
Property Testing of Massively Parametrized problems - A
survey∗

Ilan Newman†

April 21, 2010

Abstract

We survey here property testing results for the so called ’massively parametrized’ model (or
problems). This paper is based on a survey talk gave at the workshop on property testing, Beijing,
Jan 2010.

1 Introduction
Property Testing of massively parametrized problems falls formally into the combinatorial property
testing definitions of [15]. However, due to some initial bulk of otherwise sporadic results, and to
some shifted focus, as will be explained in what follows, I find it natural to consider such problems
together and survey what seems now a collection of results in property testing that have much in
common.

I will assume in this survey, a knowledge of the standard definition of property testing. For details
on this, see [15, 8, 21].

To better understand the different focus between this ’model’ and the standard property testing
model, let us outline the main features of a problem in the standard model: To this end, each such
testing ’problem’ contains three main elements:

• A fixed structure: For each problem size n there is a fixed structure that determines all inputs.

• Inputs: A set of vectors associated with the structure, e.g, coloring of its points, (or sometimes
viewed as a function from the points of the structure to a certain range).

• The Property: A subset of all possible input vectors.

For example, consider the graph property of being bipartite, in the ’dense graph’ model. Given the
problem size n, the fixed structure is Kn, the complete graph on n vertices. (alternatively, the fixed
structure can be viewed also as an n× n array). The collection of inputs is the set of all subgraphs of
Kn which are just all possible graphs on n vertices. Alternatively, the inputs are all 0/1 coloring of

∗This work is based on a survey talk gave at the workshop on property testing, Beijing, Jan 2010.
†Department of Computer Science, University of Haifa, Haifa, Israel. E-mail: ilan@cs.haifa.ac.il. Research

supported in part by an Israel Science Foundation grant number 1011/06.

1

the n× n array, viewed as the adjacency matrix of graphs on n vertices. The property is the set of all
bipartite graphs on n vertices, or all labeling of the corresponding array.

Any other graph property induces a similar example. Thus all graph properties of graphs on n
vertices share the same fixed structure (that is Kn) and the same set of inputs.

For digraph properties, the fixed structure is again an array as above, and the set of inputs contains
all the Boolean labeling of it, with the corresponding interpretation of an input as a digraph.

When properties of Boolean functions are being considered, the fixed structure is the Boolean
cube (of a given dimension). The set of inputs are all 0/1 coloring of vertices of the cube, where each
coloring is viewed as Boolean function. A property is then, any subset of functions, e.g., the linear
functions, small-degree polynomials, monotone functions etc.

Lets us now examine a typical situation in the ’massively-parametrized’ model. For a given input
length, the structure is not fixed in advance. E.g., for the property of being bipartite, the structure
could be any graph G = (V, E) with m edges. The inputs would be all 0/1 coloring of the edges of
G, each viewed as defining a subgraph of G. The property is then all those subgraphs G′ ⊆ G that are
bipartite. Likewise, any graph property can be considered, e.g., Eulerianity, being connected, being
H-free for some fixed graph H etc.

Properties of digraphs can be considered in a similar way. The structure is any given digraph,
the inputs: all subgraphs defined by 0/1 coloring of its edges, and the property - any collection of
subgraphs. One can also consider properties of induced subgraphs, rather than just subgraphs. Namely,
taking the same structure (either for the undirected or directed case), with the set of inputs being the
set of all Boolean coloring of the vertices, each viewed as an encoding of an induced (di)subgraph.

Examples of a different flavor are the following. Let the structure be a given Boolean circuit,
formula, or any other computational mechanism. The set of inputs will be the set of all assignments to
the Boolean variables (or appropriate input words to the computation - e.g., words over some alphabet
for, say, a given grammar/ automata, etc.). The property that is considered in this setting will be fixed:
that is, the set of all inputs accepted by the computation. We call this property the satisfiability (or
sometimes ’membership) property of the corresponding structure.

There are several points to be emphasized.

1. The distance - In all the examples above, the set of inputs can be viewed as all possible Boolean
vectors of a certain dimension that is defined by the structure. (E.g., the set of Boolean coloring
of the edges for the example of subgraph properties, or the set of assignments of all Boolean
variables for a given formula). Thus, the distance between inputs is just the hamming distance,
the same as it is in the standard model of property-testing (as per the definitions of [15]). In this
respect, all the examples considered above, as well as these that are discussed in what follows,
fall directly into the standard framework of property-testing.

2. By fixing the property, rather then the structure, the testability (or non-testability) of it becomes
a property of the structure, which becomes the focus of study. In particular, for the satisfiability
properties described above, the property is unique and fixed, while the structure varies.

3. Note that a test here may be viewed as being composed of two parts: a preprocessing part which
depends on the structure, and the ’standard testing’ part (usually some sampling of the input).
As the structure varies, one would expect that there is much to be changed in the test, which,
in turn, shifts somewhat the focus towards the input-independent algorithmic preprocessing of
the structure. Indeed in all positive examples, the tests exhibit significantly complicated and
interesting preprocessing.

