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Abstract

The standard definition of property testing endows the tester with the ability to make ar-
bitrary queries to “elements” of the tested object. In contrast, sample-based testers only ob-
tain independently distributed elements (a.k.a. labeled samples) of the tested object. While
sample-based testers were defined by Goldreich, Goldwasser, and Ron (JACM 1998), with few
exceptions, most research in property testing is focused on query-based testers.

In this work, we advance the study of sample-based property testers by providing several
general positive results as well as by revealing relations between variants of this testing model.
In particular:

• We show that certain types of query-based testers yield sample-based testers of sublinear
sample complexity. For example, this holds for a natural class of proximity oblivious
testers.

• We study the relation between distribution-free sample-based testers and one-sided error
sample-based testers w.r.t the uniform distribution.

While most of this work ignores the time complexity of testing, one part of it does focus on this
aspect. The main result in this part is a sublinear-time sample-based tester in the dense graphs
model for k-Colorability, for any k ≥ 2.
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1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see,
e.g., [11, 29, 30]). Loosely speaking, property testing typically refers to sub-linear complexity
probabilistic algorithms for deciding whether a given object has a predetermined property or is far
from any object having this property. Such algorithms, called testers, obtain local views of the
object by performing queries; that is, the object is seen as a function and the testers get oracle
access to this function (and thus may be expected to work in time that is sub-linear in the length
of the object).

The standard definition of property testing, which is aluded to above, endows the tester with the
ability to make queries. This is the definition presented in [31], and it is also the main definition
studied in [14] as well as in most research on property testing. Nevertheless, a weaker notion,
where the tester is only provided with uniformly distributed labeled samples (or, equivalently, is
only allowed to make uniformly and independently distributed queries)1 was also presented (and
briefly studied) in [14]. We call such testers sample-based.

While sample-based testers were studied in [14]2 and in some subsequent works (see, e.g., [13]),
these studies tend to be negative in nature: Their focus is on showing why the query ability utilized
in the main positive results is necessary for efficiently testing the property that is being considered,
which amounts to presenting high lower bounds on the sample complexity of sample-based testers
for that property. A few positive results on sample-based testers have been obtained in previous
work [13, 24, 3], and they are further discussed in Subsection 1.3. We also disucss the relation to
testing properties of distributions in Subsection 1.2.1.

In this work we aim at a broader study of sample-based property testing, and we obtain several
general positive results as well as reveal relations between variants of this testing model. Although
sample-based testers are typically much less efficient than general (query-based) testers, in many
applications, random labeled samples are easier to obtain than a full query capacity. Hence, we
believe that sample-based testers may be of practical value.

1.1 Sample-based testers of sublinear sample complexity

The complexity of testers (of various types) is measured as a function of the size of the object,
denoted n, and the proximity parameter, denoted ǫ. (Both these parameters are given as input
to standard testers.) When we say that a complexity measure is sublinear , we mean that it is
sublinear as a function of n, when fixing ǫ. (Typically, the query and sample complexities are at
least linear in 1/ǫ.) With one exception (i.e., Section 5), all our positive results assert sublinear
sample complexity for properties that are impossible to learn within such complexity (under the
uniform distribution).

One of our results transforms certain Proximity Oblivious Testers (POTs) into sample-based
testers of sublinear sample complexity, where the “level of sublinearity” depends on the (constant)
query complexity of the POT. Loosely speaking, Proximity Oblivious Testers (POTs) are “basic
testers” that do not get a proximity parameter as input, and make only a constant number of
queries to the tested object [18]. They are required to reject objects with probability that is lower

1We stress that the canonical testers of graph properties, which are used in many works and are studied explicitly
in [20, Sec. 4], do not make uniformly and independently distributed queries. Indeed, they select at random a
uniformly distributed set of vertices, but their queries (which correspond to all vertex pairs) are dependent, although
each is uniformly distributed. In general, many testers make uniformly distributed queries, but these queries are
typically not fully independent of one another. See further discussion following Theorem 1.1.

2In fact, the main definition in [14] refers to (distribution-free) sample-based testers (cf. [14, Def. 2.1]).
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bounded by a function of the object’s distance to the property (see Definition 2.2).3 This function
is called the detection probability function.

Theorem 1.1 (Proximity Oblivious Testers with uniformly distributed queries imply sample-based
testers of sublinear sample complexity): Suppose that Π has a q-query POT with detection prob-

ability function ̺ that makes uniformly distributed queries. Then, Π has a sample-based tester of

sample complexity s(n, ǫ) = O(n1−(1/q)/̺(ǫ)2+(3/q)). Furthermore, if the POT has one-sided error,

then so does the sample-based tester.

We stress that the premise of Theorem 1.1 is merely that each of the queries made by the POT
is uniformly distributed, although the queries may be dependent on one another and may even
be chosen adaptively. A typical example is the celebrated linearity tester of [5], which is based
on a three-query POT. This three-query POT selects x and y uniformly and independently in the
function’s domain (which is a group), and makes the queries x, y and x + y.

Indeed, Theorem 1.1 implies that linearity has a sample-based tester of sample complexity
O(n2/3poly(1/ǫ)), but a better (and tight) result can be obtained directly (see Theorem 5.1). In
general, POTs that satisfy the “uniform query distribution” condition are quite common; in fact,
in the dense graph model, any POT can be converted to one that makes uniformly distributed
queries, while at most squaring the number of queries (see [18, Sec. 4.2], following [20, Sec. 4]).4

Actually, we can get stronger results for the dense graph model.

Theorem 1.2 (on sample-based testers in the dense graph model): Let n denote the size of the

adjacency matrix of a graph, that is, the number of vertex-pairs.

1. (From quasi-canonical testers to sample-based testers): Let Π be a graph property and consider

the task of testing Π in the dense graph model. If Π has a POT with detection probability

function ̺ that inspects the subgraph induced by a random set of ν vertices, then Π has a

sample-based tester of sample complexity s(n, ǫ) = O(n1−(1/(ν−1))/̺(ǫ)2). Furthermore, if the

POT has one-sided error, then so does the sample-based tester.

2. In the dense graph model, for every k ≥ 2, k-Colorability has a sample-based tester of sample

complexity s(n, ǫ) = O(1/ǫ) · √n. Furthermore, this tester has one-sided error.

Note that Bipartitness does not have a POT (cf. [18]). Hence, while Item 1 merely presents a
quantitative improvement over Theorem 1.1, Item 2 goes beyond the scope of Theorem 1.1. Two
more comments are in order:

1. The square-root dependence on n of the sample complexity in the second item of the theorem
is tight for (sample-based) testing of bipartiteness.

2. The tester referred to in the second item of the theorem is not computationally efficient. We
address this issue in Subsection 1.4.

1.2 Perspective on other testing models

Sample-based testing offers interesting perspectives on several notions.

3In contrast, standard testers do get a proximity parameter, denoted ǫ, as input, make a number of queries that
depend on ǫ, and are required to reject any object that is ǫ-far from the property with probability at least 2/3.

4In fact, the resulting POT inspects the subgraph induced by a random set of O(q) vertices, where q is the query
complexity of the original POT.
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1.2.1 Testing symmetric properties and testing distributions

As argued in [23] (see also [16]), natural families of properties are defined in terms of invariances,
where each property in the family is invariant under a group of permutations acting on the functions’
domain. (Indeed, testing graph properties in the dense graph model (as in Theorem 1.2) is one
famous example, and linearly invariant properties [23] is another.) At the very extreme, one may
consider symmetric properties, which are properties that are invariant under the symmetric group
acting on the functions’ domain. We observe that when testing symmetric properties, samples are

essentially as good as queries (see Theorem 6.1).
We also articulate Sudan’s observation that testing distributions (for any property of distribu-

tions, cf. [4]) can be tightly reduced to testing symmetric properties [32, Sec. 2.1]. In particular,
Theorem 6.4 formally relates the model of testing distributions5 to the standard model of prop-
erty testing (i.e., testing properties of functions w.r.t the uniform distribution over their domains).
While establishing this relation is technically simple, to the best of our knowledge, this is the
first time that the model of testing distributions has been formally related to the standard model
of property testing, which relates to testing functions (w.r.t the uniform distribution over their
domains).

1.2.2 Distribution-Free Testing and One-Sided Error

The focus on sample-based testers brings us closer to the area of computational learning theory
(cf. [33, 25]). Within this mind-frame, it is natural to consider distribution-free testing, which was
also defined in [14] but received little attention so far. In distribution-free testing, the sample that
the testing algorithm receives is distributed according to an arbitrary and unknown distribution,
and distance between functions (and hence distance to having the property) is defined according
to the same distribution. Our initial feeling was that there may be a relation between one-sided

error sample-based testing (under the uniform distribution) and distribution-free (sample-based)
testing. This feeling was partially confirmed by a general upper bound on the sample complexity
of the former in terms of the sample complexity of the latter, but beyond this upper bound the two
complexity measures may exhibit different relationships. Our results are summarized in the follow-
ing theorem, where OSE(Π) denotes the sample complexity of one-sided error sample-based testing
Π (under the uniform distribution), and DF(Π) denotes the sample complexity of distribution-free
(sample-based) testing Π.

Theorem 1.3 (distribution-free sample-based testers versus one-sided error sample-based testers
under the uniform distribution):

1. For every property Π, it holds that OSE(Π) = Õ(DF(Π)2).

2. There exists a property Π such that OSE(Π) = Ω(n) but DF(Π) = poly(1/ǫ) · n
log n .

3. There exists a property Π such that OSE(Π) = Θ(DF(Π)).

4. There exists a property Π such that OSE(Π) = Θ̃(1/ǫ) · log DF(Π).

5. There exists a property Π such that OSE(Π) = Õ(1/ǫ) but DF(Π) = Ω(n).

5In this model the tested object is a distribution D over some domain X and the algorithm receives points x ∈ X
that are distributed according to D. The goal is to decide whether D has a particular property or is far from
any distribution that has the property (where the distance measure between distributions is usually the variation
distance).
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Hence, there exists a general upper bound of OSE in terms of DF (i.e., Item 1), but in specific cases
we may see quite different relations ranging from OSE = ω(DF), to OSE = Θ(DF), to OSE = o(DF)
(cf., Items 2-5). We mention that the properties used in Items 2-4 are natural ones.

1.3 Related work

As mentioned upfront, sample-based testers were considered in several prior works, starting with
the work of Goldreich, Goldwasser, and Ron [14]. Ironically, the main definition in their work
(i.e. [14, Def. 2.1]), refers to (distribution-free) sample-based testers, whereas the now-standard
definition of query-based testers (with respect to the uniform distribution) is presented there as a
variant (see Item 3 in [14, Sec. 2]). However, the bulk of [14] is devoted to the study of query-based
testers, and this notion became the standard in the area.

Nevertheless, sample-based testers were considered also in subsequent works, which focused on
query-based testers. Typically, the perspective is negative; that is, the focus is on lower bounds on
sample complexity, which are presented as a justification for the use of queries in the main positive
results. For example, the first study of testing monotonicity [13] focuses on query-based testers,
but also provides a lower bound on the sample complexity of sample-based testers, which is shown
to be tight. Indeed, the latter lower bound (i.e., [13, Thm. 5]) is used as justification for the use
of queries in the main result (i.e., [13, Thm. 1]), and the sample-based tester (of [13, Thm. 6]) is
viewed as indicating that this lower bound is tight.

Two notable exceptions appear in [24, 3], Kearns and Ron [24] consider sample-based testing
(under the uniform distribution) for decision trees of a bounded size s over [0, 1]d (for constant d)
and for a special class of neural networks with s hidden units. They design testers whose sample
complexity is significantly lower than that required for learning the corresponding class of functions.
However, their testers are only required to reject functions that are far from a super-class of the
tested class (determined by a larger size parameter s′). For the special case of interval functions
(d = 1), Blum et al. [3] showed how this relaxation of the rejection requirement can be removed, and
they obtained optimal (in terms of the dependence on s) sample-based testers. Blum et al. [3] also
present sample-based testers (which out-perform learning algorithms) for linear threshold functions
under the Gaussian distribution.

Actually, the work of Blum et al. [3] puts forward a more refined notion, called active testers.
These may be viewed as a generalization of sample-based testers, where the testers are provided
with unlabeled samples, and may query the function only at points that appear in the given sample.
Blum et al. [3] consider both the sample-complexity and the query-complexity of these testers, where
the latter is typically smaller (since the tester does not query the function on all the sample points).
They view sample-based testers as a special case (which they call passive testing) in which the testers
query the function on all points in the sample (and so in this case their notion of query-complexity
equals the notion of sample-complexity).

1.4 The computational complexity aspect

Throughout most of this work, we ignore the computational complexity aspect (i.e., the running-
time of the various testers). This choice seems crucial to some of our results; notable examples
include Proposition 2.4, Theorem 3.1 (see also Theorems 1.1 and 3.5), Theorem 4.5 (see Item 2 in
Theorem 1.2), and Theorem 7.2. In contrast, the following result (i.e., Theorem 1.4) is of interest
only because it addresses the computational complexity aspect, which was ignored in Item 2 of
Theorem 1.2).
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Theorem 1.4 (on computational efficient sample-based testers in the dense graph model):

1. Bipartiteness has a (one-sided error) sample-based tester of time complexity O(1/ǫ) · √n.

2. For every k ≥ 3, k-Colorability has a (one-sided error) sample-based tester of time complexity

fk(ǫ) · n1−(1/2k), where fk(ǫ)
def
= exp(exp(Õ(k/ǫ))).

Indeed, we do not know whether for k ≥ 3, k-Colorability has a sample-based tester of time
complexity poly(1/ǫ) · √n. In order to establish the second item in Theorem 1.4, we build on a
technique introduced by Alon and Krivelevich [2]. They showed that if a graph is ǫ-far from being
k-colorable, then with high constant probability, a subgraph induced by Θ(k log k/ǫ2) uniformly
selected vertices will not be k-colorable. To this end they introduced (as a mental experiment) a
process by which new vertices that are added to the sample restrict the legal colorings of previously
added vertices.6 Their analysis uses the fact that with each newly added vertex we get all edges to
previously selected vertices (as part of the induced subgraphs). In contrast, for the sample size we
use, we cannot expect to obtain so much information, and this is one aspect in which we depart
from their analysis. The second aspect is that we need to turn the mental experiment into an
efficient algorithm (which finds a small subgraph that is not k-colorable) while the algorithm lacks
some of the knowledge that the mental experiment has.

1.5 Organization

In Section 2.1 we recall the standard definitions of (query-based) testers and proximity oblivious
testers. In Section 2.2 we recall and briefly discuss the definition of sample-based testers.

In Section 3 we show that certain POTs imply sample-based testers of sublinear sample complex-
ity. In particular, we present a generalization of Theorem 1.1, which derives sample-based testers
of sublinear complexity from any POT that refrains from “heavy queries” (i.e., queries that assign
much weight to a specific location). Sample-based testers in the dense graphs model are studied
in Section 4, and the proofs of Theorems 2 and 1.4 appear there. Section 5 presents an optimal
(one-sided error) sample-based tester of linearity. In Section 6 we study symmetric properties.

In Section 7 we study the relation between one-sided error sample-based testing (under the
uniform distribution) and distribution-free (sample-based) testing: The results of this study are
summarized in Theorem 1.3.

In Appendix A.1, we consider a relaxation of the definition of POTs. The only relation of this
section to the rest of the paper is that such relaxed POTs can be used in Section 3.

2 Preliminaries

Property testing is a relaxation of decision problems and it focuses on algorithms that can only
read parts of the input. Thus, the input is represented as a function (to which the tester has oracle
access) and the tester is required to accept functions that have some predetermined property (i.e.,
reside in some predetermined set) and reject any function that is “far” from the set of functions
having the property. Distances between functions are defined as the fraction of the domain on
which the functions disagree, and the threshold determining what is considered far is presented as
a proximity parameter, which is explicitly given to the tester.

An asymptotic analysis is enabled by considering an infinite sequence of domains, functions, and
properties. The domains and properties (in the infinite sequence) are described by a finite sequence

6Such a process was introduced previously in [14], but it did not lend itself to our purposes.
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of parameters, which include the size of the domain, denoted n. For simplicity, we shall present our
results for sequences that are determined by this size parameter. That is, for any n, we consider

functions from Dn to Rn, where |Dn| = n. (Often, one just assumes that Dn = [n]
def
= {1, 2, . . . , n}.)

Thus, in addition to the input oracle, representing a function f : Dn → Rn, the tester is explicitly
given two parameters: a size parameter, denoted n, and a proximity parameter, denoted ǫ.

2.1 The standard definitions of query-based testers

In this section we recall the standard definition of property testing as well as the definition of
proximity oblivious testers. Both definitions refer to oracle machines that are given oracle access to
a function f : Dn → Rn (as well as free access to some relevant parameters such as n). We denote
by Mf (p) the output of oracle machine M on input parameter p when given oracle access to f .

Definition 2.1 (property tester, following [31, 14]): Let Π =
⋃

n∈N
Πn, where Πn contains func-

tions defined over the domain Dn and ranging over Rn. A tester for a property Π is a probabilistic

oracle machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every n ∈ N and

f ∈ Πn (and every ǫ > 0), it holds that Pr[T f (n, ǫ)=1] ≥ 2/3.

2. Given proximity parameter ǫ > 0 and oracle access to any f that is ǫ-far from Π, the tester

rejects with probability at least 2/3; that is, for every n ∈ N and ǫ > 0, if f : Dn → Rn is

ǫ-far from Πn, then Pr[T f (n, ǫ)=0] ≥ 2/3, where f is ǫ-far from Πn if, for every g ∈ Πn, it

holds that δ(f, g)
def
= |{e ∈ Dn : f(e) 6= g(e)}|/n > ǫ.

Indeed, the distance of f from Π, denoted δΠ(f), equals ming∈Πn{δ(f, g)}.

If the tester accepts every function in Π with probability 1, then we say that it has one-sided error;
that is, T has one-sided error if for every f ∈ Πn and every ǫ > 0, it holds that Pr[T f (n, ǫ)=1] = 1.
A tester is called non-adaptive if it determines all its queries based solely on its internal coin tosses

(and the parameters n and ǫ); otherwise it is called adaptive.

Definition 2.1 does not specify the query complexity of the tester, and indeed an oracle machine
that queries the entire domain of the function qualifies as a tester (with zero error probability...).
Needless to say, we are interested in testers that have significantly lower query complexity.

Some testers (e.g., the celebrated linearity tester of [5]) operate by repeating some basic tests
for a number of times that depends on the proximity parameter, whereas the basic test is oblivious
of the proximity parameter. Such basic tests are captured by the following definition.

Definition 2.2 (Proximity Oblivious Tester (POT), following [18, 19]): Let Π be as in Defini-

tion 2.1 and let ̺ : (0, 1] → (0, 1] be monotone. A POT with detection probability ̺ for Π is a

probabilistic oracle machine T that makes a constant number of queries and satisfies the following

two conditions with respect to some constant c ∈ (0, 1]:

1. For every n ∈ N and f ∈ Πn, it holds that Pr[T f (n)=1] ≥ c.

2. For every n ∈ N and f : Dn → Rn not in Πn, it holds that Pr[T f (n)=1] ≤ c − ̺(δΠ(f)),

The constant c is called the threshold probability. A POT is said to have one-sided error if c = 1.
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We stress that, in contrast to a standard tester, a POT only gets one explicit parameter (i.e., the
size parameter, n). Standard testers are obtained by invoking the POT for an adequate number of
times. Specifically, for one-sided error POTs, we invoke the POT for O(1/̺(ǫ)) times and accept
if and only if all invocations returned 1. For general POTs with threshold probability c, we invoke
the POT for O(1/̺(ǫ)2) times and accept if and only if at least c − (̺(ǫ)/2) of the invocations
returned 1.

2.2 Sample-based testers

A sample-based tester can be defined in two equivalent ways. The first definition views such a tester
as one whose queries are distributed uniformly in the domain, independently of one another. That
is, each query of such a tester is distributed uniformly in Dn, independently of all prior queries
(and of the answers provided to these queries). The second definition views a sample-based tester
as obtaining a sequence of “labeled samples” (i.e., the samples are independently and uniformly
distributed in Dn and they are coupled with the corresponding values of the function), where the
length of this sequence is predetermined based on n and ǫ:

Definition 2.3 (sample-based tester, following [14]): Let Π be as in Definition 2.1 and s : N ×
(0, 1] → N. A (sample-based) tester of sample complexity s for a property Π is a probabilistic algorithm

T that satisfies the following two conditions for every n ∈ N:

1. For every f ∈ Πn (and every ǫ > 0), it holds that

Prr1,...,rs∈Dn [T (n, ǫ, (r1, f(r1)), . . . , (rs, f(rs)))=1] ≥ 2

3 ,

where s = s(n, ǫ) and (r1, . . . , rs) is uniformly distributed in Ds
n.

2. For every ǫ > 0, and every f : Dn → Rn that is ǫ-far from Π,

Prr1,...,rs∈Dn [T (n, ǫ, (r1, f(r1)), . . . , (rs, f(rs)))=0] ≥ 2

3 ,

where again s = s(n, ǫ) and (r1, . . . , rs) is uniformly distributed in Ds
n.

