c. The functionf is callednon-negligibleif there exists

a constantc such that for all (sufficiently large)n, f (n) > n −c.

(Observe that non-negligible is not the complement of negligible).

Notation: We use the notatione∈R S for "the elemente is chosen with uniform probabil-

ity from the setS".

3. ON EVASIVE AND PSEUDORANDOM SETS

In the demonstration of counterexamples for the "composition theorems" we make

use of pseudorandom distributions which have some interesting "evasiveness" properties.

These properties and the corresponding proofs are given in [GK] and cited here without

proof.

Roughly speaking, a distribution on a set of strings of lengthk is pseudorandomif

this distribution cannot be efficiently (i.e. in time polynomial ink) distinguished from the

uniform distribution on the set of all strings of lengthk. In order to formalize this notion

one has to define it in asymptotical terms and refer to collections of distributions (called

pseudorandom ensembles), rather than single distributions. The notion of a "pseudoran-

dom set" is made precise in the following definition.

Definition 3.1: A set S⊆ {0,1} k is called ( τ(k) , ε(k) )-pseudorandomif for any (proba-

bilistic) circuit C of sizeτ(k) with k inputs and a single output

| pC(S) − pC({0,1} k) | ≤ ε(k)

wherepC(S) (resp.pC({0,1} k)) denotes the probability thatC outputs1 when given ele-

ments ofS(resp.{0,1} k), chosen with uniform probability.

Note that a collection of uniform distributions on a sequence of setsS1 , S2 ,..., where

eachSk is a ( τ(k) , ε(k) )-pseudorandom set, constitutes a pseudorandom ensemble, pro-

vided that both functionsτ(n) andε−1(n) grow faster than any polynomial. Therefore, we

shall refer to such a sequence of sets as apseudorandom ensemble.

We now present the concept of "evasive sets". Informally, evasiveness means that it is

hard, for efficient algorithms, to find strings which belong to these sets.

Definition 3.2: Let S1 , S2 ,... be a sequence of (non-empty) sets such that for everyn,

Sn ⊆ {0,1} Q(n), for a fixed polynomialQ. Such a sequence is called apolynomially-
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evasive(denotedP-evasive) ensemble if for any probabilistic polynomial-time algorithm

A, any constantc, sufficiently largen, and anyx ∈ {0,1} n

Prob(A (x) ∈ Sn) < n −c

where the probability is taken over the random coins of algorithmA.

The following theorem states the existence of a P-evasive ensemble which is also pseu-

dorandom.

Theorem 3.1 [GK]: There exists a P-evasive pseudorandom ensembleS1 , S2 ,... with

Q(n) = 4n. Furthermore, there exists a Turing machine which on input1n outputs the set

Sn.

For disproving the parallel composition theorem we shall need a stronger notion of

evasiveness. Namely, one which resists also non-uniform algorithms. This definition of

evasiveness involves a collection of sets for each length, rather than a single set per

length as in the uniform case.

Definition 3.3: Let Q(.) be a polynomial, and forn = 1,2,... let S(n) be a collection of2n

sets{ S1
(n) , . . . , S2n

(n) } , where eachSi
(n) ⊆ {0,1} Q(n). The sequenceS(1) , S(2) ,... is called a

non-uniform polynomially evasive(denotedP/poly-evasive) ensemble if for anyc > 0, for

sufficiently largen and any (probabilistic) circuitC of sizenc (with n inputs andQ(n) out-

puts)

Prob(C (i ) ∈ Si ) <
nc

1hhh

where the probability is taken over the random coins ofC and i ∈ {1, . . . , 2n} , both with

uniform probability.

That is, a sequenceS(1) , S(2) ,... is a P/poly-evasive ensemble if any circuit of size

polynomial inn, which gets a randomly selected index of one of the sets inS(n), cannot

succeed to output an element in that set, except for a negligible probability.

Remark: Notice that in the definition of P-evasive ensembles the (uniform) algorithm

trying to hit an element in the evasive setSn, gets as input a stringx of lengthn, which

can be seen as an auxiliary input. The crucial difference between this "uniform"

definition and the definition of P/poly-evasiveness is that in the latter the auxiliary input

is allowed to be of any length polynomial in the length of the target strings, while in the

former the auxiliary input is properly shorter than the target strings in the setSn.

The following theorem states the existence of a P/poly-evasive ensemble which is

composed of pseudorandom sets.
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Theorem 3.2: There exists a P/poly-evasive ensembleS(1) , S(2) ,... with Q(n) = 4n, such

that for everyn, eachSi
(n) is a (2n /4 , 2−n /4)-pseudorandom set of cardinality2n. Further-

more, there exists a Turing machine which on input1n outputs the collectionS(n).

The proof of this theorem is given in the Appendix.

4. SEQUENTIAL COMPOSITION OF ZERO-KNOWLEDGE PROTOCOLS

A natural requirement from the notion of zero-knowledge proofs is that the informa-

tion obtained by the verifier during the execution of a zero-knowledge protocol will not

enable him to extract any additional knowledge from subsequent executions of the same

protocol. That is, it would be desirable that thesequential compositionof zero-

knowledge protocols would yield a protocol which is itself zero-knowledge. Such a pro-

perty is crucial for applications of zero-knowledge protocols in cryptography (for details

and further motivation see [GO, Ore]).

We prove that the original definition of (computational) zero-knowledge introduced

by Goldwasser, Micali and Rackoff in [GMR1]is not closedunder sequential composi-

tion. Several authors have previously observed that this definitionprobably does not

guarantee the robustness of zero-knowledge under sequential composition, and hence

have introduced more robust formulations of zero-knowledge [Fei, GMR2, GO, Ore,

TW]. But so far, no proof has been given for the claim that computational zero-

knowledge (with uniform verifiers) fails sequential composition.

Intuitively, the reason that a zero-knowledge protocol could not be closed under

sequential composition is that the definition of zero-knowledge requires that the informa-

tion transmitted in the execution of the protocol is "useless" for anypolynomial-time

computation; it does not rule out the possibility that a cheating verifier could take advan-

tage of this "knowledge" in a subsequent interaction with the (non-polynomial time)

prover for obtaining valuable information. This intuition (presented in [Fei]) is the basis

of our example of a protocol which is zero-knowledge in a single execution but reveals

significant information when composed twice in a sequence. This protocol, presented in

the proof of the following theorem, uses a P-evasive ensemble as defined in Definition

3.2 and whose existence is stated in Theorem 3.1.

Theorem 4.1: Computational Zero-Knowledge ([GMR1] formulation) is not closed

under sequential composition.

Proof: Let S1 , S2 ,... be a P-evasive pseudorandom ensemble as described in Theorem

3.1. Also, letK be an (arbitrary) hard Boolean function, in the sense that the language

LK = { x : K (x) = 1} is not in BPP (we use this function as a "knowledge" function).
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We present the following interactive-proof protocol<P,V > for the language

L = {0,1} * . (Obviously, this language has a trivial zero-knowledge proof in which the

verifier accepts every input, without carrying out any interaction. We intentionally

modify this trivial protocol in order to demonstrate a zero-knowledge protocol which

fails sequential composition).

Let x be the common input forP andV, and letn denote the length ofx. The verifier

V begins by sending to the prover a random strings of length4n. The proverP checks

whethers∈ Sn (the n-th set in the P-evasive ensemble defined above). If this is the case

(i.e., s∈ Sn) thenP sends toV the value ofK (x). Otherwise (i.e.,s∈| Sn), P sends toV a

string s0 randomly selected fromSn. In any case the verifier accepts the inputx (as

belonging toL).