2

In the rest of this survey we outline some of the results that may be viewed as falling into the
framework of massively parametrized property testing.

2 General Notations
In what follows a graph G = (V, E) is always undirected, unless explicitly said otherwise. Directed
graphs will be denoted similarly but, we will explicitly say that G = (V, E) is digraph (directed graph)
when applies.

For a graph G = (V, E) n will usually denote n = |V |, and will be considered as a parameter when
asymptotic results are stated. Namely, when O(), Ω(), etc. notations are used, one should interpret the
results as hold for the set of all graphs, and with the corresponding dependence on n.

Finally, the hamming distance between two vectors of u, v ∈ {0, 1}n is dist(u, v) = |{i| ui 6= vi}|.
For 0 < ε < 1, and two such n dimensional vectors, u, v, we say that u is ε-far from v is dist(u, v) ≥
ε · n, and ε-close otherwise.

3 Old results
As made clear above, massively-parametrized testing falls strictly into the area of combinatorial prop-
erty testing as defined formally in [15]. In particular, some older results may be viewed in retrospect
as results on massively-parametrized problems, although they have not been considered or stated as
such at the time. We review some of these results.

3.1 Testing membership in read-once branching programs:
In [20] the following problem is considered: Given a read-once deterministic oblivious branching
program P on n Boolean variables1, the set of inputs is the set of all Boolean assignments to the
variables. It is proved in [20] that the satisfiability (or membership) problem can be tested (non-
adaptively, 1-sided error test) using O(exp(2w/ε)) queries.

The preprocessing is rather heavy, but can be done in time poly(n).
We note that this result is a generalization of a result of [2] stating that testing membership in reg-

ular languages is testable. The result of [2] can already be viewed as fits the massively-parametrized
framework. There however, the preprocessing is ’light’ as the same fixed (hence constant size) au-
tomaton serves as the defining mechanism for every input length word.

3.2 Testing monotonicity in general posets:
Monotonicity testing in general posets generalizes monotonicity-testing of Boolean functions. Here a
poset P = (V,≤) is the given structure and the set of inputs is the collection of functions CV where
C is typically a total ordered set (e.g., C = [n] with the natural order, and in particular the Boolean
case n = 2) but could be taken as any poset. The fixed property here is the set of all functions that are
monotone, namely all such f for which f(x) >C f(y) implies that x >P y.

The main results in [9] are lower bounds for testing monotonicity for Boolean labeling of general
posets, and in particular, a construction of some posets for which monotonicity requires relatively large

1For readers that are not familiar with this concept, this can be replaced with, say, a depth d = O(1) Boolean formula
where each variable appears only once

3

query complexity (previous lower bounds where only for large range [11]). In addition it is shown in
[9] that monotonicity is testable when the poset is the transitive closure of an orientation of a tree (or
a forest) and C is Boolean. It is also shown that there is a test with O(log |V |/ε) queries when P
is the transitive closure of a directed acyclic graph (DAG) that as an undirected graph is of bounded
tree-width2.

There are some recent interesting generalization of the positive results above, as well as some
improvements (E.g., for posets induced by planar graphs) in [3], using 2TC-spanners. This will not be
further described here.

4 Contemporary results
Here we survey some of the more contemporary results.

As already discussed in the previous sections, one model for graph related properties is the fol-
lowing. The given but variable underlying structure is an undirected graph G = (V, E). The set of
inputs contains all Boolean assignments to the edges, namely {0, 1}E . The interpretation of an input
α ∈ {0, 1}E is either the subgraph of G that is defined by (V, E1) where E1 = {e ∈ E| α(e) = 1},
or as an orientation of the edges relative to a fixed orientation. E.g., one can interpret α as the digraph
Gα = (V, Eα) where

Eα = {(i → j)| i < j, α(i, j) = 1} ∪ {(i → j)| i > j, α(i, j) = 0}.

Most work in the model was done w.r.t. the later interpretation above, which was often referred to
as the orientation model.

4.1 Main results in the orientation model
For an undirected graph G = (V, E) and a property P of digraphs, one can consider the property
PG containing these orientations of G that have P . E.g., Eulerianity, being strongly connected, not
containing a forbidden subgraph H , etc. We refer to the set of all orientation of G as the G-orientations,
and denote such an orientation by ~G.

4.1.1 Testing H-freeness

Let H = (VH , EH) be a fixed directed graph. The digraph property of H-freeness contains all digraphs
that do not have a subgraph isomorphic to H , and is denoted by FH(G). A sink in a digraph is a vertex
v for which dout(v) = 0, namely, has no outgoing edges. Similarly v is a source if din(v) = 0. A graph
is source-free (analogously sink-free) if it contains no source.

The following Theorem is proved in [16].

Theorem 1 [16] Let H be a fixed digraph that is either source-free or sink-free. Then, for any O(1)-
bounded degree graph G and ε > 0, there is a 1-sided error ε-test for FH(G) making poly(1/ε)
queries.

