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Testing properties of distributions

• General question:

– Test if a given probability distribution has a given property

Examples:

- is given distribution uniform?

- are two distributions identical?

- are two distributions independent?

Distribution is available by accessing only samples 
drawn from the distribution



Testing properties of distributions

• Typical result:

– Given a probability distribution on n points, we can test if it’s 
uniform after seeing ~       random samples 

[Batu et al ‘01]

Lots of research in statistics

Some recent research in algorithms
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Testing = distinguish between uniform distribution and 
distributions which are ²-far from uniform

²-far from uniform: P
x2­ jPr[x]¡ 1

n
j ¸ ²

error probab. · 1/3



Testing properties of distributions

• Typical result:

– Given a probability distribution on n points, we can test if it’s 
uniform after seeing ~       random samples 

[Batu et al ‘01]

• Similar bounds for testing 

• if a distribution is monotone

• if two distributions are independent

• …
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Testing properties of distributions

• Typical result:

– Given a probability distribution on n points, we can test if it’s 
uniform after seeing ~       random samples 

[Batu et al ‘01]

Many properties of distributions can be tested in time sublinear 

in the domain/support size (typically, with nO(1) samples)
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Testing properties of distributions

• Typical result:

– Given a probability distribution on n points, we can test if it’s 
uniform after seeing ~       random samples 

[Batu et al ‘01]

• What if distribution has infinite support?

• Continuous probability distributions?
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Testing properties of continuous distributions

• Typical result:

– Given a probability distribution on n points, we can test if it’s 
uniform after seeing               random samples

– random samples are necessary

£(
p
n)

• Given a continuous probability distribution on [0,1], can 

we test if it’s uniform?

• Impossible

• Follows from lower bound for discrete case with n!1
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Testing properties of continuous distributions

• What can be tested?

• First question: 

test if the distribution is indeed continuous



Testing properties of continuous distributions

• Dual question:

Test if a probability distribution is discrete

• Prob. distribution D on  is discrete on N points

if there is a set X µ , |X| · N, st. PrD[X]=1

• D is ²-far from discrete on N points if

8 X µ , |X| · N

PrD[X] · 1-²



Testing if distribution is discrete on N points

• We repeatedly draw random points from D

• All what can we see:

– Count frequency of each point

– Count number of points drawn

For some D (eg, uniform or close):

• we need to see first multiple occurrence

Gives a hope that can be solved in sublinear-time

Shows that we cannot be better than ­(
p
N)
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Testing if distribution is discrete on N points

Key property: 

• two distributions that have identical first log£(1)N moments

• their expected frequencies up to log£(1)N are identical

Raskhodnikova et al ’07 (Valiant’08):

Distinct Elements Problem:

• D discrete with each element with prob. ¸ 1/N

• Estimate the support size

(N1-o(1)) queries are needed to distinguish instances 
with · N/100 and ¸ N/11 support size



Testing if distribution is discrete on N points

Corollary: Testing if a distribution is discrete on N 
points requires (N1-o(1)) samples

Raskhodnikova et al ’07 (Valiant’08):

Distinct Elements Problem:

• D discrete with each element with prob. ¸ 1/N

• Estimate the support size

(N1-o(1)) queries are needed to distinguish instances 
with · N/100 and ¸ N/11 support size



• We repeatedly draw random points from D

• All what can we see:

– Count frequency of each point

– Count number of points drawn

Testing if distribution is discrete on N points

• Can we get O(N) time?



• Testing if a distribution is discrete on N points:

Testing if distribution is discrete on N points

• If D is discrete on N points then we will accept D

• We only have to prove that 

• if D is ²-far from discrete on N points, then we will reject with 

probability >2/3

•Draw a sample S = (s1, …, st) with t = 2N/²
•If S has more than N distinct elements 

then REJECT
else ACCEPT



Testing if distribution is discrete on N points

D is ²-far from discrete on N points, then reject with prob >2/3

•Draw a sample S = (s1, …, st) with t = 2N/²
•If S has more than N distinct elements 

then REJECT
else ACCEPT

D is ²-far from discrete on N points )

² Assuming that we haven't chosen n points yet, we choose a new point with

probability at least ²

After (1 + o(1))N=² samples, we choose N + 1 points with prob. ¸ 0:99

D is ²-far from discrete on N points i®

8X µ ­, if jXj · N then PrD[­ nX] ¸ ²

• Testing if a distribution is discrete on N points:



Testing if distribution is discrete on N points

Can we do better (if we only count distinct elements)?

D: has 1 point with prob. 1-4² and         2N points with prob. 2²/N

D is ²-far from discrete on N points

We need (N/²) samples to see at least N points

•Draw a sample S = (s1, …, st) with t = 2N/²
•If S has more than N distinct elements 

then REJECT
else ACCEPT

• Testing if a distribution is discrete on N points:



Open problem

What is the complexity of testing if
distribution is discrete on N points?

Upper bound: O(N/²)
Lower bound: (N1-o(1))

Open problem: close the gap



Testing continuous probability distributions

• What can we test efficiently?