The sequence (r1, f(r1)), . . . , (rs, f(rs))) is called a sample labeled by f . As in Definition 2.1, if the

tester accepts every function in Π with probability 1, then we say that it has one-sided error.

The equivalence of this definition to the first one (or rather one of the directions of this equivalence)
is based on our disregard of the computational complexity of the tester (i.e., the complexity of
generating queries). This is clarified in the proof of the following proposition.

Proposition 2.4 (equivalence of the two formulations): A property Π has a tester of query com-

plexity q that uses queries that are uniformly and independently distributed in the domain if and

only if it has a sample-based tester of sample complexity q.

Proof: Given a sample-based tester T ′, we easily obtain a corresponding querying tester T by
letting the latter emulate T ′ in a straightforward manner. That is, on input n and ǫ, the tester
T selects uniformly and independently an adequate number of queries, and feeds T ′ with the
corresponding sequence of query and answer pairs, where T obtains the answers by querying its
oracle.

7



The other direction is a bit more tricky. The issue is that the final decision of the tester may
depend on the coins that it has used to produce the queries, and so merely replacing the queries
with uniformly distributed samples will not do. We should augment these samples with a sequence
of random coins that would have led the original tester to make these queries. Details follow.

We are given a (possibly adaptive) tester T with a guarantee on the distribution of its queries,
and wish to construct a sample-based tester T ′. The sample-based tester T ′ is given a sequence of
pairs (r1, v1), . . . , (rs, vs), where vi = f(ri) for each i ∈ [s], and it operates by selecting at random
coins ω such that using coins ω and having oracle access to f , the oracle machine T makes the
queries r1, . . . , rs. By the hypothesis, the set of such ω’s constitutes an n−s fraction of the set of all
possible coin tosses. Furthermore, T ′ can reconstruct the former set without making any queries
to f (by emulating the execution of T using coins ω and using vi as the answer to the ith query,
regardless of the identity of this query).

On the operation of sample-based one-sided error testers. The operation of any sample-
based one-sided error tester is totally determined by its sample: Being sample-based, this tester has
no control over its access to the function, and having one-sided error it has no real control on its
decision; that is, without loss of generality, the tester accepts if and only if the labeled sample that
it has obtained is consistent with some function that has the property. This is the case because in
case of consistency it must accept, whereas in case of inconsistency it better reject (since this may
only improve its performance).

3 POTs and sample-based testers

The fact that certain POTs yield sample-based testers of sublinear sample complexity was proven
implicitly in [12, Apdx. A.2]. The context of that result is of testing graph properties in the
bounded-degree model (introduced in [17]). Here we present much more general results.

3.1 The main result

In this subsection we prove Theorem 1.1, or more precisely, a slightly stronger version of it. Specif-
ically, we consider POTs that make queries that are each almost uniformly distributed in the
domain, although their joint distribution may be very dependent. Stated formally, for α ∈ (0, 1],
a tester (or a POT) is called α-fair if, for each i and j ∈ Dn (and for every f : Dn → Rn), the

ith query of the tester (when it accesses the oracle f) equals j with probability at most 1/αn. We
stress that here we consider the marginal distribution of the ith query. Note that by [20, Sec. 4], we
may assume without loss of generality, that any constant-query POT in the dense graphs model is
1-fair. Lastly, we mention that the notion of a fair tester is reminiscent of the notion of a smooth
decoder [22].

Theorem 3.1 (from POTs to sample-based testers – basic version): Suppose that Π has a q-query

POT with detection probability ̺ that is Ω(1)-fair. Then, Π has a sample-based tester of sample

complexity s(n, ǫ) = O(n1−(1/q)/̺(ǫ)2+(3/q)). Furthermore, if the POT has one-sided error, then so

does the sample-based tester (and the sample complexity can be reduced to O(n1−(1/q)/̺(ǫ)1+(3/q))).

Note that the POT in the premise of Theorem 3.1 implies a standard (query-based) tester of query
complexity O(1/̺(ǫ)b), where b = 2 in the general case and b = 1 in the one-sided error case. The
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fairness condition is essential to Theorem 3.1; however, it is satisfied by almost all known POTs.
See further discussion in Section 3.2.

Proof: As in [12, Apdx. A.2], the basic idea is that a random sample of the said size is very likely
to contain a sequence of queries that are made by the POT on some setting of its random coins.
Furthermore, this setting is almost uniformly distributed among all possible settings of the random
coins. The proof is devoted to actually establishing that the above assertions hold, in particular
given that the algorithm may be adaptive. We note that the situation here is more complex than
in [12, Apdx. A.2], since the property is not necessarily closed under any non-trivial invariance.

Throughout the analysis we fix the POT, denoted T , and fix the function, denoted f , tested

by T . By the hypothesis, T is α-fair, for some constant α > 0. Denoting the randomness complexity
of T by r, it follows that 2r ≥ αn. We consider all possible random strings ω ∈ {0, 1}r . A key
notion is that of the sequence of queries generated by ω, which is defined as the sequence of queries

that T makes when using randomness ω and having access to f .
We start by presenting a sample-based algorithm that emulates the POT up to an O(δ)-

deviation, where δ is a parameter to be determined later.7 For t = Θ(n1−(1/q)/δ3/q), the
sample-based tester that we wish to construct is given a sequence of qt labeled examples
(s1, f(s1)), . . . , (sqt, f(sqt)), where S = (s1, . . . , sqt) is uniformly distributed in [n]qt. For each
i ∈ [q], we let Si denote the subsequence (s(i−1)t+1, . . . , sit).

We say that (ω, S) ∈ {0, 1}r × [n]qt is good if the sequence generated by ω is in (S1, . . . , Sq)
(i.e., for each i ∈ [q], when given oracle access to f and using coins ω the ith query of T is in Si).
In such a case we say that S is good for ω, and that ω is good for S. For starters, note that for
every fixed ω ∈ {0, 1}r , the probability that a uniformly distributed S ∈ [n]qt is good for ω equals
(1 − (1 − (1/n))t)q ≈ (t/n)q. We shall show that, with high probability, such a random S is good
for a (1 ± o(1)) · (t/n)q fraction of the ω ∈ {0, 1}r . This will imply that if the sample-based tester
selects at random an ω that is good for the sample that it receives, and emulates T using ω as
its random coins (while answering T ’s queries by using the corresponding labels), then this tester
emulates the POT quite well. We start with the first claim.

Claim 3.1.1 Let δ > 0 and µ = (1 − (1 − (1/n))t)q. If S is uniformly distributed in [n]qt, then

with probability at least 1− q
αδ2µn

the sequence S is good for a (1± δ) ·µ fraction of the ω ∈ {0, 1}r.

Proof: For every ω ∈ {0, 1}r , we denote by ζω = ζω(S) the indicator random variable that is 1

if and only if (ω, S) is good. Recall that E[ζω] = PrS∈[n]qt[ζω(S) = 1] = µ. Letting N
def
= 2r and

ζω
def
= ζω − µ, the claim asserts that

PrS∈[n]qt




∣∣∣∣∣∣

∑

ω∈{0,1}r

ζω

∣∣∣∣∣∣
> δ · µN


 <

q

αδ2µn
. (1)

We prove Eq. (1) by using Chebyshev’s Inequality:

PrS∈[n]qt




∣∣∣∣∣∣

∑

ω∈{0,1}r

ζω

∣∣∣∣∣∣
> δ · µN


 <

E

[(∑
ω∈{0,1}r ζω

)2
]

(δµN)2

=
1

δ2µ2N2
·

∑

ω1,ω2∈{0,1}r

E[ζω1
ζω2

] . (2)

7Indeed, this tester is reminiscent of the notion of a relaxed POT, as presented in Definition A.1, but we shall
proceed without any definition regarding this matter.
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We partition the sum in Eq. (2) into two sums separating pairs that generate intersecting sequences
of queries from pairs that generate non-intersecting sequences of queries, where the sequences
(u1, . . . , uq) and (v1, . . . , vq) intersect if there exists an i ∈ [q] such that ui = vi.

We first note that the fraction of intersecting pairs is at most q/αn, since for any fixed sequence
u = (u1, . . . , uq) ∈ [n]q the sequence of queries generated by a uniformly distributed ω ∈ {0, 1}r

intersects u with probability at most q · (1/αn). On the other hand, for any pair (ω1, ω2), it holds
that E[ζω1

ζω2
] < E[ζω1ζω2] ≤ E[ζω1] = µ. This bound is far from being tight. In particular, as

shown next, E[ζω1
ζω2

] is negative for any non-intersecting pair (ω1, ω2). Indeed, considering such
a non-intersecting pair, note that E[ζω1

ζω2
] = Pr[ζω1 = ζω2 = 1] − µ2, whereas Pr[ζω1 = ζω2 = 1] =

µ · Pr[ζω2 = 1|ζω1 = 1] and Pr[ζω2 = 1|ζω1 = 1] = (1 − (1 − (1/n))t−1)q < (1 − (1 − (1/n))t)q = µ.
Combining all the above facts, we upper bound Eq. (2) by

1

δ2µ2N2
·
( q

αn
· N2

)
· µ =

q

δ2µαn

and the claim follows.

We set δ so as to equate the two errors in Claim 3.1.1; that is, we set δ = q
δ2µαn

, which implies

µn = 1/αδ3 = Θ(1/δ3). Indeed, this requires that µn > 1. Since µ = (1 − (1 − (1/n))t)q < (t/n)q,
this implies that t > n(q−1)/q. Using Claim 3.1.1, the analysis of the sample-based tester outlined
above reduces to the following claim.

Claim 3.1.2 Let G = ((X,Y ), E) be a bipartite graph such that each vertex in X has degree |E|/|X|
and at least a 1−δ fraction of the vertices in Y have degree (1±δ)·|E|/|Y |, where δ ∈ [0, 0.5). Then,

uniformly selecting a vertex y in Y , and uniformly selecting a neighbor of y, yields a distribution

that is 2δ-close to the uniform distribution on X.

(We shall apply Claim 3.1.2 with X = {0, 1}r and Y = [n]qt, where there is an edge between x ∈ X
and y ∈ Y if x is good for y.)
Proof: Let Y ′ be the set of vertices in Y that have degree (1 ± δ) · |E|/|Y |, and let E′ be the
set of edges with an endpoint in Y ′. Then, |E′| ≥ (1 − δ) · |Y | · (1 − δ) · |E|/|Y | > (1 − 2δ) · |E|,
and each edge in E′ is selected with probability 1

|Y | · 1
(1±δ)·|E|/|Y | = 1

(1±δ)·|E| , since an edge incident

to vertex y ∈ Y that has degree dy is selected with probability 1
|Y | · 1

dy
. Hence, the distribution

induced on E is δ′-close to uniform, where δ′ < (|(1 ± δ)−1 − 1| + 2δ)/2 < 2δ.8 The claim follows,
since the distribution on X is induced by a function of the distribution on E that maps the uniform
distribution on E to the uniform distribution on X.9

The sample-based tester (formalized): On input parameters n, ǫ and a sequence of labeled samples
((s1, v1), . . . , (sqt, vqt)), where t = Θ(n1−(1/q)/̺(ǫ)3/q), the tester proceeds as follows, with the
intention of emulating a single execution of T with statistical deviation of at most ̺(ǫ)/3.

1. The tester selects uniformly ω ∈ {0, 1}r such that ω is good for S, where S = (s1, . . . , sqt).

If no such ω exists, then the tester halts and outputs 1 with probability c (and outputs 0
otherwise), where c is the threshold probability of T . (This bad event occurs with probability
at most ̺(ǫ)/10.)

(The next step is executed only if ω was selected in Step 1.)

8Specifically, the said variation distance is at most 1
2
·
“

P

e∈E′

˛

˛

˛

1
(1±δ)|E|

− 1
|E|

˛

˛

˛

+ max
“

|Y \Y ′|
|Y |

, |E\E′|
|E|

””

, since (for

every two random variables ζ and ζ′, and every set S) the variation distance between ζ and ζ′ is upper-bounded by
1
2
·

`

P

e∈S |Pr[ζ =e]− Pr[ζ′ =e]| + max (Pr[ζ 6∈ S], Pr[ζ′ 6∈ S])
´

.
9We use the fact that, for every two random variables ζ and ζ′, and every function f , the variation distance

between f(ζ) and f(ζ′) is upper-bounded by the variation distance between ζ and ζ′.
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2. Let (i1, . . . , iq) ∈ [qt] be such that (si1 , . . . , siq) is the sequence of queries generated by ω.

The tester emulates T using randomness ω, while using vij as the answer to the jth query,
and outputs whatever T does.

Note that for our choice of t = Θ(n1−(1/q)/̺(ǫ)3/q), it holds that µn ≈ (t/n)q ·n = Θ(1/̺(ǫ)3), and
so (by Claims 3.1.1 and 3.1.2) this emulation of T deviates from a perfect one by at most ̺(ǫ)/3.
The final sample-based tester is obtained by running O(1/̺(ǫ)b) copies of the above emulation,
where b = 2 for the general case and b = 1 for the one-sided error case. Details follow.

On input n, ǫ and ((s1, v1), . . . , (sqt′ , vqt′), where t′ = Θ(t/̺(ǫ)b) = Θ(n1−(1/q)/̺(ǫ)b+(3/q)), the
tester runs O(1/̺(ǫ)b) copies of the above emulation, when using the subsequence of labeled samples
((s(i−1)t+1, v(i−1)t+1), . . . , (sit, vit), in the ith emulation. In the general case the tester outputs 1 if
and only if at least c− ̺(ǫ)/2 of the emulations returned 1, whereas in the one-sided error case the
tester outputs 1 if and only if all the emulations returned 1.

3.2 On the fairness condition

The fairness condition is essential to the foregoing proof of Theorem 3.1. Indeed, if there exists
i ∈ [n] such that the given POT always makes the query i, then we have no chance to emulate
it while using a random sample of size o(n). One might conjecture that any property that has a

q-query POT, also has a q-query POT that is Ω(1)-fair; but as shown next this conjecture is false.

Proposition 3.2 (POTs do not necessarily imply fair POTs): There exists a property Π that has

a (one-sided error) three-query POT with linear detection probability, but has no constant-query

POT that is Ω(1)-fair.

Proposition 3.2 does not mean that Π has no sample-based tester of sublinear complexity; in
fact, the property used in the following proof does have such a tester. We shall show later (see
Proposition 3.3) that there exists a property Π that has a constant-query POT but does not have
a sample-based tester of sublinear complexity.10

Proof: The proof is by a reduction to results regarding MA-POTs, a notion introduced by Gur
and Rothblum [21]. Loosely speaking, an MA-POT is a POT in which the tester obtains an explicit
(short) proof (or witness) in addition to oracle access to the input function f . It is required that
for every f ∈ Π there exists a witness wf (of the designated length) such that on input f and wf

the tester always accepts, whereas if f is not in Π then the tester rejects f with probability that
is related to the distance of f from Π (as in Definition 2.2 for the case c = 1) no matter what w
is provided as an alleged witness. We stress that the tester has free access to the witness, and the
query complexity only accounts for the access to f .

Gur and Rothblum [21] showed a q-query MA-POT that utilizes proofs of logarithmic length for
a class of Boolean functions having no (standard) property tester of query complexity n1−Ω(1/

√
q).11

For our purposes, we shall use a simpler two-query MA-POT that utilizes proofs of logarithmic
length for a class of Boolean functions having no (standard) property tester of query complexity
Ω(

√
n). Such a result is mentioned in [8]12, but we shall present an alternative one. In any case,

let us detail the reduction first.
10Indeed, Proposition 3.3 implies Proposition 3.2, alas it uses a more contrived property (which consists of functions

having a huge range).
11We refer to [21, Thm. 3.1] and note that its proof implicitly provides a constant-query POT of detection probability

̺(ǫ) = exp(−1/ǫ). (Actually, the detection probability is Ω(ǫ) if ǫ > 1/ log n (and at least 1/n otherwise).)
12We refer to their observation that the property Π = {uuRvvR : u, v ∈ {0, 1}∗} has a constant-query MA-POT of

logarithmic proof complexity, whereas any standard tester for Π requires Ω(
√

n) queries [1].
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Claim 3.2.1 Let Π = ∪n∈NΠn, where Πn contains functions from [n] to {0, 1}ℓ(n). Suppose that Π
has a q-query MA-POT with proof complexity ℓ(n), but has no standard tester of query complexity

that only depends on the proximity parameter. Then, there exists a property Π′ that has a (q + 1)-
query POT but no constant-query POT that makes Ω(1)-fair queries. Furthermore, Π′ = ∪n∈NΠ′

n+1

such that Π′
n+1 contains functions from {0, 1, . . . , n} to {0, 1}ℓ(n).

Proof: We define Π′
n+1 such that f ′ ∈ Π′

n+1 if there exists f ∈ Πn such that f ′(i) = f(i) for every
i ∈ [n] and f ′(0) = w for any w that makes the guaranteed MA-POT accept f with probability 1.
Note that at least one such w exists.

We first observe that Π′ has no constant-query POT that makes Ω(1)-fair queries. The reason
is that an Ω(1)-fair POT may only query the function f ′ at 0 with probability O(1/n), whereas
it must reject functions that are at constant distance from Π′ with constant probability. Hence,
it could be modified to a POT that never queries f ′ at 0 and still rejects functions that are at
constant distance from Π′ with constant probability. But this would have yielded a standard tester
with performance that violates the hypothesis.

We now present a (q + 1)-query POT for Π′. This POT always queries f ′ at 0, and invokes the
MA-POT while providing it with oracle access to the corresponding f (i.e., f ′ restricted to [n]) and
a witness that equals f ′(0). Note that this POT accepts each f ′ ∈ Π′ with probability 1, whereas
f ′ 6∈ Π′ is rejected with probability that is related to the distance of f from Π (where in case f ∈ Π,
the function f ′ is rejected with probability at least 2−ρ(n), where ρ is the randomness complexity
of the MA-POT, which is fine since such f ′ is at distance 1/(n + 1) from Π′

n+1).
13

Claim 3.2.2 Let Π = ∪n∈NΠn, where Πn contains functions from [n] to [n] such that f ∈ Πn if and

only if there exists i ∈ [⌊n/2⌋] such that for every j ∈ [⌊n/2⌋] it holds that f(⌊n/2⌋+ j) = f(shi(j)),

where shi(j)
def
= ((j + i) mod ⌊n/2⌋) + 1. Then, Π has a two-query MA-POT with proof complexity

log2 n, but any standard tester for Π has query complexity Ω(
√

n).14

Proof: Let m
def
= ⌊n/2⌋. The two-query MA-POT gets i ∈ [m] as a witness, selects j uniformly

in [m] and compares f(m + j) to f(shi(j)), by making the corresponding queries. This MA-POT
has linear detection probability. Turning to the lower bound, we show that a machine of query
complexity o(

√
n) cannot distinguish a function uniformly selected in Πn from a totally random

function (augmented by a random choice of i ∈ [m]). Towards this end, we consider a matching
of [m + 1, 2 · m] to [m] such that m + j is matched to shi(j). The point is that in the former case
(i.e., of f ∈ Π), as long as the queries made contain no matched pair, the answers are uniformly
distributed in [n] (just as in the case of a totally random function).

Combining the two claims, the proposition follows. Note that the property that we obtained (i.e.,
the one satisfying the proposition) is a property of functions with a range that equals their domain.

Proposition 3.3 (POTs do not necessarily imply testers with sublinear sample complexity): There

exists a property Π that has a one-sided error two-query POT with linear detection probability, but

has no sample-based tester of sublinear sample complexity.

13Specifically, if the detection probability function of the MA-POT for Π is ̺, then the detection probability
function of the POT for Π′ is ̺′(ǫ) = min{̺(ǫ), 2−ρ(1/ǫ)}. We comment that, w.l.o.g., we may have ρ(n) = O(log n)
(cf., e.g., [21, Lem. 4.6]).

14This lower bound is tight, since Π has a standard tester of query complexity O(
√

n). In fact, Π has a sample-based
tester of this complexity, which tries to find i by comparing the samples of the first and second part of [n].
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Proposition 3.3 is proved by using a class of functions with a huge range (i.e., |Rn| = exp(n)); we
wonder whether the result holds also for a class of functions with significantly smaller range (e.g.,
|Rn| = n or maybe even |Rn| = 2).