2The test here has the same complexity even if the range is any total ordered set. There are other positive results in [9]
for special types of posets.

4

Proof. (Sketch.) Assume w.l.o.g that H is source-free. To make a G-orientation ~G, H-free, one can
pick a vertex v from each copy of H in ~G and reorient all edges so to make v a source. Obviously this
should be done sequentially picking no two adjacent vertices. This implies that if ~G is ε-far from being
H-free, every subset C ⊆ V that hits all copies of H in ~G must have |C| = Ω(n). Hence, sampling
a random vertex and checking its neighborhood of size |H| to discover if it belongs to a H-copy (and
reject if it does) is a test for H-freeness.

Note that the test relies on the fact that G is of bounded degree and that H is either source free or
sink free. One may wonder whether these conditions are truly necessary. We first address the issue of
being either source or sink free.

The simplest interesting digraph H that has both a source and a sink is P2, the path of length 2 on
3 vertices (every digraph with non-empty edge set is not P1-free). Testing P2-freeness is easy since
a G-orientation is P2-free if and only if G is bipartite G = (X, Y ; E) and all its edges are oriented,
say, from X to Y . Thus sampling a random edge is a good test. Going however one step further, it
is shown in [16] that testing P3-freeness requires a linear number of queries for some bounded degree
graphs. The reduction is from testing whether a 3-coloring of a 3-colorable graph is indeed a proper
coloring, which is shown to require a linear number of queries (implicit in [4]).

Regarding the degree restriction, we don’t know if this restriction is absolutely required, however,
[16] observed:

Let C6 be the directed cycle on 6 vertices.

Observation 4.1 [16] There exists an infinite family of graphs, each with O(1)-average degree, for
which every 1-sided error ε-test for the G-orientation property of C6-freeness makes (1/ε)Ω(log(1/ε))

queries.

The proof is immediate: testing triangle-freeness in the dense graph model is reducible to testing C6-
freeness in the orientation model where the underlying graph is a subdivided Kn. The result of [1]
completes the proof.

4.1.2 Testing strong connectivity

Strong connectivity is a very natural and basic property of digraphs. We are not aware of any universal
result for this property of G-orientation (namely, testability for every underlying graph). [16] presents
some initial positive results which we describe below.

We start with a few observations. Obviously, one may assume that the underlying graph G =
(V, E) is 2 edge-connected as otherwise no orientation is strongly connected. We can also assume
that |E| = O(|V |) as otherwise every G-orientation is ε-close to be strongly connected (by simply
orienting a minimal 2-edge connected subgraph of G to be strongly connected). Thus it is enough to
consider 2-edge connected sparse graphs.

Let D be a directed graph. We denote by SC(D) the DAG that is defined on the strongly connected
components of D in the standard way. A source component of D is a strongly connected component
C of D that corresponds to a source vertex in SC(D) (in other words, every edge between a vertex in
C and a vertex in V (D) \ C is directed away from C). A sink component of D is defined similarly.
The following is an observation (used in the context of testing directed graphs properties) from [5].

Observation 4.2 [5] Let G = (V, E) be a graph on n vertices, and ~G a G-orientation. If ~G has at
least Ω(n) sources or sinks components then a source or sink component of ~G can be found in O(1)
queries.

5

The only known test for strong connectivity of G-orientations is based on Observation 4.2. The
following property identifies a class of underlying graphs on n vertices for which any orientation that
is far from being strongly connected has Ω(n) sources or sinks.

Definition 1 A family of undirected 2-edge connected graphs {G = (V, E)} is called efficiently-
Steiner-connected if for every δ < 1 and graph G in the family, for every S ⊆ V such that |S| ≤ δ2|V |,
there is a connected subgraph T = (V ′, E ′) with S ⊆ V ′ and |E ′| ≤ 10δ|V |.

We note that the constant 10 and the function types of δ in the definition are somewhat arbitrary.

Theorem 2 [16] If G is efficiently-Steiner-connected then the G-orientations property of being strongly
connected is testable by a 1-sided error test.

We note that any ’slightly expanding’ graph is strongly-Steiner-connected, while for example, the cycle
is not. A simple application of Theorem 2 is given by the following two theorems.

Theorem 3 [16] For any G that is a linear expander graph as well for the
√

n×
√

n two dimensional
grid, the G-orientations property of being strongly connected is testable by a 1-sided error test.

4.2 Testing s− t Connectivity
Let G = (V, E) be an underlying graph, and s, t ∈ V (G). The G-orientations property of being s− t
connected is another natural property of digraphs. It is shown in [6] that this property is testable for
any underlying graph G. The test cannot easily be described. It is composed of a series of non trivial
reduction steps that finally reduces the problem to that of testing membership in a bounded width
branching program. The preprocessing, however, is in polynomial time. It seems that the dependence
on ε might be unnecessarily high, although we don’t know of a better algorithm or any non-trivial
lower bound.

We state the main theorem of [6]. Let P st
G be the G-orientation property of being s− t-connected.

