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Abstract

We consider the problem of testing if a given function f : Fn
2 → F2 is close to any degree

d polynomial in n variables, also known as the problem of testing Reed-Muller codes. We
are interested in determining the query-complexity of distinguishing with constant probablity
between the case where f is a degree d polynomial and the case where f is Ω(1)-far from all
degree d polynomials. Alon et al. [AKK+05] proposed and analyzed a natural 2d+1-query test
T0, and showed that it accepts every degree d polynomial with probability 1, while rejecting
functions that are Ω(1)-far with probability Ω(1/(d2d)). This leads to a O(d4d)-query test for
degree d Reed-Muller codes.

We give an asymptotically optimal analysis of T0, showing that it rejects functions that are
Ω(1)-far with Ω(1)-probability (so the rejection probability is a universal constant independent
of d and n). In particular, this implies that the query complexity of testing degree d Reed-Muller
codes is O(2d).

Our proof works by induction on n, and yields a new analysis of even the classical Blum-Luby-
Rubinfeld [BLR93] linearity test, for the setting of functions mapping Fn

2 to F2. Our results also
imply a “query hierarchy” result for property testing of affine-invariant properties: For every
function q(n), it gives an affine-invariant property that is testable with O(q(n))-queries, but not
with o(q(n))-queries, complementing an analogous result of [GKNR08] for graph properties.
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1 Introduction

We consider the task of testing if a Boolean function f on n bits, given by an oracle, is close to
a degree d multivariate polynomial (over F2, the field of two elements). This specific problem,
also known as the testing problem for the Reed-Muller code, was considered previously by Alon,
Kaufman, Krivelevich, Litsyn, and Ron [AKK+05] who proposed and analyzed a natural 2d+1-
query test for this task. In this work we give an improved, asymptotically optimal, analysis of their
test. Below we describe the problem, its context, our results and some implications.

2 Reed-Muller Codes and Testing

The Reed-Muller codes are parameterized by two parameters: n the number of variables and d the
degree parameter. The Reed-Muller codes consist of all functions from Fn2 → F2 that are evaluations
of polynomials of degree at most d. We use RM(d, n) to denote this class, i.e., RM(d, n) = {f :
Fn2 → F2|deg(f) ≤ d}.
The proximity of functions is measured by the (fractional Hamming) distance. Specifically, for
functions f, g : Fn2 → F2, we let the distance between them, denoted by δ(f, g), be the quantity
Prx←UFn

2
[f(x) 6= g(x)]. For a family of functions F ⊆ {g : Fn2 → F2} let δ(f,F) = min{δ(f, g)|g ∈

F}. We say f is δ-close to F if δ(f,F) ≤ δ and δ-far otherwise.

Let δd(f) = δ(f,RM(d, n)) denote the distance of f to the class of degree d polynomials. The
goal of Reed-Muller testing is to “test”, with “few queries” of f , whether f ∈ RM(d, n) or if f
is far from RM(d, n). Specifically, for a function q : Z+ × Z+ × (0, 1] → Z+, a q-query tester for
the class RM(d, n) is a randomized oracle algorithm T that, given oracle access to some function
f : Fn2 → F2 and a proximity parameter δ ∈ (0, 1], queries at most q = q(d, n, δ) values of f and
accepts f ∈ RM(d, n) with probability 1, while if δ(f,RM(d, n)) ≥ δ it rejects with probability at
least, say, 1/2. The function q is the query complexity of the test and the main goal here is to make
q as small as possible, as a function possibly of d, n and δ. We denote the test T run using oracle
access to the function f by T f

This task was already considered by Alon et al. [AKK+05] who gave a tester with query complexity
O(dδ · 4

d). This tester repeated a simple O(2d)-query test, that we denote T∗, several times. Given
oracle access to f , T∗ selects a (d + 1)-dimensional affine subspace A, and accepts if f restricted
to A is a degree d polynomial. This requires 2d+1 queries of f (since that is the number of points
contained in A). [AKK+05] show that if δ(f) ≥ δ then T∗ rejects f with probability Ω(δ/(d · 2d)).
Their final tester then simply repeated T∗ O(dδ · 2

d) times and accepted if all invocations of T∗
accepted. The important feature of this result is that the number of queries is independent of n,
the dimension of the ambient space. Alon et al. also show that any tester for RM(d, n) must make
at least Ω(2d + 1/δ) queries. Thus their result was tight to within almost quadratic factors, but
left a gap open. We close this gap in this work.

3 Main Result

Our main result is an improved analysis of the basic 2d+1-query test T∗. We show that if δd(f) ≥ 0.1,
in fact even if it’s at least 0.1·2−d, then in fact this basic test rejects with probability lower bounded
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by some absolute constant. We now give a formal statement of our main theorem.

Theorem 1 There exists a constant ε1 > 0 such that for all d, n, and for all functions f : Fn2 → F2,
we have

Pr[T f∗ rejects] ≥ min{2d · δd(f), ε1}.