Proof: Starting from any hard to test property Π′ (cf., e.g., [14, Sec. 4.1]), we consider the
property Π such that f ∈ Πn+1 if and only if there exists f ′ ∈ Π′

n such that f(i) = f ′(i) for every
i ∈ [n] and f(0) = 〈f ′〉, where 〈f ′〉 denotes the full description of f ′ : [n] → R′

n. Indeed, we use
Dn+1 = {0, 1, . . . , n} = {0} ∪ D′

n and Rn+1 = R′
n ∪ (R′

n)n. (We could have presented the proof by
using the connection to MA-POTs, as done in the proof of Proposition 3.2, but prefer to present a
direct argument.)15

We first show that Π has a two-query POT with one-sided error and detection probability
̺(ǫ) ≥ ǫ/2. Given access to a function f : Dn+1 → Rn+1, we query f at 0 and at a uniformly
distributed i ∈ [n], obtaining the values v and u, which may be assumed to reside in (R′

n)n and R′
n

respectively (or else we reject). We accept if and only if v, viewed as a function from [n] to R′
n, is

in Π′
n and u equals the ith element in the n-long sequence v.16 This machine accept any f ∈ Πn+1

with probability 1. On the other hand, suppose that f is ǫ-far from Πn+1, and let f ′ denote the
restriction of f to [n]. We first discard of the case that ǫ = 1/(n + 1), noting that in this case the
machine rejects with probability at least ǫ. Now, using ǫ ≥ 2/(n + 1), we infer that f ′ is ǫ′-far from
Π′

n, where ǫ′ = ((n + 1)ǫ − 1)/n > ǫ/2. We may assume, w.l.o.g, that f(0) ∈ Π′
n, which implies

that there are at least ǫn/2 indices i ∈ [n] such that f(i) = f ′(i) differs from the ith element in the
n-long sequence f(0). In this case, the machine rejects with probability at least ǫ/2.

Finally, we claim that Π has no sample-based tester of sublinear sample complexity. The reason
is that a sublinear sized sample is unlikely to yield the value of f(0), whereas without this value
testing is hard (i.e., requires a linear number of queries, let alone samples).

A sufficient condition for fairness. While Propositions 3.2 and 3.3 assert that not every POT
can be transformed into a fair one, we next state a sufficient condition for such a transformation.
We warn, however, that this condition is not necessary. In fact, any POT in the bounded-degree
graph model can be transformed into a fair one (cf. [18, Clm. 5.5.2]), although the condition stated
next does not hold.17

Proposition 3.4 (invariance under 1-transitivity implies 1-fairness): Suppose that the property

Π is invariant under a 1-transitive permutation group that acts on its domain; that is, for every

n ∈ N and i, j ∈ Dn, there exists a permutation π : Dn → Dn such that π(i) = j and for every

f : Dn → Rn it holds that f ∈ Πn if and only if f ◦ π ∈ Πn, where (f ◦ π)(x) = f(π(x)). If Π has

a nonadaptive q-query POT, then it has one that is 1-fair, and if the former has one-sided error

then so does the latter.

For constant-size range (i.e., |Rn| = O(1)), non-adaptivity can be obtained at the cost of decreasing
the detection probability by a factor that is exponential in q. (This can be done by guessing the
answers at random beforehand, determining the corresponding queries and making them non-
adaptively, outputting the verdict of the original POT if all guesses turn out to be correct, and
outputting 1 with probability c otherwise (i.e., if any of these guesses turns out to be wrong).)

15Such an alternative presentation would proceed by showing that Π has a one-query MA-POT of proof complexity
n log |R′

n|.
16This machine corresponds to an MA-POT for Π′, which is given 〈f ′〉 as a witness, and makes a single query

obtaining the value f ′(i) (and acting accordingly).
17Graph properties in this model are not invariant under any 1-transitive permutation group that acts on their

domain, and (in general) the corresponding POTs are adaptive [28].
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Proof: Consider the group Gn generated by the permutations guaranteed in the hypothesis.
Given a q-query POT T for Π, consider the machine T ′ that, when given oracle access to a function
f : Dn → Rn, selects π ∈ Gn uniformly at random, and invokes T when providing it with oracle
access to f ◦ π; that is, query j is answered by querying f at π(j). Then, T ′ is a POT for Π, since
δΠ(f ◦π) = δΠ(f) by the invariance of Π under the permutation in G. On the other hand, by the 1-
transitivity of G, a random π ∈ G maps each i ∈ Dn uniformly over Dn (i.e., Prπ∈G[π(i)=j] = 1/n
for every j ∈ Dn). Hence, each of the queries of T ′ is uniformly distributed in Dn, where here we
rely on the non-adaptivity of T .

We note that non-adaptivity is essential to the proof of Proposition 3.4. Consider, for example, the
property Πn = {fi : i ∈ [n]} such that fi : Zn → Zn satisfies fi(j) = j + i mod n. This property
is 1-transitive, but is only invariant under cyclic permutations (i.e., permutations of the form
πs(i) = i + s). Now consider a three-query adaptive POT T that, uniformly selects r ∈ Zn, queries
its oracle f on 0, r, and v = r− f(r), and accepts if and only if f(0) = f(r)− r. (Indeed, T ignores
the third answer, and its analysis reduces to observing that it accepts f on coins r if and only if
f(r) = f(0)+r.) Then T ′, as defined in the foregoing proof, select s ∈ Zn uniformly at random, and
queries f = fi on πs(0), πs(r) and πs(v), whereas πs(v) = πs(r−fi(πs(r))) = (r−((r+s)+i))+s = i,
which strongly violates the fairness condition (since the third query is totally determined by fi).
Of course this does not mean that Πn has no POT that is non-adaptive; in fact, this Πn has a
sample-based POT that uses two samples (i.e., given (r1, f(r1)) and (r2, f(r2)), the POT accepts
if and only if f(r1) − f(r2) = r1 − r2).

18

3.3 A generalization (of Theorem 3.1)

For any k ∈ [q], we consider POTs that make q queries such that any k of these queries are (almost)
uniformly distributed in Dk

n. Indeed, the case of k = 1 is handled in Theorem 3.1 and the case
of k = q is straightforward, but here we are interested in the intermediate cases. For example,
the basic test that underlies the Linearity Tester of [5] selects three elements in the domain such
that any pair are uniformly and independently distributed. In general, for α ∈ (0, 1], we say that
a POT is (k, α)-fair if, for every 1 ≤ i1 < i2 < · · · < ik ≤ q and e1, . . . , ek ∈ Dn (and for every
f : Dn → Rn), with probability at most 1/αnk it holds that for every j ∈ [k] the ithj query of the

tester equals ej (when it accesses the oracle f).

Theorem 3.5 (Theorem 3.1, generalized): Suppose that Π has a q-query POT with detection

probability ̺ that is (k,Ω(1))-fair. Then, Π has a sample-based tester of sample complexity s(n, ǫ) =
max(O(n1−(k/q)/̺(ǫ)b+(3/q)), O(̺(ǫ)−(3+b))), where b = 2 in the general case and b = 1 if POT has

one-sided error. Furthermore, if the POT has one-sided error, then so does the sample-based tester.

Applying Theorem 3.5 to the 3-query POT for Linearity (cf. [5]), we obtain a (one-sided error)
sample-based tester of sample complexity s(n, ǫ) = poly(1/ǫ) · n1/3. Note that this sample com-
plexity is optimal as an emulation of this POT, since a sample of o(n1/3) group elements is unlikely
to contain a triplet that sums-up to zero, but more efficient sample-based tester can be obtained
directly (see Section 5).

Proof: We proceed as in the proof of Theorem 3.1, while focusing on strengthening Claim 3.1.1
under the stronger fairness hypothesis made here. Specifically, we partition the sum in Eq. (2)

18This POT has detection probability ̺(δ) = δ. This is shown by noting that if this POT accepts with probability
p, then there is a choice of r1 for which it accepts with probability at least p, and it follows that f is (1− p)-close to
Πn (just as in the analysis of the foregoing T ).
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into k + 1 sums separating pairs according to the number of intersections that occur in these
pairs. More specifically, we say that the sequences (u1, . . . , uq) and (v1, . . . , vq) are j-intersecting if
|{i ∈ [q] : ui = vi}| = j. (Indeed, the proof of Claim 3.1.1 only distinguishes 0-intersecting pairs
from intersecting pairs (i.e., pairs that j-intersect for some j ∈ [q]).) Letting Ij denote the set of
j-intersecting pairs, we have:

∑

ω1,ω2∈{0,1}r

E[ζω1
ζω2

]

=
∑

(ω1,ω2)∈I0

E[ζω1
ζω2

] +
∑

j∈[k]

∑

(ω1,ω2)∈Ij

E[ζω1
ζω2

] +
∑

(ω1,ω2)∈∪j>kIj

E[ζω1
ζω2

] . (3)

Recall that the contribution of the 0-intersecting pairs is negative (see the proof of Claim 3.1.1).
Now, for every j ∈ [k], the fraction of j-intersecting pairs is at most

(q
j

)
/αnj , whereas each j-

intersecting pair (ω1, ω2) contributes µ · (1 − (1 − (1/n))t−1)q−j < µ2 · (1 − (1 − (1/n))t)−j, since
E[ζω1

ζω2
] < Pr[ζω1 = ζω2 = 1] and Pr[ζω2 = 1|ζω1 = 1] = (1 − (1 − (1/n))t−1)q−j . Similarly, the

fraction of pairs in ∪q
j>kIj is at most

(q
k

)
/αnk, but we can only upper bound the contribution of

each such pair by µ. Since t = s(n, ǫ)/q = o(n), we have (1 − (1 − (1/n))t−1)−j < 2 · (t/n)−j , and
so Eq. (3) is upper bounded by

∑

j∈[k]

(q
j

)
N2

αnj
· 2µ2 · (t/n)−j +

(q
k

)
N2

αnk
· µ

< 2q+1 · N2 ·
(

µ2

αt
+

µ

αnk

)
. (4)

where N = 2r (as in the proof of Claim 3.1.1). Combining Eq. (2) and Eq. (4), it follows that

PrS∈[n]qt




∣∣∣∣∣∣

∑

ω∈{0,1}r

ζω

∣∣∣∣∣∣
> δ · µN


 <

2q+1

δ2µ2
·
(

µ2

αt
+

µ

αnk

)

=
2q+1

δ2αt
+

2q+1

δ2µαnk
. (5)

Wishing to upper bound each of the terms in Eq. (5) by δ/2, we get t ≥ 2q+2/αδ3 and µnk ≥
2q+2/αδ3. By setting t = max(O(n1−(k/q)/δ3/q), O(1/δ3)), both inequalities are satisfied. Continu-
ing as in the proof of Theorem 3.1, the current theorem follows.

Remark 3.6 (applicability to standard testers): The ideas underlying the proofs of Theorem 3.1

and 3.5 can be applied also to standard testers. In this case the query complexity q is not constant,

but rather depends on the proximity parameter ǫ and possibly also on the size parameter n. On the

other hand, the detection probability (represented by the function ̺) is a constant (i.e., 1/3). The

most appealing version refers to the case that the query complexity only depends on ǫ, in which case

we get:

Suppose that Π has a Ω(1)-fair tester of query complexity q : [0, 1] → N that only depends

on the proximity parameter. Then, Π has a sample-based tester of sample complexity

s(n, ǫ) = O(n1−(1/q(ǫ))). Furthermore, if the original tester has one-sided error, then so

does the sample-based tester.

Hence, sample-based testers of sublinear sample complexity exist for many natural properties.
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4 Sample-based testers in the dense graphs model

In this section, we consider testing graph properties in the adjacency matrix model (a.k.a the
dense graphs model). In this model a graph G = (V,E) is represented by the Boolean function
g :

(
V
2

)
→ {0, 1} such that g(u, v) = 1 if and only if u and v are adjacent in G (i.e., {u, v} ∈ E).

Thus, the domain size n equals
(|V |

2

)
, and the distance between graphs is measured in terms of their

aforementioned representation (i.e., as the fraction of (the number of) unordered vertex pairs on
which they differ over n). Here we only consider graph properties, which are sets of graphs that are
closed under isomorphism; that is, Π is a graph property if for every graph G = (V,E) and every

permutation π of V it holds that G ∈ Π if and only if π(G) ∈ Π, where π(G)
def
= (V, {{π(u), π(v)} :

{u, v} ∈ E}).
We shall sometimes view E as a set of ordered pairs (rather than a set of unordered ones).

Ditto regarding the sequence of samples (i.e., vertex pairs).

4.1 General results

The starting point of our general study of sample-based testers in the dense graphs model is a
transformation of standard testers (in this model) into “canonical” ones [20, Thm. 2]. In fact, we
shall use part of this transformation, which yields “quasi-canonical” testers as defined next.

Definition 4.1 (quasi-canonical testers): A quasi-canonical tester of vertex complexity ν : N ×
[0, 1] → N for a graph property Π is a tester of Π (in the dense graphs model) that operates as

follows:

1. On input parameters n =
(|V |

2

)
and ǫ, it select uniformly a set of ν(n, ǫ) vertices, denoted S,

and queries all the vertex pairs (i.e., all pairs in
(S

2

)
).

2. Let H be the unlabeled induced graph that corresponds to the answers obtained in Step 1. The

tester makes its decision based solely on n, ǫ and H, and possibly on fresh coin tosses (but
not on the coin tosses used to select the sample S).

Definition 4.1 differs from the definition of canonical testers in [20] only in that Step 2 is allowed
to be randomized.

Theorem 4.2 (Combining Lemma 4.1 and Claim 4.3 in [20]): Let Π be a graph property and

suppose that Π has query complexity q : N× [0, 1] → N (in the dense graphs model). Then Π has a

quasi-canonical tester of vertex complexity 2q.

(The canonical tester of [20] is obtained by an additional step, which increases the complexity by
a constant factor. We avoid this step, because we do not need it.)

Theorem 4.3 (from quasi-canonical testers to sample-based testers): Let Π be a graph property

and suppose that Π has a quasi-canonical tester of vertex complexity ν : N × [0, 1] → N. Then, Π
has a sample-based tester of sample complexity s(n, ǫ) = O(n1−1/(ν(n,ǫ)−1)).

In particular, if ν(n, ǫ) = ν ′(ǫ) does not depend on n, then for every constant ǫ we obtain sublinear
sample complexity.
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Proof: A random sample of size s = s(n, ǫ) corresponds to selecting each sample point (i.e., a vertex
pair) with probability p = s/n, independently of all other choices.19 Recall that n =

(|V |
2

)
≈ |V |2/2.

Call a set of vertices S good for the sample if the sample contains all vertex pairs that correspond
to this set S (i.e., for every two distinct vertices u, v ∈ S, it holds that the pair {u, v} is in the
sample). Then, the expected number of vertex sets of size ν = ν(n, ǫ) that are good for a random
sample (selected as above), denoted µ, is given by

(|V |
ν

)
· p(ν

2) > (
√

2n/ν)ν · pν·(ν−1)/2

=
(
(2n/ν2) · (s/n)ν−1

)ν/2
,

which is greater than 1 if s > 2 ·n1−1/(ν−1). As shown next, with probability at least 0.99, a random
sample of O(n1−1/(ν−1)) vertex pairs contains a good set of ν vertices, and each such good set is
uniformly distributed among all vertex sets of size ν.

For every set of ν vertices, S, let ζS denote the indicator random variable representing whether S

is good for a random sample, and let ζS = ζS−E[ζS ]. Letting N
def
=

(|V |
ν

)
and µ = E[ζS ] = pν·(ν−1)/2,

the claim follows by applying Chebyshev’s Inequality: Starting with

Pr




∑

S∈(V
ν)

ζS > 0


 <

E

[(∑
S∈(V

ν)
ζS

)2
]

(µN)2

we use the fact that E[ζSζT ] = 0 if S ∩ T = ∅ (and in fact also if |S ∩ T | = 1). For |S ∩ T | ≥ 1, we

use E[ζSζT ] < E[ζSζT ] = p(|S|
2 )+(|T |

2 )−(|S∩T |
2 ). Hence,

∑

S,T∈(V
ν )

E[ζSζT ] =
∑

i∈[ν]

∑

S,T∈(V
ν ):|S∩T |=i

E[ζSζT ]

<
∑

i∈[ν]

( |V |
2ν − i

)
·
(

2ν − i

ν

)
·
(

ν

i

)
· p2(ν

2)−(i
2)

<
∑

i∈[ν]

O(|V |/ν)2ν−i · p(2ν−i)·(ν−1)/2

= exp(ν) ·
∑

i∈[ν]

(
(|V |/ν) · p(ν−1)/2

)2ν−i
,

which is significantly smaller than (Nµ)2 > ((|V |/ν) · p(ν−1)/2)2ν , since |V | · p(ν−1)/2 > exp(ν).
Having shown that, with probability at least 0.99, a random sample of O(n1−1/(ν−1)) vertex

pairs contains a good set of ν vertices, we note that the subgraph induced by such a set is visible
in the sample. Noting that each such good set is uniformly distributed among all vertex sets of
size ν, it begs to emulate the quasi-canonical tester using this set. Indeed, our sample-base tester
selects at random a good set, uniformly among all ν-vertex sets that are good for the given sample,
and emulate the quasi-canonical tester using the induced subgraph (which is visible in the sample).

19Actually, the correspondence is not exact, but it suffices for our purposes. See Appendix A.2. The issue at hand
here is the difference between picking m elements uniformly in [n] and picking each element in [n] with proability
m/n.
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Quasi-canonical proximity oblivious testers. Using the same ideas, we can obtain analogous
results for proximity oblivious testers (in the dense graphs model). We first need an analogue
definition of quasi-canonical POTs. Such a definition is obtained by combining Definitions 2.2
and 4.1. Specifically, a quasi-canonical POT of vertex complexity ν is a POT that operates as in
Definition 4.1, which means that ν is a constant. Analogously to Theorem 4.2, it follows that every
q-query POT yields a quasi-canonical POT of vertex complexity 2q that maintains the performance
guarantees of the original POT, where this fact is only implicit in [20, Sec. 4]. Using the ideas
underlying the proof of Theorem 4.3, we get the first item in Theorem 1.2, restated next.

Theorem 4.4 (from quasi-canonical POTs to sample-based testers): Suppose that Π has a quasi-

canonical POT of vertex complexity ν and detection probability ̺. Then, Π has a sample-based

tester of sample complexity s(n, ǫ) = O(n1−1/(ν−1)/̺(ǫ)2). Furthermore, if the POT has one-

sided error, then so does the sample-based tester (and the sample complexity can be reduced to
O(n1−1/(1−ν)/̺(ǫ))).

(The ̺(ǫ)−b factor, for b = 1, 2, arises from the need to repeat the resulting “sample-based POT”
for an adequate number of times so as to derive a tester.) Note that Theorem 4.4 improves upon
Theorem 3.1 whenever we are given a quasi-canonical POT, since the query complexity of such a
POT is quadratic in its vertex complexity. In general, we get an improvement whenever we are
given a q-query POT such that its q queries always refer to at most ν ≤ q vertices, since in this
case the transformation in [20, Sec. 4] yields a quasi-canonical POT of vertex complexity ν.

4.2 Graph partition problems

Here we refer to the general framework of graph partition problems presented in [14, Sec. 9]. Each
problem in this framework is specified by k + k +

(k
2

)
pairs of parameters in [0, 1], which specify

lower and upper bounds on the densities of the parts in a k-partition of the graph as well as on the
number of edges within each part and between the parts. For example, k-colorability is specified by
trivial lower and upper bounds for all densities, except for upper bounds (of zero) on the number
of edges within each part, which mandate that each part is an independent set. Another example
is ρ-clique, which can be captured by requiring that the first part has density exactly ρ and the
number of edges within it is ≈ ρ2 ·n. We start with the following generic result, of which the second
item in Theorem 1.2 is a special case..

Theorem 4.5 (sample complexity linear in the number of vertices): Every graph partition property

has a sample-based tester of sample complexity s(n, ǫ) = O(
√

n/ǫ2). Furthermore, for k-colorability

the bound is O(
√

n/ǫ).

Unfortunately, the tester that we use for proving Theorem 4.5 runs in exponential-time (i.e., in
time that is exponential in its sample complexity). We thus view Theorem 4.5 as a starting point
for a search for sample-based testers of sublinear time complexity.

Proof: The tester considers all possible k-partitions of the vertex set of the graph that match the
vertex density bounds. (Indeed, there are at most k|V | such partitions.) For each such partition, the
tester tries to find evidence for violation of the bounds regarding edge density. By using O(tk4/ǫ2)
labeled samples, it can estimate the edge density between two pairs of vertex sets up to an additive
error of ǫ/2k2 with error probability at most exp(−t). Setting t = O(|V | log k) and applying a
union bound, we may assume that all estimates obtained by the tester are within this deviation.
Hence, the tester rejects if and only if evidence of violation was found for each of the foregoing
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k-partitions of V . The improved bound for k-Colorability follows by observing that in this case the
violation events refer to existence of edges (rather than deviation from a given edge density).

We next restate and prove the first item in Theorem 1.4 as well as show that result is tight.

Theorem 4.6 (on the complexity of sample-based testers for Bipartiteness):

1. Bipartiteness has a (one-sided error) sample-based tester of time complexity O(ǫ−1√n). In

particular, this tester uses O(ǫ−1√n) samples.

2. Any sample-based tester for Bipartiteness has sample complexity s(n, ǫ) = Ω̃(ǫ−1) · √n, pro-

vided ǫ > 1/
√

n.

Proof: The tester accepts if and only if the subgraph of the input graph that is revealed by the
samples labeled 1 (which indicate the existence of an edge) is bipartite. That is, the tester uses the
sample in order to construct a subgraph of the input graph, and accepts if and only if this subgraph
is bipartite.