– Complexity for discrete distributions should be 

“independent” on the support size

• Uniform distribution … under some conditions

• Rubinfeld & Servedio’05:

– testing monotone distributions for uniformity



Testing uniform distributions (discrete)

Rubinfeld & Servedio’05:

• Testing monotone distributions for uniformity

D: distribution on n-dimensional cube; D:{0,1}n!R

x,y 2 {0,1}n, x ¹ y  iff 8i: xi· yi

D is monotone if x ¹ y  Pr[x] · Pr[y]

Goal: test if a monotone distribution is uniform

Rubinfeld & Servedio’05:
Testing if a monotone distribution on n-dimensional 

binary cube is uniform:
•Can be done with O(n log(1/²)/²2) samples
•Requires (n/log2n) samples



Testing continuous distributions

Rubinfeld & Servedio’05:

• Testing monotone distributions for uniformity

D: distribution on n-dimensional cube; D:{0,1}n!R

x,y 2 {0,1}n, x ¹ y iff 8i: xi· yi

D is monotone if x ¹ y  Pr[x] · Pr[y]

Goal: test if a monotone distribution is uniform

D: distribution on n-dimensional cube;

density function f:[0,1]n ! R

x,y 2 [0,1]n, x ¹ y iff 8i: xi · yi

D is monotone if x ¹ y  f(x) · f(y)



Testing continuous distributions

D: distribution on n-dimensional cube;

density function f:[0,1]n ! R

x,y 2 [0,1]n, x ¹ y iff 8i: xi · yi

D is monotone if x ¹ y  f(x) · f(y)

Rubinfeld & Servedio’05:
Testing if a monotone distribution on n-dimensional 

binary cube is uniform:
•Can be done with O(n log(1/²)/²2) samples
•Requires (n/log2n) samples

Lower bounds holds for n-dimensional real cubes

Upper bound: ???



Testing monotone distributions for uniformity

To test uniformity, we need to characterize monotone 
distributions that are ²-far from uniform

On the high level: 

– we follow approach of Rubinfeld & Servedio’05;

• details are different

1
2

R
x2­ jf(x)¡ 1jdx ¸ ²D is ²-far from uniform if

L1 distance between f and uniform distribution



Testing monotone distributions for uniformity

D is ²-far from uniform if 1
2

R
x2­ jf(x)¡ 1jdx ¸ ²

Key Technical Lemma:

Let g:[0,1]n!R be a monotone function with sx g(x) dx = 0 thenZ

x

kxk1 ¢ g(x)dx ¸
1

4

Z

x

jg(x)jdx

Key Lemma:
If D is a monotone distribution on [0,1]n with density function f 

and which is ²-far from uniform then

Ef [kxk1] =
Z

x

kxk1 ¢ f(x)dx ¸
n

2
+

²

2

Key Lemma follows from Key Technical Lemma with g(x) = f(x)-1 



Testing monotone distributions for uniformity

Key Lemma:
If D is a monotone distribution on [0,1]n with density function f 

and which is ²-far from uniform then

Ef [kxk1] =
Z

x

kxk1 ¢ f(x)dx ¸
n

2
+

²

2

Uniform distribution:
If D is uniform on [0,1]n with density function f then

Ef [kxk1] =
Z

x

kxk1 ¢ f(x)dx =
n

2



Testing monotone distributions for uniformity

s = cn/²2

Repeat 20 times
Draw a sample S=(x1,…,xs) from [0,1]n

If i ||xi||1 ¸ s (n/2+²/4) then REJECT and exit
ACCEPT

Key Lemma:
If D is a monotone distribution on [0,1]n with density function f 

and which is ²-far from uniform then

Ef [kxk1] =
Z

x

kxk1 ¢ f(x)dx ¸
n

2
+

²

2



Testing monotone distributions for uniformity

s = cn/²2

Repeat 20 times
Draw a sample S=(x1,…,xs) from [0,1]n

If i ||xi||1 ¸ s (n/2+²/4) then REJECT and exit
ACCEPT

Theorem:
The algorithm below tests if D is uniform. 

Its complexity is O(n/²2).

Slightly better bound than the one by RS’05



Testing monotone distributions for uniformity

s = cn/²2

Repeat 20 times
Draw a sample S=(x1,…,xs) from [0,1]n

If i ||xi||1 ¸ s (n/2+²/4) then REJECT and exit
ACCEPT

Lemma 1: If D is uniform then 
Pr[i ||xi||1 ¸ s(n/2+²/4)] · 0.01

Lemma 2: If D is ²-far from uniform then

Pr[i ||xi||1 < s(n/2+²/4)] · 12/13

Easy application of Chernoff bound

By Key Lemma + Feige lemma



Testing monotone distributions for uniformity

Key Technical Lemma:

Let g:[0,1]n!R be a monotone function with sx g(x) dx = 0 thenZ

x

kxk1 ¢ g(x)dx ¸
1

4

Z

x

jg(x)jdx

Why such a bound:

Tight for g(x) = sgn(x1 – ½)
Z

x:x1>
1
2

kxk1 ¢ g(x) dx =
1

2

Z

x:x1>
1
2

(x1 + : : :+ xn) dx =
1

2

µ
3

4
+

1

2
+ : : :+

1

2

¶
dx =

n

4
+

1

8
:

