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Abstract

Property testing considers the task of testing rapidly (in particular, with very few samples
into the data), if some massive data satisfies some given property, or is far from satisfying
the property. For “global properties”, i.e., properties that really depend somewhat on every
piece of the data, one could ask how it can be tested by so few samples? We suggest that for
“natural” properties, this should happen because the property is invariant under “nice” set of
“relabellings” of the data. We refer to this set of relabellings as the “invariance class” of the
property and advocate explicit identification of the invariance class of locally testable properties.
Our hope is the explicit knowledge of the invariance class may lead to more general, broader,
results.

After pointing out the invariance classes associated with some the basic classes of testable
properties, we focus on “algebraic properties” which seem to be characterized by the fact that
the properties are themselves vector spaces, while their domains are also vector spaces and the
properties are invariant under affine transformations of the domain. We survey recent results
(obtained with Tali Kaufman, Elena Grigorescu and Eli Ben-Sasson) that give broad condi-
tions that are sufficient for local testability among this class of properties, and some structural
theorems that attempt to describe which properties exhibit the sufficient conditions.

1 Introduction: Property Testing and Invariance

We assume the reader of this article has some passing familiarity with some of the basic motivations
and nature of questions in Property Testing, and jump directly to establishing our notations.

In this article, we will consider testing properties of functions mapping some finite domain D to a
finite range R. We let {D → R} denote the set of all such functions. A property will be specified
by the set of functions P ⊆ {D → R}. (More generally, we may consider a parameterized family of
domains Dn one for each positive integer n, and the property will be given by P = {Pn}n, where
Pn ⊆ {Dn → R}.)

We will measure distance between functions via the normalized Hamming distance (as is standard
in Property Testing). Specifically, for f, g : D → R, the distance between f and g, denoted �(f, g),
is given by �(f, g) = Prx←UD[f(x) ∕= g(x)], where the notation x←U D denotes a random variable
x drawn uniformly from the domain D. The distance from f to a family ℱ ⊆ {D → R}, denoted
�(f,ℱ), is the quantity ming∈ℱ{�(f, g)}. We say f is �-close to ℱ if �(f,ℱ) ≤ � and �-far otherwise.
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Definition 1.1 A (k, �1, �2, �) tester for a property P is a probabilistic algorithm T with oracle
access to a function f : D → R that makes at most k queries to the oracle for f , and accepts f ∈ P
with probability at least 1− �2, while rejecting f that is �-far from P with probability at least �1.

A principal focus in property testing is on properties that are defined for infinitely many n where
the tests are parameterized by �. and for every � > 0, k = O(1) while �1 − �2 = Ω(1) > 0. (In
particular, k and �1 − �2 do not depend on n.) We will also focus mostly on one-sided error tests,
i.e., tests where �2 = 0. In such a case, we simply refer to the tester as a (k, �, �)-tester.

1.1 Invariances

We now move to the definition of central interest to this article, namely the invariances of a property.

We say that P is invariant under a function � : D → D if for every f ∈ P it is the case that the
function f ∘ �, defined as f ∘ pi(x) = f(pi(x)), is also in P. We say that P is invariant under a
set G ⊆ {D → D} if for every � ∈ G, P is invaraint under �. The set of all functions � under
which P is invariant is termed the invariance class of P. (The invariance class is a semi-group
under composition.) The set of all permutations (bijections) � under which P is invariant is the
automorphism group of P.

The notion of examining testability of properties with explicit attention on their invariance is a
slowly emerging theme. An early result of Babai, Shpilka and Stefankovic [7] gave lower bounds
on rates of locally testable codes for cyclic codes is perhaps the first to explicitly relate testability
to invariances, albeit to give negative results. The work by Goldreich and Sheffet [33] also uses
symmetries to give lower bounds on query complexity. Alon et al. [3] were possibly the first to
suggest this might lead to positive results. The work by Kaufman and Sudan [40] seems to be the
first to to explicitly focus on invariances to derive positive results.

The goal of this article is two-fold: The first is a collection of observations pointing out that several
earlier results in property testing describe natural properties that have nice invariance classes (and
in some cases, the invariance classes characterize the properties completely). The second, more
technical aspect, is to describe the invariances of algebraic properties. In this part we survey
several recent works [40, 36, 37, 15], joint with Ben-Sasson, Grigorescu, and Kaufman, that study
the relationship between testability and the invariance classes of the property.

2 Invariances of some well-studied properties

2.1 Statistical Properties

One of the oldest examples of a “property test” may be “polling”, which tests for “approximate
majority”. This test can be formalized by considering functions mapping some finite universe D to
the range R = {0, 1} and the property P includes all functions f that take the value 1 on at least
∣D∣/2 inputs. (Thus the set D may be thought of as the names of a set of people, f denotes their
preference among the two choices in the set R. P then consists of all possible preference functions in
which the majority prefers the choice 1 ∈ R.) The standard test (sample f on k random inputs and
accept if the majority is 1) and analysis shows that if k = Ω(1/�2), then we can get �1− �2 = Ω(1).
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The invariance class of this property equals its automorphism group and is the full group of permu-
tations from D → D. We now assert that this group of permutations is what leads to the testability
of this property.