We stress that the same P-evasive ensemble is used in all the executions of the pro-

tocol. Thus, the setSn does not depend on the specific input to the protocol, but only on

its length. Therefore, the strings0, obtained by the verifier in the first execution of the

protocol, enables him to deviate from the protocol during a second execution in order to

obtain the value ofK (x′), for anyx′ of lengthn (and in particular forx′ = x). Indeed, con-

sider a second execution of the protocol, this time on inputx′. A "cheating" verifier

which sends the strings= s0 instead of chosing it at random, will get the value ofK (x′)

from the prover. Observe that this cheating verifier obtains information that it could not

compute by itself. There is no way to simulate in probabilistic polynomial-time the

interaction in which the prover sends the value ofK (x′), otherwise the languageLK would

be in BPP (indeed, such a simulator could be used as a probabilistic polynomial-time

algorithm for computing the functionK with negligible error probability. To see that,

notice that the real prover in an interaction with the above cheater verifier on inputs(x,x′)

will output k(x′) with probability1. Therefore, the simulator must output the correct value

of k(x′) with probability almost 1, or otherwise, its output is polynomially distinguishable

from the real conversations). Thus, the protocol is not zero-knowledge when composed

twice.

On the other hand, the protocol is zero-knowledge (when executed once). To show

this, we present for any verifierV* , a polynomial-time simulatorMV* that can simulate

the conversations betweenV* and the proverP. There is only one message sent by the

prover during the protocol. It sends the value ofK (x), in case that the strings sent by the

verifier belongs to the setSn, and a randomly selected element ofSn, otherwise. By the

evasivity condition of the setSn, there is only a negligible probability that the first case

holds. Indeed, no probabilistic polynomial-time machine (in our case, the verifier) can

find such a strings∈ Sn, except with negligible probability (no matter what the inputx to
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the protocol is). Thus, the simulator can succeed by always simulating the second possi-

bility, i.e. the sending of a random elements0 from Sn. This step is simulated by ran-

domly choosings0 from {0,1} 4n rather than fromSn. The indistinguishability of this

choice from the original one follows from the fact that eachSn is a pseudorandom subset

of {0,1} 4n, and that the prover choosess0 from Sn with uniform probability.a

Remark: The argument presented in the above proof generalizes to any languageL hav-

ing a zero-knowledge interactive proof. Simply, modify the zero-knowledge proof forL

as in the proof of Theorem 4.1.

Remark: Another example of a zero-knowledge protocol which is not closed under

sequential composition was independently found by D. Simon [Sim]. His construction

assumes the existence of secure encryption systems.

5. PARALLEL COMPOSITION OF ZERO-KNOWLEDGE PROTOCOLS

In this section we address the question of whether zero-knowledge interactive

proofs are robust under parallel composition.

Clearly, we cannot expect the original GMR definition to satisfy this condition: it is

easy to see that a zero-knowledge protocol which is not closed under sequential composi-

tion can be transformed into another zero-knowledge protocol which fails parallel com-

position.

In light of the fact thatauxiliary-input zero-knowledge is robust under sequential

composition [GO, Ore], it is an interesting open question whether this formulation of

zero-knowledge is also robust under parallel composition. The main result of this section

is that this is not the case. We prove the existence of protocols which are zero-

knowledge even against non-uniform verifiers (e.g. auxiliary-input zero-knowledge), but

which do not remain zero-knowledge when executed twice in parallel. As in the case of

sequential composition our results concern only computational zero-knowledge.

The ideas used for the design of a protocol which fails parallel composition are

similar to those used for the sequential case. There, we have used the pseudorandomness

and evasiveness of some sets to construct the intended protocol. We use this method also

here. The main difficulty for extending these properties to the present case, is that now

we need an evasive collection which resists even non-uniform verifiers. Clearly, a P-

evasive ensemble will not satisfy this condition, since for any set of strings there exist

non-uniform verifiers which can output elements in this set (e.g. by getting such a string

as auxiliary-input). Instead, we use the notion of P/poly-evasive ensembles as defined in

Definition 3.3. Based on Theorem 3.2 that states the existence of such ensembles we
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prove the main result of this section:

Theorem 5.1: Computational Zero-Knowledge (even with non-uniform verifiers) is not

closed under parallel composition.

Proof: We present a pair of protocols<P 1 , V1> and <P 2 , V2> which are zero-

knowledge when executed independently, but whose parallel composition is provably not

zero-knowledge.

We use some dummy steps in the protocols in order to achieve synchronization

between them. Of course one can modify the protocol substituting these extra steps by

significant ones. The version we give here prefers simplicity over naturality. Both proto-

cols consist of five steps and are described below (see also Figure 1).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

P1 V1 step P2 V2

i ∈R {1, . . . ,2n} −−> 1 dummy step

dummy step 2 <−− j ∈R {1, . . . ,2n}

dummy step 3 r ∈R Sj
(n) −−>

<−− s∈R {0,1} 4n 4 dummy step

if s∈ Si
(n) : K (x) −−> 5 dummy step
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Figure 1: protocols<P 1,V1> and<P 2,V2> with inputx.

The first protocol is denoted<P 1 , V1>. Let x be the input to the protocol and letn

denote its length. The protocol uses (for all its executions) a P/poly-evasive ensemble

S(1) , S(2) ,... with the properties described in Theorem 3.2. It also involves a hard Boolean

function K as in the proof of Theorem 4.1. The proverP1 begins by sending toV1 an

index i ∈R {1 , . . . , 2n} . After two dummy steps the verifierV1 sends toP1 a string

s∈R {0,1} 4n. The proverP1 checks whethers∈ Si
(n). If this is the case then it sends toV1

the value ofK (x), (otherwise an empty message). This concludes the protocol.

The second protocol<P 2,V2> uses thesameP/poly-evasive ensembleS(1) , S(2) ,...

as protocol<P 1,V1> does. The first step of the protocol is a dummy one. In the second

step the verifierV2 sends toP2 an indexj ∈R {1 , . . . , 2n} . The proverP2 responds with a

stringr ∈R Sj
(n). After two more dummy steps the protocol stops.

We show that each of the above protocols is indeed zero-knowledge (even for non-

uniform verifiers). For the first protocol, there are two steps of the prover to be
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simulated. In the first stepP1 sends an indexi ∈R {1 , . . . , 2n} . The simulator does the

same. In the second step, the prover sends the value ofK (x) only if the verifier succeeds

to present him a string which belongs to the setSi
(n). By the evasivity condition of the

sequenceS(1) , S(2) ,..., this will happen with negligible probability and therefore the simu-

lator can always simulate this step as for the case where the verifier sends a strings∈| Si
(n).

(Observe that the circuits in the definition of P/poly-evasive ensembles only get as input

the index of the set to be hit. Nevertheless, in our case the circuits also have an additional

input x. Clearly, this cannot help them finding an element inSi
(n), otherwise, circuits

which have such a string incorporated will contradict the evasiveness condition).

In the second protocol,<P 2,V2>, the only significant step of the proverP2 is when

it sends an elementr ∈R Sj
(n) in response to the indexj sent by the verifier. In this case the

simulator will send a stringr ′ ∈R {0,1} 4n. Using the pseudorandomness property of the set

Sj
(n) we get that the simulator’s choice is polynomially indistinguishable from the

prover’s one.

Finally we show that the parallel composition of the above protocols into a single

protocol<P,V > is not zero-knowledge. LetV* be a "cheating" verifier which behaves as

follows. Instead of sending a randomly selected indexj (corresponding to the second

step of the subprotocol<P 2,V2>) it sends the indexi received fromP as part ofP1’s first

step. Thus,j = i, and the proverP will respond with a stringr ∈ Si
(n). In the next step this

stringr will be sent byV* to P instead of the "random" strings thatV1 should send toP1.

The proverP will verify that r ∈ Si
(n) and then will send the informationK (x). By the

hardness of the functionK this step cannot be simulated by a probabilistic polynomial-

time machine. Therefore, the composed protocol<P,V > is not zero-knowledge.a

Remark: The two protocols<P 1,V1> and<P 2,V2> can be merged into a single zero-

knowledge protocol which is not robust under parallel composition. In this merged pro-

tocol, the verifier chooses (at random) an indexi ∈ {1 , 2} , sends it to to the prover, and

then both parties execute the protocol<Pi ,Vi >. When executing two copies of this proto-

col in parallel, the verifiers may choosei = 1 andi = 2, respectively, thus forcing a parallel

execution of<P 1,V1> and<P 2,V2>, which we have shown not to be zero-knowledge.