Similarly,

Z

x:x1<
1
2

kxk1 ¢ g(x) dx =
1

2

µ
1

4
+

1

2
+ : : :+

1

2

¶
=

n

4
¡ 1

8
;

and hence,

Z

x

kxk1 ¢ g(x) dx =

Z

x:x1>
1
2

kxk1 ¢ g(x) dx¡
Z

x:x1<
1
2

kxk1 ¢ g(x) dx =
1

4
=

1

4
¢
Z

x

jg(x)j dx :



Testing monotone distributions for uniformity

Key Technical Lemma:

Let g:[0,1]n!R be a monotone function with sx g(x) dx = 0 thenZ

x

kxk1 ¢ g(x)dx ¸
1

4

Z

x

jg(x)jdx



Testing monotone distributions for uniformity

Let P = fx : g(x) ¸ 0g and N = fx : g(x) < 0g. Consider:
Z

x2N

Z

y2P
jg(x)¡ g(y)j dy dx :

For g(x) < 0 · g(y), we have jg(x)¡ g(y)j = jg(x)j+ jg(y)j.
Moreover

R
x2N jg(x)jdx =

R
y2P jg(y)jdy = 1

2

R
x
jg(x)jdx.

Hence:

=

Z

x2N

Z

y2P
(jg(x)j+ jg(y)j) =

Z

y2P

Z

x2N
jg(x)j+

Z

x2N

Z

y2P
jg(y)j

=
1

2

Z

y2P

Z

x

jg(x)j+ 1

2

Z

x2N

Z

y

jg(y)j =
1

2

Z

y

Z

x

jg(x)j =
1

2

Z

x

jg(x)j :

Since every pair (x;y) can satisfy at most one of the conditions (x;y) 2 P £N

and (x;y) 2 N £ P , we obtain:

Z

x2N

Z

y2P
jg(x)¡ g(y)j dy dx ·

1

2

Z Z

x;y

jg(x)¡ g(y)j dy dx :

Hence:

1

2

Z

x

jg(x)j dx =

Z

x2N

Z

y2P
jg(x)¡g(y)j dx dy ·

1

2

Z Z

x;y

jg(x)¡g(y)j dx dy :



Testing monotone distributions for uniformity

By considering all the possible relative placements of x and y within [0; 1]n and

splitting the domain accordingly, one can prove that

Z Z

x;y

jg(x)¡ g(y)j dy dx ·

Z Z

xÁy

0
@ X

(u;v)2D(x;y)

jg(u)¡ g(v)j

1
A dy dx ;

where D(f0; 1gn) is the set of all main diagonals of discrete cube f0; 1gn:

D(f0; 1gn) = f(x;y) 2 f0; 1gn £ f0; 1gn : xi = 1¡ yi for every ig



Testing monotone distributions for uniformity

Key Technical Lemma:

Let g:[0,1]n!R be a monotone function with sx g(x) dx = 0 thenZ

x

kxk1 ¢ g(x)dx ¸
1

4

Z

x

jg(x)jdx

Key inequalities in the proof:
1

4

Z

x

jg(x)j dx ·
1

4

Z Z

x;y

jg(x)¡ g(y)jdxdy

·
1

4

Z Z

xÁy

0
@ X

(u;v)2D(x;y)

jg(u)¡ g(v)j

1
A dxdy

·
1

2

nX

i=1

Z Z

xÁy

0
@ X

(u;v)2Ei(x;y)

jg(u)¡ g(v)j

1
A dxdy

·
1

2

nX

i=1

Z

x

(2xi ¡ 1)g(x)dx

·

Z

x

kxk1g(x)dx



Testing monotone continuous distributions

Rubinfeld & Servedio’05:
Testing if a monotone distribution on n-dimensional 

binary cube is uniform:
•Can be done with O(n log(1/²)/²2) samples
•Requires (n/log2n) samples

Here:
Testing if a monotone distribution on n-dimensional 

continuous cube is uniform :
•Can be done with O(n/²2) samples
•(Requires (n/log2n) samples)



Testing monotone continuous distributions

Further extension/application:

Testing if a monotone distribution on n-dimensional 
discrete cube {0,1,2,...,k}n is uniform:

•Can be done with O(n /²2) samples

Here:
Testing if a monotone distribution on n-dimensional 

continuous cube is uniform :
•Can be done with O(n/²2) samples
•(Requires (n/log2n) samples)



Conclusions

• Testing distributions on infinite/uncountable support 

is different from testing discrete distributions

– Continuous distributions are harder

• Challenge: understand when it’s possible to test

– Usually some additional conditions are to be imposed

• Tight(er) bounds?



Conclusions

• Continuous distributions are harder

• Is the L1-norm the right one?
– It doesn’t work well for continuous distributions

• Earth mover norm?
– How much mass has to be moved and how far to obtain a 

given distribution

– Ba, Nguyen, Nguyen, Rubinfeld 2009:

– Testing uniformity on [0,1] can be done in time f(1/²)

– Framework (holds for a variety of properties):

reduction to the problem on the support of size f(1/²)