Therefore, to reject functions δ-far from RM(d, n) with constant probability, one can repeat the
test T∗ at most O(1/min{2dδd(f), ε1}) = O(1 + 1

2dδ
) times, making the total query complexity

O(2d + 1/δ). This query complexity is asymptotically tight in view of the earlier mentioned lower
bound in [AKK+05].

Our error-analysis is also asymptotically tight. Note that our theorem effectively states that func-
tions that are accepted by T∗ with constant probability (close to 1) are (very highly) correlated with
degree d polynomials. To get a qualitative improvement one could hope that every function that
is accepted by T∗ with probability strictly greater than half is somewhat correlated with a degree
d polynomial. Such stronger statements however are effectively ruled out by the counterexamples
to the “inverse conjecture for the Gowers norm” given by [LMS08, GT07]. Since the analysis given
in these works does not match our parameters asymptotically, we show how an early analysis due
to the authors of [LMS08] can be used to show the asymptotic tightness of the parameters of
Theorem 1.

Our main theorem (Theorem 1) is obtained by a novel proof that gives a (yet another!) new analysis
even of the classical linearity test of Blum, Luby, Rubinfeld [BLR93]. Below we explain some of
the context of our work and some implications.

4 Query hierarchy for affine-invariant properties

Our result falls naturally in the general framework of property testing [BLR93, RS96, GGR98].
Goldreich et al. [GKNR08] asked an interesting question in this broad framework: Given an en-
semble of properties F = {FN}N where FN is a property of functions on domains of size N , which
functions correspond to the query complexity of some property? That is, for a given complexity
function q(N), is there a corresponding property F such that Θ(q(N))-queries are necessary and
sufficient for testing membership in FN? This question is interesting even when we restrict the
class of properties being considered.

For completely general properties this question is easy to solve. For graph properties [GKNR08]
et al. show that for every efficiently computable function q(N) = O(N) there is a graph property
for which Θ(q(N)) queries are necessary and sufficient (on graphs on Ω(

√
N) vertices). Thus this

gives a “hierarchy theorem” for query complexity.

Our main theorem settles the analogous question in the setting of “affine-invariant” properties.
Given a field F, a property F ⊆ {Fn → F} is said to be affine-invariant if for every f ∈ F and
affine map A : Fn → Fn, the composition of f with A, i.e, the function f ◦A(x) = f(A(x)), is also
in F . Affine-invariant properties seem to be the algebraic analog of graph-theoretic properties and
generalize most natural algebraic properties (see Kaufman and Sudan [KS08]).

Since the Reed-Muller codes form an affine-invariant family, and since we have a tight analysis
for their query complexity, we can get the affine-invariant version of the result of [GKNR08].
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Specifically, given any (reasonable) query complexity function q(N) consider N that is a power of
two and consider the class of functions on n = log2N variables of degree at most d = dlog2 q(N)e.
We have that membership in this family requires Ω(2d) = Ω(q(N))-queries, and on the other hand
O(2d) = O(q(N))-queries also suffice, giving an ensemble of properties PN (one for every N = 2n)
that is testable with Θ(q(N))-queries.

Theorem 2 For every q : N→ N that is at most linear, there is an affine-invariant property that
is testable with O(q(n)) queries (with one-sided error) but is not testable in o(q(n)) queries (even
with two-sided error). Namely, this property is membership in RM(dlog2 q(n)e, n).

5 Gowers norm

A quantity closely related to the rejection probability for T∗ also arises in some of the recent
results in additive number theory, under the label of the Gowers norm, introduced by Gowers
[Gow98, Gow01].

To define this norm, we first consider a related test T f0 (k) which, given parameter k and oracle
access to a function f , picks x0, a1, . . . , ak ∈ Fn2 uniformly and independently and accepts if f
restricted to the affine subspace x0 + span(a1, . . . , ak) is a degree k − 1 polynomial. Note that
since we don’t require a1, . . . , ak to be linearly independent, T0 sometimes (though rarely) picks a
subspace of dimension k − 1 or less. When k = d+ 1, if we condition on the event that a1, . . . , ak
are linearly independent, T0(d + 1) behaves exactly as T∗. On the other hand when a1, . . . , ak do
have a linear dependency, T0(k) accepts with probability one. It turns out that when n ≥ d+1, the
probability that a1, . . . , ad+1 are linearly independent is lower bounded by a constant, and so the
rejection probability of T0(d+1) is lower bounded by a constant multiple of the rejection probability
of T∗ (for every function f). The test T0 has a direct relationship with the Gowers norm.

In our notation, the Gowers norm can be defined as follows. For a function f : Fn2 → F2, the
kth-Gowers norm of f , denoted ‖f‖Uk , is given by the expression

‖f‖Uk
def
= (Pr[T f0 (k) accepts]− Pr[T f0 (k) rejects])

1

2k .

