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Abstract

We study the local testability of linear codes. We first reformulate this question in the lan-
guage of tolerant linearity testing under a non-uniform distribution. We then study the question
of linearity testing under non-uniform distributions directly, and give a sufficient criterion for
linearity to be tolerantly testable under a given distribution. We show that several natural
classes of distributions satisfy this criterion (such as product distributions and low Fourier-bias
distributions), thus showing that linearity is tolerantly testable under these distributions. This
in turn implies that the corresponding codes are locally testable.

For the case of random sparse linear codes, we show the testability and decodability of such
codes in the presence of very high noise rates. More precisely, we show that any linear code in
Fn2 which is:

• sparse (i.e., has only poly(n) codewords)

• unbiased (i.e., each nonzero codeword has Hamming weight in (1/2− n−γ , 1/2 + n−γ) for
some constant γ > 0)

can be locally tested and locally list decoded from (1/2 − ε)-fraction errors using only poly( 1
ε )

queries to the received word. This simultaneously simplifies and strengthens a result of Kaufman
and Sudan, who gave a local tester and local (unique) decoder for such codes from some constant
fraction of errors.

For the case of Dual BCH codes, these algorithms can also be made to run in sublinear
time. We also give sub-exponential time algorithms for list-decoding arbitrary unbiased (but
not necessarily sparse) linear codes in the high-error regime.

1 Introduction

We begin by setting up some notation. A linear code C in FN2 is simply a linear subspace of FN2 .
The elements of C are often referred to as “codewords”. We say that C is sparse if |C| ≤ N c for some
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constant c. For a string x ∈ FN2 , we define its (normalized Hamming) weight wt(x) to equal 1
n×

(the number of nonzero coordinates of x). We define the bias of the code C as maxy∈C\{0}
∣∣∣1−wt(y)

2

∣∣∣.
Thus each nonzero codeword y of a code of bias β has wt(y) ∈ [(1 − β)/2, (1 + β)/2]. For two
strings x, y ∈ FN2 , we define the (normalized Hamming) distance between x and y, ∆(x, y), to be
1
n× (the number of coordinates i ∈ [N ] where xi and yi differ). We then define the distance of a
string x from the code C, ∆(x, C) to be the minimum distance of x to some codeword of C:

∆(x, C) = min
y∈C

∆(x, y).

The basic algorithmic tasks associated with codes are error-detection and error-correction. Here
we are given an arbitrary received word w ∈ FN2 , and we want to (1) determine if ∆(w, C) > δ, and
(2) find all codewords y ∈ C such that ∆(w, C) ≤ δ. In recent years, there has been much interest
in developing sublinear time algorithms (and in particular, highly query-efficient algorithms) for
these tasks. In what follows, we will describe our results on various aspects of these questions.

2 Locally Testable Codes and Tolerant Linearity Testing

Informally, a local tester for C is a randomized algorithm A, which when given oracle access to a
received word w ∈ FN2 , makes very few queries to the received word w, and distinguishes between
the case where w ∈ C and the case where w is “far” (in Hamming distance) from all codewords of
C. A code C is said to be locally testable if there exists a constant query local tester for C.

The first local tester (for any code) came from the seminal work of Blum, Luby and Rubin-
feld [BLR93], which gave an efficient, 3-query local tester for the Hadamard code.

In order to study local testability for linear codes, we first reformulate the question in the language
of testing under distributions. Let C ⊆ FN2 be a linear code of dimension n, and let G be an n×N
generator matrix for C. Let S = {v1, v2, . . . , vN} ⊂ Fn2 denote the set of columns of G. We associate
to C the distribution µ over Fn2 which is uniform over S. Every word w in FN2 can be viewed as a
function fw : S → F2, where fw(vi) = wi. Under this mapping, every codeword of C gets associated
with a linear function.

Note that via this translation, the problem of testing if w is close to some codeword exactly
translates into the problem of testing if fw is close to some linear function under the distribution
µ (where the distance of two functions g, h under µ is measured by the probability that g and h
differ on a random sample from µ).

In this language, the BLR local tester for the Hadamard code is precisely the problem of testing
linearity under µ, where now µ is the uniform distribution over Fn2 .

