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Abstract

We give a high-level survey of the “testing by implicit learning” paradigm, and explain some of the
property testing results for various Boolean function classes that have been obtained using this approach.

1 Introduction

This brief survey is about an approach by which proper learning algorithms from computational learning
theory can sometimes be leveraged to obtain query-efficient property testing algorithms. It does not contain
full proofs but gives a high-level overview of the main ideas along with complete statements of the key
results. Readers who are interested in more details are referred to the full proofs in [DLM+07, DLM+08,
GOS+09].

After presenting some relevant background from earlier work in property testing, in Section 2 we first
give an explanation of the basic approach, called “testing by implicit learning,” and describe a general
condition under which a class C of functions can be efficiently tested using the basic approach. (Roughly
speaking, the condition is that functions in the class must have some sort of concise representation, and must
be well-approximated by juntas in the class.) The results in Section 2 are from [DLM+07].

We then present two extensions of the basic “testing by implicit learning” approach. First, in Section 3
we describe how in one particular case (testing the class of s-sparse polynomials over F2) it is possible
to augment the basic approach to obtain a testing algorithm which is computationally efficient as well as
query-efficient. These results were first presented in [DLM+08]. For the second extension, we explain (at
a high level) how the “testing by implicit learning” approach can be carried out in the Fourier domain; very
roughly speaking, in this extension the 2n parity functions over x1, . . . , xn play the role that the n Boolean
variables x1, . . . , xn play in the original approach. This extension, and the testing results obtained using it,
were first established in [GOS+09] and are presented here in Section 4. We close in Section 5 with suggested
directions for future work.

Notation and Conventions. In [DLM+07] the basic “testing by implicit learning” approach is presented
in a rather general setting in which the functions being tested are mappings from Ωn to X , where Ω and X
may be arbitrary finite sets. For simplicity and ease of exposition, in this note we will only consider testing
Boolean functions which map {0, 1}n→{0, 1} (this is the framework for the extensions of both Sections 3
and 4). Thus for us a “property of Boolean functions” is a class C of Boolean functions over {0, 1}n as
described above.
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We work in the usual property testing model for Boolean functions. To recap, we view {0, 1}n as
endowed with the uniform distribution. Two functions f1, f2 : {0, 1}n→{0, 1} are said to be ε-close if
Pr[f1(x) 6= f2(x)] ≤ ε, and are ε-far if Pr[f1(x) 6= f2(x)] > ε. A testing algorithm for class C is an
algorithm A which takes black-box oracle access to an unknown and arbitrary function f : {0, 1}n→{0, 1}.
If f belongs to C then A must output “yes” with probability at least 2/3 (over its internal coin tosses), and if
f is ε-far from every g ∈ C then A must output “no” with probability at least 2/3 (thus we consider testers
with two-sided error).

A function f : {0, 1}n → {0, 1} is said to be a J-junta if there exists a set J ⊆ [n] of size at most J
such that f(x) = f(y) for every two assignments x, y that agree on all the coordinates in J (in other words,
f is a J-junta if it depends on at most J out of the n input variables).

1.1 Some previous work on testing classes of Boolean functions.

The “testing by implicit learning” approach is useful for classes of Boolean functions that have some sort
of “concise representation.” There has been considerable previous research on testing functions for prop-
erties corresponding to different notions of having a concise representation. An important precursor of the
“testing by implicit learning” work is the paper of Parnas et al. [PRS02], which gave algorithms for testing
whether Boolean functions f : {0, 1}n→{0, 1} have certain very simple representations as Boolean formu-
lae. They gave an O(1/ε)-query algorithm for testing whether f is a single Boolean literal or a Boolean
conjunction, and an Õ(s2/ε)-query algorithm for testing whether f is an s-term monotone DNF. Parnas et
al. posed as an open question whether a similar testing result can be obtained for the broader class of general
(non-monotone) s-term DNF formulas; as we will see, the “testing by implicit learning” method gives an
affirmative answer to this question.

Another closely related work is that of Fischer et al. [FKR+04], who gave an algorithm to test whether
a Boolean function f : Ωn → {0, 1} is a J-junta (i.e. depends only on at most J of its n arguments) with
query complexity polynomial in J and 1/ε. As described below, the “testing by implicit learning” approach
makes crucial use of techniques from [FKR+04], in combination with ideas from computational learning
theory.