Gowers [Gow01] (see also [GT05]) showed that the “correlation” of f to the closest degree d poly-
nomial, i.e., the quantity 1 − 2δd(f), is at most ‖f‖Ud+1 . The well-known Inverse Conjecture for
the Gowers Norm states that some sort of converse holds: if ‖f‖Ud+1 = Ω(1), then the correlation
of f to some degree d polynomial is Ω(1), or equivalently δd(f) = 1/2 − Ω(1). (That is, if the
acceptance probability of T0 is slightly larger than 1/2, then f is at distance slightly smaller than
1/2 from some degree d polynomial.) Lovett et al. [LMS08] and Green and Tao [GT07] disproved
this conjecture, showing that the symmetric polynomial S4 has ‖S4‖U4 = Ω(1) but the correlation
of S4 to any degree 3 polynomial is exponentially small. This still leaves open the question of
establishing tighter relationships between the Gowers norm ‖f‖Ud+1 and the maximal correlation
of f to some degree d polynomial. The best analysis known seems to be in the work of [AKK+05]
whose result can be interpreted as showing that there exists ε > 0 such that if ‖f‖Ud+1 ≥ 1− ε/4d,
then δd(f) = O(4d(1− ‖f‖Ud+1)).

Our results show that when the Gowers norm is close to 1, there is actually a tight relationship
between the Gowers norm and distance to degree d. More precisely, there exists ε > 0 such that if
‖f‖Ud+1 ≥ 1− ε/2d, then δd(f) = Θ(1− ‖f‖Ud+1).
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6 XOR lemma for low-degree polynomials

One application of the Gowers norm and the Alon et al. analysis to complexity theory is an elegant
“hardness amplification” result for low-degree polynomials, due to Viola and Wigderson [VW07].
Let f : Fn2 → F2 be such that δd(f) is noticeably large, say ≥ 0.1. Viola and Wigderson showed how
to use this f to construct a g : Fm2 → F2 such that δd(g) is significantly larger, around 1

2 − 2−Ω(m).
In their construction, g = f⊕t, the t-wise XOR of f , where f⊕t : (Fn2 )t → F2 is given by:

f⊕t(x1, . . . , xt) =

t∑
i=1

f(xi).

In particular, they showed that if δd(f) ≥ 0.1, then δd(f
⊕t) ≥ 1/2−2−Ω(t/4d). Their proof proceeded

by studying the rejection probabilities of T∗ on the functions f and f⊕t. The analysis of the
rejection probability of T∗ given by [AKK+05] was a central ingredient in their proof. By using our
improved analysis of the rejection probability of T∗ from Theorem 1 instead, we get the following
improvement.

Theorem 3 Let ε1 be as in Theorem 1. Let f : Fn2 → F2. Then

δd(f
⊕t) ≥ 1− (1− 2 min{ε1/4, 2d−2 · δd(f)})t/2d

2
.

In particular, if δd(f) ≥ 0.1, then δd(f
⊕t) ≥ 1/2− 2−Ω(t/2d).

7 Technique

The heart of our proof of the main theorem (Theorem 1) is an inductive argument on n, the
dimension of the ambient space. While proofs that use induction on n have been used before in
the literature on low-degree testing (see, for instance, [BFL91, BFLS91, FGL+96]), they tend to
have a performance guarantee that degrades significantly with n. Indeed no inductive proof was
known even for the case of testing linearity of functions from Fn2 → F2 that showed that functions
at Ω(1) distance from linear functions are rejected with Ω(1) probability. (We note that the original
analysis of [BLR93] as well as the later analysis of [BCH+96] do give such bounds - but they do not
use induction on n.) In the process of giving a tight analysis of the [AKK+05] test for Reed-Muller
codes, we thus end up giving a new (even if weaker) analysis of the linearity test over Fn2 . Below
we give the main idea behind our proof.

Consider a function f that is δ-far from every degree d polynomial. For a “hyperplane”, i.e., an
(n− 1)-dimensional affine subspace A of Fn2 , let f |A denote the restriction of f to A. We first note
that the test can be interpreted as first picking a random hyperplane A in Fn2 and then picking a
random (d+1)-dimensional affine subspace A′ within A and testing if f |A′ is a degree d polynomial.
Now, if on every hyperplane A, f |A is still δ-far from degree d polynomials then we would be done
by the inductive hypothesis. In fact our hypothesis gets weaker as n → ∞, so that we can even
afford a few hyperplanes where f |A is not δ-far. The crux of our analysis is when f |A is close to
some degree d polynomial PA for several (but just O(2d)) hyperplanes. In this case we manage to
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“sew” the different polynomials PA (each defined on some (n− 1)-dimensional subspace within Fn2 )
into a degree d polynomial P that agrees with all the PA’s. We then show that this polynomial is
close to f , completing our argument.

To stress the novelty of our proof, note that this is not a “self-correction” argument as in [AKK+05],
where one defines a natural function that is close to P , and then works hard to prove it is a
polynomial of appropriate degree. In contrast, our function is a polynomial by construction and
the harder part (if any) is to show that the polynomial is close to f . Moreover, unlike other
inductive proofs, our main gain is in the fact that the new polynomial P has degree no greater than
that of the polynomials given by the induction.

The proofs of the theorems mentioned above may be found in our paper [BKS+09].
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