6. ON THE ROUND COMPLEXITY OF ZERO-KNOWLEDGE PROOFS

In this section we present lower bounds on the round complexity of black-box simu-

lation zero-knowledge interactive proofs. We show that only languages in BPP have

constant-round Arthur-Merlin interactive proofs which areblack-box simulation zero-

knowledge. (For a definition of black-box simulation zero-knowledge and Arthur-Merlin
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interactive proofs see Section 2). We have the following theorem.

Theorem 6.1: A languageL has a constant-round Arthur-Merlin interactive proof which

is black-box simulation zero-knowledge if and only ifL ∈ BPP.

In section 6.1 we present a proof for a special case of this theorem, namely, for the case

of a three-round Arthur-Merlin protocol. The general case is proved in section 6.2 using

careful extensions of the ideas presented for this special case.

The three-round case can also be extended to general interactive proof systems.

That is, we also have the following theorem, proved in section 6.3.

Theorem 6.2: A languageL has a three-round interactive proof which is black-box

simulation zero-knowledge if and only ifL ∈ BPP.

(We remark that [GO, Ore] show that two-round (auxiliary-input) zero-knowledge proofs

- not necessarily black-box simulation - exist only for BPP languages).

Our results are optimal in the sense that there exist Arthur-Merlin interactive proofs,

for languages believed to be outside BPP, with unbounded number of rounds and which

are black-box simulation zero-knowledge. Similarly, there exist four-round interactive

proof protocols (using private coins) which are also black-box simulation zero-

knowledge. For further details about these protocols, and some consequences concerning

the hierarchy of languages having zero-knowledge Arthur-Merlin proofs, see Section 1.

It is interesting to note that our results hold also for a weaker notion of black-box

simulation zero-knowledge. Namely, one which only requires the existence of a black-

box simulator which succeed in simulating conversations withdeterministic (non-

uniform) verifiers. The sufficiency of this condition follow from the proofs below. Also,

the formulation of the completeness condition of an interactive proof (see Section 2) can

be relaxed in the following way. We have defined the completeness condition by requir-

ing that the prover can convince the verifier of accepting an input in the language with

probability almost1 (i.e. 1 minus a negligible fraction). For the correctness of our results

it suffices to require just a non-negligible probability. (In this section we use this weaker

formulation of the completeness condition). On the other hand, the requirement of a

negligible probability of convincing the verifier to accept an input not in the language

(the soundness condition) is essential. (For example, 3-round zero-knowledge protocols

exist for all languages in NP, if the soundness condition is formulated with probability1⁄2

[GMW1]). Finally, our results hold also in the setting ofinteractive arguments[BCC],

i.e. "interactive proofs" in which the prover is limited to probabilistic polynomial-time

computations, possibly getting an auxiliary input.
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6.1 The case AM(3)

The protocol <P,V>: Consider an Arthur-Merlin protocol<P , V > for a language

L, consisting of three rounds. We use the following notation. Denote byx the input for the

protocol, and byn the length of this input. The first message in the interaction is sent by

the prover. We denote it byα. The second round is forV which sends a stringβ. The third

(and last) message is fromP and we denote it byγ. The predicate computed by the

verifier V in order to accept or reject the inputx is denoted byρV, and we consider it, for

convenience, as a deterministic functionρV(x,α,β,γ). (For the general case see Remark

6.2). We will also assume, without loss of generality, the existence of a polynomiall (n)

such that| α | = | β | = l (n).

The simulation process: Let this three-round Arthur-Merlin protocol<P , V > be

black-box simulation zero-knowledge. Denote byM the guaranteed probabilistic

expected polynomial-time black-box simulator which given access to the black-boxV*

simulates<P,V* >. The process of simulation consists of several "tries" or calls to the

interacting verifierV* ("the black-box"). In each such call the simulatorM feeds the argu-

ments forV* . These arguments are the inputy (which may be different from the "true"

input x), the random coins forV* , and a stringα representing the message sent by the

proverP. In our case, it suffices for our results to consider a simulator that is just able to

simulate conversations withdeterministic (non-uniform) verifiers. In particular, this

simulator does not care about feeding the black-boxV* with random coins. This

simplifies our proof by avoiding any reference to these random coins forV* , and

strengthen our result (since it holds even under the sole existence of this weak kind of

simulator).

After completing its tries the simulator outputs a conversation(y,α,β,γ).

We shall make some further simplifying assumptions on the behavior of the simulatorM,

which will not restrict the generality. In particular, we assume that some cases, which

may arise with only negligible probability, do not happen at all. This cannot significantly

effect the success probability of the simulator. In other words, any black-box simulator

which successfully simulates<P,V* > conversations of deterministic verifiersV* can be

changed into another simulator for which the following conventions hold and has a the

same success probability as the original simulator, except for a possibly negligible differ-

ence. We assume that

g the conversations output byM have always the form(x,α,β,γ), i.e. y = x, and that the

string β equals the message output byV* when fed with inputsx andα. Note that

these conditions always hold for the real conversations generated by the proverP

and the (deterministic) verifierV* . Therefore, the simulator must almost always do
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the same. (Otherwise, a distinguisher which has access toV* , would distinguish

between the simulator’s output and the original conversations).

g the simulatorM explicitly tries, in one of its calls toV* , the argumentsx and α

appearing in the output conversation. (For example, once the simulator decides on

the output conversation with a specific parameterα, it explicitely feedsV* with x

and this value ofα - regardless of whether it askedα before or not. In any case the

answer of the deterministicV* to the pair(x,α) will be always the same).

g the simulator runs (strictly) polynomial-time. (In Remark 6.1 below we show how

to handle the general case in which the simulator runsexpectedpolynomial-time).

We denote byt (n) a polynomial bounding the number of calls tried byM before out-

putting a conversation.

The simulator as a subroutine: Our goal is to present a BPP algorithm for the

languageL. The idea is to use the simulatorM in order to distinguish between inputs in

and outsideL. For that, we use the simulator itself as a subroutine of the algorithm. We

do not make any assumption on the internal behaviour of this simulator, but just use the

following observation.The behavior of the simulatorM, interacting with a verifierV* , is

completely determined by the inputx, the random tapeRM used byM and the strings out-

put byV* (in response to the arguments fed by the simulator during its tries).Therefore,

in order to operateM, we just need to feed it with an inputx, a tape of random coins, and

a sequence of responses to its messagesα. Below we formally describe a computation

process that usesM as a subroutine. (We stress that in this process there is noexplicit

verifier present).

Fix an inputx of lengthn, a stringRM (of lengthq (n), whereq (.) is a polynomial bound-

ing the number of random coins used byM on inputs of lengthn) andt = t (n) (arbitrary)

stringsβ(1),β(2), . . . ,β(t), each of lengthl (n). ActivateM on inputx with its random tape

containingRM. For eachy andα tried byM, respond with a messageβ from the above list

β(1),β(2), . . . ,β(t) according to the following rule. (This rule depends on the stringsα but

not on y). To the firstα presented byM respond withβ(1). For subsequentα’s check

whether the same stringα was presented before byM. If so, respond with sameβ as in

that case, if it is the first time thisα is presented then respond with the first unusedβ(i ) in

the list. That is, ifα is thei-th differentstring presented byM then we respond withβ(i ).

We denote thei-th differentα by α(i ). Clearly,α(i ) is uniquely determined byx , RM and

the i −1 strings β(1), . . . ,β(i −1), i.e., there exists a deterministic functionαM such that

α(i ) = αM( x,RM,β(1), . . . ,β(i −1) ). We denote byconvM( x,RM,β(1), . . . ,β(t) ) = (x,α,β,γ), the

conversation output by the simulatorM when activated with these parameters (notice that

t strings β(i ) always suffice for answering all tries ofM). By our convention on the
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simulatorM, there existsi , 1≤ i ≤ t such thatα = α(i ) andβ = β(i ).

Definition:iiiiiiiii We say that a vector ( x,RM,β(1), . . . ,β(t) ) is M-good if

convM( x,RM,β(1), . . . ,β(t) ) is an accepting conversation for the (honest) verifierV.