1.2 Relevant earlier work relating property testing and learning.

The basic idea of using a learning algorithm to do property testing goes back to Goldreich et al. [GGR98].
They observed that any proper learning algorithm for a class C can immediately be used as a testing algorithm
for C. (Recall that a proper learning algorithm for C is one which outputs a hypothesis h that itself belongs to
C.) The idea behind this observation is that if the function f being tested belongs to C then a proper learning
algorithm will succeed in constructing a hypothesis that is close to f , while if f is ε-far from every g ∈ C
then any hypothesis h ∈ C that the learning algorithm outputs must necessarily be far from f .

This observation shows that any class C can be tested to accuracy ε using essentially the same number
of queries that are required to properly learn the class to accuracy Θ(ε). However, it is well known that
proper learning algorithms for virtually every interesting class of n-variable Boolean functions (such as all
the classes listed in Table 1, including such simple classes as Boolean literals) must make at least Ω(log n)
queries. In many cases the “testing by implicit learning” approach can be used to test a class C with fewer
queries than are required for learning – in particular, with query complexity independent of n (again see
Table 1).
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Class of functions Number of Queries Reference
Boolean literals (dictators), conjunctions O(1/ε) [PRS02]

s-term monotone DNFs Õ(s2/ε) [PRS02]
J-juntas Õ(J2/ε), Ω(J) (adaptive) [FKR+04], [CG04]

Õ(J/ε) [Bla09]
decision lists Õ(1/ε2) [DLM+07]

size-s decision trees, size-s branching programs, Õ(s4/ε2),
[DLM+07]

s-term DNFs, size-s Boolean formulas Ω(log s/ log log s) (adaptive)
s-sparse polynomials over F2 Õ(s4/ε2), Ω̃(

√
s) [DLM+07]

size-s Boolean circuits Õ(s6/ε2) [DLM+07]
functions with Fourier degree ≤ d Õ(26d/ε2), Ω̃(

√
d) [DLM+07]

induced subclasses of functions with 2O(k) · poly(1/ε), [GOS+09]
k-dimensional Fourier spectra Ω(2k/2) (adaptive)

Table 1: Selected results on testing various classes of Boolean functions over {0, 1}n. The “testing by
implicit learning” method is how the upper bounds in lines marked by “[DLM+07]” and “[GOS+09]” are
achieved. The upper bounds for those results are for adaptive algorithms (though it is shown in [DLM+07]
that very similar bounds can be achieved by non-adaptive algorithms), and the lower bounds are for non-
adaptive algorithms unless otherwise indicated by (adaptive).

2 The basic “testing by implicit learning” approach

2.1 Overview of the approach.

An observation which is at the heart of the approach is that many interesting classes C of functions are “well-
approximated” by juntas in the following sense: every function in C is close to some function in CJ , where
CJ ⊆ C and every function in CJ is a J-junta. For example, every s-term DNF over {0, 1}n is τ -close to an
s-term DNF that depends on only s log (s/τ) variables, since each term with more than log (s/τ) variables
can be removed from the DNF at the cost of at most τ/s error.

Roughly speaking, the “testing by implicit learning” approach to testing whether f belongs to C works
by attempting to learn the “structure” of the junta in CJ that f is close to without actually identifying the
relevant variables on which the junta depends. If the algorithm finds such a junta function, it accepts, and
if it does not, it rejects. The approach is described as “implicit learning” (as opposed to the explicit proper
learning of Goldreich et al. [GGR98]), since it learns the structure of the junta to which f is close without
explicitly identifying its relevant variables. Indeed, avoiding identifying the relevant variables is what makes
it possible to have query complexity independent of n.

The basic algorithm finds the structure of the junta f ′ in CJ that f is close to by using the techniques
of [FKR+04]. As in [FKR+04], it begins by randomly partitioning the variables of f into subsets and
identifying which subsets contain an influential variable (the random partitioning ensures that with high
probability, each subset contains at most one such variable if f is indeed in C). Next, the algorithm creates
a sample of random labeled examples (x1, y1), (x2, y2), ..., (xm, ym), where each xi is a string of length
J (not length n; this is crucial to the query complexity of the algorithm) whose bits correspond to the
influential variables of f , and where yi corresponds with high probability to the value of junta f ′ on xi.
We note that the number m of examples created is the number of examples required to learn the class CJ
of J-variable functions using “Occam’s Razor” [BEHW87]; it is independent of n. Finally, the algorithm
exhaustively checks whether any function in CJ – over J input variables – is consistent with this labeled
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sample. This step takes at least |CJ | time steps, which is exponential in s for the classes in Table 1; but since
|CJ | is independent of n the overall approach has query complexity that is independent of n. (The overall
time complexity is linear as a function of n; note that such a runtime dependence on n is inevitable since it
takes n time steps simply to prepare a length-n query string to the black-box function.)