For a general linear code C, the related distribution µ is uniform over a subset S of Fn2 . For the
relationship between testability of the code C and the testability of linearity under µ to be tight,
we must essentially force the tester for linearity under µ to make queries only from the set S. A
notion of testing that naturally enforces this requirement is that of tolerant linearity testing. We
now formally describe this notion and give the connection to locally testable codes.

Let C be a class of functions from a finite set D to a finite set R. In the task of tolerant testing
for C, we are given oracle access to a function f : D → R, and we wish to determine using few
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queries to f , whether f is well approximable by functions in C; equivalently, to distinguish between
the case when f is close to some element of C, and the case when f is far from all elements of C.
Tolerant property testing was introduced by Parnas, Ron and Rubinfeld in [PRR06] as a refinement
of the problem of property testing [RS96], [GGR98] (where one wants to distinguish the case of f
in C from the case when f is far from C), and is now widely studied. The usual notion of closeness
considered in the literature is via the distance measure ∆(f, g) = Prx∈D[f(x) 6= g(x)], where x ∈ D
is picked according to the uniform distribution over D.

We propose to study tolerant property testing under general distributions. Given a probability
measure µ on D, the µ-distance of f from g, where f, g : D → R, is defined by

∆µ(f, g) = Pr
x∈µ

[f(x) 6= g(x)].

Then the measure of how well f can be approximated by elements of C is via the µ-distance

∆µ(f, C) = min
g∈C

∆µ(f, g).

The new goal in this context then becomes to approximate ∆µ(f, C) using only a few oracle calls to
f . In our context, we study a concrete instance of the above framework. We consider the original
problem considered in the area of property testing, namely the classical problem of linearity testing.

The problem of linearity testing was introduced by Blum, Luby and Rubinfeld in [BLR93]. In this
problem, we are given oracle access to a function f : Fn2 → F2, and want to distinguish between the
case that f is a linear function and the case that f is far from the class L of all linear functions from
Fn2 to F2. [BLR93] gave a simple 3-query test T that achieves this. In fact, this test also achieves
the task of tolerant linearity testing; i.e., for any function f : Fn2 → F2, letting δ = Pr[T f rejects],
we have

C1 · δ ≤ ∆Un(f,L) ≤ C2 · δ,

where C1 and C2 are absolute constants, and Un is the uniform distribution on Fn2 . Hence the test
of [BLR93], in addition to testing linearity, actually estimates how well f can be approximated by
functions in L.

Here we study tolerant linearity testing over general probability distributions. Let µ be a probability
distribution over Fn2 . In the problem of tolerant linearity testing under µ, we wish to estimate the
how well f may be approximated under µ by linear functions from L. For a given family (Fn2 , µn)n,
we say linearity is tolerantly testable under µ = µn with q queries, if there exists a q-query tester
Tn and constants C1, C2 such that for any f : Fn2 → F2, letting δ = Pr[T fn rejects], we have

1. Perfect completeness: δ = 0 if and only if ∆µ(f,L) = 0.

2. Distance approximation: δ approximates ∆µ(f,L):

C1 · δ ≤ ∆µ(f,L) ≤ C2 · δ. (1)

The main question is to determine for which µ is linearity tolerantly testable under µ. This seems to
be a basic question worthy of further study. Furthermore, the notion of linearity being tolerantly
testable under general distributions is intimately connected with the concept of locally testable
linear codes, and we now elaborate on this connection.
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Now let C be any linear code, and let s1, . . . , sN ∈ Zn2 be the columns of a generator matrix for
C. Let µ be the uniform distribution over {s1, . . . , sN}. Then, if linearity is tolerantly testable
under µ, then C is locally testable. Indeed, given any r : [N ] → Z2, we may define the function
f : Zn2 → Z2 by f(x) = r(j) if x = sj , and f(x) = 0 otherwise. By the tolerant testability of
linearity under µ, any useful query made by a tolerant linearity tester for µ must be to one of the
sj . The distance of f from linear under µ then translates directly into the Hamming distance of
r from C, and the very same tester that tolerantly tests linearity under µ shows that C is locally
testable.

2.1 Notions and Results

We highlight a simple criterion, which we call uniform-correlatability, that lets us design and analyze
tolerant linearity tests under a given distribution. Roughly speaking, a distribution µ over Fn2 is
uniformly-correlatable if one can “design” a distribution of few correlated random variables, with
each variable distributed according to µ, while all the sum of the variables if nearly uniformly
distributed. In this case, we show that linearity is tolerantly testable under µ with few queries (see
Theorem A). We complement this by demonstrating that many natural distributions satisfy this
criterion.

