
Another Proof that BPP ⊆ PH (and more)

Oded Goldreich David Zuckerman

March 11, 2016

Abstract

We provide another proof of the Sipser–Lautemann Theorem by which BPP ⊆ MA (⊆
PH). The current proof is based on strong results regarding the amplification of BPP, due to
Zuckerman (1996). Given these results, the current proof is even simpler than previous ones.
Furthermore, extending the proof leads to two results regarding MA: MA ⊆ ZPPNP (which
seems to be new), and that two-sided error MA equals MA. Finally, we survey the known
facts regarding the fragment of the polynomial-time hierarchy that contains MA.

An early version of this work appeared as TR97-045 of ECCC. The current revision is quite minimal.
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Randomness–Efficient Error Reduction (Amplification).

Note. This paper appeared in the volume Studies in Complexity and Cryptography, Springer
LNCS, Vol. 6650, 2011. The current version is a post-publication revision, correcting a missing
credit.

1 Introduction

Non-trivial results, showing containment of fundamental complexity classes in one another, are
quite rare. One of the first such results is Sipser’s Theorem [14] by which BPP is contained
in the Polynomial-Time Hierarchy. A simpler proof, placing BPP even lower in this hierarchy,
was presented by Lautemann [11]. Although not stated in these (subsequently introduced) terms,
Lautemann’s proof actually establishes the following:

Theorem 1 (The Sipser–Lautemann Theorem): BPP ⊆ MA.

See definitions in next section.

The contents of this note. In this note, we present an alternative proof of the Sipser–Lautemann
Theorem. Our proof relies on powerful results regarding randomness–efficient error reduction (a.k.a
amplification) for BPP . Given these powerful results, our proof is almost a triviality.

Using similiar arguments, we show that MA ⊆ ZPPNP (re-establishing a theorem of Zachos
and Heller [16] by which BPP ⊆ ZPPNP). It follows that NPBPP ⊆ ZPPNP (re-establishing a
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theorem of Zachos and Furer [15]). To the best of our knowledge, the first result was not known
before.

In summary, the purpose of this note is three-fold: Firstly to demonstrate the power of the
currently known results regarding randomness–efficient error reduction. We believe that these
results have not been fully assimilated into complexity theory and are yet to be exploited by it.
Secondly we wish to focus attention on the fragment of the polynomial-time hierarchy that contains
MA. It seems that this fragment gives rise to some challenges which may be within our current
reach. Finally, we take the oppertunity to prove the aforementioned new result.

Organization. The core of this work (i.e., the alternative proof of the Sipser–Lautemann Theo-
rem) is presented in Sections 2 and 3.1. This alternative proof is further discussed in Section 3.2,
and applied in the context of two-sided MA in Section 3.3. The same proof strategy is then applied
to show that MA is contained in ZPPNP (see Section 4). Finally, we conclude with a brief survey
of the complexity classes around MA (see Section 5).

2 Background

(For further background, see Section 5.)

2.1 BPP and randomness-efficient error reduction

Definition 1 (the class BPP): For any set S, we denote by χS the characteristic function of the

set; that is, χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. A set S is in BPP if there exists a

probabilistic polynomial-time machine M such that for every x ∈ {0, 1}∗

Prob[M(x) 6= χS(x)] ≤
1

3

where the probability is taken uniformly over the internal coin tosses of M .

The error probability in the foregoing procedure can be reduced by repetitions (a process hereafter
referred to as amplification). The obvious way of doing so transforms a machine (as above) that,
on input x, uses p(|x|) coins into a machine having error probability at most 2−t(|x|) that uses
O(t(|x|) · p(|x|)) coins (for any polynomial t). More efficient amplification procedures, utilizing
Expander Random Walks, yield the same error bound while using only p(|x|) + (4 + o(1)) · t(|x|)
coins (see survey [6]). In particular, for any constant c > 4, using a sufficiently large polynomial
t, we get a procedure that uses c · t(|x|) coins and has error probability at most 2−t(|x|). An
alternative construction due to Zuckerman [17] provides, for any constant c > 1 and sufficiently
large polynomial t, a procedure that uses c · t(|x|) coins and has error probability at most 2−t(|x|).
What is remarkable in the last procedure is that the number of coins used is essentially the logarithm
of the error bound. Put in other words, the number of “bad” coin sequences can be made any
(constant) root of the total number of coin sequences. In particular,