This algorithm always accepts graphs that are bipartite. In analyzing what happens when
the input graph, G, is ǫ-far from being bipartite, we follow the idea that underlines the proof
of Theorem 4.5, but use it as a mental experiment (rather than an actual algorithm, where the
actual algorithm is as stated above). Specifically, considering all possible 2-partitions of the graph
G = (V,E) (which is ǫ-far from being bipartite), we note that, with very high probability, a sample
of size O(|V |/ǫ) contains at least one violating edge for each of these 2-partitions (where a violating
edge is one that connects two vertices that are on the same side of the 2-partition). Hence, the
subgraph of revealed edges (considered by the algorithm) is not bipartite, and Item 1 follows.

Turning to Item 2, we consider the following two distributions over n′-vertex graphs, where
n′ = ⌈

√
2n⌉ and each distribution is obtained by a random labeling of the corresponding unlabeled

graph: The two graphs are

1. A 6-cycle of equal sized independent sets, denoted V0, . . . , V5, such that each pair
(Vi, Vi+1 mod 6) is connected by a complete bipartite graph.20

2. Two disjoint 3-cycles of independent sets such that the three sets in each 3-cycle are connected
by bipartite graphs (as in the first graph).

(A random relabeling is used so as to deem the vertex labels uninformative.) Note that all graphs
in the first distribution are bipartite, while all graphs in the second distribution are 1/18-far from
any bipartite graph. These two distributions are indistinguishable by samples that reveal no cycles,
whereas the probability of revealing a cycle of length i when each edge is selected with probability p
is at most n′ ·2i−1 ·(n′/6)i−1 ·pi. Hence,

∑
i≥3 n′ ·2i−1 ·(n′/6)i−1 ·pi = ω(1) must hold, and n′p = Ω(1)

follows. Noting that p corresponds to s(n, 0.05)/n, we infer that s(n, 0.05)/n = p = Ω(1/n′),21

which implies s(n, 0.05) = Ω(
√

n). By applying the above construction to a
√

ǫ fraction of the

vertices, we get s(n, ǫ) = Ω(ǫ−1 · s(
(√

ǫn′

2

)
, 0.05)) = Ω(

√
n/ǫ), which establishes a weaker lower

bound than the one in Item 2.
To establish the claimed lower bound, we generalize the construction as follows (for any ǫ >

1/
√

n).22 We consider the following two distributions on n′-vertex graphs, where n′ =
√

2n, ℓ ∈
{⌊log2(1/ǫ)⌋ − 1, ⌊log2(1/ǫ)⌋} is odd, and m = ǫ−1/2ℓ2.

20In other words, this is a n′/6-factor blow-up of a 6-vertex cycle.
21Again, the correspondence is not accurate, but it suffices for our purposes: See Appendix A.2.
22In the foregoing paragraph, we used ℓ = 3 and m = 1, which corresponds to ǫ = 1/18.
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1. A collection of 2ℓm independent sets, arranged in m disjoint cycle of length 2ℓ.

2. A collection of 2ℓm independent sets, arranged in 2m disjoint cycle of length ℓ.

Note that each of the graphs in the second distribution is ǫ-far from any bipartite graph (since
ǫ = 1/2ℓ2m). On the other hand, these two distributions are indistinguishable by samples that
reveal no cycle of length at least ℓ, whereas the probability of revealing a cycle of length i when
each edge is revealed with probability p is at most n′ · 2i−1 · (n′/2ℓm)i−1 · pi. Hence,

∑
i≥ℓ n′ ·

2i−1 · (n′/2ℓm)i−1 · pi = Ω(1) must hold, and n′p/ℓm = Ω(1) follows. Noting that p corresponds
to s(n, ǫ)/n, we infer that s(n, ǫ)/n = p = Ω(ℓm/n′), which implies s(n, ǫ) = Ω(ǫ−1√n/ log(1/ǫ)).

Digest. As clarified in the proof of Item 1 of Theorem 4.6, the proof of Theorem 4.5 actually
asserts that, for any graph partition property Π, with very high probability, the subgraph of
G = (V,E) revealed by s = O(|V |/ǫ2) samples of its vertex pairs indicates whether G is in Π
or is ǫ-far from Π. Specifically, for every graph partition problem Πn, consider the corresponding
problem Π′

s in which edge densities are taken as a fraction of s (rather than as a fraction of n).
Then, with high probability, the distance of G from Πn is approximated by the distance of the
revealed graph from Π′

s. Furthermore, in the case of k-coloring, we may let Π′ = Π (and s can be
reduced to O(|V |/ǫ) as in the case of Bipartiteness). Thus, the computational complexity of the
sample-based tester for Πn is at most the computational complexity of Π′

s.
One natural question is whether we can obtain more efficient (w.r.t computational complexity)

sample-based testers for graph partition properties, while maintaining the sample complexity of
s(n, ǫ) = s′(ǫ) ·√n, where s′ : (0, 1] → N is an arbitrary function. Recall that using a sample of size
Õ(n), which allows to fully reconstruct the graph, we can test Πn in (Õ(n) + exp(poly(1/ǫ)))-time
(by reconstructing a random induced graph of size poly(1/ǫ), and applying brute force on it; cf. [14,
Sec. 9]). More generally, we obtain the following trade-off.

Theorem 4.7 (sample vs time trade-off): For every t = t(n, ǫ) ∈ [poly(1/ǫ),
√

n], every graph

partition property has a sample-based tester of sample complexity s(n, ǫ) = O(n/(tǫ2)) and time

complexity exp(t) + s(n, ǫ).

Theorem 4.5 corresponds to t =
√

n, whereas the prior comment corresponds to t = poly(1/ǫ).

Proof: When obtaining s(n, ǫ) random (vertex pair) samples labeled by the graph G = (V,E),
where n =

(|V |
2

)
, the tester selects a random set of t vertices, denoted U , and (w.v.h.p) derives a

residual sample of Ω(s(n, ǫ) · (t/|V |)2) pairs in U × U . Hence, the size of the residual sample is
Ω(t/ǫ2), and it is labeled by GU (the subgraph of G induced by U). Using this residual sample,
the (sample-based) tester emulates the (sample-based) tester of Theorem 4.5 (for testing GU with
respect to a relaxed version of Π). Hence, our tester has time complexity exp(t), and its analysis
is based on the fact that a random induced subgraph (of that size) maintains the distance of G to
Π. (The latter fact originates in [14, Sec. 5.2], see also [14, Cor. 7.2] and [14, Cor. 8.9].)

An improved result for k-Colorability. While not resolving the general question raised above,
the following result obtains a relatively efficient (w.r.t computational complexity) sample-based
testers of sublinear sample complexity for the special case of k-Colorability (2nd item of Theo-
rem 1.4). Specifically:
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Theorem 4.8 (on the complexity of sample-based testers for k-Colorability): For every k ≥ 3,
there exists a (one-sided error) sample-based tester of time complexity fk(ǫ) · n1−(1/2k) for k-

Colorability, where fk(ǫ)
def
= exp(exp(Õ(k/ǫ))). Furthermore, this tester uses sk(n, ǫ) = (k/ǫ2) ·

n1−(1/2k) samples.

Proof: We first prove a weaker result and later modify it to obtain the claimed result. The
weaker result asserts a sample-based tester of sample complexity sk(n, ǫ) that has time complexity
fk(ǫ) · nlog fk(ǫ), and is based upon the following tester:

On input a random labeled sample of size sk(n, ǫ), the tester constructs the subgraph
R of the input graph that is revealed by the samples labeled 1 (which indicate the
existence of an edge), and accepts if and only if for every set U of k3k/ǫ vertices the
subgraph of R induced by U is k-colorable.

That is, letting G = (V,E) denote the input graph and S denote the set of samples
(i.e, S ∈ (V × V )sk(n,ǫ)), the tester first constructs the subgraph R = (V,E ∩ S).
Then, for every U ⊂ V of size k3k/ǫ, the tester checks whether the induced subgraph
RU = (U, (E ∩ S) ∩ (U × U)) is k-colorable. The tester accepts if and only if all checks
are positive.

Thus, the foregoing tester always accepts k-colorable graphs, and has running time
( |V |
k3k/ǫ

)
·

exp(k3k/ǫ). The rest of the analysis is aimed at showing that if G is ǫ-far from k-colorable, then,

with high probability over the choice of the sample, there exists a set U of k3k/ǫ vertices such that

the subgraph of R induced by U is not k-colorable.
Our analysis adapts the analysis of the (query-based) k-colorability tester of [2], which in turn

builds upon the analysis of [14]. We use [2] (rather than [14]) as our starting point not because
of its improved query complexity but rather because its “adaptive” nature lends itself well to our
current needs. Specifically, the analysis of [2] offers a flexible analysis of an adequate k-ary tree of
“color traces” (defined next). In all our definitions, we refer to a fixed graph G = (V,E) (and to a
fixed value of the proximity parameter ǫ).

Definition 4.8.1 (color traces): A color trace is a sequence of t ≥ 0 pairs over V × [k]; that is,

((v1, c1), . . . , (vt, ct)) is a color trace if for every i ∈ [t] it holds that vi ∈ V and ci ∈ [k].

Note that the empty sequence is a color trace. The k-ary tree eluded to above consists of nodes
holding vertices of G (i.e., the vi’s)

23 and edges labeled by colors in [k] (i.e., ci’s) such that color
traces are read by taking a path from the root of this tree and reading both the labels of the
nodes and of the edges. In other words, we shall maintain a set of color traces that is closed under
taking prefixes; that is, if ((v1, c1), . . . , (vt, ct)) is in the set, then ((v1, c1), . . . , (vt−1, ct−1)) is also
in the set. Furthermore, the k-ary requirement corresponds to saying that if ((v1, c1), . . . , (vt, ct))
is in the set then for every c ∈ [k] the color trace ((v1, c1), . . . , (vt−1, ct−1), (vt, c)) is also in the
set. Color traces are also viewed as partial assignments (of colors to the vertices), where the color
trace ((v1, c1), . . . , (vt, ct)) corresponds to assigning vertex vi the color ci, for every i ∈ [t]. We shall
consider the constraints imposed by such color traces on the (rest of the) vertices in G.

Definition 4.8.2 (forbidden colors): The set of forbidden colors of vertex v w.r.t the color trace
τ = ((v1, c1), . . . , (vt, ct)), denoted Fτ (v), is the set of colors assigned by τ to vertices that reside on

τ and neighbor v; that is, Fτ (v)
def
= {ci : i∈ [t] ∧ {v, vi}∈E}.

23With the exception of leaving the leaves of the tree empty.
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That is, the forbidden set of v is the set of colors that are not allowed for v in any k-coloring that
extends the coloring represented in the trace. Indeed, the color trace imposes natural restrictions
on itself, and violating these restrictions yield an illegal color trace (as defined next).

Definition 4.8.3 (illegal traces): A color trace τ = ((v1, c1), . . . , (vt, ct)) is illegal if there exists i ∈
[t] such that ci is a forbidden color of vertex vi w.r.t the color trace τ ′ = ((v1, c1), . . . , (vi−1, ci−1));
that is, if ci ∈ Fτ ′(vi). Otherwise, the trace is called legal.

Indeed, illegal traces must have length at least two. Turning back to the forbidden sets of all
vertices in G, we consider the effect on these sets that is due to augmenting a specific color trace
with a specific vertex-color pair.

Definition 4.8.4 (restricting pairs and vertices): We say that (v, c) ∈ V × [k] is restricting w.r.t τ
if |Rτ (v, c)| ≥ ǫ|V |/3, where

Rτ (v, c)
def
= {w ∈ V : Fτ ,(v,c)(w) ⊃ Fτ (w)} . (6)

We say that v ∈ V is restricting w.r.t τ if for every c ∈ [k] either c ∈ Fτ (v) or (v, c) is restricting

w.r.t τ .

Indeed, for every τ , (v, c) and w, it holds that Fτ ,(v,c)(w) equals either Fτ (w) or Fτ (w) ∪ {c}, and
Fτ ,(v,c)(w) ⊃ Fτ (w) holds if and only if c 6∈ Fτ (w) and {v,w} ∈ E. Also, every v such that
Fτ (v) = [k] is restricting w.r.t τ . It turns out that if G is ǫ-far from being k-colorable, then every
legal color trace has many restricting vertices. (The claim holds also for illegal traces, provided
that they are not too long, but the following claim suffices for our needs.)

Claim 4.8.5 If there exists a legal color trace τ = ((v1, c1), . . . , (vt, ct)) such that less than ǫ|V |/3
vertices are restricting w.r.t τ , then G is ǫ-close to being k-colorable.

Proof: Consider the following k-partition of V , denoted χ : V → [k]. For each i ∈ [t], we set
χ(vi) = ci. For any non-restricting vertex v, we set χ(v) = c such that (v, c) is non-restricting

w.r.t τ . (Such a color c exists, since otherwise v must be restricting. For all other vertices (i.e., the
restricting ones), we set the color χ arbitrarily.) We upper bound the number of violating edges
(i.e., edges with both endpoints assigned the same color) by charging edges that are incident at
a non-restricting vertex v to the pair (v, χ(v)), and charging edges that connect two restricting
vertices to the corresponding vertex pair. Denoting the set of non-restricting (w.r.t τ) vertices by
V ′, the total charge is upper-bounded by

∑

v∈V ′

|Rτ (v, χ(v))| +
(|V \ V ′|

2

)
< |V | · ǫ|V |

3
+

(
ǫ|V |/3

2

)

and the claim follows.

Definition 4.8.6 (open traces): A legal color trace τ is called open if there exist at least ǫ|V |/3
vertices that are restricting w.r.t τ .

Claim 4.8.5 implies that if G is ǫ-far from being k-colorable, then each color trace must be either
illegal or open. The following “restriction procedure” is aimed at producing a set of traces with a
frontier (i.e., maximal traces) that are all illegal traces, where a trace is in the frontier of the set
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(i.e., is maximal) if it is not a proper prefix of any other trace in the set. The restriction procedure
may only augment an existing trace τ = ((v1, c1), . . . , (vt, ct)) by a vertex-color pair (v, c) if Fτ (v)
(= {ci : i ∈ [t] ∧ {v, vi} ∈ E}) equals {ci : i ∈ [t] ∧ {v, vi} ∈ E ∩ S}, where S is the sequence of
samples provided to the tester.24 This means that the sample S contains “evidence” for each color
contained in the forbidden set Fτ (v) of the vertex v, where the said evidence for a color c′ ∈ Fτ (v)
is a pair {v, vi} ∈ E∩S such that ci = c′ (i.e., the pair {v, vi} is in the sample and is an edge of the
graph and so v cannot be legally colored by ci). We stress that the following restriction procedure
is merely a mental experiment conducted in the analysis.

Restriction Procedure (as a mental experiment). The procedure is given a sequence of labeled samples,
where each sample point is a pair of vertices and the label indicates whether or not the edge is in
the graph; that is, the sample point (u, v) is labeled by g(u, v) such that g(u, v) = 1 if {u, v} ∈ E
and g(u, v) = 0 otherwise. (If (u, v) is not in the sample set S, then g is undefined on (u, v).)
The procedure is initiated with an empty trace, which is typically an open trace (since otherwise
|E| < ǫ ·

(|V |
2

)
). As long as the set of traces contains a maximal trace τ = ((v1, c1), . . . , (vt, ct)) that

is both legal and open25, the procedure takes the following steps.

1. If there exists no vertex v that satisfies the following two conditions, then the procedure halts
with an error message. The conditions (regarding v and τ) are:

(a) v is restricting w.r.t τ ; and

(b) for every c ∈ Fτ (v) there exists i ∈ [t] such that ci = c and g(v, vi) = 1.

(Recall that g(v, vi) = 1 means that (v, vi) is in the sample set S and {v, vi} ∈ E.)

Otherwise (i.e., some v satisfies the above condition), the procedure picks such a vertex v.

2. For every c ∈ [k], the procedure augments the set of traces with ((v1, c1), . . . , (vt, ct), (v, c)).

(Indeed, this trace is illegal if c ∈ Fτ (v), and this illegality is visible in the sample.)

If the current set of traces contains no maximal trace that is both legal and open, then the procedure
halts and outputs this set of traces.

Claim 4.8.7 The set of color traces that the procedure constructs contains traces of length at most

3k/ǫ.

Proof: The procedure only augments traces by using restricting vertices, but any restricting vertex
w.r.t a given trace increases the sum of the sizes of the forbidden sets by at least ǫ|V |/3. Specifically,

24This is the point where we depart from [2]: The algorithm in [2] uses a single sample of eO(1/ǫ2) vertices and
queries all vertex pairs in this sample. Only these vertices will be placed in color traces, and the algorithm has
evidence for each color contained in the forbidden set of a vertex v used to augment τ . In contrast, our algorithm
obtains a random sample S of vertex pairs, and the restriction procedure presented below is confined to evidence
that is revealed by S. In particular, the restriction procedure of [2] (re)uses the same vertices on all traces, whereas
our restriction procedure uses different vertices when augmenting different traces.

25Recall that this condition (as well as the other conditions below) is not tested by the actual algorithm (i.e., the
one outlined in the beginning of this proof). This condition is only considered by the mental experiment that we
conduct in our analysis. Furthermore, we may assume that all legal traces are open, since Claim 4.8.5 asserts that
this is the case if G is ǫ-far from being k-colorable.
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suppose that the trace τ = ((v1, c1), . . . , (vt, ct)) is contained in the output, and let τ (i) denote its
i-long prefix (i.e., the trace ((v1, c1), . . . , (vi, ci))). Then, for every i ∈ [t], it holds that

∑

v∈V

|Fτ (i)(v)| = |Rτ (i−1)(vi, ci)| +
∑

v∈V

|Fτ (i−1)(v)|

≥ ǫ|V |
3

+
∑

v∈V

|Fτ (i−1)(v)|

and it follows that t ≤ k|V |/(ǫ|V |/3).

Claim 4.8.8 Suppose that G is ǫ-far from being k-colorable. If the restriction procedure halts

without error, then the sample S contains a subgraph that is not k-colorable. Furthermore, this

subgraph contains only vertices that appear in the set of color traces output by the procedure.

Proof: By Claim 4.8.5 each color trace must be either illegal or open (since G is ǫ-far from being
k-colorable). Hence, the (non-error) output of the procedure is a set of color traces such that all
maximal traces in this set are illegal. Furthermore, for each vertex that occurs on any trace, the
sample contains evidence for the forbidden colors w.r.t the relevant prefix of the trace. Thus, an
illegal trace asserts that the corresponding coloring of its vertices is not a legal k-coloring in the
subgraph R revealed by the sample. Now, since all maximal traces are illegal and the set of traces
corresponds to a k-ary tree (i.e., for each non-maximal trace τ , there exists a v such that, for each
c ∈ [k], the set of traces contains the trace (τ , (v, c))), it follows that there is no legal k-coloring of
R (or rather of the subgraph of R induced by the vertices that appear on this set of traces).

Claim 4.8.9 The probability that the restriction procedure halts with error is at most 1/3, where

the probability is taken uniformly over the choice of the sample S.

Proof: It will be more convenient to consider a sample S that is chosen by selecting each vertex pair
with probability p = sk(n, ǫ)/2n, independent of all other choices. (With very high probability, such
a sample of independently chosen pairs contains at most 2pn = sk(n, ǫ) pairs, whereas the proba-
bility that the restriction procedure halts with error decreases when the sample size increases.)26

The restriction procedure makes at most k3k/ǫ iterations, where in each iteration it tries to extend
a legal open trace τ = ((v1, c1), . . . , (vt, ct)). At this point, the set of restricting vertices, denoted
V ′, has size at least ǫ|V |/3. For each vertex v ∈ V ′, let Iv ⊆ {i ∈ [t] : {v, vi} ∈ E} be a set of
|Fτ (v)| indices such that for every c ∈ Fτ (v) there exists i ∈ Iv such that ci = c (and {v, vi} ∈ E).
Now, the probability that the sample contains {(v, vi) : i ∈ Iv} equals p|Iv|, and these events are
independent for the various v’s in V ′ (since each event refers to the existence of samples that are
adjacent at a different vertex v ∈ V ′).27 Thus, the current iteration fails with probability at most

∏

v∈V ′

(1 − p|Fτ(v)|) < (1 − pk)ǫ|V |/3

which is exp(−pk · ǫ|V |). Using p = Ω(ǫ−1 · |V |−1/k), we have exp(−pk · ǫ|V |) ≪ k−3k/ǫ and the
claim follows.

Combining Claims 4.8.9 and 4.8.8, it follows that if G is ǫ-far from k-colorable, then, with probability

at least 2/3 over the choice of the sample S, the vertices that appear in the output of the restriction

26See further justification in Appendix A.2.
27Also note that these events are unconditioned by any other events that were considered when constructing τ ,

since these events refer to samples that connect pairs of vi’s.
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procedure induce a subgraph of R that is not k-colorable, where R is the subgraph of G that is

visible in the sample. Using Claim 4.8.7, the number of vertices in this output (and hence in the
induced subgraph) is at most f ′

k(ǫ) = k3k/ǫ. This establishes the claim that k-colorability has a
sample-based tester of sample complexity sk(n, ǫ) and time complexity nf ′

k(ǫ) · exp(f ′
k(ǫ)).

In order to improve the time complexity of the tester, we turn the restriction procedure from a
mental experiment to an actual procedure to be implemented by the tester. An immediate difficulty
that arises is that the tester may not be able to determine the forbidden sets of various vertices
and the (approximate) number of restricting vertices (w.r.t various color traces). Our solution is
just to guess these unknowns at random (and to compensate for the lower probability of success
by a suitable number of repetitions (to be discussed below)).