Indeed any property P of functions mapping D to R that is invariant under the full group of permu-
tations from D → D depends on only ∣R∣ frequency counts {�y}y∈R where �y = Prx∈UD[f(x) = y].
To separate f ∈ P from f that is �-far from P it suffices to get an approximation {�y}y∈R to
the vector {�y}y∈R of ℓ1 error at most 2� (i.e.,

∑
y∈R ∣�y − �y∣ ≤ 2�). It is straightforward to get

such an approximation with O(∣R∣ log ∣R∣) queries into f (by getting a pointwise approximation of
O(�/∣R∣). A better approximation in time O(∣R∣) is also not too hard (see [48]). We note that the
recent results in testing properties of distributions [30, 10, 8, 9, 11, 1, 52, 50, 55] have revealed many
properties that can be tested in o(∣R∣) samples, and in several cases given nearly-tight bounds (to
within ∣R∣o(1) factors) on the query complexity of such tests.

2.2 Graph Property Testing

One of the most actively investigated themes in property testing is the testing of “graph properties”,
initiated in [28], with recent progress [2, 20] characterizing the properties of “dense graphs” that
can be tested with constant queries.

The basic model (the “dense graph” model) considers functions from D =
(
V
2

)
to the range R =

{0, 1} (where V is some finite set and
(
V
2

)
denotes the collection of all subsets of size of V ).

We note that a property P is considered a graph property if and only if it is invariant under
permutations on

(
V
2

)
“induced” by permutations of V . Specifically, say that a permutation � :(

V
2

)
→
(
V
2

)
is a graph-permutation if there exists a permutation � : V → V such that for all

u, v ∈ V , �(u, v) = (�(u), �(v)). A property P is a graph property if and only if its automorphism
group contains all graph-permutations. It follows (trivially) that the success of graph-property
testing (i.e., the understanding of testability to the extent of getting a necessary and sufficient
condition for testing with O(1) queries) is attributable to the underlying automorphism group.

We note that the above explanation of graph-properties in terms of symmetries seems to apply
only to the “dense-graph” model, but not the “bounded-degree” graph model [31], where it is
natural to think of the inputs as functions from V × [d]→ V . To include graph properties on such
representations of graphs, one could expand the notion of symmetries to consider permutations
from D ×R to D ×R, but we won’t attempt to do so here.

We note that an upcoming work of Goldreich and Kaufman [29] investigates various aspects of
property testing and in particular graph-property testing, even in the bounded-degree case, in
terms of invariances.

2.3 Properties of Boolean functions

Another broad class of properties that have been explored recently are properties of “Boolean
functions”. Sample properties here include monotonicity testing, dictator-testing, junta-testing,
testing if a function is given by a real half-space, testing various forms of concise representations
etc. [24, 27, 23, 12, 49, 25, 18, 46, 21]. Boolean properties have nice symmetries too.
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Here the domain is the set D = {0, 1}n and the invariant group includes all permutations � that
are induced by permutations on the coordinates, i.e., permutations � : {0, 1}n → {0, 1}n for which
there exists a corresponding permutation � : [n]→ [n] such that �(⟨b1, . . . , bn⟩) = ⟨b�(1), . . . , b�(n)⟩.

Unlike in the previous settings, where the invariant group leads to a complete characterization of
testable properties, such a characterization is notably missing in this setting.

3 Algebraic Properties

We now move to the topic of focus of this article, namely a large class of “algebraic properties”. This
class of property tests indeed form the origins of property testing with the seminal work of Blum,
Luby and Rubinfeld [19] proposing the now famous “linearity-test” (a test for homomorphisms
between groups). Somewhat independently, and with significantly different motivation, Babai,
Fortnow, and Lund [6] proposed and analyzed a test to check if a multivariate function over a
finite subset of the integers was a multilinear function (linear in each variable). This result was
one of the key technical ingredients behind the remarkable result “MIP=NEXP” which formed the
predecessor for the modern PCP theory and its connection to inapproximability. Subsequently,
Babai, Fortnow, Levin and Szegedy [5] analyzed a property test for when a multivariate function
over a vector space over a finite field was a polynomial of a specified (low) degree in each variable.
While both of these tests were quite efficient they could work with “constant” queries only when
both the degree and the number of variables were constant. Partly to remedy this, Rubinfeld and
Sudan [53], proposed and analyzed a low-degree test generalizing the test of [19]. This test would
test if a multivariate function over a finite field was a polynomial of low “total” degree (with degree
being somewhat smaller than field size). If the degree bound specified was a constant, then the
query complexity of this test was a constant independent of the number of variables. Both the
linearity test and the low-degree test played a crucial role in the work of Arora et al. [4] leading
to the PCP theorem. Indeed a significant component of PCP theory focusses on new/improved
analyses of various linearity/low-degree tests.