Theorem 4 [6] For any undirected graph G, two vertices s, t ∈ V (G) and every ε > 0, there is a
1-sided error ε-test for the property P st

G with query complexity q such that,

q = (2/ε)2O((1/ε)(1/ε))

4.3 Testing Eulerianity
A digraph G = (V, E) is Euler if for every v ∈ V , dout(v) = din(v). It is shown in [12] that the
orientation problem of being Eulerian is not testable in general, even by 2-sided error tests. However,
the upper and lower bounds are still quite far apart. We state some of the results in [12].

Theorem 5 [12] There exists an infinite family of graphs for which every 1-sided error test for being
Eulerian must make Ω(|E|) queries.

The proof is based on the following observation: every 1-sided error test on far inputs must discover a
witness for non-Eulerianity. Clearly if a digraph is Eulerian then for every cut C = (S, S̄), the number
of edges oriented from S to S̄ equals the number of edges that are oriented in the opposite direction.
Such a cut will be called a balanced cut. Thus for a cut C, any orientation of at most half the edges of

6

C does not exclude the possibility that C is balanced. Indeed, it is shown in [12] that any witness for
non-Eulerianity must contain at least half the edges of some unbalanced cut.

The lower bound follows by constructing an underlying graph and set of orientations that are ε-far
from being Eulerian, and such that each unbalanced cut is of size Ω(|E|).

The lower bound for 2-sided error test is much weaker, however, it holds for bounded degree graphs
as well.

Theorem 6 [12] For every 0 < ε ≤ 1/64, every non-adaptive (2-sided) ε-test for Eulerian orien-

tations of bounded degree graphs must use Ω
(√

log n
log log n

)
queries. Consequently, every adaptive test

requires Ω(log log n) queries.

We note that [12] also show a stronger lower bound for 1-sided error tests for bounded degree
graphs, which will not be quoted here.

As for positive results, [12] include several (sublinear) upper bounds for testing Eulerianity. Their
complexity depends on the maximum and average degree of the underlying graph. There is, however,
a large gap between the upper bounds and lower bounds in this case.

4.4 Some lower bounds - an on-going work
Proving lower bounds for the subgraph model has been so far with limited success. In what follows
we present a fairly general lower bound for 1-sided error non-adaptive tests. We don’t know the
corresponding right bound for adaptive tests.

It will be easier now to switch to the interpretation of an input as a subgraph of the underlying
graph, rather than an orientation of it. Namely, let G = (V, E) be an underlying graph, an input
g ∈ {0, 1}E is identified with a subgraph Gg of G containing the edges that are assigned 1 by g. A
property will be interpreted as a collection of subgraphs of G.

Consider the property of being bipartite. Any 1-sided error test must find an odd cycle in every far
input. However, the graph G could be taken to be a bounded degree Ramanujan expander, hence, with
no short cycles. Thus an obvious lower bound for a 1-sided error test is the length of the shortest cycle
which would be Ω(log n) in that case. Can one do better ?

[13] prove a fairly general lower bound for any graph property in which every 0-witness contains a
cycle (e.g., bipartiteness). The lower bound holds only for non-adaptive tests and gives a result of the
type Ω(nα) for some 0 < α < 1.

We present here the results of [13]. For this we need to define the following distribution, analog
to the Erdös-Rényi random graph model G(n, p) for arbitrary underlying graph rather than for the
complete graph.

Definition 2 Let 0 < δ < 1 and G = (V, E). We define the distribution D(δ) on subgraphs of G as
follows. We select each edge of E independently, with probability δ, and set E ′ to include all the edges
that were selected. G′ = (V, E ′) is the resulting subgraph.

Theorem 7 [13] Let G = (V, E) be an underlying fixed graph of girth ≥ g. Let P a prop-
erty of subgraphs of G such that every 0-witness for P contains a cycle. If δ < 1 is such that
ProbD(δ)[dist(G′, P) > ε|E|] ≥ 0.8 then every 1-sided error ε-test for P requires at least Ω(δ−g/3)
queries.

7

We note that the constant 8 in the theorem is somewhat arbitrary.
Proof. (Sketch.) Since any witness for ε-far inputs contains a cycle, a 1-sided error test must find
a cycle on any far input. Let D be any distribution on ε-far inputs, and q > 0. Suppose that for every
fixed set of queries Q of size q, the probability (over D) that Q contains a cycle is bounded by, say 1/3
then, using Yao’s argument, every non-adaptive algorithm fails to find a cycle with probability 2/3 on
ε-far inputs, implying that any 1-sided error ε-test for P must make at least q queries.