Although we state all our results for functions from Fn2 to F2, most results carry over to all pairs
of abelian groups G,H.

Definition 1 (Uniformly-correlatable distribution) Let µ be a probability distribution on Fn2 .
We say that µ is (ε, k)-uniformly-correlatable if there is a random variable X = (Xi)i∈[k] taking
values in (Fn2 )k such that:

1. For each i ∈ [k], Xi is distributed according to µ.

2. The distribution of the random variable
∑

i∈[k] Xi is ε-close to the uniform distribution over
Fn2 .

Our main result in this setting is that uniformly correlatable distributions are tolerantly testable.

Informal Theorem A Let µ be a distribution over Fn2 that is (ε, k)-uniformly-correlatable. Then
there is a 4k query tester T that tolerantly tests linearity over µ.

We supplement the above theorem by showing that several natural classes of distributions are all
(ε, k)-uniformly-correlatable for suitable ε, k, such as product distributions, symmetric distributions
and low Fourier-bias distributions, thus showing that linearity is tolerantly testable under these
distributions. This in turn implies that the corresponding codes are locally testable.

3 Overview of Proof for Uniform-Correlatability =⇒ Testability

We first give some intuition for the uniform correlatability criterion. For T to be a tester for
linearity under µ, it needs to satisfy the following minimum requirements: (1) each query made by

3



the tester needs to be distributed essentially according to µ (so that the probability of rejection is
upper bounded by the distance), and (2) the queries need to satisfy some linear relations (so that
the tester has something to test). This already indicates that a tester will need to “design” a query
distribution very carefully, so that both the above requirements are satisfied. This is where the
uniformly-correlatable criterion comes in: given the uniformly-correlated distribution, it allows us
to design other correlations quite flexibly, and in particular to produce queries distributed according
to µ that satisfy linear relations.

To prove Theorem A, we use “uniform-correlatability” to reduce the problem of linearity testing
over µ to linearity testing under the uniform distribution1, for which we already know the BLR
linearity test. In order to carry out the reduction, we use uniform-correlatability to define a “self-
corrected” version h of the function f being tested. h has the property that if f is close to a linear
function under µ, then h must be close to that same linear function under the uniform distribution!
With this property in mind, we design two tests, Test 1 and Test 2. Test 1 is essentially the BLR
test (over the uniform distribution) applied to the function h. Hence if Test 1 passes with high
probability, then the BLR analysis implies that h is close to a linear function g under the uniform
distribution. Test 2 is designed to test the proximity of original function f to the functions h under
the µ distribution. Hence if Test 2 also passes, then it implies that f is actually close to the linear
function g under µ.

In designing these two tests, we ensure that each query to f made by the tester is distributed
essentially according to µ. It follows that the probability of rejection of the tests is at most a fixed
multiple (depending on the number of queries made by the tester) of the distance of f from linear,
and hence the tester is tolerant.

4 High error

Our main result in the high-error regime is that random sparse linear codes are locally testable
and locally list-decodable in the high-error regime with only a constant number of queries. More
precisely, we show that for all constants c > 0 and γ > 0, and for every linear code C ⊆ {0, 1}N
which is:

• sparse: |C| ≤ N c, and

• unbiased: each nonzero codeword in C has weight ∈ (1
2 −N

−γ , 1
2 +N−γ),

C is locally testable and locally list-decodable from (1
2 − ε)-fraction worst-case errors using only

poly(1
ε ) queries to a received word. We also give sub-exponential time algorithms for list-decoding

arbitrary unbiased (but not necessarily sparse) linear codes in the high-error regime. In particular,
this gives a sub-exponential time algorithm even for the problem of (unique) decoding random
linear codes of inverse-polynomial rate from a fixed positive fraction of errors (which does not seem
to have been known prior to our work).

At the heart of our algorithms is a natural “self-correcting” operation defined on codes and received
words. This self-correcting operation transforms a code C with a received word w into a simpler

1Note that the uniform distribution is (0, 1)-uniformly-correlatable, and for this case, the test given by Theorem
A essentially reduces to the BLR linearity test.
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code C′ and a related received word w′, such that w is close to C if and only if w′ is close to C′.
Starting with a sparse, unbiased code C and an arbitrary received word w, a constant number
of applications of the self-correcting operation reduces us to the case of local list-decoding and
testing for the Hadamard code, for which the well known algorithms of Goldreich-Levin and Blum-
Luby-Rubinfeld are available. This yields the constant-query local algorithms for the original code
C.