The ability to test algebraic functions in constant time for constant degree, is not restricted only
to the case where the degree is smaller than the field size. This was first shown by Alon et al. [3]
for the case of multivariate functions over the binary field, and then independently by Kaufman
and Ron [39] and Jutla et al. [38] for functions over arbitrary fields as well. The work reported
below is an attempt to unify the properties, tests and analyses reported in the many works above,
in particular those of [19, 53, 3, 39, 38].

3.1 A generalization of algebraic properties

From this point onwards, throughout this section we will be consider functions from an n-dimensional
vector space over a field K of size Q to a subfield F of size q and characteristic p.1 Let q = ps and
Q = qt. Throughout we will think of q as a constant. The two extreme cases of interest to us will
be (1) Q is also a constant and n → ∞; and (2) n = 1 and Q (or t) is the parameter going to
infinity.

1We note that it is possible to consider a broader class of properties allowing F to be an arbitrary field, and not
just a subfield of K. However we are not aware of any results that work in this more general setting.
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We will consider properties P of functions mapping Kn → F that are “linear” and “affine-invariant”,
where we define the terms below.

Linear Properties A property P ⊆ {Kn → F} is said to be (F-)linear if for every f, g ∈ P and
�, � ∈ F the function � ⋅ f + � ⋅ g is also in P, where � ⋅ f + � ⋅ g is the function given by
(� ⋅ f + � ⋅ g)(x) = �f(x) + �g(x)

Affine-invariant Properties A function A : Kn → Kn is said to be affine if there exists a
matrix M ∈ Kn×n and a vector b ∈ Kn such that A(x) = Mx + b for x ∈ Kn. A property
P ⊆ {Kn → F} is said to be affine-invariant (over Kn) if for every f ∈ P and affine function
A : Kn → Kn it is the case that f ∘A ∈ P, where f ∘A(x) = f(A(x)).

Since both linearity and affine-invariance seem to impose some sort of “vector-space” restrictions,
we stress the different role of the two restrictions. Note that while linearity depends on the range
of the functions, the invariance only depends on the domain of the function. And while the latter
property (invariance) is more close to the focus of this article, the former assumption (linearity)
will be crucial to the rest of this section. Indeed it is possible to consider properties that are linear
without focussing on invariances (as was done by Ben-Sasson et al. [14]), or on properties that are
affine-invariant, while not being linear (as done in Bhattacharyya et al. [16] and Shapira [54]). We
will discuss the latter setting in a later section, and use some of the results in the former setting in
this section to motivate our analysis.

In the future, we refer to the set of affine transformations from Kn → Kn as the affine semi-group.
(They form a semi-group under multiplication.)

3.2 Constraints and Characterizations

One of the basic and very useful observations from the work of Ben-Sasson et al. [14] for linear
properties is that tests for such properties might as well be non-adaptive, and make one-sided
error. In other words, a k-query tester would pick (based on its internal randomness) some k
points �1, . . . , �k ∈ Kn, and a predicate P : Fk → {0, 1} and accept a function f if and only
if P (f(�1), . . . , f(�k)) = 1. Non-adaptivity refers to the fact that �1, . . . , �k are chosen without
knowledge of f on any of the other points. One-sided error implies that if P (f(�1), . . . , f(�k)) = 0
then f ∕∈ P. Finally [14] also show that the acceptance predicate can also be chosen to be a linear
system, i.e., the set V = P−1(1) is a vector subspace of Fk. This motivates our notion of a (k-local)
constraint.

Definition 3.1 A k-local constraint C is given by C = (⟨�1, . . . , �k⟩;V ) where �i ∈ Kn and V ⊊ Fk
is a vector subspace of Fk. A function f is said to satisfy the constraint C if ⟨f(�1), . . . , f(�k)⟩ ∈ V .
A property P satisfies a constraint C if every function f ∈ P satisfies C.

In the language of constraints, the above-mentioned result of [14] could be interpreted as asserting
that a k-query tester for a property P is simply a distribution on k-local constraints. Given oracle
access to a function f , the tester simply picks a k-local constraint (according to the distribution)
and accepts if f satisfies the chosen constraint. Thus in order for a test to exist, a property P
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must satisfy many k-local constraints; and while it is not (a prioiri) necessary that the constraints
completely determine the property P, for many properties considered above, local constraints do
seem to determine the property. The notion of a characterization below formalizes this concept.

Definition 3.2 A collection of k-local constraints C1, . . . , Cm form a k-local characterization of a
a property P if f ∈ P if and only if f satisfies Cj for every j ∈ [m].