Theorem 2 (Zuckerman’s randomness-efficient amplification of BPP [17]): For any set S in BPP,

there exists a polynomial-time recognizable binary relation R and a polynomial p such that

|{r ∈ {0, 1}p(|x|) : R(x, r) 6= χS(x)}| < 2p(|x|)/3.
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2.2 The complexity class MA

Definition 2 (the class MA): A set S is in MA if there exists a polynomial-time recognizable

3-ary relation V and polynomials p, q such that

• If x ∈ S, then there exists w ∈ {0, 1}q(|x|) such that for every r ∈ {0, 1}p(|x|) it holds that

V (x,w, r) = 1.

• If x 6∈ S, then for every w ∈ {0, 1}q(|x|) it holds that

Probr[V (x,w, r) = 1] ≤
1

2

where the probability is taken uniformly over all r ∈ {0, 1}p(|x|).

The class MA, introduced by Babai [1], consists of sets having a Merlin–Arthur proof system:
The prover (Merlin) sends a certificate (denoted w above) to the verifier (Arthur) who assesses it
probabilistically (by tossing coins r and applying the predicate V ). Merlin–Arthur proof systems
are a degenerate type of interactive proof systems (introduced by Goldwasser, Micali and Rackoff [8]
and Babai [1]). Actually, in a Merlin–Arthur proof system there is no real interaction. Instead, it is
instructive to view MA as the randomized version of NP : Here the “certificates” (for membership)
can be verified via a randomized procedure and errors may occur (yet with bounded probability).

3 A Proof of the Sipser–Lautemann Theorem

3.1 The proof itself

Using Zuckerman’s efficient amplification of BPP, we present the following MA proof system. Specif-
ically, we will refer to the relation R and the polynomial p guaranteed in Theorem 2.

The protocol. On input x, both parties compute m = p(|x|), and proceed as follows.

1. Merlin tries to select r′ ∈ {0, 1}m/2 such that R(x, r′r′′) = 1 for all r′′ ∈ {0, 1}m/2. Merlin
sends r′ to Arthur.

2. Upon receiving r′, Arthur selects r′′ ∈ {0, 1}m/2 uniformly and accepts if and only if R(x, r′r′′) =
1.

Analysis of the foregoing protocol. If x ∈ S, then there are at most 2m/3 possible r’s for
which R(x, r) = 0. Thus there are at most 2m/3 prefixes r′ ∈ {0, 1}m/2 for which some r′′ exists so
that R(x, r′r′′) = 0. Merlin may just select any of the other 2m/2 − 2m/3 prefixes and make Arthur
always accept. On the other hand, if x 6∈ S, then there are at most 2m/3 possible r’s for which
R(x, r) = 1. Thus, for each r′ ∈ {0, 1}m/2, it holds that

Probr′′∈{0,1}m/2 [R(x, r′r′′) = 1] ≤
2m/3

2m/2
≪

1

2 .
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3.2 Discussion

Let us review our proof strategy. Starting with Theorem 2, we partitioned the space of all (2m)
possible coin-tosses outcomes into (2m/2) subsets of equal size. We then used the following two
facts:

1. The number of bad outcomes is smaller than the number of subsets (and so there exists a
subset with no bad outcomes). This was used to analyze the case x ∈ S.

2. The number of bad outcomes is much smaller than the size of each subset (and so each subset
contains a majority of good outcomes). This was used to analyze the case x 6∈ S.

Thus, what we have used is the fact that number of bad outcomes is much smaller than the square
root of the total number of outcomes. We stress that the fact that any BPP-machine can be
transformed into a machine for which the foregoing holds (i.e., Theorem 2) is highly non-trivial.
We believe that this fact (or known generalizations of it) may find further applications in complexity
theory.