Namely, if convM( x,RM,β(1), . . . ,β(t) ) = (x,α,β,γ) andρV(x,α,β,γ) = ACCEPT. We say that

( x,RM,β(1), . . . ,β(t) ) is (M,i )-good (or i-good for shortness) if it isM-good andα = α(i ),

β = β(i ).

The main property ofM-good strings is stated in the following Lemma.

Lemma 6.3: Let <P,V > be a 3-round Arthur-Merlin protocol for a languageL. Suppose

<P,V > is black-box simulation zero-knowledge, and letM be a black-box simulator as

above. Then,

(1) For stringsx outsideL, only a negligible portion of the vectors( x,RM,β(1), . . . ,β(t) )

areM-good.

(2) For strings x in L there exists a non-negligible portion of the vectors

( x,RM,β(1), . . . ,β(t) ) that areM-good.

(This non-negligible portion is at least one half of the completeness probability of

the protocol<P,V >, i.e. the probability thatP convincesV to acceptx).

Before proving this key lemma, we use it to prove Theorem 6.1 for the case of three-

round Arthur-Merlin interactive proof.

Proof of Theorem 6.1 (for the case AM(3)): By Lemma 6.3 we get the following BPP

algorithm for the languageL. On inputx:

* select at random a vector(RM,β(1), . . . ,β(t) ).

* acceptx if and only if ( x,RM,β(1), . . . ,β(t) ) is M-good.

The complexity of this algorithm is as the complexity of testing forM-goodness. The

later is polynomial-time since it involves running the simulatorM which is polynomial-

time, and evaluating the predicateρV which is also polynomial-time computable. The

success probability of the algorithm is given by Lemma 6.3.a

Proof of Lemma 6.3:

Part (1):iiiiiii Assume that the portion ofM-good vectors( x,R ,β(1), . . . ,β(t) ) for x’s not in L is

not negligible. This means that there exist infinitely manyx ∈| L for which the portion of

M-good vectors is non-negligible. For each suchx, there exists an indexi 0 , 1≤ i 0 ≤ t, for

which a non-negligible fraction of the vectors( x,R ,β(1), . . . ,β(t) ) arei 0-good (since there

are only polynomially many possible values fori 0). Thus, there exists a non-negligible

number of prefixes( x,R ,β(1), . . . ,β(i 0−1) ), each with a non-negligible number ofi 0-good

continuations( β(i 0), . . . ,β(t) ) (i.e., such that( x, R , β(1), . . . ,β(i 0−1),β(i 0), . . . ,β(t) ) are i 0-
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good). Let( x,R ,β(1), . . . ,β(i 0−1) ) be such a prefix, and letα(i 0) = αM( x,R ,β(1), . . . ,β(i 0−1) ).

For each i 0-good continuation( β(i 0), . . . ,β(t) ) machine M outputs a conversation

( x , α(i 0) , β(i 0) , γ ) for which ρV ( x , α(i 0) , β(i 0) , γ ) = ACCEPT. In particular, there exists a

non-negligible number ofβ(i 0) for which this happens.

In other words, for eachx as above there exists a stringαx (= α(i 0)) for which the set

B(x,αx) = { β : ∃ γ , ρV ( x , αx , β , γ ) = ACCEPT} is of non-negligible size among all possible

stringsβ. Consider now a ("cheating") prover that sends thisαx as its first message. IfV

responds withβ ∈ B (x,αx), the prover sends the correspondingγ that convincesV to

accept. SinceV selects its messagesβ at random, then the probability of being convinced

by the above prover is (at least) as the relative size ofB (x,αx), i.e. non-negligible. Con-

cluding, we have shown the existence of a prover that for infinitely manyx’s outsideL,

convincesV to accept with non-negligible probability. This contradicts the soundness

condition of the protocol<P,V >, and this part of the Lemma follows.

Part (2):iiiiiii We show that for stringsx in L a non-negligible portion of the vectors

( x,RM,β(1), . . . ,β(t) ) areM-good. We do it by considering the behavior of the simulatorM

when receiving "random like" responses from the verifier. This behaviour is analyzed by

introducing a particular family of "cheating" verifiers, each of them associated to a dif-

ferent hash function from a a family oft (n)-wise independent hash functions. The t (n)-

wise independence (wheret (n) is the bound on the number of simulator’s tries) achieves

the necessary randomness from the verifiers responses.

Let x ∈ L and letn denote its length. Consider a family of hash functionsHn which map

l (n)-bit strings intol (n)-bit strings, such that the locations assigned to the strings by a

randomly selected hash function are uniformly distributed andt (n)-wise independent.

(Recall thatl (n) is the length of messagesα andβ in the Arthur-Merlin protocol<P , V >

for L, while t (n) is the bound on the number ofM’s tries). For properties and implemen-

tation of such functions see e.g. [Jof, WC, CG]; in particular, we observe that such func-

tions can be described by a string of lengtht (n).l (n), i.e. polynomial inn.

For each hash functionh ∈ Hn we associate a (deterministic non-uniform) verifierVh
* ,

which responds to the prover’s messageα with the stringβ = h (α) ( Vh
* has wired in the

description ofh). Consider the simulation of<P , Vh
* > conversations by the simulatorM.

Fixing an inputx, a random tapeRM for M, and a functionh ∈ Hn, the whole simulation is

determined. In particular, this (uniquely) defines a sequence ofα’s tried by the simula-

tor, and the corresponding responsesβ of Vh
* . We denote byα(1) , α(2), . . . ,α(s), the dif-

ferent values of α in these tries. In case thats < t, we complete this sequence to

α(1), . . . ,α(s) , α(s+1), . . . ,α(t), by addingt − s stringsα in some canonical way, such that
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the resultant α(1), . . . ,α(t) are all different. Let β(i ) = h (α(i )) , 1≤ i ≤ t, and define

v (x , RM , h) = (x , RM , β(1), . . . ,β(t)). Part (2) of the lemma follows from the following two

claims.

Claim 1:iiiiiiii For x ∈ L, there is a non-negligible portion of the pairs(RM , h) for which the

vectorv (x , RM , h) is M-good.

Proof:iiiiii For any inputx to the protocol<P,V >, let px denote the probability that the prover

P convincesV (the honest verifier) to acceptx. In other words,px is the probability, over

the coin sequencesRP of the proverP, and (random) choicesβ of V, that the resultant

conversation( x , α(x,RP) , β , γ(x,RP,β)) is accepting. By the completeness property of the

protocol<P,V >, we get that forx’s in L the probabilitiespx are non-negligible.

Let x ∈ L and consider the interaction between the real proverP and the verifiersVh
* on

the inputx. Each coin sequenceRP determines the messageα, and the corresponding

responseh (α) by Vh
* . By the uniformity property of the familyHn we get that for everyα,

all β’s are equi-probable as the result ofh (α). Therefore, the probability thatP andVh
*

(for h uniformly chosen fromHn) output an accepting conversation is exactly the same as

the probability,px, thatP andV output such a conversation.

Finally, since the simulatorM succeeds in simulating<P , Vh
* > conversations for all func-

tionsh ∈ Hn, we get that for eachh the probability thatM outputs an accepting conversa-

tion when interacting withVh
* is almost the same (up to a negligible difference) as the

probability thatP and Vh
* output an accepting conversation. This last probability, for

h ∈R Hn, is px. We conclude that the probability, over randomRM andh, thatv (x , RM , h)

is M-good is almostpx, and thus non-negligible. The claim follows.̀

Claim 2:iiiiiiii For all stringsx andRM, and forh chosen with uniform probability fromHn, the

vector v (x , RM , h) is uniformly distributed over the set

{ ( x , RM , β(1), . . . ,β(t) ) : β(i ) ∈ {0,1} l (n) }

Proof:iiiiii Recall the functionαM introduced above. Observe that

v (x , RM , h) = (x , RM , β(1), . . . ,β(t)) )

if and only if for everyi , 1≤ i ≤ t,

h ( αM( x,RM,β(1), . . . ,β(i −1) ) ) = β(i ) .