Now let D = D(δ), with δ such that D(δ) is essentially concentrated on ε-far inputs, as stated by
the assumption of the theorem. For any fixed set Q ⊆ E(G), Q contains at most 2q end-points. Let v
be an end-point of an edge in Q. The probability that v is in a cycle C ⊆ Q is bounded by 2q2 · δg,
since there are only 2q2 possible end-points for the two disjoint path of length g/2 that start at v and
are part of a cycle of length at least g. Hence, by the union bound (on the 2q different v’s), we conclude
that the probability for finding a witness is bounded by 4q3δg, implying that q = Ω(δ−g/3) to guarantee
constant probability of finding a witness. We note that although D is not strictly concentrated on far
inputs but rather has most of its mass there, the proof does follow e.g, by formally using D∗ = D|Far
where Far is the event that the graph chosen according to D is indeed ε-far from P . It is standard to
show that D well approximates D∗.

Corollary 4.1 Let G = (V, E) be an underlying fixed graph of girth ≥ g. Let P be a property of
subgraphs of G for which every 0-witness for P contains a cycle. Assume further that dist(G, P) >
(1−δ)|E| for some fixed 0 < δ < 1/2. Then every 1-sided error δ-test for P requires at least Ω(δ)−g/3)
queries.

Proof. (Sketch.) Let G as above and δ for which the assumption of the corollary holds. By Chernoff
bound D(3δ) will be essentially concentrated on subgraphs of G that have at least 2δ|E| edges. Hence
by the assumption are δ-far from P . Thus the corollary is implied by Theorem 7.

Here are some applications of Corollary 4.1.
Let H be a fixed graph. A graph G contains H as a minor if after deletion and contraction of some

edges in G one arrives at a graph isomorphic to H . The graph property of not containing specific
minors is extensively studied in graph theory, e.g., extending planarity.

Theorem 8 Let H = (VH , EH) be a fixed graph containing a cycle. Then for some fixed ε, α > 0,
there is an infinite sequence of graphs {Gn}, where Gn is an n vertex graph, such that any non-
adaptive 1-sided error test for the Gn-subgraphs property of not having H as a minor must make
Ω(nα) queries.

We sketch the proof for H = Kr the complete graph on r ≥ 3 vertices. The same proof holds for any
such H .
Proof. (Sketch.) In view of Corollary 4.1 it is enough to show a high girth underlying graph that is
sufficiently far from being Kr-free. Lemma 4.1 asserts this for δ = 1/3.

Lemma 4.1 Let r be fixed, then there is a graph on n vertices G that has girth Ω(log n), and is
(2/3)-far from being Kr minor free.

Proof. Let G be a random graph from the standard Erdös-Rényi model of random graphs, G(n, c/n)
(namely, each edges is chosen with probability c/n and independent of any other edge), for c = c(r)
to be defined later.

8

It is standard to show that after deleting o(n) edges such a random graph will have (with very high
probability) girth g = Ω(log n), and at least cn/3 edges (or average degree at least 2c/3).

A theorem of Kostochka, Thomason [18, 22], asserts that every graph of average degree d contains
a K` for ` = `(d) = βd√

log d
as a minor, for some fixed universal constant β. This means that if we

fix c = a
β
r
√

log r, for large enough constant a, we are guaranteed that `(2c/9) > r. Hence, not only
that G has a Kr minor but also every subgraph of it containing 1/3 of the edges has such minor. We
conclude that G is 2/3-far from being Kr minor free.

As every 0-witness for not being H-free has a cycle, corollary 4.1 ends the proof.

For an underlying graph G = (V, E), let Bi(G) be the property of G-subgraphs containing these
subgraphs of G that are bipartite. Another application is for testing Bi(G).

Theorem 9 For some fixed ε, α > 0, threre is an infinite sequence of graphs {Gn}, where Gn is an n
vertex graph, such that any non-adaptive 1-sided error test for Bi(Gn) must query Ω(nα) queries.

Proof. (Sketch.) As any witness for non-bipartiteness must contain an odd cycle, it is enough, by
corollary 4.1 to show a high girth underlying graph that is sufficiently far from being bipartite. To
construct such graph, again we choose one from the random graph model G(n, c/n). It is not hard to
see that for large enough constant c, one can ensure that such a graph is 2/3-far from being bipartite,
simply since each partition will contain many edges with both endpoints inside the parts. To ensure
logarithmic girth, as before, one may delete o(n) edges to get rid of all small cycles.

A similar application with a similar proof is the following: For G = (V, E) and φ : E → {0, 1},
we now interpret φ as defining an orientation rather then a subgraph. The property Ac(G) contains all
~G-orientations that are acyclic.

Theorem 10 For some fixed ε, α > 0, there is an infinite sequence of graphs {Gn}, where Gn is an n
vertex graph, such that any non-adaptive 1-sided error test for Ac(Gn) must query Ω(nα) queries.

4.5 Testing membership in Boolean formulae
Testing membership in Boolean formula is a natural property and is extensively studied in TCS. We
have seen some corresponding testability results for the more general situation of membership in dif-
ferent models of language representation in Section 1. Here we concentrate on CNF formulae, and
formulae that are the conjunction of typically many small subformlae.

4.5.1 Constraint graph formulae

We start with a model for formulae that is quite related to the orientation model discussed in Section
4.1, and that was formulated in [17].