Comparison to Lautemann’s proof. Recall that Lautemann’s proof has the prover send the
verifier t = m/ log2 m strings, s1, ..., st, and the verifier tosses coins r ∈ {0, 1}m and accepts iff
R(x, r ⊕ si) = 1 holds for some i. The existence of an appropriate sequence of strings is proven by
an elementary probabilistic argument. Actually, s1 may be any fixed string (e.g., 0m) and so needs
not be sent (by the prover). We observe that if we start with R as guaranteed by Theorem 2,
then t = 2 suffices. This gets us very close to the proof above. In fact, the probabilistic argument
of Lautemann reduces to the trivial counting argument above. Thus, using Theorem 2 allows also
a simplification of Lautemann’s argument, although the proof presented earlier is believed to be
simpler: Technically speaking, we have the prover send only m/2 bits (rather than m required in
the simplified Lautemann’s argument), the verifier tosses only m/2 coins (again, rather than m),
and the predicate R is evaluated only once (rather than twice).

3.3 Two-sided error equals one-sided error for MA

Both Lautemann’s proof and our proof can be extended to show that a two-sided error version
of MA equals the one-sided error defined above. (This provides an alternative proof to the one
presented in [15].) We mention that interactive proof systems with zero error collapse to NP ,
whereas for all (higher than MA) levels of the interactive proof hierarcy, the two-sided error version
equals the one-sided one [5].

Definition 3 (two-sided version of MA): A set S is in MA2 if there exists a polynomial-time

recognizable 3-ary relation V and polynomials p, q such that

• If x ∈ S, then there exists w ∈ {0, 1}q(|x|) such that

Probr[V (x,w, r) = 1] ≥
2

3 .

• If x 6∈ S, then for every w ∈ {0, 1}q(|x|) it holds that

Probr[V (x,w, r) = 0] ≥
2

3 .
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In both cases, the probability is taken uniformly over all r ∈ {0, 1}p(|x|).

Theorem 3 [15, Thm 2(i)]: MA = MA2.

Proof: Clearly, MA ⊆ MA2, and so we focus on showing that MA2 ⊆ MA. Let S be an
arbitrary set in MA2. For every x ∈ S, we consider w as guaranteed by the first condition of
Definition 3, whereas for x 6∈ S we consider any w ∈ {0, 1}q(|x|). Both Lautemann’s proof and our
proof extend to promise problems in BPP, and in particular to the following BPP promise problem,
Π = (Πyes,Πno), where

Πyes

def
=

{

(x,w) : Probr[V (x,w, r) = 1] ≥
2

3

}

Πno

def
= {(x,w) : x 6∈ S}

⊆

{

(x,w) : Probr[V (x,w, r) = 0] ≥
2

3

}

In particular, the amplification technique of Zuckerman applies also to this case and so we obtain
a predicate V ′ and a polynomail q′ such that

∀(x,w) ∈ Πyes |{r ∈ {0, 1}q′(|x|) : V ′(x,w, r) = 0}| < 2q′(|x|)/3 (1)

∀(x,w) ∈ Πno |{r ∈ {0, 1}q′(|x|) : V ′(x,w, r) = 1}| < 2q′(|x|)/3 (2)

Thus, we augment the MA-protocol of Section 3.1 as follows. On input x, with m = q′(|x|), Merlin
sends (w, r′), where |r′| = m/2, and Arthur uniformly selects r′′ ∈ {0, 1}m/2 and accepts if and
only if V ′(x,w, r′r′′) = 1. As before, in case x ∈ S, by sending an adequate (w, r′), Merlin can
make Arthur accept for every choice of r′′; whereas, in case x 6∈ S, for any choice of (w, r′), Arthur
accepts with negligible probability. It follows that S ∈ MA.

4 MA is Contained in ZPP with an NP-oracle

The machines in the following definition may halt with a non-Boolean output (which may be
interpreted as abstaining from a decision regarding membership).

Definition 4 (the class ZPP): A set S is in ZPP if there exists a probabilistic polynomial-time

machine M such that for every x ∈ {0, 1}∗

Prob[M(x) = χS(x)] ≥
1

2
Prob[M(x) = 1 − χS(x)] = 0

where the probability is taken uniformly over the internal coin tosses of M .