In the rest of this section we give some more details on the algorithm and its performance.

2.2 Subclass approximators.

Let C denote a class of functions from {0, 1}n to {0, 1}. We will be interested in classes of functions that
can be closely approximated by juntas in the class. We have the following:

Definition 1. For τ > 0, we say that a subclass C(τ) ⊆ C is a (τ, J(τ))-approximator for C if

• C(τ) is closed under permutation of variables, i.e. if f(x1, . . . , xn) ∈ C(τ) then f(xσ1 , . . . , xσn) is
also in C(τ) for every permutation σ of [n]; and

• for every function f ∈ C, there is a function f ′ ∈ C(τ) such that f ′ is τ -close to f and f ′ is a
J(τ)-junta.

Typically for us C will be a class of functions with size bound s in some particular representation, and
J(τ) will depend on s and τ. (A good running example to keep in mind is that C is the class of all functions
that have s-term DNF representations. In this case we may take C(τ) to be the class of all s-term log(s/τ)-
DNFs, and we have J(τ) = s log(s/τ).) The approach succeeds on function classes C for which J(τ) is a
slowly growing function of 1/τ such as log(1/τ).

We write C(τ)k to denote the subclass of C(τ) consisting of those functions that depend only on variables
in {x1, . . . , xk}. We may (and will) view functions in C(τ)k as taking k arguments rather than n.

2.3 More detailed explanation of the basic algorithm.

Given ε > 0 and black-box access to f , the algorithm performs three main steps:

1. Identify critical subsets. In Step 1, the algorithm first randomly partitions the variables x1, . . . , xn
into r disjoint subsets I1, . . . , Ir. It then attempts to identify a set of j ≤ J(τ?) of these r subsets,
which we refer to as critical subsets because they each contain a “highly relevant” variable. (For now
the value τ? should be thought of as a small quantity; we discuss how this value is selected below.)
This step is essentially the same as the 2-sided test for J-juntas from Section 4.2 of Fischer et al.
[FKR+04]. The analysis shows that if f is close to a J(τ?)-junta then this step will succeed w.h.p.,
and if f is far from every J(τ?)-junta then this step will fail w.h.p.

2. Construct a sample. Let Ii1 , . . . , Iij be the critical subsets identified in the previous step. In Step 2
the algorithm constructs a set S of m labeled examples {(x1, y1), . . . , (xm, ym)}, where each xi is
independent and uniformly distributed over {0, 1}J(τ?). The analysis shows that if f belongs to C,
then with high probability there is a fixed f ′′ ∈ C(τ?)J(τ?) such that each yi is equal to f ′′(xi). On
the other hand, if f is far from C, then the analysis shows that w.h.p. no such f ′′ ∈ C(τ?)J(τ?) exists.

Each labeled example is constructed by again borrowing a technique outlined in [FKR+04]. The
algorithm starts with a uniformly random z ∈ {0, 1}n. It then attempts to determine how the j highly
relevant coordinates of z are set. Although the algorithm does not know which of the coordinates of z
are highly relevant, it does know that, assuming the previous step was successful, there should be one
highly relevant coordinate in each of the critical subsets. It uses the independence test of [FKR+04]
repeatedly to determine the setting of the highly relevant coordinate in each critical subset.
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For example, suppose that I1 is a critical subset. To determine the setting of the highly relevant
coordinate of z in critical subset I1, the algorithm subdivides I1 into two sets: the subset Ω0 ⊆ I1

of indices where z is set to 0, and the subset Ω1 = I1\Ω0 of indices where z is set to 1. It then
uses the independence test separately on both Ω0 and Ω1 to find out which one contains the highly
relevant variable. This tells it whether the highly relevant coordinate of z in subset I1 is set to 0 or 1.
The algorithm repeats this process for each critical subset in order to find the settings of the j highly
relevant coordinates of z; these form the string x. (The other J(τ?) − j coordinates of x are set to
random values; intuitively, this is okay since they are essentially irrelevant.) The algorithm ultimately
uses (x, f(z)) as the labeled example.