A constraint-graph is a labeled multi-graph (a graph where loops and parallel edges are allowed),
where each edge is labeled by a distinct Boolean variable, and every vertex is associate with a Boolean
function over the variables that label its adjacent edges3. A Boolean assignment to the variables satis-
fies the constraint graph if it satisfies every vertex function4. We associate with a constraint-graph G
the property of all assignments satisfying G, denoted SAT (G).

3One should not confuse this definition of ’constraint-graphs’ with the definition used by Dinur in [7]. There, each
vertex is associated with a distinct Boolean variable and the edges are labeled by constraints.

4Thus formulae are conjunction of the individual vertex formulae. One may similarly consider other types of top gates
to connect the vertex formulae, e.g, threshold gates, etc.

9

Thus, e.g., the property of subgraphs (or of G-orientations) of being Eulerian can be expressed
in an obvious way. Similarly, the property of G-orientations of not having a source vertex can be
expressed, as well as the property of edge bi-coloring so that each vertex sees both colors.

Obviously, formulae represented by constraint graphs are general enough to represent any Boolean
formula (as one can take a two vertex graph, with many parallel edges between the two vertices, and
any complex formula on one of the vertices). Hence, the interesting case is when further restrictions
are put on the complexity of the vertex formulae.

The main result of [17] is a test for the following class of Boolean formulae. For a vertex v ∈ V (G)
let Ev = {(v, w) ∈ E(G)}, namely all edges adjacent to v. For an assignment σ ∈ {0, 1}E and F ⊆ E
we denote by σ(F) the restriction of the assignment σ on F .

Definition 3 Let LDi be the set of constraint graph formulae obtained from an underlying graph G
such that for every two assignments σ1, σ2 and every vertex v with degG(v) ≥ 3, if σ1, σ2 do not satisfy
fv then either σ1(Ev) = σ2(Ev) or they differ on at least i variables.

Theorem 11 [17] For every constraint-graph G ∈ LD3 there exists a 1-sided error, non-adaptive
(ε, 2Õ(1/ε))-test for SAT (G).

The test is too complicated to be described here. We further mention that it is a generalization
of a test for the property of G-orientations of not containing a source. The preprocessing involved in
constructing the test, given G, is in polynomial time. We also note that this property, as well as the
property of edge bi-coloring in which each vertex sees edges of both colors are in the family LD3

(while the property of being Eulerian is not).
An interesting application of Theorem 11 is to better understand the testability ’boundary’ of the

membership problem for restricted CNF formulae. Obviously general CNF formulae are hard to test.
In [4] the authors show that there exists family of 3-CNF formulae that are highly non-testable (every
test requires linear number of queries). Hence some restriction on the formulae has to be put in order
to allow testability.

A Read-k-times formula is a formula in which every variable appears at most k times. By standard
arguments the result of [4] can also be extended to read-three times formulae (and any constant k ≥ 3
size clauses).

What about 2CNF ? It turns out that this does not yet allow testability either. A corollary from the
lower bound of [9] for testing monotonicity over general posets is that even monotone 2CNF are hard
to test (although the lower bound is far from being linear). This is so as in [9] a two leveled poset is
constructed for which monotonicity is hard to test. Thus this hard to test property can be expressed as
2CNF. Moreover, by renaming the variables it is, in fact, a monotone 2CNF5.

Theorem 11 implies that restricting the CNF to be Read-2-times (a.k.a ’read-twice’) already guar-
antee testability, disregarding the clause size. In view of the discussion above, this seems best possible
in this respect.

Corollary 4.2 Every read-twice CNF formulae is testable by a 1-sided error test.

Proof. A read-twice formula can obviously be represented by a constraint graph. Further, as per the
definition of LD3, clauses of size smaller than 3 pose no restrictions. Since every clause as only one

5The 2CNF can also be transformed into a read-3-times hard to test 2CNF using the standard reduction to bounded
number of occurrences of a variable.

10

0-assignment, every two non identical 0-assignments that falsify a clause of size 3 or more differ on at
least 3 variables. Thus Theorem 11 applies, and implies the claim.

One may wonder whetherLD3 is coincidental, namely areLD2 formulae testable. Indeed [10] (see
more details in [17]) noted that this is not the case: For every Boolean formula θ there is a formulae
φ ∈ LD2 so that for any q, there is an ε-test for θ-membership with q queries if and only if there is
an ε-test for φ-membership using q queries. To see this let θ be a Boolean formula over a set variables
X = {x1, . . . , xn}. Let G be the constraint-graph on two vertices {v, t}, that has n + 1 parallel edges
between v and t, one that is associated with the variable y and the rest n edges are labeled each with a
distinct variable in X . Let fv = y ⊕ (

⊕n
i=1 xi) and ft = θ(x1, . . . , xn) ∨ (y =

⊕n
i=1 xi). Obviously

the resulting graph G is in LD2. Given a test for one of the properties it is straightforward to build a
test for the other property.