Thus, the ZPP machine either gives the correct answer or gives no answer at all (i.e., a non-Boolean
output is interpreted as no output). Clearly ZPP = RP ∩ coRP (actualy, ZPP is sometimes
defined this way).
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4.1 BPP is contained in ZPP with an NP-oracle

We start by providing an alternative proof to a result of Zachos and Heller.

Theorem 4 [16, P. 132, Cor. 3]: BPP ⊆ ZPPNP .

Proof: Using the same amplification and notations as in Section 3.1, we construct a probabilistic
polynomial-time oracle machine, M , that on input x operates as follows (where m = p(|x|)):

1. Selects σ ∈ {0, 1} uniformly (as guess for χS(x));

2. Selects r′ ∈ {0, 1}m/2 uniformly;

3. Queries the oracle on whether (x, σ, r′) is in the following coNP set

{(y, τ, u) : ∀v ∈ {0, 1}|s| , R(y, uv) = τ}. (3)

4. If the oracle answers yes, then the machine outputs σ. Otherwise it halts with no output.

Recall that by the foregoing amplification, for any x, the following holds:

• For each r′, it holds that

|{r′′ ∈ {0, 1}m/2 : R(x, r′r′′) 6= χS(x)}| < 2m/2,

and so the oracle never answers yes on query (x, 1 − χS(x), r′). Thus, the machine never
outputs the wrong answer.

• On the other hand, it holds that

Probr′ [∀r′′ ∈ {0, 1}m/2 , R(x, r′r′′) = χS(x)] >
1

2

and so with probability at least 1/4, over the choices of σ and r′, the oracle answers yes (and
the machine produces a (correct) 0-1 output).

Using straightforward amplification, the theorem follows.

4.2 Extension to MA

Combining ideas from the last two proofs, we obtain.

Theorem 5 (seemingly new): MA ⊆ ZPPNP .

Observing that NPBPP ⊆ MA2 (see Fact 6), and using Theorems 3 and 5, we conclude that
NPBPP ⊆ ZPPNP .

Fact 6 (folklore) NPBPP ⊆ MA2 .
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Proof: Let S ∈ NPBPP . Then, for every x ∈ S, we instruct Merlin to send a transcript of
an accepting computation of the non-deterministic polynomial-time oracle-machine, and instruct
Arthur to verify the validity of transcript as well as the correctness of the the oracle answers (by
running a probabilistic decision procedure of negligible two-sided error).

Proof of Theorem 5: Let S ∈ MA and consider the same promise problem Π = (Πyes,Πno) as
in the proof of Theorem 3. Furthermore, consider the set Π′

yes
⊆ Πyes that consists of all pairs

(x,w) such that for all r ∈ {0, 1}p(|x|) it holds that V (x,w, r) = 1, and recall that for every x ∈ S
there exists w ∈ {0, 1}q(|x|) such that (x,w) ∈ Π′

yes
.

We construct a probabilistic polynomial-time oracle machine, M , that on input x and access to
an NP-oracle, first attempts to find w such that (x,w) ∈ Πyes, and next verifies that (x,w) ∈ Πyes

indeed holds. Following is a detailed description of the operation of M (as well as key observations
towards its analysis). On input x, where n = q(|x|) and k = p(|x|), machine M proceeds as follows.

Step 1: Attempting to find a good w. The machine uniformly selects r1, ..., r2n ∈ {0, 1}k , and queries
the NP-oracle on whether there exists a w ∈ {0, 1}n such that ∧2n

i=1V (x,w, ri) = 1. If the
answer is no, then M halts with output 0, otherwise M iteratively recovers the bits of such
a string w (by |w| additional queries) and proceeds to the next step. Specifically, all queries
have the form (x,w′, r1, ..., r2n), and each such query is answered by a yes if and only if there
exists a w′′ ∈ {0, 1}n−|w′| such that ∧2n

i=1V (x,w′w′′, ri) = 1.