3. Check consistency. Finally, in Step 3 the algorithm searches through C(τ?)J(τ?) looking for a func-
tion f ′′ over {0, 1}J(τ?) that is consistent with all m examples in S. (Note that this step takes
Ω(|C(τ?)J(τ?)|) time but uses no queries.) If it finds such a function it accepts f , otherwise it re-
jects.

2.4 Sketch of the analysis.

We now give an intuitive explanation of the analysis of the test.

Completeness. Suppose f is in C. Then there is some f ′ ∈ C(τ?) that is τ?-close to f . Intuitively, τ?-close
is so close that for the entire execution of the testing algorithm, the black-box function f might as well
actually be f ′ (the algorithm only performs� 1/τ? many queries in total, each on a uniform random string,
so w.h.p. the view of the algorithm will be the same whether the target is f or f ′). Thus, for the rest of this
intuitive explanation of completeness, we pretend that the black-box function is f ′.

Recall that the function f ′ is a J(τ?)-junta. Since f ′ is a junta, in Step 1 the test will be able to identify
a collection of j ≤ J(τ?) “critical subsets” with high probability. Intuitively, these subsets have the property
that:

• each “highly relevant” variable occurs in one of the critical subsets, and each critical subset contains
at most one highly relevant variable (in fact at most one relevant variable for f ′);

• the variables outside the critical subsets are so “irrelevant” that w.h.p. in all the queries the algorithm
makes, it doesn’t matter how those variables are set (randomly flipping the values of these variables
would not change the value of f ′ w.h.p.).

Given critical subsets from Step 1 that satisfy the above properties, in Step 2 the test constructs a sam-
ple of labeled examples S = {(x1, y1), . . . , (xm, ym)} where each xi is independent and uniform over
{0, 1}J(τ?). In [DLM+07] it is shown that w.h.p. there is a J(τ?)-junta f ′′ ∈ C(τ?)J(τ?) with the following
properties:

• there is a permutation σ : [n]→ [n] for which f ′′(xσ(1), . . . , xσ(J(τ))) is close to f ′(x1, . . . , xn);

• the sample S is labeled according to f ′′.

Finally, in Step 3 the test does a brute-force search over all of C(τ?)J(τ?) to see if there is a function
consistent with S. Since f ′′ is such a function, the search will succeed and the test outputs “yes” with high
probability overall.

Soundness. Suppose now that f is ε-far from C.
One possibility is that f is ε-far from every J(τ?)-junta; if this is the case then w.h.p. the test will output

“no” in Step 1.
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The other possibility is that f is ε-close to a J(τ?)-junta f ′ (or is itself such a junta). Suppose that
this is the case and that the testing algorithm reaches Step 2. In Step 2, the algorithm tries to construct a
set of labeled examples that is consistent with f ′. The algorithm may fail to construct a sample at all; if
this happens then it outputs “no.” If the algorithm succeeds in constructing a sample S, then w.h.p. this
sample is indeed consistent with f ′; but in this case, w.h.p. in Step 3 the algorithm will not find any function
g ∈ C(τ?)J(τ?) that is consistent with all the examples. (If there were such a function g, then standard
arguments in learning theory show that w.h.p. any such function g ∈ C(τ?)J(τ?) that is consistent with S
is in fact close to f ′. Since f ′ is in turn close to f , this would mean that g is close to f . But g belongs to
C(τ?)J(τ?) and hence to C, so this violates the assumption that f is ε-far from C.)

2.5 The main theorem and its consequences.

The main theorem about the “testing by implicit learning” algorithm sketched above is stated below. A full
proof can be found in [DLM+07].

Theorem 2. There is an algorithm A with the following properties:
Let C be a class of functions from {0, 1}n to {0, 1}. Suppose that for every τ > 0, C(τ) ⊆ C is a

(τ, J(τ))-approximator for C. Suppose moreover that for every ε > 0, there is a τ satisfying

τ ≤ κ · ε2

J(τ)2 · ln2(J(τ)) · ln ln(J(τ)) · ln2(|C(τ)J(τ)|) · ln(1
ε ln |C(τ)J(τ)|)

, (1)

where κ > 0 is a fixed absolute constant. Let τ? be the largest value τ satisfying (1) above. Then algorithm
A makes:

Õ

(
1
ε2
J(τ?)2 ln2(|C(τ?)J(τ?)|)

)

many black-box queries to f , and satisfies the following:

• If f ∈ C then A outputs “yes” with probability at least 2/3;

• If f is ε-far from C then A outputs “no” with probability at least 2/3.