Our algorithm for decoding unbiased linear codes in sub-exponential time proceeds similarly. Ap-
plying the self-correcting operation to an unbiased code C and an arbitrary received word a super-
constant number of times, we get reduced to the problem of learning noisy parities, for which
non-trivial sub-exponential time algorithms were recently given by Blum-Kalai-Wasserman and
Feldman-Gopalan-Khot-Ponnuswami. Our result generalizes a result of Lyubashevsky, which gave
sub-exponential time algorithms for decoding random linear codes of inverse-polynomial rate, from
random errors.

4.1 Local testing

A particular variant of local testability which is of significant interest is local testing in the “high-
error” regime. Here, for every constant ε > 0, one wants to query-efficiently distinguish between
the cases ∆(w, C) < 1/2− ε, i.e., w is “close” to C, and ∆(w, C) ≈ 1/2, i.e., w is as far from C as a
random point is (for codes over large alphabets, 1/2 gets replaced by 1). For the Hadamard code, the
existence of such testers follows from the Fourier-analytic proof of the BLR linearity test [BCH+96].
For the code of degree 2 multivariate polynomials over F2, local testers in the high-error regime
were given by Samorodnitsky [Sam07]. For the code of multivariate polynomials over large fields,
local-testers in the high-error regime were given by Raz-Safra [RS97], Arora-Sudan [AS03] and
Moshkovitz-Raz [MR06]. More recently, Dinur-Goldenberg [DG08] and Impagliazzo-Kabanets-
Wigderson [IKW09] gave query-efficient local testing algorithms in the high-error regime for the
combinatorial families: the direct-product and XOR codes. These algebraic and combinatorial
high-error local-testers led to some remarkable constructions of PCPs with high soundness.

All known locally-testable codes in the high-error regime are for highly structured algebraic or
combinatorial codes. Kaufman and Sudan [KS07] showed that a random sparse linear code is locally
testable in the low-error regime by studying its weight distribution and the weight distribution of
its dual, and in particular their proof was based on the MacWilliams identities and non-trivial
information about the roots of Krawtchouk polynomials. In the paper [KS09] (essentially using
Theorem A), we gave an alternate (and arguably simpler) proof of this result, as part of a more
general attempt to characterize sparse codes that are locally decodable and testable in the low-error
regime. Popular belief [Sud09] suggested that local-testability in the high-error regime could not
be found in random linear codes.

We show that that random codes can have query-efficient local testers in the high-error regime.
Specifically, sparse and unbiased codes admit high-error local testers with constant query complex-
ity.

Informal Theorem B For every constant c, γ > 0, every linear code C ⊆ FN2 with N c codewords
and bias N−γ can be locally tested from (1/2 − ε)-fraction errors using only poly(1

ε ) queries to a
received word.
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We in fact can show something stronger (called distance estimation in the high-error regime): for
such codes, using constantly many queries, one can distinguish between ∆(w, C) > 1/2 − ε1 and
∆(w, C) < 1/2− ε2 for every constants 0 < ε1 < ε2 < 1/2.

4.2 Local list-decoding

Informally, a local list-decoder for C from δ-fraction errors is a randomized algorithm A that,
when given oracle access to a received word w ∈ FN2 , recovers the list of all codewords c such
that ∆(c, w) < δ, while querying w in very few coordinates. The codewords thus recovered are
“implicitly represented” by randomized algorithms A1, . . . , Al with oracle access to w. Given a
coordinate j ∈ [N ], Ai makes very few queries to w and is supposed to output the jth coordinate
of the codeword that it implicitly represents.

A particular case of local list-decoding which is of significant interest is local list-decoding in the
“high-error” regime. Specifically, for every constant ε > 0, one wants to query-efficiently locally
list-decode a code from (1

2−ε)-fraction errors (the significance of 1
2−ε is that it is just barely enough

to to distinguish the received word from a random string in FN2 ; for codes over large alphabets, one
considers the problem of decoding from (1−ε)-fraction errors). Local list-decoding in the high-error
regime plays a particularly important role in the complexity-theoretic applications of coding theory
(see [STV99], for example).