Note that if x ∈ S, then a string w such that ∧2n
i=1V (x,w, ri) = 1 exists (e.g., consider w

such that (x,w) ∈ Π′
yes

), and so Step 1 must be completed while finding such a string w. On
the other hand, for each (x,w) 6∈ Πyes, the probability that ∧2n

i=1V (x,w, ri) = 1 holds, where
r1, ..., r2n are selected uniformly in {0, 1}k , is at most (2/3)2n, and it follows that

Probr1,...,r2n[∃w s.t. (x,w) 6∈ Πyes and ∧2n
i=1 V (x,w, ri) = 1] ] ≤ 2n · (2/3)2n,

which is exponentially vanishing (in n).

Step 2: Verifying that w is good (i.e., (x,w) ∈ Πyes). The machine treats (x,w) as an input to the
promise problem Π and proceeds as in the proof of Theorem 4. Specifically, by using the same
amplification as in the proof of Theorem 3, we obtain a verification procedure V ′ that satisfies
Eq. (1)-(2). Letting m = q′(|x|), machine M selects an m/2-bit long random prefix r′, and
queries the NP-oracle on whether all m/2-bit long suffixes make the predicate V ′ evaluate
to 1 (i.e., whether for every r′′ it holds that V ′(x,w, r′r′′) = 1). If the oracle answers yes,
then M halts with output 1; otherwise, M halts with no output. (We stress that we never
output 0 in this step.)

If x ∈ S, then Step 1 never halts but rather always yields a string w (for Step 2). Furthermore, with
overwhelmingly high probability, the string w satisfies (x,w) ∈ Πyes. Thus, with overwhelmingly
high probability, Step 2 accepts. On the other hand, if x 6∈ S, then with overwhrlmingly high
probability Step 1 halts (with output 0). Furthermore, if the procedure continued to Step 2 with
some string w, then (x,w) ∈ Πno (since x 6∈ S). In this case, the oracle will always answer no, and
M will halt with no output. Thus, for any x, the machine never errs, and with overwhelmingly
high probability it produces the correct output.
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5 The Bigger Picture: Complexity Classes Around MA

(For a wider perspective on interactive proofs, see [7, Sec. 9.1],)

5.1 Definitions

All the (binary and 3-ary) relations that are mentioned in the following definitions are only satisfied
by arguments of polynomially related length (i.e., all tuples in a relation have arguments that are
of length that is polynomial in the length of the first argument). Likewise, all quantifiers range
over arguments of such lengths.

Definition 5 (traditional classes – classes of the 1970’s:)

• A set S is in ΣP
2 = NPNP (resp., ΠP

2 = coNPNP) if there exists a polynomial-time recog-

nizable 3-ary relation R such that

S = {x : ∃y∀z R(x, y, z) = 1}

(resp., S = {x : ∀y∃z R(x, y, z) = 1}).

• A set S is in ∆P
2 = PNP if there exists a deterministic polynomial-time oracle machine M

and a set S′ ∈ NP such that x ∈ S iff MS′
(x) = 1 (∀x).

• A set S is in RP if there exists a probabilistic polynomial-time machine M such that

x ∈ S =⇒ Prob[M(x) = 1] ≥
1

2
x 6∈ S =⇒ Prob[M(x) = 1] = 0

For any class C, we define coC
def
= {{0, 1}∗ \ S : S ∈ C}.

Definition 6 (AM [1] – a class of the 1980’s:) A set S is in AM if there exists a polynomial-time

recognizable 3-ary relation V and polynomials p, q such that

• If x ∈ S, then for every r ∈ {0, 1}p(|x|) there exists w ∈ {0, 1}q(|x|) such that V (x, r, w) = 1.

• If x 6∈ S, then it holds that

Probr[∃w s.t. V (x, r, w) = 1] ≤
1

2

where the probability is taken uniformly over all r ∈ {0, 1}p(|x|).