Here are some observations to help interpret the bound (1). Note that if J(τ) grows too rapidly as a
function of 1/τ , e.g. J(τ) = Ω(1/

√
τ), then there will be no τ > 0 satisfying inequality (1). On the other

hand, if J(τ) grows slowly as a function of 1/τ , e.g. log(1/τ), then it is may be possible to satisfy (1).
In many cases, including all of the applications stated below, J(τ) will grow as O(log(1/τ)), and

ln |C(τ)J(τ)| will always be at most poly(J(τ)), so (1) will always be satisfiable. The most typical case
is that J(τ) ≤ poly(s) log(1/τ) (where s is a size parameter for the class of functions in question) and
ln |C(τ)J(τ)| ≤ poly(s) · poly log(1/τ), which yields τ? = Õ(ε2)/poly(s) and an overall query bound of
poly(s)/Õ(ε2).

Theorem 2 can be used to establish that many well-studied classes of Boolean functions have query-
efficient testing algorithms. The following results, which are proved in [DLM+07], are also summarized in
Table 1.

Theorem 3. For any s and any ε > 0, Algorithm A yields a testing algorithm for

(i) decision lists using Õ(1/ε2) queries;

(ii) size-s decision trees using Õ(s4/ε2) queries;
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(iii) size-s branching programs using Õ(s4/ε2) queries;

(iv) s-term DNF using Õ(s4/ε2) queries;

(v) size-s Boolean formulas (with unbounded-fanin AND, OR and NOT gates) using Õ(s4/ε2) queries;

(vi) size-s Boolean circuits (with unbounded-fanin AND, OR and NOT gates) using Õ(s6/ε2) queries;

(vii) functions with Fourier degree at most d using Õ(26d/ε2) queries;

(viii) s-sparse F2 polynomials using Õ(s4/ε2) queries.

3 Efficiently testing sparse F2 polynomials

The main drawback of the basic “testing by implicit learning” approach described in Section 2 is its time
complexity. The original [DLM+07] algorithm has running time 2ω(s) as a function of s and ω(poly(1/ε))
as a function of ε for each of the “size-s” function classes (ii) through (viii) in Theorem 3.1

[DLM+07] asked whether any of these classes can be tested with both time complexity and query
complexity poly(s, 1/ε). This question was answered in [DLM+08], where it was shown that the class of
s-sparse F2 polynomials can be so tested. Recall that a F2 polynomial p : {0, 1}n→{0, 1} is a multilin-
ear polynomial with coefficients from F2, i.e. all nonzero coefficients are 1. Such a polynomial may be
viewed as a parity of monotone conjunctions (monomials). It is s-sparse if it contains at most s monomials
(including the constant-1 monomial if it is present). The main result of [DLM+08] is a time-efficient and
query-efficient tester for F2 polynomials:

Theorem 4. There is a poly(s, 1/ε)-query algorithm with the following performance guarantee: given
parameters s, ε and black-box access to any f : {0, 1}n→{−1, 1}, it runs in time poly(s, 1/ε) and tests
whether f is an s-sparse F2 polynomial versus ε-far from every s-sparse polynomial.

At a high level, the algorithm of [DLM+08] augments the basic “testing by implicit learning” approach
by using a sophisticated proper learning algorithm due to Schapire and Sellie [SS96] in place of the naive
brute-force search which is used as the learning step in the basic approach. However, significant compli-
cations arise in the attempt to “implicitly” run the [SS96] algorithm that do not arise with the brute-force
search of [DLM+07]. In the rest of this subsection we briefly describe those complications and how they
are addressed in [DLM+08].