On the other hand, by the uniformity andt (n)-independence property of the familyHn,

we have that for anyt differentelementsa1, . . . ,at in the domain of the functionsh ∈ Hn,

the sequenceh (a1) , . . . , h (at) is uniformly distributed over all the possible sequences

b1, . . . ,bt for bi in the range of the functionsHn.
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Thus, for all stringsx andRM, and for fixedβ(1), . . . ,β(t), the probability (forh ∈R Hn) that

v (x , RM , h) = (x , RM , β(1), . . . ,β(t)) ) equals the probability that for everyi , 1≤ i ≤ t, h maps

α(i ) = αM( x,RM,β(1), . . . ,β(i −1) ) ) into β(i ). Since, by definition, allα(i ) ’s are different, then

we can use the above property of the familyHn to get that the latter probability is the

same for every sequenceβ(1), . . . ,β(t) (i.e. we putai = α(i ) and bi = β(i )). The claim fol-

lows. `

Claim 2 states that for anyRM, the value ofv (x , RM , h) is uniformly distributed over all

possible vectors( x , RM , β(1), . . . ,β(t) ). On the other hand, by Claim 1, a non-negligible

portion of v (x , RM , h) areM-good, and then we get that a non-negligible portion of the

vectors( x , RM , β(1), . . . ,β(t) ) areM-good.

The Lemma follows.a

Remark 6.1 (expected polynomial-time simulator):For simplicity we have assumed that

the given simulator,M, for the protocol<P,V > runs in (strictly) polynomial-time.

Nevertheless, in the definition of zero-knowledge we allow this simulator to runexpected

polynomial-time. We show that our results hold also in this general case by transforming

a given expected polynomial-time simulatorM into a strictly polynomial-time simulator

M ′, and showing that Lemma 6.3 holds for this new simulator. Then, we can use the

modified simulatorM ′ in the BPP algorithm for the languageL.

The simulatorM ′ behaves asM, but its running time is truncated after some (fixed) poly-

nomial number of steps, denoteds(n). We show how to choose this polynomials(n). Let

T (n) be a polynomial bounding theexpectedrunning time ofM, and letp(n) be a (lower)

bound on the probability that the proverP convinces the (honest) verifierV to accept an

input in L of length n. We defines(n) to be 2.T (n)/p (n). Since1/p (n) is polynomially

bounded (by the completeness condition of the protocol<P,V >), thens(n) is polynomi-

ally bounded. With this modification ofM the proof of Lemma 6.3 remains valid, except

for a more delicate argument in the proof of Claim 1. The required changes follow.

In that proof we claimed that "for eachh the probability thatM outputs an accepting

conversation when interacting withVh
* is almost the same (up to a negligible difference)

as the probability thatP andVh
* output an accepting conversation". This is true for the

original simulatorM, but not necessarily forM ′. Since we cut the running ofM afters(n)

steps, then there exist cases in whichM ′ does not complete the original behavior ofM.

Nevertheless, by the choice ofs(n), the probability (over the coin tosses ofM ′) that this

happens (i.e. the running time ofM exceedss(n)) is at mostp (n)/2. Thus, for anyh, the

probability that the truncated simulator,M ′, outputs an accepting conversation when

interacting withVh
* differs from the probability thatP andVh

* output an accepting conver-

sation by at mostp (n)/2. For h ∈R Hn, this last probability was shown (in the original
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proof of Claim 1) to be at leastp (n), and then we get that the probability, over random

RM′ andh, thatv (x , RM′ , h) is M ′-good is (up to a negligible difference) larger thanp (n)/2,

and then non-negligible. Therefore, Claim 1 follows also in this case.`

Remark 6.2 (ranomizedρV): We have assumed that the only coin tosses of the (honest)

verifier V during the Arthur-Merlin protocol<P,V > are the the bits corresponding to the

stringβ sent to the prover, and that no additional coin tosses are used in order to compute

the accepting/rejectingpredicateρV. This restriction can be removed from the above

proof by using finer arguments as done in our treatment of the general IP(3) case (Section

6.3).

More generally, any AM(k) protocol in which the predicateρV depends on the whole

conversation and some additional random string, can be transformed into an AM(k+1)

protocol in which no such additional string is used: Simply, let the verifier send this ran-

dom string as its last message. Hence, since we prove our result for any constant-round

AM protocol, we can assume thatρV is deterministic.`

Remark 6.3 (interactive arguments):We now show how to generalize the above proof

of the case AM(3) in order to prove the same result in the setting of interactive argu-

ments, i.e. "interactive proofs" in which the soundness condition is required only with

respect to provers limited to probabilistic polynomial-time computations, possibly get-

ting an auxiliary-input. We have to prove Lemma 6.3 in this setting. Notice that part (2)

of the lemma relies on the completeness and zero-knowledge properties of the interactive

proof, but these properties are not influenced by the soundness condition. Therefore, this

part of the proofautomaticallyholds for interactive arguments. The other part, part (1),

relies on the soundness of the interactive proof, thus, a modification is required in the

proof to deal with provers having just polynomial power.

In that proof we showed, by contradiction, the existence of infinitely manyx’s not in L

for which a cheating prover can convince the verifier to acceptx with non-negligible pro-

bability. The success of this prover was shown by proving, for each suchx, theexistence

of a messageαx that for non-negligibly manyβ’s a string γ exists such that

ρV(x,αx,β,γ) = ACCEPT. In the interactive arguments setting the sole existence of such an

αx is not sufficient. The limited prover should find in probabilistic polynomial-time this

string and the corresponding responseγ to the messageβ sent byV. We describe such a

prover P* that uses the simulatorM in order to find the required strings. It begins by

choosing i ∈R {1,...,t} , and random stringsRM, β(1), . . . ,β(i −1). Then it computes

α = αM( x,RM,β(1), . . . ,β(i −1) ), and sends thisα to V. OnceV responds withβ, the proverP*

choosest −i random stringsβ(i +1), . . . ,β(t) and computes (using the simulatorM) the

conversationconvM( x,RM,β(1), . . . ,β(i −1),β ,β(i +1), . . . ,β(t)), and sends toV the messageγ
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appearing in this conversation. If the chosen vector isi-good then thisγ convincesV to

accept the conversation. We analyze the probability of such event.

There exists a non-negligible probability thatP* chosesi, 1≤ i ≤ t, for which the number

of i-good vectors is non-negligible (we saw that such ani exists). On the other hand, the

whole vector( x,RM,β(1), . . . ,β(i −1),β ,β(i +1), . . . ,β(t)), is chosen at random (except forx):

the β component by the verifier (the protocol is Arthur-Merlin!) and the other com-

ponents byP* . Therefore, there is a non-negligible probability that the resultant vector is

i-good, in which caseV acceptsx. This wayP* works in polynomial-time and has a non-

negligible probability to convinceV of acceptingx from what we derive the required con-

tradiction. `

6.2 The case AM(k): Secret Coins Help Zero-Knowledge

In this section we consider constant-round Arthur-Merlin interactive proofs. We

show that a language having such an interactive proof which is also black-box simulation

zero-knowledge belongs to BPP, thus proving Theorem 6.1. We present this proof based

on the proof for the particular case of AM(3) as given in section 6.1. The basic ideas are

similar but theirimplementationis technically more involved in this general case. We

highly recommend familiarity with section 6.1 before going through the present section.

The protocol <P,V>: Let <P,V > be a k-round Arthur-Merlin protocol for a

languageL. For simplicity of the exposition we make some assumptions on the form of

the protocol without restricting the generality of the proof. We consider protocols in

which both the first and last messages are sent by the prover. By adding dummy mes-

sages any protocol can be converted into one of this form. Notice that in such a protocol,

the number of rounds is always an odd numberk = 2.m+1. The proverP sendsm+1 mes-

sages which we denote byα1, . . . ,αm, and γ, respectively. Them messages byV are

denotedβ1, . . . ,βm. The input to the protocol is denoted byx and its length byn. The

predicate computed by the verifierV in order to accept or reject the inputx is denoted by

ρV, and we assume it to be a deterministic function of the conversation

ρV(x,α1,β1, . . . ,αm,βm,γ). (Our results hold also for interactive proofs in whichρV

depends on an additional random string. See Remark 6.2). We need the following techn-

ical convention. We assume that all prover messages in the protocol have a form that

allows, by only seeing thei-th messageαi , to uniquely reconstruct all previous messages

sent by the prover during the conversation. This is easily achieved by simple concatena-

tion of previous messages (using a delimiter or some length convention). We also

assume the existence of a polynomiall (n) such that all prover and verifier’s messages on

an n-length input have lengthl (n) (e.g. using dummy padding). Finally, we let the
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verifier V check whether the received messages conform to the above conventions, and

reject the conversation conversation if not.