In other words, the class AM, introduced by Babai [1], consists of sets having an Arthur–Merlin
proof systems: The verifier (Arthur) challenges the prover (Merlin) with a random query, denoted
r, and given the prover’s answer (denoted w) makes a decision using the predicate V . Thus, in
contrast to Merlin–Arthur systems (where Arthur just (probabilistically) evaluates the validity of
a “written proof”), in Arthur–Merlin systems we have a real interaction between the prover and
the verifier. The class AM coincides with the class of sets having constant-round interactive proof
systems [1, 9]. Thus, it is the lowest level of the hierarchy of “real” interactive proofs [1, 8] (i.e.,
interactive proofs that, unlike NP and MA, are really interactive).
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Definition 7 (SP
2 [4, 13] – a class of the 1990’s:) S is in SP

2 if there exists a polynomial-time

recognizable 3-ary relation R such that for every x ∈ {0, 1}∗

∃y∀z R(x, y, z) = χS(x) (4)

∃z∀y R(x, y, z) = χS(x) (5)

The class SP
2 was introduced independently by Canetti [4] and Russell and Sundaram [13] with the

motivation of providing a low “symmetric alternation class” that contains BPP . Indeed, Canetti [4]
has extended Lautemann’s proof to show that BPP ⊆ SP

2 , whereas Russell and Sundaram [13]
showed that MA ⊆ SP

2 (and thus BPP ⊆ SP
2 ).

5.2 Known Inclusions

We recall some known inclusions between the aforementioned classes. For sake of self-containment,
we present proofs as well. Recall that, BPP ⊆ MA, by Theorem 1. We start with some simple
syntactical facts:

1. P ⊆ RP ⊆ NP ⊆ MA.

2. RP ⊆ BPP.

3. RP ⊆ coMA (equiv., coRP ⊆ MA).1

4. NP ∪ coNP ⊆ PNP .

5. AM ⊆ ΠP
2 .

6. SP
2 ⊆ ΣP

2 ∩ ΠP
2 .

(Actually, the transparent syntactical facts are the inclusion SP
2 ⊆ ΣP

2 and the closure of SP
2

under complement.)

7. ZPPNP ⊆ ΣP
2 ∩ ΠP

2 .

(Here the transparent facts are ZPPNP ⊆ RPNP ⊆ NPNP = ΣP
2 .)

We now turn to three non-trivial results.

Proposition 7 [1]: MA ⊆ AM.

Proof: We use a naive amplification to reduce the error probability in the Merlin–Arthur game so
to obtain error that is substantially smaller than the reciprocal of the number of possible Merlin
messages. Specifically, we obtain a polynomial-time recognizable 3-ary relation V and polynomials
p, q such that

1. If x ∈ S, then there exists w0 ∈ {0, 1}q(|x|) such that for every r ∈ {0, 1}p(|x|) it holds that
V (x,w0, r) = 1.

1This syntactical fact can also be derived from RP ⊆ BPP, by using BPP ⊆ MA.
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2. If x 6∈ S, then for every w ∈ {0, 1}q(|x|) it holds that

Probr[V (x,w, r) = 1] <
1

2
· 2−q(|x|).

Thus,

Probr[∃w ∈ {0, 1}q(|x|) : V (x,w, r) = 1] ≤
∑

w∈{0,1}q(|x|)

Probr[V (x,w, r) = 1]

<
1

2 .

We construct an Arthur–Merlin proof system (defined by a new predicate V ′) by merely reversing
the order of moves in the foregoing proof system, and using essentially the same decision predicate

as above: That is, we let V ′(x, r, w)
def
= V (x,w, r). This potentially makes the task of Merlin easier,

and so we need only worry about the case x 6∈ S (which we handle easily using the above bound).
Specifically, for the case x ∈ S, we may use the string w0 (guaranteed in Item 1) as Merlin’s
response to any challenge r (and so V ′(x, r, w0) = V (x,w0, r) = 1 for all r’s). For the case x 6∈ S
we use the bound in Item 2 and so Probr[∃w ∈ {0, 1}q(|x|) : V ′(x, r, w) = 1] < 0.5. The proposition
follows.

Proposition 8 [13]: MA ⊆ SP
2 .

Proof: We use the same amplification as in the previous proof. Here we write the case of x 6∈ S as

∀w ∈ {0, 1}q(|x|) |{r ∈ {0, 1}p(|x|) : V (x,w, r) = 1}| < 2p(|x|)−q(|x|) − 1

We define a relation R (for the class SP
2 ) such that R(x, y, z) = 1 if |y| = |z| = q(|x|) and at least

one of the following two conditions holds:

1. y = w0p(|x|)−q(|x|) and V (x,w, z) = 1.