The first known local list-decoder (for any code) came from the seminal work of Goldreich and
Levin [GL89], which gave time-efficient, low-query, local list-decoders for the Hadamard code in
the high-error regime. In the following years, many highly non-trivial local list-decoders were devel-
oped for various codes, including multivariate polynomial based codes (in the works of Goldreich-
Rubinfeld-Sudan [GRS00], Arora-Sudan [AS03], Sudan-Trevisan-Vadhan [STV99], and Gopalan-
Klivans-Zuckerman [GKZ08]) and combinatorial codes such as direct-product codes and XOR codes
(in the works of Impagliazzo-Wigderson and Impagliazzo-Jaiswal-Kabanets-Wigderson [IW97, IJKW08]).
Many of these local list-decoders, especially the ones in the high-error regime, play a promi-
nent role in celebrated results in complexity theory on hardness amplification and pseudoran-
domness [IW97, STV99, IJKW08].

To summarize, all known local list-decoding algorithms were for highly structured algebraic or
combinatorial codes. Kaufman and Sudan [KS07] showed that random sparse linear codes can be
locally (unique-)decoded from a small constant fraction of errors. This was the first result to show
that query-efficient decoding algorithms could also be associated with random, unstructured codes.
This result was proved by studying the weight distribution of these codes and their duals. Popular
belief [Sud09] again suggested that these low-error local decoders for random codes could not be
extended to the high-error regime.

Here we show that even random codes can have query-efficient local list-decoders in the high-error
regime. Specifically, we show that linear codes which are sparse and unbiased (both properties are
possessed by sparse random linear codes with high probability) admit high-error local list-decoders
with constant query complexity.

Informal Theorem C For every constant c, γ > 0, every linear code C ⊆ FN2 with N c codewords
and bias N−γ can be locally list-decoded from (1/2− ε)-fraction errors using only poly(1

ε ) queries
to a received word.
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4.3 Subexponential time list-decoding

The techniques we develop to address the previous questions turn out to be useful for making
progress on another fundamental algorithmic question in coding theory: that of time-efficient
worst-case decoding of random linear codes. Given a random linear code C ⊆ FN2 and an arbitrary
received word w ∈ FN2 , we are interested in quickly finding all the codewords c ∈ C such that
∆(w, c) < 1

2 − ε, for constant ε > 0. We show that this problem can be solved in sub-exponential
time, using just the unbiasedness of C. Our algorithm uses some recent breakthroughs on the
problem of learning noisy-parities due to Blum-Kalai-Wasserman [BKW03] and Feldman-Gopalan-
Khot-Ponnuswami [FGKP06].

Informal Theorem D For all constants α, γ > 0, for every linear code C ⊆ FN2 with dimension
n, where N = n1+α, and bias N−γ , and for every constant ε > 0, C can be list-decoded from
(1
2 − ε)-fraction errors in time 2O(n/ log logn).

In particular, the above theorem implies that if C ⊆ FN2 is a random linear code with dimension
n = N

1
1+α , then for every constant ε > 0, C can be list-decoded from (1

2 − ε)-fraction errors in time
2O(n/ log logn).

Earlier, it was not even known how to unique-decode random linear codes from 0.1-fraction worst-
case errors in time 2o(n). For decoding random linear codes of inverse-polynomial rate from random
errors, Lyubashevsky [Lyu05] gave a sub-exponential time algorithm, also based on algorithms
for the Noisy Parity problem. Our result generalizes his in two ways: we decode from worst-case
errors, and we give a natural, explicit criterion (namely low-bias) on the code C which guarantees
the success of the algorithm.

A related result (and one that we use in our proof) is the sub-exponential time worst-case decoding
of random linear codes in FN2 , of dimension n = O(logN · log logN), in a weaker model [FGKP06,
Theorem 10]. In this model, the adversary first corrupts the received bit associated to (1/2 − ε)-
fraction of the 2n possible linear encoding functions, after which the code is randomly chosen. Our
result has a more natural coding theory interpretation: the random code is chosen first, and then
the adversary choses an arbitrary received word at distance (1/2−ε) from the code. In the language
of learning theory, the [FGKP06] result concerns learning parities in the presence of agnostic noise,
while our result deals with the model of learning parities in the presence of nasty classification
noise [BEK02].