The simulation process: We denote byM the black-box simulator for the protocol

<P,V >. The simulation process consists of several tries by the simulatorM. Each try

involves feeding the verifierV* (i.e. the black-box representing it) with a valuey as the

input to the protocol, and the messagesαi , 1≤i ≤m, that simulate the messages sent byP.

(Again, we do not care about random coins forV* , we just need a simulator that is able to

simulate conversations with deterministic verifiers). The simulatorM chooses these argu-

ments, in the successive tries, depending on the random tapeRM and the responsesβi out-

put by the black-boxV* during the current and previous tries. After each try the simula-

tor may decide to output a conversation of the form(y,α1,β1, . . . ,αm,βm,γ) or to perform

a new try. We assume that the output conversation hasy = x, i.e. the input component in

the conversation corresponds to the actual input being simulated; that theα messages

appearing in the output conversation fit our convention on the form of the prover’s mes-

sages; and that the simulator explicitly tries the output conversation. Namely, it operates

(in one of the tries) the black-boxV* on inputx andα1, . . . ,αm as appearing in the output

conversation, and respectively gets as responses ofV* the stringsβ1, . . . ,βm also appear-

ing in this conversation. These assumptions are apparently restricting ones since the

simulator is allowed to output conversations that are not "legal conversations" between

the proverP and the simulated verifierV* . Nevertheless, a simulator that succeeds simu-

lating the<P,V* > conversations, will output such illegal conversations with only negligi-

ble probability (otherwise the simulated conversations can be easily distinguished from

the true ones). Finally, we consider, for the sake of simplicity, only simulators that run

(strictly) polynomial-time. The necessary changes in the proof for handling the general

case in which the simulator runsexpectedpolynomial-time are analogous to the ones

described in Remark 6.1 for the case AM(3). We denote byt̂(n) a polynomial bounding

the number of calls toV* tried by M before outputting a conversation, and put

t (n) = m.t̂(n) (notice thatt (n) constitutes an upper bound on the total number of messages

α tried byM during the whole simulation).

The simulator as a subroutine: Our goal is to present a BPP algorithm for the

languageL and we use the simulatorM for achieving it. The wayM is used is similar to

the way we used the simulator in the AM(3) case (see Section 6.1). In the present case,

the behavior of the simulatorM, when "interacting" with a verifierV* , is determined by

the input x to the protocol, the random tapeRM and the stringsβ output by V* as

responses to the strings fed byM during the different tries. Also here we define a compu-

tational process that usesM as a subroutine.
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Fix an inputx of lengthn, a stringRM andt = t (n) stringsβ(1),β(2), . . . ,β(t), each of length

l (n). Activate M on input x with its random tape containingRM. For each messageα

presented byM, respond in the following way. (The responses will depend on the strings

α, but not ony). If α is "illegal" then respond with a special "reject-message". By illegal

we mean a messageα that does not fit our above conventions on the form of the prover’s

messages. For legalα’s we respond (impersonating a black-box verifier) with one of the

β’s from the above listβ(1), . . . ,β(t) according to the following rule. If the sameα was

previously presented byM (i.e. during a previous try), respond with the sameβ as in that

case. Ifα is the i-th different (legal) string presented byM since the beginning of the

simulation then respond withβ(i ). We denote thei-th differentα by α(i ). Clearly,α(i ) is

uniquely determined byx , RM and thei −1 stringsβ(1), . . . ,β(i −1). That is, there exists a

deterministic function αM such that α(i ) = αM( x,RM,β(1), . . . ,β(i −1) ). We denote by

convM( x,RM,β(1), . . . ,β(t) ) = (y,α1,β1, . . . ,αm,βm,γ) the conversation output by the simula-

tor M when activated with these parameters (notice thatt stringsβ(i ) always suffice for

answering all tries ofM). By our convention on the simulatorM and on the form of the

prover’s messages it follows that there exists a sequence of indices1≤ i 1 < i 2 < ...< i m ≤ t

such that for eachα j , β j , j = 1,...,m, appearing in the output conversation,α j = α(i j ) and

β j = β(i j ). This is true since the simulator always outputs a conversation which was expli-

citly generated in one of its tries. The increasing property of the sequence of indicesi j is

enforced by the special form of the "legal" messagesα, namely, by the fact that we

respond to messageα j only if we had previously responded to the messagesα1, . . . ,α j −1.

In the present setting we use the following definition ofM-good vectors.

Definition:iiiiiiiii We say that a vector ( x,RM,β(1), . . . ,β(t) ) is M-good if

convM( x,RM,β(1), . . . ,β(t) ) is an accepting conversation for the (honest) verifierV. We say

that ( x,RM,β(1), . . . ,β(t) ) is (i 1 , i 2 , . . . , im)-good if it is M-good and the corresponding

conversation hasα j = α(i j ) andβ j = β(i j ), for j = 1,...,m.

The following Lemma is analogous to Lemma 6.3.

Lemma 6.4: Let k = 2.m+1 be a constant and let<P,V > be ak-round Arthur-Merlin pro-

tocol for a languageL. Suppose<P,V > is black-box simulation zero-knowledge, and let

M be a black-box simulator as above. Then,

(1) For stringsx outsideL, only a negligible portion of the vectors( x,RM,β(1), . . . ,β(t) )

areM-good.

(2) For strings x in L there exists a non-negligible portion of the vectors

( x,RM,β(1), . . . ,β(t) ) that areM-good.

(This non-negligible portion is at least one half of the completeness probability of
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the protocol<P,V >, i.e. the probability thatP convincesV to acceptx).

Proof of Theorem 6.1: Using Lemma 6.4 we get that the algorithm described in the

proof of Theorem 6.1 for the special case of AM(3) (see section 6.1) is a BPP algorithm

for the languageL. a

Proof of Lemma 6.4: This proof is essentially analogous to the proof of Lemma 6.3,

although some delicate modifications are required.

Part (1):iiiiiii Assume that the portion ofM-good vectors( x,R ,β(1), . . . ,β(t) ) for x’s not in L is

not negligible. This means that there exist infinitely manyx ∈| L for which the portion of

M-good vectors is non-negligible. Observe that there are only polynomially many dif-

ferent sequences1≤ i 1 < i 2 < ...< i m ≤ t (i.e. ( m

t (n)
), andm is a constant), and then for eachx

as above, there exists a sequence(i 1 , i 2 , . . . , im) for which non-negligibly many vectors

( x,RM,β(1), . . . ,β(t) ) are(i 1 , i 2 , . . . , im)-good. Next, we describe a proverP* which con-

vinces the (honest) verifierV to accept any of the above inputsx ∈| L with non-negligible

probability, thus contradicting the soundness condition of the protocol<P,V >.