Restriction Procedure (as an actual implementation). The procedure is initiated with an empty trace,
and assumes that each trace is legal unless some evidence is found against this assumption (see
below). (For every legal trace, the procedure also assumes that the trace is open, and so we shall
not refer at all to the question of whether a trace is open.) (Note that the procedure does not know
the forbidding set of a vertex, nor its neighbors on the trace, and so it cannot tell whether or not
a trace is actually legal, let alone whether or not a trace is open.) In particular, as long as the
set of traces contains a maximal trace τ = ((v1, c1), . . . , (vt, ct)) that is assumed to be legal, the
procedure takes the following steps.

1. If t ≥ 3k/ǫ, then the procedure halts with an error message.

Otherwise (i.e., t < 3k/ǫ), if t ≤ k, then the procedure sets I = [t], otherwise the procedure
randomly selects I uniformly among all k-subsets of [t]. The procedure selects at random a
vertex v among all vertices v such that for every i ∈ I the pair (v, vi) is in the sample.

(If there exists no vertex v that satisfies the above condition, then the procedure halts with
an error message. This is quite unlikely (since (sk(n, ǫ)/n)k · |V | ≫ 1), and otherwise we
continue to the next step.)

(Motivation: Our hope is that the vertex v selected above is restricting w.r.t τ , and that
{ci : i∈I ∧ {v, vi}∈E} = Fτ (v).)

2. Let v be the vertex selected in the previous step, and let Cv ⊆ Fτ (v) be the set of colors
that cannot be assigned to v due to an edge {v, vi} that is visible in the sample; that is,
Cv = {ci : i ∈ I ∧ {v, vi} ∈ E}, where I is the set selected in the previous step. For every
c ∈ [k], the procedure augments the set of traces with the trace ((v1, c1), . . . , (vt, ct), (v, c)).
For each such new trace, the procedure assumes that it is legal unless c ∈ Cv; that is,
((v1, c1), . . . , (vt, ct), (v, c)) is assumed to be legal if and only if c 6∈ Cv.

If the current set of traces contains no maximal trace that is assumed to be legal, then the procedure
halts outputting this set of traces.

Note that we augmented the original Step 1 such that the procedure never outputs a set of traces
that contains a trace that is longer than 3k/ǫ. Thus, the restriction procedure can be implemented
in time O(k3k/ǫ) · sk(n, ǫ).

Turning to the analysis of the output of the procedure, note that whenever a set of traces is
output, the maximal traces in the output are all illegal (and their illegality is visible in the sample).
Thus, we obtain a k3k/ǫ-vertex subgraph of G that is not k-colorable such all edges of this subgraph
appear in the sample. This will happen if (and only if) all random guesses made by the restriction
procedure are successful (i.e., satisfy our hopes as stated in the foregoing motivation). Indeed,
the probability of this random event is quite low, but our final tester will consist of invoking the
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restriction procedure for an adequate number of times. We refer to such a single invocation as a
basic tester. We stress that the basic tester accepts whenever the procedure halts with an error
message, and rejects only if the procedure outputs a set of traces (which by the foregoing discussion
yields a subgraph of R that is induced by the vertices that reside on these traces such that this
subgraph is not k-colorable).

Assuming that G is ǫ-far from being k-colorable, we lower bound the probability that the
basic tester rejects. This boils down to lower-bounding the probability that the actual restriction
procedure correctly emulates the mental experiment. The key to the analysis is provided by the
following claim.

Claim 4.8.10 Suppose that τ = ((v1, c1), . . . , (vt, ct)) is a legal and open trace produced by the

restriction procedure, and that the procedure executes Step 1 on τ . Then, with probability at least

(ǫ/3k)2k+1, the procedure selects a vertex that is restricting w.r.t τ , where the probability is taken

uniformly over the choice of the sample S and the choices made in Step 1.

Proof: Again, it will be more convenient to consider a sample S that is chosen by selecting each
vertex pair with probability p = sk(n, ǫ)/2n, independent of all other choices.28 For every I ⊆ [t],
let SI be the set of vertices v such that for every i ∈ I the pair (v, vi) is in the sample S. Note
that each SI is a random set of vertices that is obtained by selecting each vertex with probability
exactly p|I|. Turning to the vertices that are restricting w.r.t τ , we denote by VJ the set of restricting
vertices v such that {cj : j ∈ J} = Fτ (v). Then, there exists a set J ⊆ [t] of size at most k such

that |VJ |
|V | > ǫ/3

(3k/ǫ)k > 2 · (ǫ/3k)k+1, since the union of all these VJ ’s contains all restricting vertices.

Letting I ⊆ [t] be an arbitrary min(k, t)-superset of J , and suppose that I is selected at Step 1
(which happens with probability at least (ǫ/3k)k). Then, with very high probability over the choice
of S, the set SI∩VJ constitutes at least a (ǫ/3k)k+1 fraction of SI , where we use (ǫ/3k)k+1 ·pk|V | ≫ 1
(cf. Claim 4.8.9). Hence, for J fixed as above, a set I ⊇ J is selected (in Step 1) with probability
at least (ǫ/3k)k+1, the random v ∈ RI (also selected in Step 1) is in VJ with probability at least
(ǫ/3k)k, and the claim follows.

Indeed, as suggested in the foregoing motivation, it follows that the actual restriction procedure
emulates the imaginary one with probability at least ((ǫ/3k)2k+1)k

3k/ǫ
= 1/fk(ǫ), which establishes

the time bound claimed in the theorem (since it suffices to repeat the basic test for fk(ǫ) times).
But this argument means that the sample complexity is also multiplied by a factor of fk(ǫ).

To obtain a better upper bound on the sample complexity, we modify the restriction procedure
such that the choice of I is made by branching in parallel (to (3k/ǫ)k branches) rather than by a
random selection (among (3k/ǫ)k options). Note that the proof of Claim 4.8.10 actually shows that
the probability that a restricting vertex is selected (on the adequate branch) is at least (ǫ/3k)k+1.

Next, rather than selecting at random one vertex (in Step 1 of the restriction procedure), we
select at random (3k/ǫ)2k vertices (among all vertices v such that for every i ∈ I the pair (v, vi)
is in the sample), and branch on these (3k/ǫ)2k chosen vertices too, where all is done using the
same sample. We can use the same sample on all branches, because we actually care only about
what happens on one good branch. Hence, we get back to the sample complexity of the simpler
version (i.e., the one that uses an imaginary procedure). For sake of clarity, we spell out the revised
restriction procedure.

Restriction Procedure (revised parallel implementation). For K
def
= (3k/ǫ)k and M

def
= k3k/ǫ, we run in

parallel (K · K2)M parallel copies of the restriction procedure described above, all using the same

28Again, the correspondence is not accurate, but it suffices for our purposes: See Appendix A.2.
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sample. The copies correspond to choices ((I1, i1), . . . , (IM , iM )), where each Ij is a k-subset of
[3k/ǫ] and ij ∈ [K2]. A generic copy, which corresponds to such a sequence of pairs, uses the sets
I1, . . . , IM instead of the random choices of k-subsets made in Step 1 such that when augmenting the
jth trace it uses the k-subset Ij . These copies also share their randomness, denoted (r1, . . . , rM ),
which is used to select the vertices v in Step 1 such that rj is used when augmenting the jth

trace. The generic copy that corresponds to ((I1, i1), . . . , (IM , iM )) uses the ithj block of rj when

augmenting the jth trace (i.e., rj = (rj,1, . . . , rj,K2) and the ithj block of rj means rj,ij). Thus, the
modified Step 1 of this generic copy reads:

Suppose that this is the jth time that Step 1 is executed. Then (assuming t < 3k/ǫ
and t > k)29, sets I = Ij and uses the randomness rj,ij in order to selects v (among all
vertices v such that for every i ∈ I the pair (v, vi) is in the sample).

Each of the copies produces an output as the original restriction procedure, and the parallel re-
striction procedure outputs a set of traces (rather than an error message) if any of the copies has
output such a set.

Beyond k-Colorability. The case of k-Colorability represents almost all that can be tested via
one-sided error testers of query complexity that only depends on ǫ. Recall that by [20, Thm. 3],
the only such (non-trivial)30 properties are (1) the property of being a clique, and (2) properties
that imply k-Colorability. The first property (which consists of a single graph for every size) can
be tested by O(1/ǫ) random samples, and the result of Theorem 4.8 extends to the second class (as
detailed next). Properties of the second class correspond to k-vertex graphs such that the property
associated with the graph H = ([k], A) consists of all graphs G = (V,E) that can be k-partitioned
such that edges appear only between vertices that reside in the ith and jth part when (i, j) ∈ A.
Such graphs G are called H-embeddable.

Definition 4.9 (H-embeddable graphs): Let H = ([k], A) be a simple graph (with no self-loops).
The graph G = (V,E) is H-embeddable if there exists a k-partition of V into (V1, . . . , Vk) such that

E ∩ (Vi × Vj) 6= ∅ only if (i, j) ∈ A.

Note that k-Colorability corresponds to the set of graphs that are embedded in the k-vertex clique.

Theorem 4.10 (on the complexity of sample-based testers for H-Embeddability): Let H = ([k], A)
be a simple graph (with no self-loops). Then there exists a (one-sided error) sample-based tester of

time complexity fk(ǫ) · n1−(1/2k) for H-Embeddability, where fk(ǫ)
def
= exp(exp(Õ(k/ǫ))). Further-

more, this tester uses sk(n, ǫ) = (k/ǫ2) · n1−(1/2k) samples.

Proof Sketch: Building upon the proof of Theorem 4.8, we let F ′
τ (v)

def
= ∪c∈Fτ (v){c′ ∈ [k] :

h(c, c′) = 0}, where h(c, c′) = 0 if and only if {c, c′} 6∈ A. That is, while Fτ (v) denotes the set
of colors of the vertices on the color trace τ , here the set F ′

τ (v) ⊇ Fτ (v) is the set of colors that
are forbidden for v (in a legal extension of the coloring implicit in τ). All definitions and claims
(with one exception discuss below) will refer to the modified sets of forbidden colors F ′

τ (v). The
only exception is the “evidence condition” in Item 1b of the Restriction Procedure, where we still
require that for every c ∈ Fτ (v) (rather than c ∈ F ′

τ (v)) there exists i ∈ [t] such that ci = c and

g(v, vi) = 1 (where g(v, vi) = 1 means that (v, vi) is in the sample and {v, vi} ∈ E).

29The other cases are handled exactly as before; that is, the copy halts with error if t ≥ 3k/ǫ and sets I = [t] if
t ≤ k.

30A property is called non-trivial (for testing) if, for every ǫ > 0 and all sufficiently large n, there exists both an
n-sized object in the property and an n-sized object that is ǫ-far from the property.
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5 Sample-based testers for linearity

Recall that “testing linearity” actually refers to testing homomorphism between two groups. For
two groups (G,+) and (H,⊙), the function h : G → H is a group homomorphism if for every x, y ∈ G
it holds that h(x + y) = h(x)⊙h(y). Recall that group homomorphism can be tested by O(1/ǫ)
queries regardless of the size of the groups [5], and that by Theorem 3.5 there exists a (one-sided
error) sample-based tester of sample complexity s(n, ǫ) = poly(1/ǫ) · n1/3. As noted in Section 3.3,
a more efficient sample-based tester can be obtained directly.

Theorem 5.1 (the sample-complexity of testing group homomorphism):

1. For any two groups (G,+) and H(,⊙), group homomorphism from G to H has a one-sided

error sample-based tester of sample complexity O(ǫ−1 + log |G|).

2. There exist groups (G,+) and H(,⊙), such that sample-based testing group homomorphism

from G to H requires Ω(ǫ−1 + log |G|) samples, provided ǫ ≥ 1/|G|.

Proof: The proof of the upper bound (i.e., Item 1) is based on the fact that, with very high
probability, the partial sums of O(log |G|) random elements of G generates all elements of G. In
fact, a stronger statement holds:

Claim 5.1.1 Suppose that r1, . . . , rt are uniformly and independently distributed in G. Then, with

probability at least 1− (δ−2|G|/(2t − 1)), for every v ∈ G, it holds that |{I ⊆ [t] : I 6= ∅∧ ∑
i∈I ri =

v}| = (1±δ)·(2t−1)/|G|, where
∑

i∈I ri is a shorthand for ri1+· · ·+ri|I| such that i1 < i2 < · · · < i|I|
is an ordering of the elements of I.

(We are careful about the meaning of
∑

i∈I , since G may not be Abelian.)

Proof: For every non-empty I ⊆ [t], we consider the random variable RI = RI(r1, . . . , rt) defines as∑
i∈I ri. Each of these random variables is uniformly distributed in G. Furthermore, these random

variables are pairwise independent, since for every I \ J 6= ∅ and u, v ∈ G we have Pr[
∑

i∈I ri =
u|∑j∈J rj = v] = 1/|G| (by fixing the values of all ri except for some i ∈ I \ J). Now, fix an
arbitrary element v ∈ G, and let ζI = 1 if RI = v and ζI = 0 otherwise. Then, E[ζI ] = 1/|G| and
the ζI ’s are pairwise independent. Letting ζI = ζI − E[ζI ], and applying Chebyshev’s Inequality
we get

Pr




∣∣∣∣∣∣

∑

∅6=I⊆[t]

ζI

∣∣∣∣∣∣
> δ · (2t − 1)/|G|


 <

E
[(∑

I ζI

)2
]

(δ · (2t − 1)/|G|)2

<
E

[∑
I ζI

2
]

(δ · (2t − 1)/|G|)2

=
(2t − 1)/|G|

δ2 · (2t − 1)2/|G|2

and the claim follows.

By Claim 5.1.1, for t = O(log |G|) and for any homomorphism h : G → H, the values of h at t
random samples, determine the value of h on all of G. This suggests the following sample-based
tester. On input an f -labeled sample ((r1, f(r1)), . . . , (rt, f(rt)), (rt+1, f(rt+1)), . . . , (rt+t′ , f(rt+t′)),
where t′ = O(1/ǫ), the tester proceeds as follows:
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1. Reconstruct a function f̃ based on the labeled sample and check that f̃ is a homomorphism.
Specifically, for every x ∈ G find a (non-empty) set I ⊆ [t] such that

∑
i∈I ri = x, and set

f̃(x) = ⊙i∈If(ri). If f̃ is not defined on all points in G, then accept. If f̃ is not a group
homomorphism, then reject.

We continue to the next step only if f̃ is defined over all of G and is a group homomorphism.
(Note that we do not check whether the value defined based on I matches the value that
could have been defined based on a different I ′ such that

∑
i∈I ri = x; such a check is natural

but not needed.)

2. Test that f = f̃ . That is, accept if and only if for every i ∈ [t′] it holds that f(rt+i) = f̃(rt+i).

If f is a group homomorphism and f̃ was defined on x ∈ G, then necessarily f̃(x) = ⊙i∈If(ri) =
f(x) for all I’s such that

∑
i∈I ri = x. Hence, the test always accepts group isomorphisms. Assume,

on the other hand, that f is ǫ-far from being a group isomorphism. Then, with probability at least
5/6, for every x ∈ G, there exists an I ⊆ [t] such that

∑
i∈I ri = x. In this case, unless the tester

rejects already in Step 1, it holds that f̃ is defined over all of G and is a group homomorphism.
Hence, f and f̃ differ on at least an ǫ fraction of G, and it follows that Step 2 rejects with probability
at least 5/6. Having established the upper bound, we now turn to the lower bound.

Claim 5.1.2 Any sample-based tester for group homomorphism from Z
m
2 to Z2 requires Ω(ǫ−1+m)

samples.

In this case, the group homomorphisms correspond to linear functions.

Proof: The key observation is that, with very high probability, a sample of m/2 random points
in Z

m
2 yields m/2 linearly independent vectors. In this case, the labels provided to these points

by a random linear function are identically distributed to the labels provided by a totally random
function (which, with very high probability, is 1/5-far from any linear function). Hence, a lower
bound of m/2 follows. To obtain an Ω(1/ǫ) lower bound consider a linear function that is modified
on an 2ǫ fraction of its domain, and note that Ω(1/ǫ) samples are required for hitting this modified
region.

This completes the proof of the theorem.

Digest. The sample-based tester presented in the proof of Theorem 5.1 is based on an exact
learning algorithm: Indeed, when given O(log |G|) random samples labeled by a group homomor-
phism f , with very high probability, Step 1 reconstructs f . Furthermore, when Step 1 fails, it
indicates this event (by halting with a partially defined f̃). Thus, an alternative presentation of the
(one-sided error) tester may proceed along the reduction of testing to (proper) learning presented
in [14, Prop. 3.1], while relying on the features of the aforementioned learning algorithm (i.e., its
zero-error features). Indeed, it follows that testing linearity is not easier than (exact) learning of

linear function.

6 Invariance under the symmetric group

In this section we consider the case of properties that are invariant under the symmetric group
acting on the functions’ domain. That is, we consider properties Π = ∪n∈NΠn such that for every
n ∈ N and every permutation π : Dn → Dn it holds that f ∈ Πn if and only if f ◦ π ∈ Πn, where
(f ◦ π)(x) = f(π(x)). We call such properties symmetric.
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6.1 Queries versus samples

We first note that for testing symmetric properties queries add little power beyond samples. This
is quite intuitive when considering sampling without repetitions, but our sampling model is with
repetitions and the gap between these two models is significant for Ω(

√
n) samples. The proof of

the following result starts by validating the former intuition and closing the latter gap.

Theorem 6.1 (samples are as good as queries for testing symmetric properties): Suppose that Π is

a symmetric property that has a standard tester of query complexity q. Then, Π has a sample-based

tester of query complexity s′ such that s′(n, ǫ) = O(q(n, ǫ)) if q(n, ǫ) < n/2 and s′(n, ǫ) = O(n log n)
otherwise. Furthermore, if the standard tester has one-sided error, then so does the sample-based

tester.

Proof: The basic idea is to emulate the execution of the standard tester on a random isomorphic
copy of the function that we are required to test. That is, given the standard tester T , and wishing
to test the function f : Dn → Rn, we select uniformly a permutation π : Dn → Dn and emulate an
execution of T while providing it with oracle access to the function f ◦ π. That is, if T makes the
query i, then we make the query π(i). (We assume, without loss of generality, that T never makes
the same query twice.) Thus, we perfectly emulate an execution of T f◦π, while making queries that
are almost uniformly and independently distributed31, and our decision regarding f is as good as
T ’s decision regarding f◦π. Noting that the distance of f to Πn equals the distance of f◦π to Πn, we
are almost done. The only problem is that the sequence of q queries is uniformly distributed among
all q-long sequences of distinct elements in Dn, whereas we wish it to be uniformly distributed in
Dq

n.
We start by addressing this problem in the case of q ≥ n/2. In this case, we merely use

O(n log n) independently and uniformly distributed queries in order to obtain the value of f on the
entire domain. We may fail with some small constant probability, and in such a case we accept
without taking any other action. Otherwise, we just decide based on our full knowledge of f .

Turning to the case of q < n/2, we first try to obtain the value of f on a uniformly distributed
sequence of q distinct elements in Dn by making 3q independently and uniformly distributed queries
in Dn. With very high probability, we shall succeed, since for q < n/2 it holds that a uniformly
distributed sequence s = (s1, . . . , s3q) ∈ D3q

n contains at least q distinct elements (i.e., |{si : i ∈
[3q]}| ≥ q). In case we fail, we accept without taking any other action. Otherwise, we emulate the
execution of T using the first q distinct elements that we obtained.

6.2 The role of the range size

We first note that symmetric properties can be presented as properties of the frequencies of occur-
rences of the various values in the range. Specifically, let Π = ∪n∈NΠn be a symmetric property
such that Πn contains only functions from Dn to Rn, and suppose that m = |Rn|. Actually, assume,
without loss of generality, that Dn = [n] and Rn = [m]. Then, there exists a set Sn ⊂ [n]m such

that f ∈ Πn if and only if (cnt1(f), . . . , cntm(f)) ∈ Sn, where cnti(f)
def
= |{j ∈ [n] : f(j) = i}|.

It follows that testing Πn amounts to testing whether the corresponding frequencies sequence is in
the corresponding Sn, which means that we can expect the complexity to depend only on m and ǫ
(and not on n, at least for large enough n’s).

The foregoing observation suggests to consider the complexity of testing symmetric properties
also as a function of the size of the range of the function (in addition to its dependence of the size

31Indeed, here we use the equivalent formulation of sample-based testers as provided in Proposition 2.4
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of the domain). This requires presenting properties as sequences indexed by two (independent)
size parameters, n and m, representing the sizes of the domain and range, respectively. That is,
we consider classes of the form Π = ∪n,m∈NΠn,m such that Πn,m contains functions with domain
Dn and range Rm, where |Dn| = n and |Rm| = m. The tester will be given both n and m (as
well as the proximity parameter ǫ), and its sample complexity will be considered as a function of
n,m and ǫ. Note that complexity measures that depend on parameters other than the size of the
domain are not uncommon in studies of properties of functions (see, e.g., the bounded-degree graph
model of [17] and testing monotonicity of functions over arbitrary (product) domains and arbitrary
ranges [13, 7]).