We first note that if f is an s-sparse F2 polynomial, an easy argument shows that there is a function
f ′ - obtained by discarding from f all monomials of degree more than log(s/τ) - that is τ -close to f and
depends on at most r = s log(s/τ) variables. As described in the previous section, the basic “testing by
implicit learning” approach uses ideas of [FKR+04] for testing juntas to construct a sample of uniform
random examples over {0, 1}r which with high probability are all labeled according to f ′. At this point,
the [DLM+07] algorithm uses a naive brute-force search to check all s-sparse F2 polynomials over r (as
opposed to n) variables, to see if any one of them is consistent with the labeled sample. This leads to a
running time of roughly 2ω(s) · (1/ε)log log(1/ε).

The proper learning algorithm of Schapire and Sellie [SS96] runs in time polynomial in r and s to ex-
actly learn any unknown s-sparse F2 polynomial over r variables; thus a natural idea is to use it instead of
the computationally inefficient brute-force search of [DLM+07]. However, the [SS96] learning algorithm
requires access to a membership query oracle, i.e. a black-box oracle for the function being learned. Thus,

1As discussed in the previous section, an Ω(n) running time is necessary since the testing algorithm must prepare n-bit strings
for the black-box oracle for f . The algorithms of this section and the next one both have running times that are linear in n for this
reason; henceforth we discuss the running times of our testers only as a function of the other parameters.
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in order to run the Schapire/Sellie algorithm in the “testing by implicit learning” framework, it is neces-
sary to simulate membership queries to an approximating function f ′ which is close to f but depends on
only r variables. This is significantly more challenging than generating uniform random examples labeled
according to f ′, which is all that is required in the original [DLM+07] approach.

To see why membership queries to f ′ are more difficult to simulate than uniform random examples,
recall that f and the f ′ described above (obtained from f by discarding high-degree monomials) are τ -
close. Intuitively this is extremely close, disagreeing only on a 1/m fraction of inputs for an m that is much
larger than the number of random examples required for learning f ′ via brute-force search (this number is
“small” – independent of n – because f ′ depends on only r variables). Thus in the [DLM+07] approach it
suffices to use f , the function to which we actually have black-box access, rather than f ′ to label the random
examples used for learning f ′; since f and f ′ are so close, and the examples are uniformly random, with
high probability all the labels will also be correct for f ′. However, in the membership query scenario of
[DLM+08], things are no longer that simple. For any given f ′ which is close to f, one can no longer assume
that the learning algorithm’s queries to f ′ are uniformly distributed and hence unlikely to hit the error region
– indeed, it is possible that the learning algorithm’s membership queries to f ′ are clustered on the few inputs
where f and f ′ disagree.

Thus, in order to successfully simulate membership queries, the algorithm must consistently answer
queries according to a particular approximator f ′, even though it only has oracle access to f . This must
be done implicitly in a query-efficient way, since explicitly identifying even a single variable relevant to f ′

requires at least Ω(log n) queries. [DLM+08] does this by showing that for any s-sparse polynomial f , an
approximating f ′ can be obtained as a restriction of f by setting certain carefully chosen subsets of variables
to zero. Roughly speaking, this restriction is obtained by randomly partitioning all of the input variables
into r subsets and zeroing out all subsets whose variables have small “collective influence.”

3.1 The [DLM+08] algorithm and its analysis.

In the rest of this section we give a high-level description of the actual [DLM+08] testing algorithm, called
Test-Sparse-Poly, and its analysis.

Test-Sparse-Poly is based on the idea that if f is a sparse polynomial then it only has a small number
of “high-influence” variables, and it is close to another sparse polynomial f ′ (obtained from f by fixing
some input variables to zero) that depends only on those high-influence variables. Roughly speaking, the
algorithm works by first isolating the high-influence variables into distinct subsets, and then attempting to
implicitly learn f ′ using the [SS96] algorithm.

We now describe the testing algorithm in tandem with a sketch of why the test is complete, i.e. why
it accepts s-sparse polynomials (later we will give a sketch of the soundness argument). The first thing
Test-Sparse-Poly does (Step 1) is to randomly partition the variables into r = poly(s/τ) subsets. If f is an
s-sparse polynomial, then it indeed has few high-influence variables, so with high probability at most one
such variable will be present in each subset.

Next (Step 2) the algorithm attempts to distinguish subsets that contain a high-influence variable from
subsets that do not; this is done by using the independence test of [FKR+04] as described in Section 2.

Once the subsets that contain high-influence variables have been identified, next (Step 3) the algorithm
defines a function f ′ which “zeroes out” all of the variables in all low-influence subsets. Note that if the
original function f is an s-sparse polynomial, then f ′ will be one too. Step 4 of Test-Sparse-Poly checks
that f is close to f ′; it is shown in [DLM+08] that this is indeed the case with high probability if f is an
s-sparse polynomial.