In general, the fact that a property satisfies even one local constraint may seem to be a rare event.
To find a whole collection of local constraints satisfied by a property, to the extent that they even
characterize it, may seem even more so. But for properties that exhibit some (invariances), this is
not as suprising (and indeed this is what motivates some of the study of invariances of properties in
the context of local testing). If a property P, invariant under a function � satisfies the constraint
C = (⟨�1, . . . , �k⟩;V ) then it also satisfies the constraint C ∘ � = (⟨�(�1), . . . , �(�k)⟩;V ). This
motivates our definition below of the orbit of a constraint C under a set of invariances G.

Definition 3.3 Given a property P invariant under a set G that satisfies a constraint C, we say
that the orbit of C under G is the set of constraints {C ∘ �∣� ∈ G}.

Of course the definition above makes sense even when no “property” is mentioned, but the definition
makes the most sense when applied to some property P satisfying C and invariant under G. If we
are (seemingly incredibly) lucky, then the orbit of a constraint may provide enough constraints to
actually charaterize a property P. This concept, while seemingly too restrictive turns out to be
central to our analysis of property testing.

Definition 3.4 (Single-orbit characterization) A property P ⊆ {D → R} is said to have a
k-single orbit characterization under a set G of invariances if there exists a k-ary constraint C
such that f ∈ P if and only if f satisfies C ∘ � for every � ∈ G.

For this section, properties of interest will be those with a k-single orbit characterization over the
affine semi-group. As we explain below a k-single-orbit characterization over the affine semi-group
immediately leads to local testability; and this explains the results of [53, 3, 39, 38]. We then
describe structural results about affine-invariant properties and give examples of new properties
that end up being testable as a consequence.

3.3 Testability of linear affine-invariant properties

In joint work with Tali Kaufman [40] we show that a property that has a k-single orbit character-
ization under the affine semi-group has a k-query tester. The following theorem gives the precise
soundness condition of the test.

Theorem 3.5 ([40, Theorem 2.9]) Let P ⊆ {Kn → F} have a k-single orbit characterization
under the affine semi-group. Then there exists a k-query test T that accepts f ∈ P with probability

one, while rejecting f that is �-far from P with probability min
{
�/2, 1

(2k+1)(k−1)

}
.
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The test T above is the “natural” one. Recall that the k-single orbit characterization implies that
there exists a constraint C = (⟨�1, . . . , �k⟩;V ) such that for every g ∈ P and every affine map
A : Kn → Kn it is the case that ⟨g(A(�1)), . . . , g(A(�k))⟩ ∈ V . Given oracle access to a function
f : Kn → F, the test T simply picks a random affine map A : Kn → Kn and accepts if and only
if ⟨f(A(�1)), . . . , f(A(�k))⟩ ∈ V . The completeness analysis follows from the definition, while the
soundness analysis (though not so small that we can summarize it here) essentially abstracts the
common elements of the proofs of [19, 53, 3, 39, 38] while unifying the seemingly different parts by
using the concept of “tensor products of linear spaces”. 2

To apply the theorem above to recover the results of [19, 53, 3, 39, 38] one needs appropriate single
orbit characterizations for the appropriate families. Below we list some of the known ones.

Example 3.6 (Affine functions from Kn → K, for n ≥ 2) Let P ⊆ {Kn → K} be the set of
affine functions, i.e., P = {f(x)∣∃a1, . . . , an, b ∈ K s.t. f(x1, . . . , xn) =

∑n
i=1 aixi + b}.

For n ≥ 2, let �, �,∈ Kn be (any) two linearly independent vectors in Kn. Let V ⊆ K4 be the set
{⟨a, b, c, a+ b+ c⟩∣a, b, c ∈ K}. Let C be the constraint (⟨0, �, �, �+ �⟩;V ).

Then P has a 4-single orbit characterization under the affine semi-group, given by the constraint
C.

The characterization above, combined with Theorem 3.5 above, effectively captures the essential
elements of the linearity test of [19], though in fact it is only a variation (affineness, instead of
linearity) of a special case (linearity of maps over finite fields, as opposed to homomorphisms
between abelian groups) of their main result.

Example 3.7 (Degree d polynomials from Kn → K, for ∣K∣ = pr ≥ d+ 1 + pr−1.) Let P ⊆ {Kn →
K} be the set of n-variate polynomials of degree at most d.

Let � ∈ Kn be any non-zero vector, and let ! ∈ K be a primitive element (i.e., !i ∕= 1 for
i < ∣K∣ − 1).

Let V = {⟨p(1), p(!), p(!2), . . . , p(!d+1)⟩∣p : K → K is a univariate polynomial of degree at most
d}. Then the constraint C = (⟨�, ! ⋅�, !2 ⋅�, . . . , !d+1 ⋅�⟩, V ) is a d+2-single orbit characterization
of P.