Theorem 6.2 (the complexity of testing symmetric functions is determined by the size of the
range): Let Π = ∪n,m∈NΠn,m be a property of symmetric functions as above. Then the sample

complexity of testing Π, denoted s : N
2 × (0, 1] → N, satisfies s(n,m, ǫ) = O(m/ǫ2).

Proof: Generalizing the foregoing argument, we note that there exists a set Sn,m ⊂ [n]m such

that f ∈ Πn,m if and only if (cnt1(f), . . . , cntm(f)) ∈ Sn,m, where cnti(f)
def
= |{j ∈ Dn : f(j)= i}|.

Hence, testing f with respect to Πn,m (and proximity ǫ) amounts to approximating the sequence
(cnt1(f), . . . , cntm(f)) (up to relative proximity of ǫ). Such an approximation can be obtained
using a sample of size O(m/ǫ2); cf. [6, Lem. 3]. Below, for the sake of illustration, we prove a
somewhat weaker bound.

The problem at hand is actually one of approximately learning a probability distribution over
a set of m elements when given samples drawn independently from this distribution (i.e., testing
f amounts to approximating the distribution in which i appears with probability cnti(f)/n). We
represent a probability distribution over [m] as a vector (p1, . . . , pm) such that pi is the probability
of the ith element. We wish to find a vector (p̃1, . . . , p̃m), such that with probability at least 2/3,
it holds that

∑
i∈[m] |p̃i − pi| ≤ 2ǫ.

The obvious solution is to approximate each pi up to an additive deviation of ǫ/m, but this
will require a sample size of Ω((m/ǫ)2). Instead, letting I = {i ∈ [m] : pi ≥ 1/m}, it suffices to
have p̃i = (1 ± ǫ)pi for every i ∈ I and p̃i = pi ± ǫ/m for the other i’s (i.e., i ∈ [m] \ I). Using
a sample of size s = O(ǫ−2m log m), we obtain Pr[p̃i 6= (1 ± ǫ)pi] < 1/3m for each i ∈ I, and
Pr[p̃i 6= pi ± ǫ/m] < 1/3m for each i ∈ [m] \ I. (Both bounds are obtained by using a multiplicative
Chernoff bound for Bernoulli trials with success probability pi; for i ∈ I we consider a multiplicative
deviation of ǫ and use pi ≥ 1/m (which implies exp(−piǫ

2s/3) < 1/3m), whereas for i ∈ [m] \ I we
consider a multiplicative deviation of δ = ǫ/mpi and use pi · δ2 = ǫ2/m2pi > ǫ2/m = Ω(s−1 log m)
(while assuming pi ≥ ǫ/m)32.)

6.3 Relation to testing distributions

The proof of Theorem 6.2 (implicitly) reduces the task of testing a symmetric property of functions
to the task of testing distributions (to be reviewed next), which is in turn reduced to the task of
(approximately) learning distributions. Our objective here is to go in the opposite direction; that
is, to cast the model of testing distributions as a special case of testing symmetric properties of
functions.

We stress that the model of testing (properties of) distributions has little in common with the
model of testing (properties of) functions (especially, in its standard incarnation that refers to a
fixed (i.e., uniform) distribution on the function’s domain). Nevertheless, we show that the study of

32In case pi < ǫ/m, we can just use the bound obtained for pi = ǫ/m.
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testing distributions can be reduced to the study of testing functions. Needless to say, this does not
mean that one may not gain clarity and insight when working in the model of testing distributions.
It only means that the latter model does fit within the more general framework of testing properties
of functions.

Recall that in the context of testing distributions (cf., [4]), one is given samples of an unknown
distribution and is asked to determine whether the distribution has some property (of distributions)
or is statistically far from any distribution that has this property (i.e., the variation distance is
large).33 In the context of testing distributions, the key parameter is an upper bound on the size of
the support of the distribution. Thus, we shall consider properties of the form Π = ∪m∈NΠm, where
Πm is a class of distributions over a predetermined set Sm of size m. In the testing problem, the
tester is given the parameter m, a distance parameter ǫ, and samples from an unknown distribution
D with a support that is a subset of Sm (i.e., D assigns positive probability mass only to elements
of Sm).

Definition 6.3 (testing distributions, following [4]): We say that a distribution D is ǫ-far from Πm

if for every D′ in Πm the variation distance between D and D′ is at least ǫ (i.e., 1
2 ·∑v |Prr∼D[r=

v] − Prr′∼D′ [r′ = v]| ≥ ǫ). Let Π = ∪m∈NΠm such that each distribution in Πm has support that is

a subset of Sm and |Sm| = m. A distribution tester of sample complexity s : (0, 1]2 → N for Π is a

probabilistic algorithm T that satisfies the following two conditions for every m ∈ N and ǫ > 0:

1. For every distribution D in Πm, it holds that

Prr1,...,rs∼D[T (m, ǫ, (r1, . . . , rs))=1] ≥ 2

3 ,

where s = s(m, ǫ) and (r1, . . . , rs) is distributed according to Ds.

2. For every distribution D with support that is a subset of Sm, if D is ǫ-far from Πm then

Prr1,...,rs∼D[T (m, ǫ, (r1, . . . , rs))=0] ≥ 2

3 ,

where again s = s(m, ǫ) and (r1, . . . , rs) is distributed according to Ds.

Recall that any property of distributions as in Definition 6.3 can be tested using a sample of size
O(m/ǫ2), see [6, Lem. 3] as well as the proof of Theorem 6.2 (which establishes a somewhat weaker
bound). This upper bound is obtained via a learning algorithm, and the study of distribution
testing is focused on improving upon this upper bound.

It is convenient to describe distributions as above by m-long sequences of non-negative number
that sum-up to 1; that is, the sequence (p1, . . . , pm) represents a distribution in which the ith

element of Sm occurs with probability pi. Thus, variation distance (or statistical distance) between
distribution corresponds to half the norm-1 value of the difference between the two corresponding
sequences. This is indeed closely related to the frequency sequences used in Section 6.2.

The basic intuition is that testing a property of distributions Π = ∪m∈NΠm is the same as
(sample-based) testing a property of functions Π′ = ∪n,m∈NΠ′

n,m that contains all functions having
a frequency sequence that corresponds to a distribution in Π. Note that the property Π′ is symmetric
by its very definition. The foregoing intuition is sound provided that (1) it does not matter that
the frequencies that correspond to functions with domain Dn are restricted to be multiples of 1/n,

33The variation distance between D and D′ is 1
2
· P

v |Prr∼D[r = v] − Prr′∼D′ [r′ = v]|, where Prr∼D[r= v] denotes
the probability that an element distributed according to D equals v.
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and (2) the Π′-tester gains little by being provided also with uniformly distributed arguments of
the function (rather than only with the value of the function on such arguments). Both conditions
hold provided that n is sufficiently large (i.e., larger than some fixed polynomial in m/ǫ).

Theorem 6.4 (distribution testing reduces to sample-based testing of symmetric properties): Let

Π = ∪m∈NΠm be a property of distributions such that all distributions in Πm have a support that

is a subset of Sm, where |Sm| = m. Denote the sample complexity of Π by s : N × (0, 1] → N.

Then, there exists a symmetric property of functions Π′ = ∪n,m∈NΠ′
n,m such that the following two

conditions hold:

1. All functions in Πn,m have domain [n] and range Sm.

2. There exists a constant c such that for every n ≥ c·m2/ǫ4, the sample complexity of testing Π′,
denoted s′ : N

2×(0, 1) → N, satisfies s(m, e) = O(s′(n,m, ǫ/2)) and s(m, ǫ) = Ω(s′(n,m, 2ǫ)).

Indeed, the sample complexity of testing the function class will not depend on the standard (domain)
size parameter n, but rather on the auxiliary parameter m (representing the size of the range). The
proof of Theorem 6.4 provides reductions between settings of parameters for one problem (e.g., m
and ǫ for Π) and settings of parameters for the other problem (e.g., n,m and ǫ for Π′). In particular,
for any value of ǫ, the equivalence is between ǫ-testing Πm and Θ(ǫ)-testing Π′

poly(m/ǫ),m.

Proof: The proof is based on the association of properties of distributions over Sm with symmetric
properties of function that range over Sm. The symmetric condition allows to disregard the identity
of the argument that evaluates to a specific value, provided that the sample complexity is smaller
than the square root of the domain size (since otherwise the issue of sampling without repetitions
gets in our away). For the association to work, we need to assume that the tested distributions are
of the form (q1, . . . , qm) such that each qv is a multiple of 1/n. In this case the said distribution
can be associated with a function f : [n] → Sm such that for every v ∈ Sm it holds that |{i ∈ [n] :
f(i)=v}| = qv ·n. For n that is sufficiently large (w.r.t m and 1/ǫ), the statistical distance between
any distribution on Sm and such a distribution (q1, . . . , qm) is sufficiently small.

Fixing the property (of distributions) Π as in the hypothesis, we shall consider the following
(symmetric) property (of functions) Π′ = ∪n,m∈NΠ′

n,m: A function f : [n] → Sm is in Π′
n,m if

and only if there exists a distribution (p1, . . . , pm) in Πm such that the max-norm distance between

(p1 · n, . . . , pm · n) and (cnt1(f), . . . , cntm(f)) is at most 1, where cnti(f)
def
= |{j ∈ [n] : f(j)= i}|.

Claim 6.4.1 For every n ≥ max(20s(m, ǫ/2), 2m/ǫ), it holds that s′(n,m, ǫ) = O(s(m, ǫ/2)).

Proof: Fixing ǫ, consider a distribution tester, denoted T , for Πm that uses t = s(m, ǫ/2) samples.
We construct an ǫ-tester, denoted T ′, for functions in Π′

n,m. Machine T ′ is given a sequence of
uniformly distributed samples that are labeled by some function f : [n] → Sm; that is, T ′ is given
a sequence ((r1, f(r1)), . . . , (rt, f(rt)), where r1, . . . , rt are uniformly and independently distributed
in [n]. Suppose that T ′ just invokes T on (f(r1), . . . , f(rm)), and outputs whatever T does. Then,
effectively, T ′ invokes T on samples taken from the distribution that is described by q = (q1, . . . , qm)
such that qv = Prr∈[n][f(r)=v].

Assume first that f ∈ Π′
n,m. Then, there exists p = (p1, . . . , pm) in Πm such that maxi∈[m]{|pi−

qi|} ≤ 1/n. Hence, the variation distance between a sample of t elements from q and t elements
from p is at most t/n ≤ 1/20. It follows that T accepts (when invoked with samples of q) with
probability at least (2/3) − (t/n) > 0.6, and hence T ′ accepts f with probability at least 0.6. (We
shall use straightforward error reduction in order to regain the error bound of 1/3.)
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On the other hand, if f : [n] → Sm is ǫ-far from Π′
n,m, then q is ǫ/2-far from any distribution

in Πm, because otherwise q is ((ǫ/2) + (m/n))-close to a distribution p ∈ {i/n : i ∈ {0, . . . , n}}m

that is (m/n)-close to Πm (and contradiction follows since m/n ≤ ǫ/2, whereas p corresponds to
the frequency sequence of a function g : [n] → Sm in Π′

n,m). In this case, T (and so also T ′) rejects
with probability at least 2/3.

Claim 6.4.2 For every n = Ω(m2/ǫ4), it holds that s(m, ǫ) = O(s′(m,n, ǫ/2)).

Proof: Fixing ǫ, consider a function tester, denoted T ′, for Π′
n,m that uses t = s′(n,m, ǫ/2) sam-

ples. By Theorem 6.2, it holds that s′(n,m, ǫ) = O(m/ǫ2). We construct an ǫ-tester, denoted T ,
for distributions in Πm. Machine T is given a sequence, denoted (v1, . . . , vt), of samples from distri-
bution p = (p1, . . . , pm) that ranges over Sm. Suppose that T invokes T ′ on ((r1, v1), . . . , (rt, vt)),
where r1, . . . , rn are uniformly and independently distributed in [n]. Since t <

√
n/3, these ri’s

are distinct with probability at least 0.9. Let q = (q1, . . . , qm) ∈ {i/n : i ∈ {0, . . . , n}}m be such
that maxi∈[m]{|pi − qi|} ≤ 1/n. Then, effectively, T invokes T ′ on random samples labeled by some
function f : [n] → Sm such that Prr∈[n][f(r)=v] = qv.

Note that if p is in Πm, then f ∈ Π′
n,m. Furthermore, the variation distance between a sample

of t elements from q and t elements from p is at most t/n < 0.01, since n = Ω(t2). Thus, when T ′ is
given a sequence generated according to p (augmented with uniformly selected ri’s), it accepts with
probability at least (2/3) − (t/n) − 0.1 > 0.6, where the 0.1 term is due to the event of colliding
ri’s. It follows that T accepts p with probability at least 0.6. (Again, we shall use straightforward
error reduction in order to regain the error bound of 1/3.)

On the other hand, if q is ǫ-far from Πm, then f is ǫ/2-far from Π′
n,m, because otherwise g ∈ Π′

n,m

that is ǫ/2-close to f yields a distribution that is m/n-close to Πm (as well as ǫ/2-close to q, and
contradiction follows since (m/n) + (ǫ/2) < ǫ). Again, switching between q and p, we infer that T ′

rejects with probability at least (2/3)−(t/n)−0.1 > 0.6 when given a sequence generated according
to p (augmented with uniformly selected ri’s), and it follows that T accepts p with probability at
least 0.6.

This completes the proof of the theorem.

7 Distribution-Free Testing

Recall that distribution-free testing is a generalization of the standard notion of testing functions
where the distance measure is defined according to an arbitrary distribution of the function’s
domain. In this case, the tester is given samples drawn according to this (unknown) distribution,
where these samples are labeled by the tested function. We stress that the task is to test properties
of the function, not of the distribution.34

For a distribution µ, by writing r1, . . . , rt ∼ µ we mean that r1, . . . , rt are selected independently
such that each ri is distributed according to µ. Denoting by µt the t-wise Cartesian product of µ,
we can also write (r1, . . . , rt) ∼ µt.

Definition 7.1 (distribution-free sample-based tester, following [14]): Let Π and s : N×(0, 1] → N

be as in Definition 2.3. A (sample-based) distribution-free tester of sample complexity s for a property
Π is a probabilistic algorithm T that satisfies the following two conditions for every n ∈ N and every

distribution µn over Dn:

34Indeed, the latter subject (i.e., testing distributions) is discussed in Section 6.3.
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1. For every f ∈ Πn (and every ǫ > 0), it holds that

Prr1,...,rs∼µn [T (n, ǫ, (r1, f(r1)), . . . , (rs, f(rs)))=1] ≥ 2

3 ,

where s = s(n, ǫ) and (r1, . . . , rs) is distributed according to µs
n.

2. For every ǫ > 0, and every f : Dn → Rn that is ǫ-far from Πn with respect to the distribution

µn (i.e., δµn

Πn
(f) > ǫ), it holds that

Prr1,...,rs∼µn [T (n, ǫ, (r1, f(r1)), . . . , (rs, f(rs)))=0] ≥ 2

3 ,

where again s = s(n, ǫ) and (r1, . . . , rs) is distributed according to µs
n. We say that f : Dn →

Rn is ǫ-far from Πn with respect to the distribution µn if δµn

Πn
(f) > ǫ, where

δµn

Πn
(f)

def
= min

g∈Πn

{Prx∼µn [f(x) 6= g(x)]} . (7)

Again, if the tester accepts every function in Π with probability 1, then we say that it has one-sided
error.

Definition 2.3 refers to the case that µn is uniform on Dn. In what follows, the (unqualified) term
“sample-based tester” refers to testers that work only for this (uniform) distribution, as defined in
Definition 2.3.

7.1 A general result

We start by proving the first item in Theorem 1.3. Namely, we show that the sample complexity
of distribution-free testing cannot be significantly smaller than the sample complexity of one-sided
error testing (with respect to the uniform distribution). Specifically, we show that the latter is at
most nearly-quadratic in the former.

Theorem 7.2 (distribution-free testers imply one-sided error testers under the uniform distribu-
tion): For every property Π, if Π has a sample-based distribution-free tester of sample complexity

s : N × (0, 1] → N, then Π has a one-sided error sample-based tester of sample complexity Õ(s2)
(under the uniform distribution).

The sample complexity of the one-sided error sample-based tester is actually O(s2) if s <
√

n/25 and
O(n log n) otherwise. While an upper bound of O(s2) is quite likely, we shall show (in Theorem 7.4)
that an upper bound of O(s) cannot hold in general. We stress that Theorem 7.2 (as well as the
last sentence) refer to an upper bound that holds for any property (rather than to specific cases,
as studied in Section 7.2).

Proof: Let T ′ be a sample-based distribution-free tester of sample complexity s : N × (0, 1] → N

for Π. Assume that T ′ has error probability at most 1/6 (rather than at most 1/3),35 and that
s <

√
n/25 (to be justified at the end). Consider the following sample-based algorithm T , of sample

complexity t = O(s2). On input parameters n, ǫ and a sequence ((r1, v1), . . . , (rt, vt)), where the
vi’s are determined by the tested function, algorithm T accepts if and only if there exists g ∈ Πn

35Indeed, this is justified by straightforward error reduction, which merely increases s by a constant factor.
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such that g(ri) = vi for every i ∈ [t]. We claim that T is a one-sided error tester for Π under the
uniform distribution.

By its construction, T accepts every function in Π with probability 1. Hence, if T is not a
one-sided error tester for Π (under the uniform distribution), then it must be that it accepts some
no-instance (i.e., a function far from Π) with too high probability (i.e., probability exceeding 1/3).
Thus, we assume towards the contradiction that there exist n, ǫ and f : Dn → Rn such that f
is ǫ-far from Πn (under the uniform distribution) and T accepts f with probability at least 1/3
(when given t = t(n, ǫ) uniformly distributed samples that are labeled according to f). By the
construction of T , it follows that for at least one third of the possible r = (r1, . . . , rt) ∈ Dt

n there
exists gr ∈ Πn such that gr(ri) = f(ri) for every i ∈ [t]. For each such r = (r1, . . . , rt), consider the
distribution µr that is uniform over the corresponding (multi)set {r1, . . . , rt}. The key observation
is that T ′ must accept a sequence of s samples drawn from µr that are labeled according to f with
probability at least 5/6, since these labels are consistent with gr ∈ Π. (The fact that f is ǫ-far from
Π according to the uniform distribution on Dn is irrelevant here, and in particular δµr

Πn
(f) = 0.)36

Thus, the following holds.

Claim 7.2.1 Let T and f be as in the foregoing paragraph, and let X = (X1, . . . ,Xs) denote a

random sequence produced by first selecting uniformly r ∈ Dt
n, and then picking s independent

samples from the distribution µr. Then, on input n, ǫ and ((X1, f(X1)), . . . , (Xs, f(Xs)), algorithm

T ′ accepts with probability at least 1
3 · 5

6 .

On the other hand, on input n, ǫ and ((Y1, f(Y1)), . . . , (Ys, f(Ys)), where the Yi’s are independently
and uniformly distributed in Dn, algorithm T ′ must reject with probability at least 5/6, because
by the hypothesis f is ǫ-far from Πn (under the uniform distribution). If t ≤ n, then this yields a
contradiction, because (as shown next) the two distribution (i.e., X and Y ) are 0.1-close.

Claim 7.2.2 Suppose that 500s2 < t ≤ n, and let X = (X1, . . . ,Xs) and Y = (Y1, . . . , Ys) be as

above; that is, X is as defined in Claim 7.2.1 and Y is a sequence of independently and uniformly

distributed elements of Dn. Then, the variation distance between X and Y is at most 0.1.

Recall that t = O(s2) by construction, whereas t ≤ n was assumed upfront and will be justified
later.

Proof: Note that conditioned on X containing no collision (i.e., Xi = Xj for i 6= j), the sequence
X is uniformly distributed over all s-long sequences of distinct elements of Dn. The same holds
for Y , and thus it suffices to prove that, in both X and Y , the probability that the same element
appears twice is at most 1/20. The claim is obvious for Y , since the collision probability is at most(
s
2

)
· 1

n < 1/1000.
Turning to X, we note that the argument is equally easy in the case that 40t2 < n (since(t

2

)
· 1

n +
(s
2

)
· 1

t < 1/80 + 1/1000), alas we only have t ≤ n. Nevertheless, we first upper bound by
1/40 the probability that a uniformly chosen sequence r = (r1, . . . , rt) ∈ Dt

n contains more than
20t collisions (i.e., pairs (i, j) such that ri = rj). This follows by noting that the expected number
of collisions is

(t
2

)
· 1

n < t
2 . Fixing an arbitrary sequence r with at most 20t collisions, we consider

the probability that a sample of s elements taken from r has a collision. Such collisions may be
due either to a collision in r or to picking the same position in r twice. Thus, this probability is at
most

(
s
2

)
· (20t

t2
+ 1

t ) < 1/40, and the claim follows.