The proverP* begins by choosing a sequence(i 1 , i 2 , . . . , im) at random. Then, it

chooses random stringsRM,β(1), . . . ,β(i 1−1) and uses them to compute

α1 = αM(x,RM,β(1), . . . ,β(i 1−1)). It sendsα1 to V and receives back the responseβ1. Now P*

chooses random β(i 1+1), . . . ,β(i 2−1) and computes

α2 = αM(x,RM,β(1), . . . ,β(i 1−1),β1,β(i 1+1), . . . ,β(i 2−1)). After receiving the responseβ2 from

the verifier, P* selects new random stringsβ(i 2+1), . . . ,β(i 3−1), and computes

α3 = αM(x,RM,β(1), . . . ,β(i 1−1),β1,β(i 1+1), . . . ,β(i 2−1),β2,β(i 2+1), . . . ,β(i 3−1)). This process con-

tinues until all messagesαi , βi , 1≤ i ≤m, are computed and exchanged. In case that the

resultant vector(x,RM,β(1), . . . ,β(i 1−1),β1,β(i 1+1), . . . ,β(i 2−1),β2, . . . ,β(t)) is (i 1 , i 2 , . . . , im)-

good then computing the functionconvM on this vector results in an accepting (forV)

conversation(x,α1,β1, . . . ,αm,βm,γ) (with αi , βi , as defined above). But then by sending

this γ the proverP* convincesV to accept. The probability that this happens equals the

probability that the above vector(x,RM,β(1), . . . ,β(i 1−1),β1,β(i 1+1), . . . ,β(i 2−1),β2, . . . ,β(t)) is

(i 1 , i 2 , . . . , im)-good. Since this sequence of indices and all the vector components

(excludingx) are chosen at random (recall thatV chooses its messages,β1, . . . ,βm, at ran-

dom!) then this probability is non-negligible.

Part (2):iiiiiii The proof of this part is analogous to the corresponding proof in Lemma 6.3.

We use a setHn of t (n)-independent hash functions (t (n) as defined in this section) to

define a family of verifiersVh
* . For all h ∈ Hn, the verifierVh

* responds to a legal message

α sent by the prover withh (α), and with a rejection message ifα is illegal. The
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statements for Claims 1 and 2 remain the same, as well as the proof of Claim 2. The

proof of Claim 1 needs a more delicate argument, as follows. As in the AM(3) case we

consider the interaction between the proverP and a verifierVh
* , but now this interaction

generates a conversation of the form(x,α1,β1, . . . ,αm,βm,γ). In particular, for eachh and

random tapeRP for P a unique sequence of messagesβ1, . . . ,βm (the responses ofVh
* ) is

determined. We have to show that for every tapeRP all sequencesβ1, . . . ,βm are equi-

probable forh ∈R Hn. The proof of this property uses a similar argument as the proof of

claim 2: observe that the pairRP andh generates the responsesβ1, . . . ,βm if and only if

for every i, 1≤ i ≤ m, h (αP(x,RP,β1, . . . ,βi −1))=βi . (HereαP stands for the function com-

puted byP in order to determine its next messageα). Thus, the probability (forh ∈R Hn)

that a given sequenceβ1, . . . ,βm is generated is as the probability that for everyi,

1≤ i ≤ m, h mapsαP(x,RP,β1, . . . ,βi −1) into βi . Since the functionsHn arem-independent

(by definition they aret (n)-independent, butm≤t (n)), and the messagesα1, . . . ,αm output

by P are all different by convention, we get that the latter probability is the same for

every sequenceβ1, . . . ,βm.

From this property of the pairsRP andh we conclude that the the probability thatP and

Vh
* (for h ∈R Hn) output an accepting conversation is exactly the same as the probability

thatP and the honestV output such a conversation.

The rest of the proof follows as in Claim 1 of Lemma 6.3.a

Remark 6.4: Notice that the proverP* described in the proof of part (1) of Lemma 6.4

is a polynomial-time prover. The other parts of the proof of Theorem 6.1 also hold for

such provers and then we get that our result remains valid also in the setting of interac-

tive arguments.

6.3 The case IP(3)

In the setting of general interactive proofs the (honest) verifier is not restricted to

choose all its messages at random, but can compute them based on the inputx, a random

("secret") stringr and the previous messages of the prover. In the case of 3 rounds this

means that the only message sent byV during the protocol is computed by means of a

(deterministic) functionβV(x,r,α), whereα is the first message sent byP. Also, in this

caseV accepts or rejects a conversation based on a predicateρV(x,r,α,γ) (γ is the last mes-

sage sent byP).

Here we outline the proof of Theorem 6.2, based on the proof presented in section

6.1 for the AM(3) case.
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Proof of Theorem 6.2(outline): Let L be a language having a 3-round interactive proof

which is black-box simulation zero-knowledge. Let<P,V > be such a protocol and letM

be the corresponding black-box simulator. The simulation process consists of several

tries, in each of them the simulator feeds the black-boxV* with argumentsy (the input)

andα (the prover’s message), and gets an answerβ from V* . (Again, it suffices to con-

sider a simulator just able to simulate conversations with deterministic verifiers, so this

simulator does not feedV* with a random tape). We assume the same conventions on the

simulator as the ones described in section 6.1 for the proof of the AM(3) case:

g The simulator always outputs a conversation of the form(x,α,β,γ), wherex andα are

fed into the black-boxV* in one of the simulator tries, andβ is the response ofV* to

these arguments.

g The simulator runs in strictly polynomial-time. In particular,t (n) stands for the

polynomial bound on the number of tries made byM on inputs of lengthn during the

simulation process (the case of expected polynomial-time simulators is handled

exactly as in Remark 6.1).

The main modification with respect to the proof of the AM(3) case is in the way we use

the simulatorM as a subroutine for constructing the BPP algorithm for the languageL.

Recall that the whole simulation process is completely determined by the input to the

protocol,x, the contents ofM’s random tape,RM, and the responses by the verifier. This

was true for the AM(3) case and remains true here. In the former case we usedM as a

subroutine by feeding it withx and a randomly chosen stringRM. Then, we usedt = t (n)

random stringsβ(1), . . . ,β(t) as the responses of the virtual verifier. In the present case we

choose a stringRM as before, andt random strings denotedr (1), . . . ,r (t), each of length

l (n), where l (n) is a (polynomial) bound on the number of random bits used by the

(honest) verifier in the IP(3) protocol<P,V >. The idea is to use these strings as the ran-

dom coins of the virtual verifier for respondingM’s tries. More precisely, for each try by

the simulator, consisting of an inputy to the protocol and a messageα, we compute

β = βV(y,r (i ),α), and feed it intoM as the verifier’s response toα. For each new try we use

a newr (i ) (in increasing order ofi), except in the case in which the presentα was also

presented in a previous try. If so, we use samer (i ) as in that case.

Note that a unique conversation is determined byx, RM and thet strings r (1), . . . ,r (t).

Thus, as in the case AM(3), we can defineconvM(x,RM,r (1), . . . ,r (t)) to be the conversa-

tion output byM when the described process is finished. Also we denote byα(i ) the i-th

different α output byM during the simulation. Clearly,α(i ) is uniquely determined by

x,RM, and the stringsr (1), . . . ,r (i −1), thus we denoteα(i ) = αM( x,RM,r (1), . . . ,r (i −1) ).

By our convention onM, if conv( x,RM,r (1), . . . ,r (t) ) = (x,α,β,γ) thenM explicitly tried the
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argumentsx andα during the simulation, and got as response the stringβ. This means

that there exists (at least one)i, 1≤ i ≤ t, such thatβ = βV(x,r (i ),α). This fact is used in the

following definition.

Definition:iiiiiiiii We say that a vector ( x,RM,r (1), . . . ,r (t) ) is M-good if

conv( x,RM,r (1), . . . ,r (t) ) = (x,α,β,γ) and ρV(x,r (i ),α,γ) = ACCEPT, where i is minimal for

which β = βV(x,r (i ),α). According to this value ofi, we call the conversation(M,i )-good

(or i-goodfor short).

Using this re-definition of the notion ofM-goodness, Lemma 6.3 of section 6.1 also holds

in the present (IP(3)) case, by just changing in the formulation of the lemma theβ(i ) nota-

tion by r (i ). Theorem 6.2 then follows by using the BPP algorithm as described in the

proof of the AM(3) case. For the proof of Lemma 6.3 in the present case we note the fol-

lowing simple modifications. In the proof of part (1) we use the same reasoning as in the

corresponding proof in section 6.1 but applied to the stringsr (i ) instead ofβ(i ). We note

that the soundness probability of the protocol is now defined over the random coins used

by V, i.e. over the choicesr (i ). For the proof of the other part of the lemma we slightly

modify the definition of the verifiersVh
* . We still use the same family of hash functions,

but the verifierVh
* works as follows: on messageα sent by the prover,Vh

* responds with

β = βV(x,h (α),α), i.e. it computesβ as the honest verifier does, but usingh (α) as the ran-

dom coins ofV. The rest of the proof (including Claims 1 and 2) remains essentially

unchanged (up to the replacement of "responsesβ(i )" by "random coinsr (i )"). a

Remark 6.5: As in the previous cases also the IP(3) case extends to the setting of

interactive arguments. The modifications in the proof are analogous to the ones described

in Remark 6.3.