The above characterization follows essentially from [53, 26] and implies that the property of being
a degree d polynomial is testable with O(d) queries over any large enough field (of size greater than
d). What about the case when the field size Q < d? In such a case also one can get a single orbit
characterization, where the locality of the queries is however exponential in d.

Example 3.8 (Degree d polynomials from Kn → K [39]) Let P ⊆ {Kn → K} be the set of
n-variate polynomials of degree at most d. Let ℓ = (d + 1 + Q/p)/(Q − 1) (recall Q = ∣K∣ and p

2Given two vector spaces U ⊆ Kn and V ⊆ Km, their tensor product U ⊗ V ⊆ Kn×m can be thought of as the
collection of n × m matrices each of whose rows is an element of V and columns is an element of U . The “key”
(though simple) fact about this tensor product space is that its dimension is the product of dimensions of U and V .
This fact turns out be the heart of the ”creative steps” in the analyses of of [19, 53, 3, 39, 38].
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is its characteristic). Let U be an arbitrary ℓ dimensional subspace of Kn, and let � ∈ (Kn)Q
ℓ

be

an (arbitrary) enumeration of the points of U . Let V ⊆ KQℓ
be the set of all evaluations of degree

d, n-variate polynomials on the sequence �. Then the constraint C = (�, V ) is a Qℓ-single orbit
characterization of P.

Applying Theorem 3.5 to the characterization above one can get the main result of [39] (which in
turn subsumes the results of [3] and [38]).

3.4 Structure of linear affine-invariant properties

While the examples of the previous section describe how many previously known results can be
unified under the perspective of invariance, to get new families that can be testable, one needs to
understand more about affine-invariant properties. Here we describe some of the basic results that
characterize affine invariant properties in terms of the supporting monomials.

Recall first that every function from Kn → K, and hence every function from Kn → F, is a
polynomial in n-variables of degree at most Q − 1 in each variable. Thus the “monomials”, i.e.,
functions of the form m(x1, . . . , xn) =

∏n
i=1 x

di
i for some d1, . . . , dn ∈ {0, . . . , Q − 1} form a linear

basis of all functions from {Kn → F}. We let ℳ denote the set of all monomials. Recalling that
every function f : Kn → K can be written uniquely as f(x) =

∑
m∈ℳ cmm(x). We say that the

support of f is the set of all monomials m whose coefficient cm is non-zero.

Most polynomials would not map the the domain Kn to elements of F (and would often take on
values from K − F). To get a basis for functions from Kn → F, one needs to look at “traces” of
monomials. The Trace function mapping K → F is defined as Tr(x) = x + xq + xq

2
+ ⋅ ⋅ ⋅ + xq

t−1
.

(Recall that F = Fq and K = FQ = Fqt .) The reader may verify that the Trace function indeed
maps all K to F (by verifying that Tr(x)q = Tr(x) for every x ∈ K), and that it is linear, i.e.,
Tr(x + y) = Tr(x) + Tr(y) and Tr(�x) = �Tr(x) for every x, y ∈ K and � ∈ F. It follows that
Tr(g(x)) is a function mapping Kn to F for every n-variate polynomial g. The following proposition
establishes the converse.

Proposition 3.9 Every function f from Kn → F is the trace of some polynomial g from Kn → K.
Furthermore, there always exists such a polynomial g whose support is contained in the support of
f .

Of course, given that the number of polynomials from Kn → K is much more than the number
of functions from Kn → F, it must be the case that different polynomials have the same trace.
Some explicit examples include Tr(x) = Tr(xq), and Tr((�+�q).x1+q+q

2+⋅⋅⋅+qt−1
) = Tr(0). (This is

why the proposition only claims that some polynomial g has its support contained in the support
of f .) Nevertheless the traces give a very useful understanding of affine invariant families thanks
to the following lemma (essentially from [40]) which shows that the affine-invariant properties are
captured by the monomials in their support.

Lemma 3.10 (Monomial Extraction [40]) For every affine-invariant property P ⊆ {Kn → F}
there exists a set D ⊆ ℳ such that a function f ∈ P if and only if there exists a polynomial
g : Kn → K supported on D such that f = Tr(g). Furthermore there is a unique maximal such set
D for any affine-invariant property P.
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We refer to the unique maximal set as the degree set of P.

To see some examples, first lets consider the simpler case of K = F. In this case the Trace function
is simply the identity function; and the set D is simply the union of the support of all functions in
P. Thus in this case if the function, say, 3x5 + 2x2 + 1 is in P, it follows that {1, x2, x5} ⊆ D and
thus the functions x5, x2 and 2x5 + x2 + 4 are also in P.

One of the uses of the lemma above, is that it allows us to focus on the degree set of an affine
invariant property to understand its local-testability (and in particular in understanding when it
may have a single orbit characterization).