36We stress that our argument is not based on the fact that δµ
r

Πn

(f) = 0 but rather on the fact that the samples
labeled by f can be thought to be labeled by gr ∈ Π.
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Finally, we get to our assumption that t ≤ n. Recall that t = O(s2), hence if t > n, then s = Ω(
√

n).
But in this case, with high probability, a labeled (uniformly distributed) sample of size O(s2 log s)
allows to reconstruct the function, and the theorem follows.

Remark 7.3 (a general phenomenon): The proof of Theorem 7.2 is actually oblivious to the

specifics of the promise problem at stake (i.e., the fact that we refer to property testing). In-

deed, it can be stated for any promise problem (P,Q), where the promise is that the input is in P
and the question is whether it is in Q:

If a promise problem (P,Q) has a sample-based distribution-free two-sided error decider

of sample complexity s, then (P,Q) has a one-sided error sample-based decider of sample

complexity Õ(s2) (under the uniform distribution).

The proof shows that if f ∈ P \ Q is accepted with probability greater than 1/3 by the canonical

one-sided error decider, which accepts a function if and only if the sample is consistent with some

g ∈ P ∩ Q, then a distribution-free decider for (P,Q) cannot have sample complexity s, because

when testing f it must err with probability greater than 1/6 either on the uniform distribution on

some set of size O(s2) or on the uniform distribution on f ’s entire domain.

7.2 Specific results

In this section we consider several cases that indicate that there is no fixed relation between the
sample complexity of one-sided error testers under the uniform distribution and the sample com-
plexity of distribution-free testers. The first three cases are based on natural properties. We recall
the notation that was introduced in the introduction: OSE(Π) denotes the sample complexity of
one-sided error sample-based testing Π (under the uniform distribution); that is, OSE(Π) is a func-
tion s(n, ǫ) that represents the number of samples made by the best such tester on input parameters
n and ǫ. Likewise, DF(Π) denotes the sample complexity of distribution-free (sample-based) testing
Π. Indeed, Theorem 7.2 asserts that for every Π it holds that OSE(Π) = Õ(DF(Π)2).

We first show that a general upper bound as in Theorem 7.2 (i.e., an upper bound on OSE in
terms of DF) cannot be linear (let alone sub-linear). That is, there exist (natural) properties Π such
that OSE(Π) = Ω(poly(ǫ) · DF(Π) log DF(Π)), as stated in Item 2.

Theorem 7.4 (distribution-free sample-complexity may be lower than the one-sided error sample
complexity under the uniform distribution): There exists a property Π such that

1. Any one-sided error tester for Π (under the uniform distribution) must have query complexity

q(n, ǫ) = Ω(n) for every ǫ < 1/3.

2. There exists a (sample-based) distribution-free tester for Π of sample complexity s(n, ǫ) =
poly(1/ǫ) · n

log n .

For example, Πn may be the set of Boolean functions over [n] that evaluate to 1 more often than

to 0.

It follows that there are properties for which the one-sided error sample complexity (under the
uniform distribution) is higher than the distribution-free sample complexity. Note that Π is a
symmetric property, and so queries are not more powerful for it than samples (see Theorem 6.1).

Proof: We consider the class, denoted Πn, of Boolean functions over [n] such that f : [n] → {0, 1}
is in Πn if and only if |{i ∈ [n] : f(i) = 1}| > n/2.
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Claim 7.4.1 Any one-sided error tester for Πn (under the uniform distribution) has query com-

plexity q(n, ǫ) ≥ n/2 for any ǫ < 1/2.

Proof: A one-sided error tester may reject only if the answers it has obtained are not consistent
with any function in Πn, which means that it must see at least n/2 zeros. On the other hand, when
having oracle access to a function with at least (0.5 + ǫ) ·n zeros, which is ǫ-far from Πn, the tester
must reject. The claim follows.

Claim 7.4.2 There exists a (sample-based) distribution-free tester of sample complexity s(n, ǫ) =
Õ(1/ǫ2) · n

log n for Π.

Proof: We shall rely on an algorithm of Valiant and Valiant [34], which approximates the sup-
port size of an unknown distribution over [n] based on O(n/ log n) samples of the distribution.
Specifically, we use the following result.

Theorem 1 in [34] (rephrased): There exists an algorithm Avv that on input a pa-

rameter δ and Õ(1/δ2) ·n/ log n samples of a random variable, denoted Xn, that ranges

over [n], outputs a representation of a distribution Yn that with overwhelmingly high

probability is δ-close to a distribution X ′
n that equals Xn up to relabeling.

By saying that X equals X ′ up to relabeling we mean that there exists a permutation
π : [n] → [n] such that for every v ∈ [n] it holds that Prx∼X′ [x = v] = Prx∼X [x = π(v)].

(Actually, the representation of Yn is succinct so to allow the algorithm to run in time that is linear
in the number of samples that it obtains, but this is irrelevant to us here.) Now, suppose that,
on input n and ǫ, we get s = s(n, ǫ) samples drawn according to an unknown distribution µn and
labeled by an unknown Boolean function f . Our task is to decide whether f is in Πn or is ǫ-far
from Πn with respect to the distribution µn. We propose the following algorithm.

1. The algorithm uses a small portion of the label sample (i.e., O(1/ǫ2) samples) in order to

approximate the probability pn
def
= Prr∼µn [f(r) = 0] up to an additive error of ǫ/4. If the

estimate, denoted p̃, is below ǫ/2, then the algorithm halts with output 1 (i.e., it accepts).

Assuming the algorithm did not halt in Step 1, we may assume that pn > ǫ/4.

2. The algorithm defines Xn as the distribution µn conditioned on f evaluating to 0; that
is, Prx∼Xn [x = v] = Prx∼µn [x = v|f(x) = 0]. It invokes algorithm Avv with parameter

δ = ǫ/4p̃ providing it with Õ(1/δ2) · n/ log n samples of Xn, and obtaining a description of a
distribution Yn.

Samples of Xn are obtained from the s labeled samples provided to the main algorithm;

specifically, the main algorithm forwards the first s0
def
= Õ(1/δ2) · n/ log n samples that are

labeled 0 to Avv. With very high probability, the number of samples labeled 0 is at least
p2 ·s/2 ≥ p̃2 ·s/4, which equals s0 (since we may set the parameters such that s0 = ǫ2s/64δ2).

which equals Õ(1/δ2) · n/ log n.

3. The algorithm accepts if and only if Yn is δ-close to a distribution that has support size
smaller than n/2.
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We now turn to the analysis of the foregoing algorithm. Consider first the case that f ∈ Πn. If
p0 ≤ ǫ/4, then (by an additive Chernoff bound) with high constant probability p̃ < ǫ/2, and the
algorithm accepts. Otherwise (by a multiplicative Chernoff bound) with high constant probability,
p̃ ≤ 2p0. Assuming the algorithm does not accept due to p̃ being smaller than ǫ/2 (so that it
continues to its second step), with high probability the distribution Yn (output by Avv) is δ-close
to a relabeling of Xn, which in turn has support size smaller than n/2. Hence, in either cases, the
algorithm accepts with high probability.

Now suppose that f is ǫ-far from Πn with respect to the distribution µn. In this case pn > ǫ,
and with high probability it holds that p̃ > pn/2 ≥ ǫ/2, which means that the algorithm proceeds to
Step 2. Furthermore, Xn is ǫ/pn-far from having support size smaller than n/2, since otherwise we
can modify f in a corresponding manner in contradiction to the hypothesis (i.e., if Xn is ǫ/pn-close
to X ′

n that has support smaller than n/2, then setting f ′(x) = 1 iff x is not in the support of X ′
n

yields a function in Πn that is ǫ-close to f w.r.t the distribution µn). Recalling that δ = ǫ/4p̃ (and
p̃ > pn/2, which implies that ǫ/pn > ǫ/2p̃ = 2δ), it follows that (w.v.h.p.) Yn is (2δ − δ)-far from
any distribution having support smaller than n/2, which implies that our algorithm rejects.

Theorem 7.4 follows.

On the non-tightness of Theorem 7.2. Having just shown that OSE may be larger than DF,
we now turn to cases in which OSE is at most linear in DF, which in particular means that in these
cases Theorem 7.2 is not tight. The first case is of a property Π such that OSE(Π) = Θ(DF(Π))
holds (Item 3 in Theorem 1.3), and the other cases are ones in which OSE is significantly smaller
than DF.

Theorem 7.5 (distribution-free sample-complexity may equal the one-sided error sample com-
plexity under the uniform distribution): There exists a property Π such that

1. Any sample-based tester for Π (under the uniform distribution) has sample complexity

s(n, ǫ) = Ω(
√

n/ǫ), provided that ǫ ≥ 1/n. Indeed, this lower bound holds also for two-sided

error testers.

2. There exists a (sample-based) distribution-free tester for Π of sample complexity s(n, ǫ) =
O(

√
n/ǫ). Furthermore, this tester has one-sided error.

For example, Πn may be the set of monotone functions over [n].

It follows that there are properties for which the one-sided error sample complexity (under the
uniform distribution) is at least linear in the distribution-free sample complexity. Indeed, for this
assertion it would have suffices to have a lower bound for one-sided error testers (under the uniform
distribution) and an upper bound for two-sided error (distribution-free) testers. However, the
stronger assertion of Theorem 7.5 implies that all four complexity measures are linearly related:
The one-sided and two-sided error sample complexities for both the uniform distribution and the
distribution-free case are all linearly related.

Proof: For an arbitrary ordered set Rn, we consider the class, denoted Πn, of monotone function
from [n] → Rn; that is, f : [n] → Rn is in Πn if and only if f(i) ≤ f(j) for every i < j.

Claim 7.5.1 For Rn = [n], any sample-based tester for Πn (under the uniform distribution) has

sample complexity s(n, ǫ) = Ω(
√

n/ǫ), provided that ǫ ≥ 1/n.
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Our guess is that Claim 7.5.1 was discovered before by several researchers, but we are unaware of
a prior publication of it.

Proof: Assume for simplicity that n is even, and let n′ = n/2. Furthermore, assume that ǫ > c/n for
a sufficiently large constant c. We consider only functions f that satisfy f(2i−1), f(2i) ∈ {2i−1, 2i}
for every i ∈ [n′]. For any m ∈ {0, . . . , n′}, consider the class of functions Fm such that f ∈ Fm

if {f(2i − 1), f(2i)} = {2i − 1, 2i} for every i ≤ m and f(2i − 1) = f(2i) ∈ {2i − 1, 2i} for every
i > m. Note that F0 ⊂ Πn, while (for m > c) with very high constant probability a function
selected uniformly in Fm is m/3n-far from Πn. We shall show that Ω(n/

√
m) samples are requited

in order to distinguish a function uniformly selected in F0 from a function uniformly selected in
Fm.

Let X = ((X1, g(X1)), . . . , (Xt, g(Xt)) denote a sequence of pairs such that the Xi’s are uni-
formly and independently distributed in [n] and g is uniformly distributed in F0. Likewise,
Y = ((Y1, f(Y1)), . . . , (Yt, f(Yt)) denotes a sequence where the Yi’s are uniformly and indepen-
dently distributed in [n] and f is uniformly distributed in Fm. Let χ((z1, v1), . . . , (zt, vt)) = 1 if
there exists i ∈ [m] such that |{j : zj ∈ {2i − 1, 2i}}| > 1 and χ((z1, v1), . . . , (zt, vt)) = 0 other-
wise. Then, condition on χ = 0, the random variables X and Y are identically distributed; that
is, for every γ, it holds that Pr[X = γ|χ(X) = 0] = Pr[Y = γ|χ(Y ) = 0]). On the other hand

Pr[χ(X)= 1] = Pr[χ(Y )= 1] is upper bounded by
(t
2

)
· 2m

n · 1
n < t2m

n2 . Thus, for t < n/
√

10m, the
variation distance between X and Y is smaller than 1/10. Using m = 3ǫn, the claim follows.

Claim 7.5.2 For any ordered set Rn, there exists a (sample-based) distribution-free tester of sam-

ple complexity s(n, ǫ) = O(
√

n/ǫ) and one-sided error for Π.

Proof: The algorithm simply accepts the function f if and only if the sample obtained is consistent
with a monotone function (i.e., there exists a monotone function g such that f(r) = g(r) for every
r that appears in the sample). Hence, this algorithm accepts every f ∈ Πn with probability 1. We
now consider an arbitrary function f that is ǫ-far from Πn with respect to some distribution µ (i.e.,
δµ
Πn

(f) > ǫ).
Following [7], we consider the (“violation”) graph Gf = ([n], Ef ) such that (i, j) ∈ Ef if and

only if i < j and f(i) > f(j). (The edges of Gf are called violating edges.) Note that every vertex
cover of this graph has weight greater than ǫ, where the weight of any set of vertices is the sum
of the probabilities assigned to its elements under µ. (Otherwise, modifying the function on this
vertex cover, in an adequate manner, yields a monotone function that is ǫ-close to f .)37 Fixing
a minimum weight vertex cover C of Gf , we note that every S ⊆ C must have weight that is
not larger than the weights of the set of its neighbors (i.e., of the set

⋃
v∈S Γf (v), where Γf (v)

denotes the set of neighbors of v in Gf ).38 We shall show that, with high probability, a sample of
s = O(

√
n/ǫ) vertices (i.e., points in [n]), drawn independently from µ, contains a violating edge.

First, we consider a sample, denoted S1, of s/2 vertices drawn independently from µ. The
expected weight of S1 ∩ C is at least (s/2) · ǫ/n, and, with very high probability, its weight is at
least ǫs/4n. Fixing such a set S1, we consider a second sample, denoted S2, of s/2 vertices drawn
independently from µ. Since the weight of the set of neighbors of S1 is at least ǫs/4n, each of
these s/2 samples is a neighbor of some vertex of S1 with probability at least ǫs/4n. Hence, the

37If i is in the vertex cover and j < i is the largest integer that is not in the cover, then we let f(i) = f(j). This
simple modification rule benefit from the fact that the domain is totally ordered. Nevertheless, a similar modification
is possible for any partially ordered domain; see [9, Lem. 1].

38Otherwise, we can replace S by
S

v∈S Γf (v), obtaining a vertex cover of smaller weight. (Note that edges with
an endpoint in S are covered by the other endpoint, which must be in

S

v∈S Γf (v).)
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probability that S1 × S2 contains no violating edge is at most (1− (ǫs/4n))s/2, which is very small
since ǫs2/8n ≫ 1. The claim follows.

Theorem 7.5 follows.

We next establish Item 4 in Theorem 1.3.

Theorem 7.6 (distribution-free sample-complexity may be exponential in the one-sided error sam-
ple complexity under the uniform distribution): There exists a property Π such that

1. Any sample-based distribution-free tester for Π has sample complexity s(2ℓ, ǫ) = Ω(
√

ℓ/ǫ).
Indeed, this lower bound holds also for two-sided error testers.

2. There exists a sample-based one-sided error tester for Π (under the uniform distribution)
having sample complexity s(2ℓ, ǫ) = Õ(ǫ−1 log ℓ).

For example, Π2ℓ may be the set of monomials over {0, 1}ℓ.

It follows that there are properties for which the one-sided error sample complexity (under the
uniform distribution) is logarithmic in the distribution-free sample complexity (up to a factor
of 1/ǫ). We comment that the upper bound in Item 2 is tight: Any sample-based tester for
Π (under the uniform distribution) has sample complexity s(2ℓ, ǫ) = Ω(ǫ−1 log ℓ), provided that
ǫ > 2−(ℓ−ℓ0.01). (This lower bound holds also for two-sided error testers; see Appendix A.3 for
details.)

Proof: We consider the property Π =
⋃

ℓ∈N
Π2ℓ such that Π2ℓ consists of Boolean functions

f : {0, 1}ℓ → {0, 1} that can be represented by monomials (i.e., f(x1, . . . , xℓ) can be written as a
conjunction of a subset of the literals {x1, x1, . . . , xℓ, xℓ}). Glasner and Servedio [10] proved that the
distribution-free query complexity of testing Π2ℓ is ℓ0.2−o(1); here we shall present a much simpler
proof (of a higher lower bound) for the case that only samples are allowed. Turning to the upper
bound, we note that Parnas et al. [27] proved that the query complexity of this property under the
uniform distribution is O(1/ǫ); here we present a higher upper bound, but for sample-based tester.
We stress that our sample-based tester has one-sided error.

Claim 7.6.1 Any sample-based distribution-free tester for Π has sample complexity s(2ℓ, ǫ) =
Ω(

√
ℓ/ǫ).

We note that a higher lower bound of Ω(ℓ2/3) follows from a more complex proof of Feige (priv.
comm., 2011).

Proof: We first establish the lower bound for ǫ = Ω(1), and later extend it to a general ǫ. To this
end we define two sets, Y and N , of pairs (f,D), where f is a Boolean function over {0, 1}ℓ and D
is a distribution over {0, 1}ℓ. For each pair (f,D) in Y, the function f is a monomial, and for each
pair (f,D) in N the function f is Ω(1)-far from being a monomial with respect to the underlying
distribution D. In fact, the set N consists of a single pair (fno,Dno). By Definition 7.1, any
(sample based) distribution-free testing algorithm must reject fno with high constant probability
when given a sample generated by Dno and labeled by fno, and must accept with high constant
probability every f such that (f,D) ∈ Y when given a sample generated by D and labeled by f . We
show that for s ≤

√
ℓ/8, the variation distance between a labeled sample of size s that is generated

by Dno and labeled by fno and a labeled sample of size s that is generated and labeled according
to a pair (f,D) that is selected uniformly in Y, is a small constant. This implies a lower bound of
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Ω(
√

ℓ) (for constant ǫ) on the sample complexity of any (sample based) distribution-free tester for
monomials. Details on the construction of Y and N follow.

Assume for simplicity that ℓ is even and consider a partition of the variables x1, . . . , xℓ into
pairs (x2i−1, x2i) for i ∈ [ℓ/2]. We start by defining Dno and fno. For each i ∈ [ℓ/2] and (b, b′) ∈
{00, 01, 10}, let αi(b, b′) be the string that is all 1s except for bits in positions 2i − 1 and 2i, which
are b and b′, respectively; that is, αi(b, b′) = (11)i−1bb′(11)ℓ/2−i. The distribution Dno is uniform

over the set of strings Sno def
= {αi(b, b′) : i ∈ [ℓ/2], (b, b′) ∈ {00, 01, 10}}, and for each i ∈ [ℓ/2], we

have fno(αi(00)) = 0, and fno(αi(01)) = fno(αi(10)) = 1. It is irrelevant to the argument how fno

is defined outside of Sno, so we set it arbitrarily to 0.
We observe that fno is 1/3-far from being a monomial with respect to Dno. This is true since

for every (disjoint) triple of strings αi(00), αi(01), αi(10) the value of the function must be modified
on at least one of the three strings so that the function become consistent with some monomial.

We turn to defining the set Y. For each β ∈ {00, 01, 10}ℓ/2 , the set Y contains the pair (fβ,Dβ),

where the distribution Dβ is uniform over the set of ℓ/2 strings Sβ def
= {αi(β2i−1, β2i) : i ∈ [ℓ/2]}

(so that Sβ ⊂ Sno), and fβ is the (monotone) monomial that is the conjunction of the following
variables. For each i ∈ [ℓ/2], if β2i−1 = 1, then x2i−1 is a variable of fβ and x2i is not; if β2i = 1, then
x2i is a variable of fβ and x2i−1 is not; and, if β2i−1 = β2i = 0, then both x2i−1 and x2i are variables
of fβ. By this definition, fβ(αi(β2i−1, β2i)) = 1 when β2i−1β2i ∈ {01, 10} and fβ(αi(β2i−1, β2i)) = 0
when β2i−1 = β2i = 0.

Note that for each β ∈ {00, 01, 10}ℓ/2 , the functions fno and fβ agree on all strings in Sβ , and
so the distance between them with respect to Dβ is 0. This is in contrast to the fact that fno and
fβ disagree on a third of the strings in Sno, and so the distance between them with respect to Dno

is 1/3. Also note that for a fixed choice of β, the distribution over samples generated by Dβ and
labeled by fβ differs significantly from the distribution over samples generated by Dno and labeled
by fno, even for constant size samples. This is true simply because with high constant probability
we get a sample point from Sno \ Sβ. However, if we also select β ∈ {00, 01, 10}ℓ/2 uniformly at
random, then the corresponding distribution over labeled samples will be close to that generated
by Dno and labeled by fno as long the sample size is sufficiently smaller than

√
ℓ. Details follow.

Consider the following two distributions over labeled samples ((r1, v1), . . . , (rs, vs)) of size s
where rj ∈ {0, 1}ℓ and vj ∈ {0, 1} for each 1 ≤ j ≤ s. The first distribution, Lno, generates a labeled
sample simply by selecting each rj independently according to Dno and setting vj = fno(rj). The
second distribution, Lyes, generates a labeled sample by first selecting β ∈ {00, 01, 10}ℓ/2 uniformly
at random and then generating each rj independently according to Dβ and setting vj = fβ(rj).