7. CONCLUDING REMARKS

Although the results presented in this paper are negative in nature, we believe that

they have played a positive role in the development of the field.

We believe that sequential composition is a fundamental requirement of zero-

knowledge protocols. It is analogous to requiring that adding two algebraic expressions,

each evaluating to zero, yields an expression which evaluates to zero. Furthermore,

sequential composition is required when using zero-knowledge proofs as tools in the

design of cryptographic protocols (an application which is the primary motivation of

zero-knowledge).The fact that the original formulation of zero-knowledge is not closed

under sequential composition establishes the importance of augmenting this formulation

by an auxiliary input(cf. [GO, Ore, TW, Gol]). It should be stressed, of course, that all

known zero-knowledge proofs satisfy also the augmented formulation.
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Parallel composition is the key to improving the efficiency (in terms of number of

rounds) of zero-knowledge protocols, but we do not believe that it is a fundamental

requirement. Carrying the analogy of the previous paragraph, one cannot require that

‘‘interleaving’’ two expressions (each evaluating to zero) yields an expression which

evaluates to zero.The fact that all known formulations of (computational) zero-

knowledge are not closed under parallel composition motivates the introduction of

weaker notions such aswitness indistinguishability [FS2]which suffice for many applica-

tions. Namely, instead of strengthening the hypothesis of the alleged ‘‘Parallel Composi-

tion Theorem’’ (as done in the case of Sequential Composition), one relaxes the conclu-

sion of the ‘‘Parallel Composition Theorem’’ (and this weaker conclusion turns to suffice

in many applications).

The fact that (‘‘non-trivial’’) black-box zero-knowledge proofs cannot be both of

AM type and of constant number of rounds establishes the importance of ‘‘private coins’’

in the design of constant-round zero-knowledge proofs. In other words, in the process of

such proofs, the verifier must ‘‘commit’’ (and later ‘‘decommit’’) to some pieces of

information. In fact, such commitments are the core of the constant-round zero-

knowledge proofs (and arguments) for any language inNP presented in [BCY, FS1, GK]

(relying on various reasonableintractability assumptions) and in the (unconditional)

zero-knowledge proof for Graph Isomorphism presented in [BMO1].
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APPENDIX: Proof of existence of P/poly-evasive pseudorandom ensembles

In this appendix we present the proof of Theorem 3.2.

Theorem 3.2.There exists a P/poly-evasive ensembleS(1) , S(2) ,... with Q(n) = 4n, such

that for everyn, eachSi
(n) is a (2n /4 , 2−n /4)-pseudorandom set of cardinality2n. Further-

more, there exists a Turing machine which on input1n outputs the collectionS(n).

Proof: For any integern, we denote byR(n) the collection of setsS⊆ {0,1} 4n of cardinal-

ity 2n which are(2n /4 , 2−n /4)-pseudorandom; and byC(n) the set of (deterministic) circuits

of size2n /4 havingn inputs and4n outputs.

We prove the theorem by showing, for any large enoughn, the existence of2n sets

S1, . . . ,S2n from R(n) such that for any circuit C ∈ C(n), and i ∈R {1, . . . , 2n} ,

Prob ( C (i ) ∈ Si ) < 2−n /4. Denoting this collection of2n sets byS(n), we get that the resul-

tant sequenceS(1) , S(2) ,... is a P/poly-evasive ensemble that satisfies the conditions of

Theorem 3.2. We stress that considering only deterministic circuits does not restrict the

generality, since we can wire in such a circuit a sequence of "random coins" that maxim-

izes the probabilityProb ( C (i ) ∈ Si ) .

We turn to show the existence of a collection of sets as described above. We do it by

proving that there exists a positive probability to randomly choose2n setsS1, . . . ,S2n

from R(n) with the above evasivity property.

For a fixed C ∈ C(n) and a fixed i , 1≤ i ≤ 2n, consider the probability, denoted

ProbS ( C (i ) ∈ S) , that the elementC(i ) belongs to theS, for S uniformly chosen over all

subsets of{0,1} 4n of size2n. Clearly,

Prob ( C (i ) ∈ S) = 1−
( 2n

24n

)

( 2n

24n−1
)

hhhhhhhhhhhhhh

=
24n

2n
hhhh <

22n

1hhhh .

We call a setS⊆ {0,1} 4n, | S | = 2n, C-bad if there exists somei , 1≤ i ≤ 2n such that

C (i ) ∈ S. Fixing a circuit C, we have that forS uniformly chosen over all subsets of

{0,1} 4n of size2n,

ProbS( S is C−bad ) ≤
i =1
Σ
2n

ProbS ( C (i ) ∈ S) < 2n2−2n = 2−n.

In [GK] it is proven that the measure ofR(n) (i.e. the proportion of setsS which are

(2n /4 , 2−n /4)-pseudorandom) is at least1− 2−2n /4
. Therefore, for each circuitC ∈ C(n) the

probability, hereafter denoted aspC, to uniformly choose fromR(n) a setSwhich isC-bad

is

pC = ProbS( S is C−bad | S∈ R(n)) <
1− 2−2n /4

2−n
hhhhhhhh
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We now proceed to compute the probability that for a fixed circuitC ∈ C(n), a collection

of 2n randomly chosen sets fromR(n) contain a significant portion ofC-bad sets. We

define as "significant" a fractionpC + δn. (The quantityδn will be determined later). Letρ

be a random variable assuming as its value the fraction ofC-bad sets on a random sample

of 2n sets fromR(n). Clearly, the expected value ofρ is pC. Using Hoeffding’s inequality

[Hoe] (see also [GK]) we get that

Prob ( ρ ≥ pC + δn ) ≤ e
−2 2n δn

2

.

i.e. this quantity bounds the probability of choosing at random2n sets fromR(n) among

which the fraction ofC-bad sets is larger thanpC + δn.

Recall that we are interested to choose2n sets that are evasive forall the circuitsC ∈ C(n).

That is, we require that foranyC, the number ofC-bad sets among the2n sets we choose

is negligible. In order to bound the probability that2n randomly selected setsdo not

satisfy this condition, we multiply the above probability, computed for a single circuit, by

the total number of circuits inC(n) which is at most2(2n /4)2
= 22n /2

. Puttingδn =
√dd2

2−n /4
hhhhh we

get

22n /2 .e−2 2n δn
2

= 22n /2 .e−2 2n 2
−

2
nhhh −1

= 22n /2 .e−2n /2
< 1 .

We conclude that there exists a positive probability that2n setsS1, . . . ,S2n chosen at ran-

dom from R(n) have the property that for any circuitC ∈ C(n) the fraction ofC-bad sets

amongS1, . . . ,S2n is less thanpC + δn. Therefore, such a collection of sets does exist.

Finally, we bound, for this fixed collectionS1, . . . ,S2n , and for any circuitC ∈ C(n), the

probabilityProbi (C (i ) ∈ Si ), for i randomly chosen from{1, . . . , 2n} . We have

Probi (C (i ) ∈ Si ) = Probi (C (i ) ∈ Si | Si is C−bad ) .Probi (Si is C−bad )

+ Probi (C (i ) ∈ Si | Si is not C−bad ) .Probi (Si is not C−bad )

≤ 1. (pC + δn) + 0 <
1− 2−2n /4

2−n
hhhhhhhh +

√dd2
2−n /4
hhhhh < 2−n /4

Therefore, we have shown for every circuitC of size2n /4 thatProbi (C (i ) ∈ Si ) < 2−n /4, thus

proving the required properties of the setsS1, . . . ,S2n .

Such a collection can be generated by a Turing machine by considering all possible col-

lections{ S1, . . . ,S2n } and checking whether they evade all the circuits in the setC(n).

a