But before investigating the locality of tests we first note that not every set D is a degree set of
some affine-invariant property P. While a compact description of exactly which degree sets are
valid sets for affine-invariant properties is not easy to describe (and depends on n, p, q, Q etc.) this
is well-understood. When n = 1 this is somewhat easier to describe, and we do so next.

Definition 3.11 D ⊆ K[x] is (q,Q)-modular if xd ∈ D ⇒ xq⋅d(modQ−1) ∈ D

Definition 3.12 For non-negative integers e and d and prime p, let e0, . . . , ei, . . ., and d0, . . . , di, . . .
denote the p-ary representation of e and d (i.e., e0, . . . , ei, . . . ∈ {0, . . . , p− 1} and e =

∑∞
i=0 eip

i).
We say that e is in the p-shadow of d if ei ≤ di for every i. We say that a set D ⊆ ℤ≥0 is
p-shadow-closed if for every d and e in the p-shadow of d, we have xd ∈ D ⇒ xe ∈ D.

We are now ready to describe degree sets of univariate affine-invariant properties.

Lemma 3.13 D is the degree set of an affine-invariant property P ⊆ {FQ → Fq} where Q = qt

and q = ps for prime p if and only if D is (q,Q)-modular and D is p-shadow-closed.

We note in passing that the case n = 1 is really the most general case, since every affine-invariant
property from {Kn → F} can also be viewed as an affine-invariant property from {L → F} where
L is the nth degree extension of K (i.e. L = FQn).

While the lemmas above describe some basic features of affine-invariant properties, they don’t
explain when they may be locally testable. In particular when can they have local constraints,
local characterizations, and even single-orbit characterizations? These questions are more novel,
and less well-understood.

If one considers the case where Q, q are just constants, and only n is going to infinity, then, as
shown in [40], the degree of the highest degree monomial in D roughly determines the best possible
locality of the constraints and single orbit characterizations. Specifically they show:

Lemma 3.14 Let P ⊆ {Kn → F} be an affine-invariant property with degree set D and let d be
the largest degree of a monomial in D. Then every constraint on P has locality at least Q(d/Q2−1).
Conversely it has a Q2(d+Q)/p-local single orbit characerization.
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To understand the above lemma, note that it implies that if an affine-invariant propery has a single
k-local constraint then it has k′-local characterization, and in fact, a k′-single orbit characterization,
and is hence k′-locally testable for k′ ≈ Q2 ⋅ k2Q2

. This appears to be far from tight and indeed the
analysis in [40] is quite sloppy allowing for tighter characterizations. Indeed, we believe it should
be possible to get a k′-local characterization for k′ = poly(Q, k).

A somewhat more optimistic conjecture might be that one can get k′ = poly(k) (or some other
function of k which is independent of Q). Indeed such a relationship was effectively conjectured by
[3] (for a broader class of properties than affine-invariant ones). However this turned out be false
as shown by [36].

Theorem 3.15 There exists an affine invariant family mapping {F2t → F2} with an 8-local con-
straint, but no (t/2− 2)-local characterization.

The family given by [36] is easy to describe in the language developed so far: Their family P
has, as its degree set, the set D = {x2i+2i+j ∣i ∈ {0, . . . , t − 1}, j ∈ {0, . . . , t/2 − 2}} ∪ {x2i ∣i ∈
{0, . . . , t− 1} ∪ {x0}. It is easy to check that D is 2-shadow closed, and (2, 2t)-modular, and so P
is indeed an affine invariant family. It is also easy to show that every function f ∈ P satisfies the
constraint f(x+y+z) = f(x+y)+f(x+z)+f(y+z)+f(x)+f(y)+f(z)+f(0) and thus P has an
8-local constraint. The main contribution of [36] is to show that P has no t/2− 2 local constraints

that are not constraints also on the larger family P ′ given by its degree set D′ = D∪{x2i+2i+(t/2−1) ∣i}.
Since P ′ is strictly larger than P it follows that P can not have a t/2 − 2-local characterization.
Furthermore, since P ′ contains functions that are quite far from functions in P, it follows that P
also does not have any tests of locality t/2− 2.

We remark that most examples of single orbit characterizations have been natural ones; i.e., the
properties have a natural characterization that happens to be a single orbit one. Indeed all the
examples given above (affine functions, low-degree polynomials etc.) had this property. One sig-
nificant class of exceptions is given in [37] who show that every “sparse” affine invariant property
from P ⊆ {F2t → F2}, with ∣P∣ ≤ 2tℓ, has a k = k(ℓ)-single orbit characterization, if t is prime.
(Here “sparse” refers to the fact that the size of P is a polynomial in the domain size. Note that the
locality of the characterization is independent of the domain size and depends only on the exponent
relating the size of P with the size of the domain.) The result of [37] is also obtained by analyz-
ing the degree sets of sparse affine-invariant properties and noticing that functions satisfying such
properties can be expressed as traces of sparse polynomials, and then combining recent results from
additive number theory with classical results from coding theory to conclude that these properties
have a local single orbit characterization. These results are interesting in that they yield single
orbit characterizations for a very rich class of properties - so rich that it would take Ω(log t) bits to
describe a typical such property and so a “totally uniform” characterization (with O(1)-bits) would
be out of question. Natural “local” characterizations of such properties involve describing roughly
2t constraints each requiring O(t) bits to specify. The single-orbit characterization, in contrast,
only requires O(t) bits to describe giving a somewhat more uniform, and yet local, description of
the property and the tester for the property.

