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Abstract

We initiate the study of sublinear-time algorithms in the external memory model [Vit01]. In
this model, the data is stored in blocks of a certain size B, and the algorithm is charged a unit
cost for each block access. This model is well-studied, since it reflects the computational issues
occurring when the (massive) input is stored on a disk. Since each block access operates on B
data elements in parallel, many problems have external memory algorithms whose number of
block accesses is only a small fraction (e.g. 1/B) of their main memory complexity.

However, to the best of our knowledge, no such reduction in complexity is known for any
sublinear-time algorithm. One plausible explanation is that the vast majority of sublinear-time
algorithms use random sampling and thus exhibit no locality of reference. This state of affairs
is quite unfortunate, since both sublinear-time algorithms and the external memory model are
important approaches to dealing with massive data sets, and ideally they should be combined
to achieve best performance.

We show that such combination is indeed possible. In particular, we consider three well-
studied problems: testing of distinctness, uniformity and identity of an empirical distribution
induced by data. For these problems we show random-sampling-based algorithms whose number
of block accesses is up to a factor of 1/

√
B smaller than the main memory complexity of those

problems. We also show that this improvement is optimal for those problems.
Since these problems are natural primitives for a number of sampling-based algorithms for

other problems, our tools improve the external memory complexity of other problems as well.

1 Introduction

Random sampling is one of the most fundamental methods for reducing task complexity. For a
wide variety of problems, it is possible to infer an approximate solution from a random sample
containing only a small fraction of the data, yielding algorithms with sublinear running times. As a
result, sampling is often the method of choice for processing massive data sets. Inferring properties
of data from random sample has been a major subject of study in several areas, including statistics,
databases [OR86, Olk93], theoretical computer science [Fis01, Ron01, Gol98, BKS01], . . .

However, using random sampling for massive data sets encounters the following problem: typ-
ically, massive data sets are not stored in main memory, where each element can be accessed at
a unit cost. Instead, the data is stored on external storage devices, such as a hard disk. There,
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the data is stored in blocks of certain size (say, B), and each disk access returns a block of data,
as opposed to an individual element. In such models [Vit01], it is often possible to solve problems
using roughly T/B disk accesses, where T is the time needed to solve the problem in main memory.
The 1/B factor is often crucial to the efficiency of the algorithms, given that (a) the block size B
tends to be large, on the order of thousands and (b) each block access is many orders of magnitude
slower than a main memory lookup. Unfortunately, implementations of sampling algorithms typi-
cally need to perform1 one block access per each sampled element [OR86]. Effectively, this means
that out of B data elements retrieved by each block access, B − 1 elements are discarded by the
algorithm. This makes sampling algorithms a much less attractive option for processing massive
data sets.

Is it possible to improve the sampling algorithms by utilizing the entire information stored in
each accessed block? At the first sight, it might not seem so. For example, consider the following
basic sampling problem: the input data is a binary sequence such that the fraction of ones is either
at most f or at least 2f , and the goal is to detect which of these two cases occurs. A simple
argument shows that any sampling algorithm for this problem requires Ω(1/f) samples to succeed
with constant probability, since it may take that many trials to even retrieve one 1. It is also easy
to observe that the same lower bound holds even if all elements within each block are equal (as long
as the total number of blocks is Ω(1/f)), in which case sampling blocks is equivalent to sampling
elements. Thus, even for this simple problem, sampling blocks does not yield any reduction in the
number of accesses.

2 Our Results

Contrary to the above impression, we show that there are natural problems for which it is possible
to reduce the number of sampled blocks. Specifically, we consider the problem of testing properties
of empirical distributions induced by the data sets. Consider a data set of size m with support
size (i.e., the number of distinct elements) equal to n. Let pi be the fraction of times an element
i occurs in the data set. The vector p then defines a probability distribution over a set of distinct
elements in the data set. We address the following three well-studied problems:

• Distinctness: are all data elements distinct (i.e., n = m), or are there at least ǫm duplicates?

• Uniformity: is p uniform over its support, or is it ǫ-far2 from the uniform distribution?

• Identity: is p identical to an explicitly given distribution q, or is it ǫ-far from q?

Note that testing identity generalizes the first two problems. However, the algorithms for
distinctness and uniformity are simpler and easier to describe.

It is known [GR00, Bat01, BFR+00] that, if the elements are stored in main memory, then
Θ̃(

√
n) memory accesses are sufficient and necessary to solve both uniformity and identity testing.

We give an external memory algorithm which uses only Õ(
√

m/B) block accesses. Thus, for m

comparable to n, the number of accesses is reduced by a factor of
√

B. It also can be seen that this
bound cannot be improved in general: if B = m/n, then each block could consist of equal elements,

and thus the Θ̃(
√

n) = Θ̃(
√

m/B) main memory lower bound would apply.

1It is possible to retrieve more samples per block if the data happens to be stored in a random order. Unfortunately,
this is typically not guaranteed.

2We measure the distance between distribution using the standard variational distance, which is the maximum
probability with which a statistical test can distinguish the two distributions. Formally, a distribution p is ǫ-far from
a distribution q, if ‖p − q‖1 ≥ ǫ, where p and q are interpreted as vectors.
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From the technical perspective, our algorithms mimic the sampling algorithms of [BFR+00,
BFF+01, Bat01]. The key technical contribution is a careful analysis of those algorithms. In
particular, we show that the additional information obtained from sampling blocks of data (as
opposed to the individual elements) yields a substantial reduction of the variance of the estimators
used by those algorithms.

3 Applications to Other Problems

The three problems from above are natural primitives for a number of other sampling-based prob-
lems. Thus, our algorithms improve the external memory complexity of other problems as well.
Below we describe two examples of problems where our algorithms and techniques apply immedi-
ately to give improved guarantees in the external memory model.

The first such problem is testing graph isomorphism. In this problem, the tester is to decide,
given two graphs G and H on n vertices, whether G are H are isomorphic or at least ǫn2 edges
of the graphs must be modified to achieve a pair of isomorphic graphs. Suppose one graph, G, is
known to the tester (for instance, it is a fixed graph with an easily computable adjacency relation),
and the other graph, H, is described by the adjacency matrix written in the row-major order on
the disk. Then, our algorithm for identity testing improves the sample complexity of the Fischer
and Matsliah algorithm [FM08] by essentially a factor of

√
B. Formally, in the main memory, the

Fischer and Matsliah algorithm uses O(
√

n · poly(log n, 1/ǫ)) queries to H. Combined with our

external memory identity tester, algorithm will use only O((
√

n/B + 1) · poly(log n, 1/ǫ)) samples.
The second application is a set of questions on testing various properties of metric spaces,

such as testing whether a metric is a tree-metric or ultra-metric. In [Ona08], Onak considers
several such properties, for which he gives algorithms whose sampling complexity in main mem-
ory is of the form O(α/ǫ + n(β−1)/β/ǫ1/β), where α ≥ 1 and β ≥ 2 are constant integers. The
additive term n(β−1)/β/ǫ1/β corresponds to sampling for a specific β-tuple. Using our techniques
for distinctness testing, it can easily be shown that whenever an algorithm from [Ona08] requires
O(α/ǫ + n(β−1)/β/ǫ1/β) samples, the sample complexity in external memory can be improved to
O(α/ǫ + (n/B)(β−1)/β/ǫ1/β), provided a single disk block contains B points.
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