2. z = w0p(|x|)−q(|x|) and V (x,w, y) = 1.

Clearly, this predicate is symmetric with respect to y and z; that is, condition (1) holds iff con-
dition (2) holds. Thus, we only show, for any x, the existence of a string y such that, for all z’s,
R(x, y, z) = χS(x). Let us shorthand m = p(|x|) and n = q(|x|). For x ∈ S there exists w ∈ {0, 1}n

such that for all r ∈ {0, 1}m it holds that V (x,w, r) = 1. Thus, there exists y = w0m−n ∈ {0, 1}m

such that for all z ∈ {0, 1}m it holds that R(x, y, z) = 1. We now turn to the case where x 6∈ S: In
this case,

|{r : ∃w s.t. V (x,w, r) = 1}| ≤
∑

w∈{0,1}n

|{r : V (x,w, r) = 1}|

< 2n · (2n−m − 1)

= 2m − 2n.

Thus, there exists r ∈ {0, 1}m\{0, 1}n0m−n such that for every w ∈ {0, 1}n it holds that V (x,w, r) =
0. Given such an r, we prove that for all z’s R(x, r, z) = 0. This holds since R(x, r, z) = 1 requires
either r ending with 0m−n (which does not hold by our choice) or z = w0n−m with V (x,w, r) = 1
(which again cannot hold).
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Proposition 9 [13]: PNP ⊆ SP
2 .

Proof: Let S be an arbitrary set in PNP , and let M be a (deterministic) polynomial-time oracle
machine recognizing S when given access to the NP-complete set S′. We say that a string τ is a
valid transcript of M(x) if there exists some oracle such that τ describes the computation of M on
input x and access to this oracle. Note that the oracle’s answers in a valid transcript of M(x) do
not necessarily agree with the set S′. A valid transcript is said to be supported by a sequence of
pairs s if for each oracle query q in the transcript τ that was answered by 1 there is a pair (q, w) in
s, where w is an NP-witness for membership of q in S′. A valid transcript is said to be consistent
with a sequence of pairs s if for each oracle query q in the transcript τ that was answered by 0
there is no pair (q, w) in s, where w is an NP-witness for membership of q in S′. We consider a
fixed parsing of strings into pairs (τ, s), where s is a sequence of pairs.

We are now ready to define a relation R (for the class SP
2 ): For y = (τ, s) and z = (τ ′, s′), we

let R(x, y, z)
def
= σ if at least one of the following two conditions holds:

1. τ is a valid transcript of M(x) with output σ, supported by s and consistent with s′.

2. τ ′ is a valid transcript of M(x) with output σ, supported by s′ and consistent with s.

In case none of the conditions hold, R(x, y, z) may be defined arbitrarily. Intuitively, the quantifica-
tion ∃y∀z guarantees that the transcript contained in y records correct oracle answers (since positive
answers must be supported by NP-witnesses, whereas negative answers must be unrefutable by NP-
witnesses to the opposite). Formally, we have to prove that R is well-defined, and that the actual
execution transcript is both supportable and unrefutable (i.e., consistent with all valid sequences).

We first show that R is well-defined (i.e., it can not be the case that τ and τ ′ are both valid,
supported and consistent but with different outputs). Here we use the fact that M is deterministic
and so given the same oracle answers it must yield the same output. Also, if two valid transcripts
differ on some oracle answer, then it cannot be that both transcripts are supported and consistent
with respect to the same two sequences of pairs.2 Finally, observe that for every x, there exists
a pair (τ, s) with output χS(x) such that τ is a valid transcript of M(x), supported by s and
consistent with any possible sequence of pairs.

5.3 Conjectured Separations

Below we list some well-known conjectures.

Conjecture 1 (the leading conjecture of TOC): P 6= NP.

Conjecture 2 (most widely believed): NP 6⊆ BPP.

Conjecture 3 (most widely believed): NP 6= coNP.