4.5.2 Testing general Read-Once-formulae

Here we discuss testing membership in other restricted formulae that are not the results of [20] or [17].
Read-Once formulae are Boolean formulae with ∧ (AND) and ∨ (OR) gates in which every vari-

able appears at most once. In addition, in what follows, we will assume that each variable appear
unnegated, thus such formulae represent monotone Boolean functions.6 Read-Once formulae have
been studied extensively in the past, but surprisingly, not with respect to whether their corresponding
membership problem is testable. We note that bounded depth read-once formulae are represented by
constant width branching program, thus their testability follows from [20]. We present here a result of
Fischer, Lachish and Nimbhorkar that is much stronger.

Theorem 12 [14] For every read-once formula F, the membership problem for F is 1-sided error
testable.

We present a relatively detailed proof as the idea here is somewhat different from the standard ideas
one meets in property testing. The analysis we bring here implies an ε-test that has query complexity
(1/ε)O(1/ε), and that the test can be constructed (that is, the preprocessing) in polynomial time. A
variation of this idea and better analysis [14] implies a much better dependence on ε.
Proof. (Sketch), Along the sequel we identify the formula F with the Boolean function that it
computes F : {0, 1}n 7→ {0, 1}. We say that F is an ∨-formula if its top gate is ∨, similarly ∧-
formulae are defined. A single variable is considered both a ∨-formula and an ∧-formula.

We first note that the formula F may be assumed to be layered so that the entries to each ∨-gate
are variables or come from ∧-gates, and the entries for ∧-gates are variable or come from ∨-gates.

The test will be recursive w.r.t ε, that is, an ε-test for a ∨-formula will call a δ-test for a ∧-
subformula, with δ significantly larger than ε, while the test for ∧-formula will call a test for ∨-formula
with nearly the same ε. For this to end we first note that for any read-once ∨-formula F on at least two
variables, any assignment is 1/2-close to F−1(1).

Let F = ◦k
i=1Fk where ◦ is either ∨ or ∧. For any assignment x to F , x is naturally being

partitioned to x1, . . . xk, where xi, i = 1, . . . , k is an assignment to the variables in Fi. We keep
this notation and for each assignment x to F refer to x1, . . . , xk as the corresponding assignments for
F1, . . . , Fk.

We next describe a ∧-test for ∧-formulae and ∨-test for ∨-formula. In the following n is the
number of variables of F .

6This is w.l.o.g as the formula is known in this model, and by renaming we arrive to the desired situation.

11

ε-∧-test: Let F = ∧k
i=1Fk with Fi on si variables. If k = 1 and F1 is a single variable test

deterministically F1 by probing the variable.
Otherwise, independently for 9/ε2 times pick an i ∈ [k] with probability si/n and δ-∨-test Fi

independently twice, with δ = ε(1 − ε/3). If for the chosen i, both tests answer 1, set Ti = 1 and
otherwise set Ti = 0. If for any of the chosen i’s Ti = 0 stop and output 0 (that is reject x as not being
in F−1(1)), and otherwise (if for all i’s Ti = 1) accept x (as being ε-close to F−1(1)).

ε-∨-test: Let F = ∧k
i=1Fk with Fi on si variables.

If k = 1 and F1 is a single variable, deterministically test F1 using one query. If for some i,
si < εn, or if ε ≥ 1/2 stop and accept x (as being ε-close to F−1(1)).

Otherwise, for every i ∈ [k] set αi = ε · n/si and perform ` = 1 + log3 k independent times
αi-∧-test for Fi. For such i set Ti = 1 if all the ` independent tests return 1 and 0 otherwise. If any
of the Ti, i = 1, . . . , k has returned 1 accept x (as being ε-close to F−1(1)). Otherwise (if for every
i, Ti = 0) reject x as being ε-far from F−1(1).

To assert the correctness of the tests, assume inductively that both tests are 1-sided error and have
error probability at most 1/3 on smaller formulae for any ε (the reader may check this for the base case
of one gate formulae). It is easy to verify that both tests have 1-sided error assuming inductively that
they do on subformulae.

To assess the error probability of the ∧-test, assume that x is ε-far from a ∧-formula F . Then xi is
εi-far from being a member of Fi with

∑
εi · si

n
= ε. From this it follows, by simple average-argument,

that there are at most 1−ε2/3-fraction of the variables that may appear in Fi for which xi is (1−ε/3)ε-
close to Fi. Thus an error will occur on x only if all 9/ε2 i’s that are sampled resulted in Fi for which
xi is (1 − ε/3)ε-close to Fi, or when an i for which xi is (1 − ε/3)ε-far from Fi is sampled, and the
∨-test for Fi errs twice. The former event happens with probability smaller than e−3 and the later with
probability at most 1/9, resulting a total error bounded by 1/3.

For the ∨-test, note that if x is ε-far from being a member of F , namely one needs to change at
least εn bits of x in order to become in F−1(1), then in each xi one should change at least εn bits to
become a member of F−1

i (1). It follows that xi is at least αi-far from Fi. Hence, an error on x occurs
only if at least one of the Ti’s is wrong, meaning that all ` tests were wrong for Fi. By the union bound
this will happen with probability at most k · 1/(3k) ≤ 1/3.