4.4 Time-efficient local algorithms for dual-BCH codes

For the family of dual-BCH codes, perhaps the most important family of sparse, unbiased codes, we
show that the constant-query local list-decoding and local testing algorithms can be made to run in
a time-efficient manner too. The dual-BCH codes form a natural family of polynomial-based codes
generalizing the Hadamard code. They have a number of extremal properties which give them an
important role in coding theory. For example, the dual-BCH code C ⊆ FN2 with N t codewords has
bias as small as O(t ·N−1/2), which is optimal for codes with N t codewords!

The key to making our earlier query-efficient local list-decoding and local testing algorithms run
in a time-efficient manner for dual-BCH codes, is a time-efficient efficient algorithm for a certain
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sampling problem that arises in the local list-decoder and tester. This sampling problem turns
out to be closely related to an algorithmic problem that was considered in the context of low-error
testing of dual-BCH codes [KL05], that of sampling constant-weight BCH codewords. A variant
of the sampling algorithm of [KL05] turns out to suffice for our problem too, and this leads to the
following result.

Informal Theorem E For every constant c, the dual-BCH code C ⊆ FN2 with N c codewords, can
be locally list-decoded and locally tested from (1/2− ε)-fraction errors in time poly(logN, 1

ε ) using
only poly(1

ε ) queries to a received word.

The original algorithm for sampling constant-weight BCH codewords given in [KL05], and was
based [Lit09] on results on the weight distribution of BCH codes [KL95]. We give an alternate (and
possibly simpler) analysis of this result.

5 Overview of proofs in the high error regime

In this section, we give an overview of the main ideas underlying our algorithms in the high error
regime.

The main component of our algorithms is a certain “self-correcting” operation which transforms
a code C with a received word w into a simpler code C′ and a related received word w′, such
that w is close to C if and only if w′ is close to C′. Repeated application of this self-correcting
operation will allow us to reduce our list-decoding and testing problems for C to certain kinds of
list-decoding and testing problems for a significantly simpler code C∗ (in our case, C∗ will be the
Hadamard code). Query-efficient/time-efficient algorithms for the simpler code C∗ then lead to
query-efficient/time-efficient algorithms for the original code C.

In order to simplify the description of the self-correcting operation, we first translate our problems
into the language of list-decoding and testing under distributions. Let C ⊆ FN2 be a linear code of
dimension n, and let G be an n×N generator matrix for C. Let S = {v1, v2, . . . , vN} ⊂ Fn2 denote
the set of columns of G. We associate to C the distribution µ over Fn2 which is uniform over S.
Note that if the code C has low bias, then the resulting distribution µ has small Fourier bias. Every
word w in FN2 can be viewed as a function fw : S → F2, where fw(vi) = wi. Under this mapping,
every codeword of C gets associated with a linear function.

Note that via this translation, the problem of testing if w is close to some codeword exactly
translates into the problem of testing if fw is close to some linear function under the distribution
µ (where the distance of two functions g, h under µ is measured by the probability that g and h
differ on a random sample from µ). Similarly, the problem of local list-decoding, i.e. the problem
of finding all codewords close to w, translates into the problem of finding all linear functions that
are close to fw under the distribution µ.

We now come to the self-correcting operation on f and µ. The operation has the property that
it maintains the property “f correlates with a linear function under µ”, and at the same time it
results in a distribution that is “simpler” in a certain precise sense.

Define µ(2) to be the convolution of µ with itself; i.e., it is the distribution of the sum of two
independent samples from µ. We define f (2) : Fn2 → F2 to be the (probabilistic) function, where for
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a given x, f (2)(x) is sampled as follows: first sample y1 and y2 independently and uniformly from µ
conditioned on y1 +y2 = x, and return f(y1) +f(y2) (if there are no such y1, y2, then define f (2)(x)
arbitrarily).

The following two simple facts are key to what follows:

• µ(2) is “simpler” than µ: the statistical distance of µ(2) to the uniform distribution on Fn2 is
significantly smaller than the statistical distance of µ to the uniform distribution on Fn2 (this
follows from the low Fourier bias of µ, which in turn came from the unbiasedness of C).

• If f is (1
2 − ε)-close to a linear function g under µ, then f (2) is (1

2 − 2ε2)-close to g under µ(2):
this is a formal consequence of our definition of f (2). In particular, if f is noticeably-close to
g under µ, then so is f (2) under µ(2).

