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We study the task of testing properties of probability distributions and our focus is on understanding
the role of continuous distributions in this setting. We consider a scenario in which we have access to
independent samples of an unknown distribution D with infinite (perhaps even uncountable) support (e.g.,
on the interval [0, 1] or on the n-dimensional real cube [0, 1]n). Our goal is to test whether D has a given
property or it is ε-far from it (in the statistical distance, with the L1-distance measure).

We study the task of testing properties of probability distributions. We consider a scenario in which we
have access to independent samples of an unknown distribution D with infinite (perhaps even uncountable)
support. Our goal is to test whether D has a given property or it is ε-far from it (in the statistical distance,
with the L1-distance measure).

The topic of testing basic properties of the underlying probability distributions has been extensively
studied for many decades. While the standard approach in statistics (and also more modern approaches,
e.g., in data mining) have led to the development of many high quality techniques and algorithms, until very
recently little attention has been paid to the computational complexity of testing in the situations when the
underlying distributions are over very large domains. Motivated by these considerations, a number of new
studies have emerged that aim at developing efficient testers for various properties of distributions with the
focus on the small number of samples used for testing. In particular, it has been shown that for a number of
fundamental properties, such as independence, entropy estimation, and the closeness between distributions,
it is possible to test the underlying distribution with the number of samples sublinear in the domain size.

While these studies lead to very efficient testers for various properties for distributions on finite support,
they seem to be useless when the underlying distribution is on a continuous, or infinite, or even uncountable
domain. In this paper, our goal is to study the phenomenon of testability of continuous distributions.

Setting. We assume that there is an underlying probability distribution D from which we can draw inde-
pendent identically distributed samples (see, e.g., [4]). We assume that each sample is of infinite precision
and we will not consider the issue of representation of the real numbers. The complexity of the tester is
measured in terms of the number of samples required in order to obtain a desired information about the
distribution.
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We study probability distributions over a domain Ω which will be either finite or infinite; our main focus
is on the domain Ω = [0, 1]n, n ∈ N, that is, (continuous) n-dimensional unit cube.

Recall, by the Radon-Nikodym theorem, that every distribution on Ω has a Lebesgue decomposition
into a sum of two parts: (i) continuous (with respect to the standard Lebesgue measure), that is, given by a
measurable density function f, (ii) singular (concentrated on a set of Lebesgue measure 0).

We study the similarity and dissimilarity between various distributions. Following the mainstream re-
search of testing properties of distributions in theoretical computer science, we use the total variation dis-
tance to measure the similarity between distributions (L1-distance). For any two discrete distributions X
and Y over Ω, defined by the probability functions PrX and PrY , respectively, we say Y is ε-far from X if

1

2
·
∑
ω∈Ω

|PrX [ω]−PrY [ω]| ≥ ε .

For general distributions, the definition is analogous: for any two distributions X and Y over Ω, with
density functions fX and fY , respectively, we say Y is ε-far from X if

1

2
·
∫
x∈Ω
|fX (x)− fY(x)| dx ≥ ε . (1)

We say Y is ε-close to X if Y is not ε-far from X .
Note that inequality (1) is equivalent to∫

x∈Ω:fX (x)≥fY (x)
(fX (x)− fY(x)) dx ≥ ε.

Let us remind that a distribution D over [0, 1]n with density function f is uniform if f is identically 1.
Therefore, for the uniform distribution, (1) can be rephrased as follows: A distribution D over [0, 1]n with
density function f is ε-far from uniform if

1

2
·
∫
x∈[0,1]n

|f(x)− 1| dx ≥ ε .

Our goal is to design an algorithm that for a given positive ε and a given underlying probability distribu-
tion Q and a probability distribution D available through random sampling, is able to distinguish between
the case when Q = D and when D is ε-far from it Q. The algorithm is allowed to be randomized and can
err with probability at most 1

4 .

Continuous distributions are typically not testable. In general, when using the total variation distance to
measure the similarity between distributions, it is infeasible to investigate interesting properties of distribu-
tions on infinite domains without any assumptions on the density function. For example, one can show that
for every integer t there is no tester A that distinguishes with at most t samples between uniform distribution
DU on [0, 1] and any distribution that is ε-far from uniform (for example, take a uniform distribution on t3

randomly chosen points from the interval [0, 1]; such distribution is discrete and hence it is 1
2 -far from uni-

form). This observation can be easily generalized to testing a number of natural properties for distributions
on infinite domains.

One can also derive similar impossibility results from the existing lower bounds for testing properties
of discrete distributions. For example, Batu et al. [4] (see also [6]) show that testing if a given distribution
on the support of size n is uniform requires Ω(

√
n/ε2) samples. With that, by taking n → ∞, the lower
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bound in [4] immediately implies that no algorithm can test if a given distribution on [0, 1] is uniform. This
approach implies also similar impossibility results for testing if a given distribution is monotone, unimodal,
or if two distributions are identical, are independent, and so on (see [1, 2, 3, 4, 5, 7, 8, 9] for more examples).

Once we see these negative result, the natural question is: what properties of distributions on infinite
domains can be tested?

Testing if a distribution is discrete on N points. In order to understand the problem of testing distribu-
tions on infinite domains, the very first question should be to test if a given distribution has infinite support.
We first briefly consider a dual question: to verify if a given distribution has support of up to a given size.
Recall, that a point x is called an atom of D if PrD[x] > 0. Detection of a single atom is not possible, since
its probability may be arbitrarily small, beyond the resolution of any given algorithm. Instead we may try to
determine whether a large part of the probability mass is concentrated on the atoms: for a given parameter
N , distinguish between distributions that have the entire support on at most N points (discrete on N points)
and those that are ε-far from discrete on N points.