Moving on, affine-invariant properties offer a clean generalization of “low-degree” polynomials, while
being significantly richer, rich enough to counter some natural conjectures about reasons for local
testability in codes/algebraic properties. Furthermore, the class still offers the possibility of some
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locally testable codes of constant distance that may outperform Reed-Muller codes (codes derived
from low-degree polynomials) in terms of their rate. To investigate this possibility one needs a
significantly better understanding of the relationship between the locality of characterizations and
the degree sets of affine-invariant properties. In the case of univariate functions, no non-trivial
upper bounds are known for general degree sets (the trivial one being the size of the degree set),
and till recently no general lower bounds were known either. A recent result with Ben-Sasson gives
the first general lower bound on the locality of constraints for a general degree set, in terms of the
notion of the p-weight of elements in the degree set. We define this notion next, and give their
main theorem afterwards.

Definition 3.16 For integer d and prime p, the p-weight of d, denoted wtp(d), is defined to be the
sum of the non-zero elements in the p-ary expansion of d, i.e., wtp(d) =

∑
i di where d0, . . . , di, . . . ,∈

{0, . . . , p− 1} s.t. d =
∑

i dip
i.

Theorem 3.17 ([15]) Let P ⊆ {Fpt → Fp} be an affine-invariant property with degree set D. Let
k be the maximum p-weight of elements of D. Then every constraint on P has locality at least k+1.
Conversely, P does have a constraint of locality pk+1.

When the range p is a constant, the above theorem thus pins down a necessary and sufficient
condition for an affine-invariant family to have a O(1)-local constraint. Of course, it does not say
anything about characterizations and this remains an open question. Indeed the following question
remains open.

Question 3.18 Let P ⊆ {K → F} be an affine-invariant property with a k-local characterization.
Let k′ be the smallest integer such that P has a k′-single orbit characterization. Give the best
possible upper bound on k′ as a function of k, q and Q. Can we get a bound independent of Q? Can
it be independent of q?

To understand such questions a significantly better understanding of the relationship between local
characterizations and degree sets is needed. The following question is an example of some very
basic questions about this relationship which is still not understood.

Question 3.19 Let P ⊆ {F2t → F2} be an affine-invariant property with degree set D ⊊ {x2i+2j ∣i, j ∈
{0, . . . , t − 1}} ∪ {1, x, x2, . . . , x2t−1}. Further, suppose t is prime. Then does the locality of the
characterization of P grow with ∣D∣? (I.e., is the following statement true? For every k, there
exists a prime t and a (2, 2t)-modular, 2-shadow closed set D ⊊ {x2i+2j ∣i, j ∈ {0, . . . , t − 1}} ∪
{1, x, x2, . . . , x2t−1} such that the affine invariant property P with degree set D has no k-local char-
acterization.)

We remark that if t is not a prime, then the question above does have negative answers; and
understanding the exact reson for such negative answers also appears important to understanding
affine-invariant properties.
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4 Non-linear affine-invariant properties

Finally, we remark briefly on the setting where the properties of interest are invariant under
affine/linear transformations, but are not necessarily linear. Examples of such testable non-linear
properties that are affine-invariant can be generated easily by taking the union of two (or more)
affine-invariant (linear) properties. (Thanks to Noga Alon for this class of examples). More inter-
esting cases, motivated by learning theory and additive number theory, have also been explored in
the literature and we mention these results briefly below.

Locally characterized properties: A broad class of affine-invariant properties that seem po-
tentially testable can be obtained by generalizing the notion of constraints and characterizations
to the non-linear setting as follows: Let K be a finite field and Σ be an arbitrary finite set. A
k-local constraint C is given by C = (�1, . . . , �k;S) where �1, . . . , �k ∈ Kn and S ⊊ Σk. We say a
function f : Kn → Σ satisfies the constraint C if ⟨f(�1), . . . , f(�k)⟩ ∈ S. A collection of constraints
C1, . . . , Cm characterizes a property P ⊆ {Kn → Σ} if f ∈ P if and only if f satisfies Cj for every
j ∈ [m]. Of course, our interest here is in affine-invariant property that are k-locally characterized.