The final step (Step 5) of Test-Sparse-Poly is to implicitly run the [SS96] algorithm to learn a sparse
polynomial, which we call f ′′, which is isomorphic to f ′ but is defined only over the high-influence vari-
ables of f (recall that there is at most one from each high-variation subset). The overall Test-Sparse-Poly
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algorithm accepts f if and only if the learning algorithm successfully returns a final hypothesis (i.e. does not
halt and output “fail”). It is shown in [DLM+08] that for f an s-sparse polynomial, with high probability
the subsets that are not restricted in Step 3 have a certain “nice structure:” essentially, they each have one
variable with very high influence and all other variables with very low influence. [DLM+08] show that this
makes it possible to simulate the membership queries that the [SS96] algorithm requires, so it is possible to
implicitly run the [SS96] learning algorithm. Thus, for f an s-sparse polynomial the [SS96] algorithm can
run successfully, and the test will accept.

Sketch of soundness. We close this section with a brief sketch of the soundness argument, that if Test-
Sparse-Poly accepts f with high probability then f must be close to some s-sparse polynomial.

If f passes Step 2 with high probability, then [DLM+08] shows that Test-Sparse-Poly must have ob-
tained a partition of variables into subsets that contain a high-influence variable, and subsets that have low
“collective influence.” If f passes Step 4, then it must moreover be the case that f is close to the function f ′

obtained by zeroing out the low-influence subsets.
In the last step, Test-Sparse-Poly attempts to run the [SS96] algorithm to learn f ′′ using the high-

influence subsets; in the course of doing this, it attempts to simulate membership queries to f ′′. Since
f could be an arbitrary function, we do not know whether each high-influence subset has at most one
variable relevant to f ′. However, [DLM+08] show that, if the routine to simulate membership queries with
high probability never returns “fail,” then f ′ must be close to a junta g whose relevant variables are the
individual “highest-influence” variables in each of the high-influence subsets. Now, given that the [SS96]
algorithm halts successfully, it must be the case that it constructs a final hypothesis h that is itself an s-sparse
polynomial and that agrees with a large sample of many random examples. From this it is possible to argue
that hmust be close to g (using standard arguments from learning theory), hence close to f ′, and hence close
to f . So indeed if Test-Sparse-Poly accepts f with high probability then f must be close to some s-sparse
polynomial.

4 Testing induced subclasses of functions with k-dimensional Fourier spec-
tra

In [DLM+07] and [DLM+08] the learning is “implicit” in the sense that a learning algorithm is executed to
learn some function depending on r of the n input variables, without the identity of those r variables ever
being explicitly determined by the algorithm. [GOS+09] extended this methodology to learn some function
depending on k of the 2n parity functions {χα} over input variables without ever explicitly identifying those
parity functions, and obtained testing results using this extended notion of “implicit learning.”

We establish some terminology and recall some background in order to state the results of [GOS+09].
We view the domain {0, 1}n as Fn2 , so a real-valued function over the Boolean cube is a mapping Fn2→R.
Every such function f has a unique representation as

f(x) =
∑
α∈Fn

2

f̂(α)χα(x) where χα(x) def= (−1)〈α,x〉 = (−1)
Pn

i=1 αixi .

The coefficients f̂(α) are the Fourier coefficients of f , and the functions χα(·) are sometimes referred to
as linear functions or characters; they are simply parity functions over all possible subsets of the n input
variables. In addition to treating input strings x as lying in Fn2 , we also index the characters by vectors
α ∈ Fn2 ; this is to emphasize the fact that we are concerned with the linear-algebraic structure. We write
Spec(f) for the Fourier spectrum of f , i.e. the set {α ∈ Fn2 : f̂(α) 6= 0}.