An alternative (equivalent) formulation of the generation process of samples distributed ac-
cording to Lno is the following: For each 1 ≤ j ≤ s, select i ∈ [ℓ/2] uniformly at random, select
(b, b′) ∈ {00, 01, 10} uniformly at random, and let rj = αi(b, b′) (and vj = fno(rj)). Similarly, we
can generate a sample distributed according to Lyes in the following manner. Initially, set β =?ℓ

(indicated that no bit in β is determined). For each 1 ≤ j ≤ s, select i ∈ [ℓ/2] uniformly at random.
If β2i−1 =?, then select (b, b′) ∈ {00, 01, 10} uniformly at random and set β2i−1 = b, β2i = b′. Now
let rj = αi(β2i−1, β2i) and let vj = 1 if (β2i−1, β2i) ∈ {01, 10} and vj = 0 otherwise. Given this
alternative description, we observe that conditioned on the event that no i ∈ [ℓ/2] is selected more
than once, the two distributions on samples are exactly the same. By the (lower bound of) the
“Birthday Paradox”, if s ≤

√
ℓ/c and c is a sufficiently large constant, then, with high constant

probability over both generation processes, no i is selected more than once. It follows that the
statistical distance between Lno and Lyes is a small constant.

It remains to extend the argument to any ǫ ≤ 1/3. This is done by adding the string 1ℓ to Sno

as well as to each Sβ, while assigning 1ℓ weight 1 − 3ǫ, and setting fno(1ℓ) = fβ(1ℓ) = 1. Namely,

42



Dno(1ℓ) = Dβ(1ℓ) = 1− 3ǫ, and Dno as well as each Dβ is uniform over the remaining strings in its
support. By this modification, the distance with respect to Dno between fno and any monomial is
at least ǫ. By combining the argument given for the case ǫ = 1/3 with the fact that the probability
that each sample point differs from 1ℓ (both when the sample is generated according to Dno and
when it is generated according to Dβ for some β) is O(ǫ), the lower bound of Ω(

√
ℓ/ǫ) follows.

Claim 7.6.2 There exists a sample-based one-sided error tester for Π (under the uniform distri-
bution) having sample complexity s(2ℓ, ǫ) = Õ(ǫ−1 log ℓ).

Proof: As noted at the end of Section 2.2, the operation of a sample-based one-sided tester is
totally determined by its sample: Being sample-based, this tester has no control over its access to
the function, and having one-sided error it has no real control on its decision; that is, without loss
of generality, the tester accepts if and only if the labeled sample that it has obtained is consistent
with some function in Π. Thus, the claim amounts to proving that if f : {0, 1}ℓ → {0, 1} is ǫ-far
from Π, then, with probability at least 2/3, no function in Π is consistent with the labeling given

by f to a random sample of Õ(ǫ−1 log ℓ) points. Fixing ℓ and ǫ for the rest of the discussion, and

letting t
def
= ⌈log2(2/ǫ)⌉, the proof is based on two observations:

1. If f is ǫ-far from Π and g ∈ Π is a monomial that contains exactly t literals, then
Prx∈{0,1}ℓ [f(x) 6=0=g(x)] > ǫ/2, where here and throughout the entire proof all probabilities

are taken uniformly over {0, 1}ℓ.

This holds since f is ǫ-far from g, whereas Pr[f(x) 6=1=g(x)] ≤ Pr[g(x)=1] ≤ 2−t ≤ ǫ/2.

2. If g ∈ Π contains more than t literals, then there exists h ∈ Π that contains exactly t literals
such that h−1(0) is a subset of g−1(0); that is, if h(x) = 0 (for some x), then g(x) = 0.

This holds by considering an arbitrary monomial g′ ∈ Π′ that contains exactly t of the literals
that appear in g.

Let Πls (resp., Πeq) denote the set of monomials containing less than (resp., exactly) t literals.
Suppose that f is ǫ-far from Π, and let s = O(ǫ−1t log ℓ) = Õ(ǫ−1 log ℓ). Then, using Prr[f(r) =
g(r)] ≤ 1 − ǫ for every g ∈ Πls,

Prr1,...,rs∈{0,1}ℓ

[
∀g ∈ Πls ∃i ∈ [s] s.t. f(ri) 6= g(ri)

]
(8)

= 1 − Prr1,...,rs∈{0,1}ℓ

[
∃g ∈ Πls s.t. ∀ ∈ [s] f(ri) = g(ri)

]

≥ 1 −
∑

j∈[t−1]

(
2ℓ

j

)
· (1 − ǫ)s >

5

6
.

Similarly, using Observation 1, we have

Prr1,...,rs∈{0,1}ℓ [∀g ∈ Πeq ∃i ∈ [s] s.t. f(ri) 6= 0 = g(ri)] (9)

≥ 1 −
(

2ℓ

t

)
· (1 − ǫ/2)s >

5

6
.

Fixing any sequence (r1, . . . , rs) that satisfies the conditions in both Eq. (8) and Eq. (9), and using
Observation 2, we conclude that for every g ∈ Π there exists i ∈ [s] such that f(ri) 6= g(ri), where
for g ∈ Π \ Πls we actually have f(ri) 6= 0 = g(ri). The claim follows.

Theorem 7.6 follows from Claims 7.6.1, and 7.6.2.
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A detour: A generalization of the argument underlying the proof of Claim 7.6.2. Let
us consider an arbitrary property Π of functions over [n], where in Claim 7.6.2 [n] ≡ {0, 1}ℓ. For

every two functions f and g over [n], let ∆(f, g)
def
= {x ∈ [n] : f(x) 6= g(x)}. As in the proof of

Claim 7.6.2, for a random sample of s points that are labeled by a function f that is ǫ-far from Π,
we wish to lower bound the probability that f disagrees with each g ∈ Π on some point in that
sample. The issue is improving over the obvious lower bound of 1 − |Π| · (1 − ǫ)s. The argument
establishing Claim 7.6.2 made implicit use of a suitable notion of a cover of such f ’s (with respect
to Π). For B : N × [0, 1] → N and ρ : [0, 1] → [0, 1], we say that a collection SΠ(f) of subsets (of
[n]) is a (B, ρ)-cover of f (w.r.t Π) if the following two conditions hold:

1. For every g ∈ Π there exists S ∈ SΠ(f) such that S ⊆ ∆(f, g).

2. If f is ǫ-far from Π, then |SΠ(f)| ≤ B(n, ǫ) and for every S ∈ SΠ(f) it holds that |S| ≥ ρ(ǫ) ·n.

(In the proof of Claim 7.6.2, we implicitly referred to the collection SΠ(f) that contained all ∆(f, g)
for g ∈ Πls and all {x : f(x) 6= 0 = g(x)} ⊆ ∆(f, g) for g ∈ Πeq.) We stress that the collection
SΠ(f) is not constructed by the tester, it is merely used in its analysis, which asserts that a sample
of s(n, ǫ) = O(ρ(ǫ)−1 log B(n, ǫ)) random points suffices provided that SΠ(f) is a (B, ρ)-cover of Π
w.r.t f . To see that this is the case, consider any function f (over the n-element domain) that is
ǫ-far from Π. Then, by Condition 2, with probability at least 1 − (1 − ρ(ǫ))s(n,ǫ) ≥ 2/3, a sample
of s(n, ǫ) random points hits each subset in the collection SΠ(f). In this case, by Condition 1, for
every g ∈ Π this sample hits ∆(f, g).

Back to the main thread. Turning back to the gap between distribution-free sample-complexity
and one-sided error sample complexity (under the uniform distribution), we note than an ever larger
gap exists. Specifically, distribution-free sample-based testing may be extremely hard (i.e., require
a linear number of queries), while for the same property one-sided error testing (under the uniform
distribution) may be extremely easy (or even trivial). The next theorem established Item 5 in
Theorem 1.3.

Theorem 7.7 (distribution-free sample-based testing can be extremely harder than one-sided error
sample-based testing under the uniform distribution): There exists a property Π such that

1. Any distribution-free tester for Π has query complexity q(n,Ω(1)) = Ω(n). Indeed, this lower

bound holds also for two-sided error testers that make queries in addition to obtaining samples

from the distribution.

2. There exists a sample-based one-sided error tester for Π (under the uniform distribution)
having sample complexity s(n, ǫ) = Õ(1/ǫ).

In fact, we may select Π such that any function is 1/n-close to Πn.

Note that in the latter case, testing Πn has sample complexity Õ(1/ǫ), where the latter expression
smoothens the actual complexity that is s(n, ǫ) = 0 if ǫ > 1/n and s(n, ǫ) = O(n log n) otherwise.

Proof: Our construction of Πn is a disjoint union of an extremely easy-to-test property, denoted
ΠE

n−1, and an extremely hard-to-test property, denoted ΠH
n−1. Specifically, ΠE

n−1 may be trivial (i.e.,
contains all functions from [n−1] to {0, 1}), whereas ΠH

n−1 may be a property that is extremely hard
to test (i.e., requires a linear number of queries even for two-sided error testing under the uniform
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distribution, cf., e.g., [14, Sec. 4.1]).39 The disjoint union of these two properties is captured by Πn

such that f : {0, 1, . . . , n− 1} is in Πn if either f(0) = 0 and f ′ ∈ ΠE
n−1 or f(0) = 1 and f ′ ∈ ΠH

n−1,
where f ′ is the restriction of f to [n − 1] (i.e., f ′(i) = f(i) for i ∈ [n − 1]).

Indeed, testing Πn is almost trivial under the uniform distribution, since in this case any f :
[n] → {0, 1} is 1/n-close to Πn (by merely resetting f(0) = 0). Thus, for ǫ > 1/n, the tester may
just accept (without looking at anything else), whereas for ǫ ≤ 1/n it may just reconstruct the
function based on O(n log n) labeled samples (and rule accordingly). Hence:

Claim 7.7.1 The one-sided error sample complexity of Π (under the uniform distribution) is

s(n, ǫ) = Õ(1/ǫ).

The forgoing phenomenon (of each function being 1/n-close to Πn) does not necessarily hold with

respect to an arbitrary distribution: Consider, for example, a distribution that assign probability
mass of 1/2 to i = 0. In this case, if f(0) = 1 and ǫ < 1/2, we cannot afford to reset f(0) = 0
and must test the residual f ′ with respect to ΠH

n−1. In this case (i.e., ǫ < 1/2), testing Πn with
respect to the distribution Dn that assigns probability 1/2 to i = 0 and is uniform on the rest of
[n], amounts to testing ΠH

n−1. Formally:

Claim 7.7.2 Let s(n, ǫ) denote the sample complexity of one-sided error testing Πn under the

distribution Dn, and s′(n − 1, ǫ) denote the sample complexity of one-sided error testing ΠH
n−1

under the uniform distribution. Then, s′(n − 1, ǫ) ≤ s(n, ǫ/2). Ditto with respect to the query

complexity of testers that are allowed queries.40

Indeed, the sample-based tester for ΠH
n−1 invokes the sample-based tester for Πn, while providing

it with an adequately distributed sample. Specifically, for each j ∈ [t], with probability 1/2 it
places (0, 1) as the jth labeled sample of the invoked tester, and otherwise it just uses the jth

labeled sample that it got. Hence, given a uniformly distributed sample labeled by f ′, the new
tester creates a sample labeled by the corresponding f (i.e., f(0) = 1 and f(i) = f ′(i) for every
i ∈ [n − 1]), where this sample is distributed according to Dn. A similar transformation holds for
testers that make queries. Using the hardness of ΠH

n−1, the theorem follows.
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Appendix: In Passing

A.1 A relaxed notion of POT

The following definition is a hybrid of the standard definition of a tester and a POT: Specifically,
the tester gets the proximity parameter ǫ and its behavior and performance may depend on ǫ, but
its query complexity is fixed.

Definition A.1 (relaxed POT): Let Π and ̺ be as in Definition 2.2. A relaxed POT with detection
probability ̺ for Π is a probabilistic oracle machine T that makes a constant number of queries and

satisfies the following two conditions:

1. For every n ∈ N, ǫ > 0, and f ∈ Πn, it holds that Pr[T f (n, ǫ)=1] ≥ c.

2. For every n ∈ N, ǫ > 0, and f : Dn → Rn that is ǫ-far from Πn, it holds that Pr[T f (n, ǫ)=
1] ≤ c − ̺(ǫ).

Again, the constant c is called the threshold probability, and the tester is said to have one-sided error
if c = 1.

Note that detection probability of a relaxed POT is not required to increase with the distance of the
tested object to the property. (Instead, the detection probability is determined by the proximity
parameter ǫ, which is given to the tester, and the detection guarantee applies only to functions that
are ǫ-far from Π.) Nevertheless, if c = 1, then such a tester can be used to derive a POT (in which
the detection probability does increase with the distance of the tested object to the property).

Proposition A.2 If Π has a one-sided error relaxed POT with detection probability ̺, then Π
has a one-sided error POT with detection probability ̺′ such that ̺′(δ) = O(log(1/δ))2 · ̺(δ/2).
Furthermore, the resulting POT preserves the fairness of the relaxed POT, where fairness is as

defined in the beginning of Section 3.

Proof: Let T be a (one-sided error) relaxed POT with detection probability ̺ for Π, and consider
the following oracle machine: On input n and access to the oracle f , the machine selects i ∈
[⌈log2 n⌉] with probability 1/(i + 1)2, invokes T f (n, 2−i), and outputs whatever T outputs.41 Note
that if f ∈ Πn, then the new tester always outputs 1 (regardless of its choice of i). On the other
hand, if f : Dn → Rn is not in Πn, then δΠ(f) ≥ 1/n and i = ⌈log2(1/δΠ(f))⌉ is selected with
probability at least (1 + ⌈log2(1/δΠ(f))⌉)−2. In this case, T outputs 1 with probability at most
1 − ̺(2−i) ≤ 1 − ̺(δΠ(f)/2), where the inequality is due to the monotonicity of ̺.

Remark A.3 The proof of Proposition A.2 does not extend to the case that the threshold probability

is smaller than 1 (i.e., c < 1). The problem is that in such a case, not all functions in Π are

guaranteed to be accepted with probability exactly c. The proof does extend to two-sided error POTs

that satisfy the latter condition, and such POTs do exist also for properties having no one-sided

error POTs (cf., e.g., [19, Thm. 2.3] and [19, Thm. 3.1]).

41With probability 1 − P

i∈[log
2

n](i + 1)−2 > 0, the machine just outputs 1 (or alternatively it selects i ∈ [log2 n]

arbitrarily and behaves accordingly).
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A.2 Relating various notions of sampling

In this section, we relate various notions of sampling. In all cases we are given a number of samples
from a domain Dn as well as the size of this domain n = |Dn|. Definition 2.3 refers to the natural
case in which we are given a fixed number of samples, where each sample point is uniformly and
independently distributed in Dn. Thus, the given sample may contain repetitions, and in fact it
will contain repetitions with a fair (or very high) probability if its size exceeds

√
|Dn|.

It is often more convenient to consider a sample of a fixed size that is drawn without repetitions;
that is, a set of a fixed size, denoted m, that is selected uniformly among all m-subsets of Dn

Likewise, we sometime consider a sample of Dn generated by picking each element with some
probability p (e.g., p = m/n) independently of all other choices. In this section we relate these
three notions, showing that each one can emulate the others, up-to small deviations that are
typically insignificant. We first relate sampling with and without repetitions.

Construction A.4 (sampling with repetitions implies sampling without repetitions): Suppose that

m ≤ n and that we are given m uniformly and independently distributed elements of Dn, denoted

r1, . . . , rm. Then, with probability at least 1 − exp(−m), this sample contains at least m/2 distinct

elements. In this case, we let t ≥ m be the smallest integer such that |{i ∈ [t] : ri}| = m/2, and

output the m/2-set {i ∈ [t] : ri} (in random order).

Proposition A.5 (sampling without repetitions implies sampling with repetitions): Suppose that

m ≤ n and that we are given a set of m element selected uniformly among all m-subsets of Dn. Let

(e1, . . . , em) be a random ordering of the elements of this set. Consider a selection of (r1, . . . , rm)
such that, for every i ∈ [m], with probability (n− i + 1)/n we select ri = ei and otherwise we select

ri uniformly in {e1, . . . , ei−1}. Then, (r1, . . . , rm) is a sequence of m uniformly and independently

distributed elements of Dn.

Proof: We shall show that for every i ∈ [m] and for every v1, . . . , vi ∈ Dn, it holds that

Pr
[
ri = vi

∣∣∣(r1, . . . , ri−1) = (v1, . . . , vi−1)
]

= 1/n.

In fact, for each sequence of i − 1 distinct u1, . . . , ui−1 ∈ Dn, we consider the probability

Pr
[
ri = vi

∣∣∣(r1, . . . , ri−1) = (v1, . . . , vi−1) & (e1, . . . , ei−1) = (u1, . . . , ui−1)
]
.

Now, if vi ∈ {u1, . . . , ui−1}, then ri = vi with probability (1− n−i+1
n ) · 1

i−1 = 1
n . On the other hand,

if vi 6∈ {u1, . . . , ui−1}, then ri = vi with probability n−i+1
n · 1

n−(i−1) = 1
n (where 1

n−(i−1) represents

the probability that ei = vi when ei is selected uniformly in Dn \ {u1, . . . , ui−1}).

Two versions of sampling without repetitions. In the foregoing, “sampling without rep-
etitions” referred to selecting a random subset of a fixed size within Dn. An alternative notion
of sampling without repetitions arises when each element is selected with some fixed probability,
independently of all other choices.

Construction A.6 (individual selection implies sampling a set of fixed size): Suppose that each

point is selected to be included in the sample with probability p ∈ (0, 1] independently of all other

choices. Then, with probability at least 1 − exp(−pn), at least m
def
= pn/2 points are selected. In

this case, we output a random m-subset of the set of selected points (in random order).
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Construction A.7 (sampling a set of fixed size implies individual selection): Suppose that m ≤ n
and that we are given a set S of m element selected uniformly among all m-subsets of Dn. Setting

p = m/2n, let Bk(n, p) denote the probability of obtaining k successes when making n independent

experiments with success probability p each. Consider selecting i with probability Bi(n, p), and

outputting a random i-subset of S, if i ≤ |S|, and outputting nothing otherwise. Then, the output

distribution is exp(−m)-close to the distribution of a sample that is selected by including each point

in the sample with probability p independently of all other choices.

Sampling according to the binomial distribution B(n, p) (i.e., selecting i with probability Bi(n, p))
can be approximate up to ǫ in poly(log(n/ǫ))-time; cf., Knuth [26, Sec. 3.4.1] (and [15, Apdx. A.1]).

A.3 On the sample complexity of testing monomials

The following result is implicit in [3].

Proposition A.8 Let Π =
⋃

ℓ∈N
Π2ℓ , where Π2ℓ is the set of all ℓ-variable Boolean functions that

are monomials. Then, any sample-based tester for Π (under the uniform distribution) has sample

complexity s(2ℓ, ǫ) = Ω(ǫ−1 log ℓ), provided that ǫ > 2−(ℓ−ℓ0.01). Indeed, this lower bound holds also

for two-sided error testers.

Proof: Let us consider first the case ǫ = 1/3. In this case we consider the task of distinguishing
a random Boolean function f : {0, 1}ℓ → {0, 1} from a uniformly distributed dictatorship function
(i.e., di(x) = xi for i ∈ [ℓ]) based on s = 0.5 log2 ℓ labeled samples, denoted r1, . . . , rs. (This
is exactly the task analyzed in [3, Thm. VI.8].)42 The labels assigned by a random function
are uniformly and independently distributed in {0, 1}, since the probability of a repetition (i.e.,
|{r1, . . . , rs}| < s) in such a small sample is negligible. We now analyze the distribution of s
samples that are labeled by di for a uniformly distributed i ∈ [ℓ].

We consider an iterative process of assigning these labels, while initializing I = [ℓ]. Specifically,
for j = 1, 2 . . . , s, the label of the jth sample is determined by selecting ij uniformly in I, labeling
the jth sample according to dij , and resetting I to equal {i ∈ I : di(rj) = dij (rj)}. Denoting
the set I after the jth iteration by Ij , note that Ij = {i ∈ Ij−1 : rj,i = rj,ij}, where rj,i is the

ith bit of rj. Hence, for every j ∈ [s], with probability at least 1 − exp(−Ω(|Ij−1|1/3), it holds
that |Ij | = (0.5 ± |Ij−1|−1/3) · |Ij−1|. It follows that the deviation of these labels from the uniform
distribution is upper-bounded by exp(−ω(ℓ/2s)1/3) = exp(−ω(ℓ1/6)), and s(2ℓ, 1/3) ≥ 0.5 log2 ℓ
follows, since (w.v.h.p.) a random function is 1/3-far from Π.

For the general case (of ǫ < 1/6), we designate t
def
= log2(3/ǫ) of the variables and apply the

foregoing construction to the remaining ℓ− t variables. For each function f ′ : {0, 1}ℓ−t → {0, 1} (as
considered above), we consider the function f(x1, . . . , xℓ) =

∧
i∈[t] xi ∧ f ′(xt+1, . . . , xℓ). Note that if

f ′ is a dictator function then f is a monomial, whereas if f ′ is 1/3-far from Π then f is ǫ-far from
Π. We thus obtain a lower bound of s(2ℓ, ǫ) = Ω(ǫ−1 · s(2ℓ−t, 1/3)), and the claim follows.

42In fact, the furthermore clause of [3, Thm. VI.8] refers explicitly to distinguishing dictatorship functions from
random functions. Still, for sake of self-containment, we reproduce the argument here.
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