A related question has been studied recently by Raskhodnikova et al. [7], who were interested in esti-
mating the size of the support of a given distribution under the assumption that every element in the support
is an atom (distribution is singular) with the probability at least 1

M . For such problem, Raskhodnikova et
al. [7] (see also [10]) show that one needs at least Ω(M1−o(1)) samples to estimate the size of the support.
On the other hand, it is easy to compute (exactly) the size of the support with O(M logM) samples (e.g.,
by using the approach from the coupon collector problem). Our goal is different than that in [7], because
on one hand, we do not have any lower bound for the probability of the points in the support (which makes
the task of even estimating the size of the support impossible), and on the other hand, we want to test if a
given distribution has at most N points in the support (rather than estimate the size of the support). Still,
one can rather easily that the lower bound result from Raskhodnikova et al. [7] carries over for our problem
and gives a lower bound for the sample size of Ω(N1−o(1)). One can also show that the following algorithm
sampling O(N/ε) elements is a testing algorithm that distinguishes between a discrete distribution on N
points and any distribution that is ε-far from discrete on N points with O(N/ε) samples.

Testing discreteness (N):

• Draw a sample (according to the distribution D) S = 〈s1, . . . , s`〉 from Ω with ` = d2N/εe

• If S has more than N distinct elements then Reject

• else Accept

Observe that this result immediately implies that we can estimate the smallest numberN of points in the
domain of D such that D has N points that have the total probability at least 1− ε using O(N/ε) samples.

The obtained lower and upper bound it is an interesting open question of whether the upper bound is
tight, that is, if every algorithm testing if a distribution is discrete on N points requires Ω(N/ε) samples.

Testing if a monotone high-dimensional distribution on a real hypercube is uniform. The main goal
of this work is to investigate if there are any interesting distributions on infinite domains that are testable.
One of a very few properties of discrete distributions considered in the Computer Science literature that
has only a light dependency on the size of the support (the condition that by our discussion above seems to
be necessary to hope for a fast tester) is that of testing if a monotone distribution1 on the Boolean cube is

1Distribution D is monotone if for any x = (x1, . . . , xn), y = (y1, . . . , yn), if xi ≤ yi for every i then PrD[x] ≤ PrD[y].
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uniform. Rubinfeld and Servedio [9] consider the following problem:
given a monotone distribution D on a Boolean n-dimensional cube {0, 1}n, test if D is uniform.

Rubinfeld and Servedio [9] show that without any assumption about the monotonicity of D, every testing
algorithm requires 2Ω(n) samples (because the domain’s size is 2n), however, if D is monotone, then one dis-
tinguishes between the case when D is uniform and when D is ε-far from uniform using O(n log(1/ε)/ε2)
samples. Furthermore, this result is almost optimal in the sense that Ω(n/ log2 n) samples are necessary [9].

Our main contribution is the analysis of this problem in the setting when D is a monotone distribution2

on an n-dimensional (real) cube [0, 1]n. On high-level our approach is similar to that used by Rubinfeld and
Servedio [9] in the case of Boolean n-cubes. However, the fact that we have to deal with continuous domain
makes our proof of the main result, Lemma 1, more complicated.

First, we provide a characterization of monotone distributions that are ε-far from uniform:

Lemma 1 Let D be a monotone distribution on [0, 1]n with density function f. If D is ε-far from uniform then

Ef[‖x‖1] =

∫
x
‖x‖1 · f(x) dx ≥ n

2
+

ε

2
.

The proof of this lemma can be deduced from the following result (which is the main technical contri-
bution of the paper) by substituting g(x) = f(x)− 1.

Lemma 2 Let g : [0, 1]n → R be a monotone function with
∫
x g(x) dx = 0. Then∫

x
‖x‖1 · g(x) dx ≥ 1

4

∫
x
|g(x)| dx .

By combining Lemma 1 with the fact that for uniform distribution Q on [0, 1]n we have EQ[‖x‖1] = n
2 ,

we can show that the following simple algorithm tests if a distribution is uniform or it is ε-far from uniform:

Testing uniformity:

• Repeat r = 20 times:

Draw a sample (according to the distribution D) S = 〈x1, . . . ,xs〉 from [0, 1]n with s = d 40nε2 e
If
∑s

i=1 ‖xi‖1 ≥ s(n
2 + ε

4 ) then Reject and exit

• Accept

Theorem 3 Testing uniformity distinguishes between uniform distribution on [0, 1]n and any monotone dis-
tribution over [0, 1]n that is ε-far from uniform. Its sample complexity is O(n/ε2) and it errs with the
probability at most 1

4 .

Our analysis not only extends the result from [9] to real cubes, but also leads to an algorithm slightly
faster than that from [9] (we shave off an O(log(n/ε)) factor) for both the Boolean and real hypercube. We
observe that since the lower bound from [9] can be directly carried over to the case of real [0, 1]n cubes, our
upper bound is almost optimal.

Let us also notice that our tester will work with the same complexity if the input is a monotone distribu-
tion on a discrete cube {0, 1, . . . , k}n. The obtained sample size is independent of k.

2A distribution D on [0, 1]n with density function f is monotone if for any x = (x1, . . . , xn), y = (y1, . . . , yn), if xi ≤ yi for
every i then f(x) ≤ f(y).
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Theorem 4 Let k be any positive integer and consider any n-dimensional finite grid {0, 1, 2, . . . , k}n. One
can test if a given monotone distribution D over {0, 1, 2, . . . , k}n is uniform with O(n/ε2) samples.
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