Conjecture 4 (widely believed): The Polynomial-Time Hierarchy does not collapse.

Conjecture 4 implies the following (see [3]):

2Consider the first conflicting answer and suppose, without loss of generality, that in transcript τ the answer is 1.
Since τ is supported by a sequence of pairs s, it cannot be the case that τ

′ (in which the answer to the same query
is 0) is consistent with s.
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Conjecture 5 (widely believed): coNP 6⊆ AM.

We believe that Conjecture 5 is interesting on its own; indeed, it is a natural extension of Conjec-
ture 3.

P

RP

BPP

NP MA AM

coRP coNP coMA coAM

Π

Σ

2

2

PNP X

Figure 1: Arrows indicate containment between classes, with C1 → C2 indicating that C1 ⊆ C2.
Bolder (and bigger) arrows indicate conjectured gaps between the classes. The symbol X is a
placeholder for either SP

2 or ZPPNP (and we do not know how these two classes are related).

5.4 Conjectured Inclusions

What we know combined with what is widely believed is depicted in Figure 1. We note that
some of the inclusions that were not conjectured to be separations are believed to be equalities
or “close to it”. In particular, it is widely believed that BPP is very close to P. This belief
is supported, among other things, by the conjecture that (uniform) exponential-time cannot be
computed by subexponential-size (non-uniform) circuits [2, 10]. We note that the latter conjecture
holds provided there exist strong one-way functions (i.e., polynomial-time computable functions
that cannot be inverted on typical images by subexponential-sized circuits).

The derandomization of BPP versus the derandomization of MA. We note that results
about derandomization of BPP are likely to imply results on the derandomization of MA. This
holds provided that the former results extend also to the generalization of BPP to promise problems.
We note that all known derandomization results have this feature. In the next proposition coRP
denotes the class of promise problems of the form Π = (Πyes,Πno), where there exists a probabilistic
polynomial time machine M such that

x ∈ Πyes =⇒ Prob[M(x) = 1] = 1

x ∈ Πno =⇒ Prob[M(x) = 1] ≤
1

2

Proposition 10 (folklore): Suppose that coRP ⊆ DTIME(t(n)), for a time constructible function

t : N→N. Then, MA ⊆ ∪i∈NNTIME(t(ni)).

Proof: Each set L ∈ MA gives rise to a promise problem Π = (Πyes,Πno), where

Πyes

def
= {(x,w) : ∀r ∈ {0, 1}p(|x|) V (x,w, r) = 1}

Πno

def
= {(x,w) : x 6∈ L}
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with V and p as in Definition 2. Note that, for every x ∈ L there exists w ∈ {0, 1}q(|x|) such that
(x,w) ∈ Πyes, whereas for every x 6∈ L and every w ∈ {0, 1}q(|x|) it holds that (x,w) ∈ Πno. Also,
for every (x,w) ∈ Πno it holds that

Probr∈{0,1}p(|x|) [V (x,w, r) = 1] ≤
1

2 .

We conclude that Π ∈ coRP . Now, using the hypothesis, we have Π ∈ DTIME(t(n + q(n))), and
so L ∈ NTIME(t(n + q(n))). The proposition follows.

On the derandomization of MA (a comment added in revision). In light of recent derandom-
ization results regarding AM (cf. [12]), one may question the conjecture MA 6= AM (which is
suggested by Figure 1). We note, however, that the aforementioned derandomization of AM seem
to require stronger intractability assumptions than the ones used in the derandomization of BPP
(and MA).

Challenges. Indeed, all our challenges call for establishing some appealing inclusions (rather
than separations).

1. Try to put BPP in PNP . (Recall that BPP in in ZPPNP .)

2. Try to put MA in PNP . (This certainly implies (1).)

3. Try to put RP in coNP . (Recall that RP is in coMA.)

4. Try to put AM in ΣP
2 ∩ ΠP

2 .

Acknowledgments. We thank Lane Hemaspaandra for pointing out the fact that NPBPP ⊆
ZPPNP was proved by Zachos and Furer [15]. Unfortunately, we were not aware of this fact at
the time that the current article was published.
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