A very simple example of an affine invariant property considered in Green [35] (we note that this
is merely an example of property considered there, not the broadest class considered there) is the
following: Let K = F2 and Σ = {0, 1}. Let C = {�, �, �+ �; {0, 1}3 − {111}), where �, � ∈ Kn are
an arbitrary pair of linearly independent elements. Now consider the property P characterized by
{C ∘ �∣� : Kn → Kn is an affine map}. This is a 3-locally characterized affine-invariant property
from Kn → Σ consisting of all functions f that are “triangle-free”, i.e., f−1(1) does not contain
a triple of the form x, y, x + y. Green showed that the natural test (pick a random affine map
� : Kn → Kn and verify that f satisfies C ∘ �) does reject functions that are �-far with positive
probability. Somewhat intriguingly the analysis of this test, is quite different from the analyses in
the linear cases and more reminiscent of the analyses in graph property testing.

This result was then generalized in various works [16, 44, 43, 54]) with perhaps the strongest result
being due to [43, 54] who considers any constant number of “freeness” constraints C1, . . . , Cℓ,
and their affine shifts and shows that any such property is locally testable. (A constraint C =
(�1, . . . , �k;S) is said to be a freeness constraint if Σ = {0, 1} and S = Σk − {1k}.) In the process,
these works also tighten the connection to graph property testing, by deriving their main results
as a corollary of a new hypergraph removal lemma (a typical ingredient in hypergraph property
testing).

Of course, despite all this progress, this area abounds with questions with some basic ones being:
Which subclass of locally characterizaed affine-invariant properties are locally testable? When
can the rejection probability of the test be lower bounded by a polynomial in the distance to the
property? Some progress in this direction is reported in Bhattacharyya and Xing [17].

Sparse linear functions As part of their investigations of properties of Boolean functions
Gopalan et al. [34] investigate functions that are represented as sparse functions (e.g., k-juntas) of
linear functions of their input. (Formally, their properties are given by some collection of functions
G ⊆ {Fℓ2 → F2} and the property of functions P ⊆ {Fn2 → F2} is given by P = {g ∘ L∣g ∈ G
and L : Fn2 → Fℓ2 is linear }. For a broad collection of “sparse” functions (i.e., classes of sets G),
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they show that the associated property P is testable. Since these classes of functions are naturally
closed under linear transforms, it follows that this is yet another broad class of properties that is
linear-invariant. Typically, these properties (e.g., being representable as a k-junta, or as a k-sparse
polynomial) are not closed under addition, and so these properties are non-linear. Also interestingly,
these properties are testable, at least to within current knowledge, only with two-sided error.

5 Conclusions

We summarize with the main message: Testing of natural properties is often intimately related
to the invariances shown by the property. When the class of invariances is the full symmetric
group of permutations, testing ends up representing the classical problems of statistics (though
even here some improvements are feasible). But modern property testing highlights the ability to
do much better when the underlying class of invariances is no the full set, and often exponentially
smaller than the full set. Among the rich variety of such symmetries that can be explored, we
emphasize the role of the affine-invariance (or linear-invariance) as a natural way to unify many
known results. Understanding affine-invariance further might be one way of making progress on
the design of locally testable codes.

We stress that we don’t believe that invariance is necessary for local testability, hence the appeal
to the weakening clause of “natural properties”. We are aware of a wide class of properties that are
known to be testable, where we are not aware of a nice invariance class. For example, a typical PCP
verifier tends to accept encodings of any satisfying assignment of a SAT formula (this is actually a
requirement for PCPP verifier [13] or assignment testers [22]) with local tests. Depending on the
SAT formula being checked for satisfiability, the property ”tested” by such a verifier is unlikely to
have rich invariances. Even in the algebraic setting, we have the example of functional equations
that are known to be testable [51], but where the invariance class is not known or has not been
determined explicitly. In contrast to the above, we highlight the work of Goldreich and Kaufman [29]
who give examples of properties that are testable, but provably have no non-trivial invariances, and
also exhibit testable properties which do not have a “local single-orbit characterization”.

Our point is not that such exceptions may not exist, but rather that when invariances exist clean
rules may be found explaining when a property is testable. For graph properties properties the
characterization of testability in terms of regularity instances [2] gives such a rule. For affine-
invariant linear properties, the existence of local characterizations may be necessary as well as
sufficient (both directions being open). The results in [40] show this to be the case, when the field
size in the domain is of constant size. More importantly, the invariance class cleanly separates
the many different contexts in which property testing results have been found; and gives a general
approach to extracting general techniques.

We hope that in future work, the invariance classes may help further the understanding of property
testing, while also help in the design of novel classes of testable codes. (A promising result here is
that of Kaufman and Wigderson [41] that have given some novel codes that exhibit symmetries.)
At the moment, we lack a broad understanding of group theoretic properties that help analyze
testability of properties; and indeed the collection of groups for which we are able to derive testing
results still remains quite limited. We hope this is remedied in future work.
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[6] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1(1):3–40, 1991.
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