A Boolean function f : Fn2→{0, 1} is said to be k-dimensional if Spec(f) lies in a k-dimensional
subspace of Fn2 . An equivalent definition is that f is k-dimensional if it is a function of k characters
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χα1 , . . . , χαk
, i.e. f is a junta over k parity functions (this is easily seen by picking {αi} to be a basis

for Spec(f)). Thus the class of all k-dimensional Boolean functions consists of all Boolean functions of the
form g(χα1 , . . . , χαk

) where g is any k-junta and χα1 , . . . , χαk
are any parity functions from Fn2 to F2

Let C be a class of n-variable Boolean functions. We say that C is an induced subclass of k-dimensional
functions if there is some collection C′ of k-variable Boolean functions such that C is the class of all functions
f = g(χα1 , . . . , χαk

) where g is any function in C′ and χα1 , . . . , χαk
are any parity functions from Fn2 to

F2 as before. For example, let C be the class of all k-sparse polynomial threshold functions over {−1, 1}n;
i.e., each function in C is the sign of a real polynomial with at most k nonzero terms. This is an induced
subclass of k-dimensional functions, corresponding to the collection C′ = {all linear threshold functions
over k Boolean variables}.

[GOS+09] shows that any induced subclass of k-dimensional functions has a query-efficient testing
algorithm:

Theorem 5. Let C be any induced subclass of k-dimensional functions. There is a nonadaptive poly(2k, 1/ε)-
query algorithm for ε-testing C.

The algorithm combines the “testing by implicit learning” approach with a technique from [GOS+09]
(building on [FGKP06]) of pairwise independently hashing the Fourier coefficients of f . Very roughly
speaking, this pairwise independent hashing is used to “isolate” each nonzero Fourier coefficient of a low-
dimensional function f , similar to how a random partition of the variables of a junta into disjoint subsets
is used in [FKR+04, DLM+07] to “isolate” each of the relevant variables of a junta. With the Fourier
coefficients isolated in this way, given an n-bit example (z, f(z)) it is possible to determine the value
χα(z) that each character function corresponding to a nonzero Fourier coefficient f̂(α) takes on z, without
explicitly identifying the string α. This makes it possible to build a “data set” for implicitly learning the
function f = g(χα1 , . . . , χαk

); each example in the data set consists of a vector of values for all of the
parity functions corresponding to nonzero Fourier coefficients, and the corresponding label is the value
f = g(χα1 , . . . , χαk

). This is actually done in an “exhaustive” way, using 2Θ(k) examples, so the “data
set” really is more akin to a truth table – it contains an entry for each of the 2k possible vectors of values
that (χα1 , . . . , χαk

) can take. (It is shown in [GOS+09] that if f is far from any k-dimensional function,
then with high probability the construction of the “data set” will reveal this.) Thus one obtains a complete
truth table for the k-variable function g, and from this it is trivial (without making any additional queries) to
determine whether g belongs to C′.

5 Open problems and directions for future work

There are natural goals for future work related to each of the three main results described above.
As described in Section 2, the basic “testing by implicit learning” approach gives poly(s/ε)-query upper

bounds for testing many natural classes such as size-s decision trees, s-term DNF, size-s Boolean formulas,
and more. What can be said about lower bounds for these classes? By adapting arguments of Chockler
and Gutfreund [CG04], Diakonikolas et al. [DLM+07] establish Ω̃(log s) lower bounds (for adaptive algo-
rithms), but it is quite possible that a poly(s) lower bound in fact holds. (We note that [DLM+07] does
establish a Ω̃(

√
s) lower bound for nonadaptive algorithms that test the class of s-sparse F2 polynomials.)

An obvious goal related to [DLM+08] is to obtain poly(s, 1/ε)-time testing algorithms for other classes
beyond just s-sparse F2 polynomials. Polynomial-time proper learning algorithms are not known for classes
such as s-term DNF or size-s decision trees (even if membership queries are allowed), and thus it seems that
new ideas may be needed for these classes. A (potentially more modest) goal is to extend the [DLM+08]
results to testing s-sparse polynomials over other finite fields; see the conclusion of [DLM+08] for more
discussion of this.
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Finally, an interesting direction related to the use of “testing by implicit learning” over the Fourier
domain, as in [GOS+09], is whether sharper query complexity bounds can be obtained for specific classes
of interest. [GOS+09] give a 2Ω(k) lower bound for testing the entire class of all k-dimensional functions,
and thus the 2O(k) ·poly(1/ε)-query upper bound for induced subclasses of k-dimensional functions cannot
be improved much in the worst case. But what about specific classes of k-dimensional functions, such as
the class of all k-sparse polynomial threshold functions over {−1, 1}n? It would be interesting to determine
whether this class can be tested using only poly(k, 1/ε) queries.
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