We end by estimating the query complexity. Let t∨(ε), t∧(ε) denote the corresponding complexity
of the ∨ and ∧ tests. Note first that for ε ≥ 1/2 t∨(ε) = 1. Also, this is the case if F is ∨-formula with
k > 1/ε, or si < εn. Thus we get t∨(ε) ≤ log(1/ε)

ε
· t∧(ε/(1 − ε)). (Since si ≥ (1 − ε)n for all i’s,

which implies that αi ≤ ε
1−ε

).
Similarly, ∧-test takes 1-query for k = 1, and for general ε it takes t∧(ε) ≤ 6

ε2
·t∨(ε(1−ε)). Solving

the recurrence implies the result.

5 Open Problems
There are many open problems that arise in view of the results above. I will mention here but some.

1. There are nearly no testability results for any interesting subgraph-property of a given undirected
underlying graph. There are no interesting results at all on the induced analog (namely, where
the subgraph is defined by vertex labeling).

2. Testing monotonicity is not a main theme here. However, testing monotonicity in general posets
does fall into this context. In view of the large gap between the upper and lower bounds in [9]

12

this gives rise to a interesting open problem. One should mention that even for the Boolean
cube, the complexity of testing monotonicity of Boolean functions (2-sided error) is far from
being understood.

3. In [20] the dependence in the width is doubly exponential. There is no matching lower bound
for this dependence (see also [19] for further related details). As this result is what partially
determines the dependence in ε in the result for testing s − t-connectivity (Section 4.2), this
further motivates resolving the question of the exact dependence in ε of both testing problems.

4. A general result on testing strong connectivity for G-orientations, or a non-testability result are
still missing. It still might be the case that for every underlying graph this problem is testable.
On the other hand, we don’t have any non-trivial upper bound even of the form nα for α < 1.
Similarly the variants of s − t strong connectivity and s-connectivity (namely, that s can reach
every other vertex) are open.

References
[1] N. Alon. Testing subgraphs in large graphs. Random Struct. Algorithms, 21(3-4):359–370, 2002.

[2] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a
constant number of queries. SIAM Journal on Computing, 30:1842–1862, 2001.

[3] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. P. Woodruff. Transitive-
closure spanners. In SODA, pages 932–941, 2009.

[4] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some 3CNF properties are hard to test. SIAM
J. Comput., 35(1):1–21, 2005.

[5] M. A. Bender and D. Ron. Testing properties of directed graphs: acyclicity and connectivity.
Random Struct. Algorithms, 20(2):184–205, 2002.

[6] S. Chakraborty, E. Fischer, O. Lachish, A. Matsliah, and I. Newman. Testing t -connectivity. In
APPROX-RANDOM, pages 380–394, 2007.

[7] I. Dinur. The PCP Theorem by gap amplification. J. ACM, 54(3):12, 2007.

[8] E. Fischer. The art of uninformed decisions: A primer to property testing. BEATCS: Bulletin of
the European Association for Theoretical Computer Science, 75, 2001.

[9] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.
Monotonicity testing over general poset domains. Proceedings of the 34th ACM STOC, pages
474–483, 2002.

[10] E. Fischer. Personal communication.

[11] E. Fischer. On the strength of comparisons in property testing. Inf. Comput., 189(1):107–116,
2004.

[12] E. Fischer, O. Lachish, A. Matsliah, I. Newmanand and O. Yahalom. On the query complexity
of testing orientations for being Eulerian. In APPROX-RANDOM, page 1, 2008.

13

[13] E. Fischer, O. Lachish, I. Newman, and E. Rosenberg. Lower bound technique for properties of
underlying graphs.

[14] E. Fischer, O. Lachish and P. Nimbhorkar. Personal communication, 2010.

[15] O. Goldreich, S. Goldwasser and D. Ron. Property testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998.

[16] S. Halevy, O. Lachish, I. Newman and D. Tsur. Testing orientation properties. Electronic Collo-
quium on Computational Complexity (ECCC), (153), 2005.

[17] S. Halevy, O. Lachish, I. Newman and D. Tsur. Testing properties of constraint-graphs. In IEEE
Conference on Computational Complexity, pages 264–277, 2007.

[18] A. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices.
Metody Diskret. Analiz., 38:37–58, 1982.

[19] O. Lachish, I. Newman and A. Shapira. Space Complexity vs. Query Complexity. Computational
Complexity, 17(1): 70–93, 2008.

[20] I. Newman. Testing membership in languages that have small width branching programs. SIAM
J. Comput., 31(5):1557–1570, 2002.

[21] D. Ron. Property testing (A Tutorial). Handbook of Randomized Computing (S.Rajasekaran, P.
M. Pardalos, J. H. Reif and J. D. P. Rolin eds), Kluwer Press (2001).

[22] A. Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos.
Soc., 95:261–265, 1984.

14