This leads to a general approach for list-decoding/testing for linear functions under µ. First pick
k large, and consider the distribution µ(k) and the function f (k) (defined analogously to µ(2) and
f (2)). If k is chosen large enough, then µ(k) will in fact be 2−10n-close to the uniform distribution in
statistical distance. Furthermore, if k is not too large, then f (k) will be noticeably-close under µ(k)

to the same linear functions that f is close to under µ. Thus, if k is suitable (as a function of the
initial bias/sparsity of the code) f (k) is noticeably-close under the uniform distribution to the same
linear functions that f is close to under µ. Now all we need to do is run a local list-decoding/testing
algorithm on f (k) under the uniform distribution.

An important issue that was swept under the rug in this discussion, is the query/time-efficiency of
working with f (k) and µ(k). If we ignore running-time, one can simulate oracle access to f (k) using
just a factor k larger number of queries to f . This leads to our query-efficient (but time-inefficient)
algorithms for sparse, unbiased linear codes in the high-error regime (in this setting k only needs
to be a constant). We stress that our proof of this result is significantly simpler and stronger than
earlier analyses of local algorithms (in the low-error regime) of sparse, unbiased codes [KL05, KS07].

The bottleneck for implementing these local, query-efficient algorithms in a time-efficient manner
is the following algorithmic “back-sampling” problem: given a point x ∈ Fn2 , produce a sample
from the distribution of y1, . . . , yk picked independently from µ conditioned on

∑
yi = x. A time-

efficient back-sampling algorithm would allow us to time-efficiently simulate oracle access to f (k)

given oracle access to f . For random sparse linear codes, solving this problem in time sublinear in
N is impossible; however for specific, interesting sparse unbiased codes, this remains an important
problem to address. For the special case of dual-BCH codes, perhaps the most important family
of sparse, unbiased codes, we observe that the back-sampling problem can be solved using a small
variant of an algorithm of Kaufman-Litsyn [KL05]. Thus for dual-BCH codes, we get poly log(N)-
time, constant-query local testing and local list-decoding algorithms in the high-error regime.

For sub-exponential time list-decoding, we follow the same plan. Here too we will self-correct
f to obtain a function f (k), such that every linear function that correlates with f under the µ
distribution, also correlates with f (k) under the uniform distribution over Fn2 . However, since we
are now paying attention to running time (and we do not know how to solve the back-sampling
problem for µ efficiently in general), we cannot afford to allow the list-decoder over the uniform
distribution over Fn2 to query the value of f (k) at any point that it desires (since this will force us to
back-sample in order to compute f (k) at that point). Instead, we will use some recent remarkable
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list-decoders ([FGKP06, BKW03]), developed in the context of learning noisy parities, which can
find all linear functions close (under the uniform distribution) to an arbitrary function h in sub-
exponential time by simply querying the function h at independent uniformly random points of
Fn2 ! Using the unbiasedness of µ, it turns out to be easy to evaluate f (k) at independent uniformly
random points of Fn2 . This leads to our sub-exponential time list-decoding algorithm.

Relationship to the k-wise XOR on codes: Back in the language of codes, what happened
here has a curious interpretation. Given a code C ⊆ FN2 , the k-wise XOR of C, C(⊕k), is the code

contained in FNk

2 defined as follows: for every codeword c ∈ C, there is a codeword c(⊕k) ∈ F [N ]k

2

whose value in coordinate (i1, . . . , ik) equals ci1 ⊕ ci2 ⊕ . . . ⊕ cik . In terms of this operation, our
algorithms simply do the following: given a code C and received word w, consider the code C(⊕k)

with received word w(⊕k). The crucial observation is, that for k chosen suitably as a function of
the bias/sparsity of C, the code C(⊕k) is essentially, up to repeating each coordinate a roughly-equal
number of times, the Hadamard code! Additionally, w(⊕k) is close to c(⊕k) for a codeword c if and
only if w is close c. Thus decoding/testing w(⊕k) for the Hadamard code now suffices to complete
the algorithm.

The k-wise XOR on codes is an operation that shows up often as a device for hardness amplification,
to convert functions that are hard to compute into functions that are even harder to compute. Our
algorithms use the XOR operation for “good”: here the XOR operation is a vehicle to transfer query-
efficient/time-efficient algorithms for the Hadamard code to query-efficient/time-efficient algorithms
for arbitrary unbiased codes.
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