
On the Size of Depth-Three Boolean Circuits

for Computing Multilinear Functions

Oded Goldreich∗ Avi Wigderson†

November 30, 2015

Abstract

We propose that multi-linear functions of relatively low degree over GF(2) may be good
candidates for obtaining exponential1 lower bounds on the size of constant-depth Boolean cir-
cuits (computing explicit functions). Specifically, we propose to move gradually from linear
functions to multilinear ones, and conjecture that, for any t ≥ 2, some explicit t-linear functions
F : ({0, 1}n)t → {0, 1} require depth-three circuits of size exp(Ω(tnt/(t+1))).

Towards studying this conjecture, we suggest to study two frameworks for the design of depth-
three Boolean circuits computing multilinear functions, yielding restricted models for which
lower bounds may be easier to prove. Both correspond to constructing a circuit by expressing
the target polynomial as a composition of simpler polynomials. The first framework corresponds
to a direct composition, whereas the second (and stronger) framework corresponds to nested
composition and yields depth-three Boolean circuits via a ”guess-and-verify” paradigm. The
corresponding restricted models of circuits are called D-canonical and ND-canonical, respec-
tively.

Our main results are (1) a generic upper bound on the size of depth-three D-canonical
circuits for computing any t-linear function, and (2) a lower bound on the size of any depth-
three ND-canonical circuits for computing some (in fact, almost all) t-linear functions. These
bounds match the foregoing conjecture (i.e., they have the form of exp(tnt/(t+1))). Another
important result is a separation of the two models: We prove that ND-canonical circuits can be
super-polynomially smaller than their D-canonical counterparts. We also reduce proving lower
bounds for the ND-model to Valiant’s matrix rigidity problem (for parameters that were not
the focus of previous works).

The study of the foregoing (Boolean) models calls for an understanding of new types of
arithmetic circuits, which we define in this paper and may be of independent interest. These
circuits compute multilinear polynomials by using arbitrary multilinear gates of some limited
arity. It turns out that a GF(2)-polynomial is computable by such circuits with at most s gates
of arity at most s if and only if it can be computed by ND-canonical circuits of size exp(s).
A similar characterization holds for D-canonical circuits if we further restrict the arithmetic
circuits to have depth two. We note that the new arithmetic model makes sense over any field,
and indeed all our results carry through to all fields. Moreover, it raises natural arithmetic
complexity problems which are independent of our original motivation.

Keywords: Constant-depth Boolean circuits, depth-three Boolean circuits, arithmetic circuits, circuit lower bounds, multilinear
functions, multilinear circuits, high-order tensors, matrix rigidity.

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il

†School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA. avi@ias.edu
1Throughout this paper, when we say that a function f is exponential, we mean that f(n) = exp(Θ(n)).

An alternative summary

This paper introduces and initiates a study of a new model of arithmetic circuits coupled with
new complexity measures. The new model consists of multilinear circuits with arbitrary multilinear
gates, rather than the standard multilinear circuits that use only addition and multiplication gates.
In light of this generalization, the arity of gates becomes of crucial importance and is indeed one
of our complexity measures. Our second complexity measure is the number of gates in the circuit,
which (in our context) is significantly different from the number of wires in the circuit (which is
typically used as a measure of size). Our main complexity measure, denoted C(·), is the maximum
of these two measures (i.e., the maximum between the arity of the gates and the number of gates
in the circuit). We also consider the depth of such circuits, focusing on depth-two and unbounded
depth.

Our initial motivation for the study of this arithmetic model is the fact that the two main
variants (i.e., depth-two and unbounded depth) yield natural classes of depth-three Boolean circuits
for computing multi-linear functions. The resulting circuits have size that is exponential in the new
complexity measure. Hence, lower bounds on the new complexity measure yield lower bounds on a
restricted class of depth-three Boolean circuits (for computing multi-linear functions). Such lower
bounds are a sanity check for our conjecture that multi-linear functions of relatively low degree
over GF(2) are good candidates for obtaining exponential lower bounds on the size of constant-
depth Boolean circuits (computing explicit functions). Specifically, we propose to move gradually
from linear functions to multilinear ones, and conjecture that, for any t ≥ 2, some explicit t-linear
functions F : ({0, 1}n)t → {0, 1} require depth-three circuits of size exp(Ω(tnt/(t+1))).

Letting C2(·) denote the complexity measure C(·), when minimized over all depth-two circuits
of the above type, our main results are as follows.

• For every t-linear function F , it holds that C(F) ≤ C2(F) = O((tn)t/(t+1)).

• For almost all t-linear function F , it holds that C2(F) ≥ C(F) = Ω((tn)t/(t+1)).

• There exists a bilinear function F such that C(F) = O(
√

n) but C2(F) = Ω(n2/3).

The main open problem posed in this paper is proving a result analogous to (2) for an explicit
function F . For starters, we seek lower bound of Ω((tn)0.51) for an explicit t-linear function F ,
preferably for constant t. We outline an approach that reduces this challenge (for t = 3) to a
question regarding matrix rigidity.

Organization. The introduction contains an extensive motivation for the model of arithmetic
circuits that is studied in the paper. Readers who are only interested in the model, may skip the
introduction with little harm, except for the definition of three specific functions that appear (in
displayed equations) towards the end of Section 1.1. See Section 1.7 for notes regarding material
that was added after the first posting.

i

Contents

An alternative summary i

1 Introduction 1

1.1 The candidate functions . 1
1.2 Design from direct composition: the D-canonical model . 3
1.3 Design from nested composition: the ND-canonical model . 4
1.4 An arithmetic circuit complexity perspective . 5
1.5 Related work . 7
1.6 Various conventions . 8
1.7 Organization . 8

2 Multilinear circuits with general gates 9

2.1 The two complexity measures . 9
2.2 Relation to canonical circuits . 11

3 Upper Bounds 13

3.1 A generic upper bound . 13
3.2 Improved upper bounds for specific functions (e.g., F t,n

leq) . 14

4 Lower Bounds 16

4.1 On the complexity of almost all multilinear functions . 16
4.2 The complexity of bilinear functions and matrix rigidity . 17
4.3 On structured rigidity . 21

5 On two restricted models 22

5.1 On computing without cancellation . 22
5.2 Addition and multiplication gates of parameterized arity . 24

5.2.1 The restricted model separates F t,n
all and F t,n

diag from F 2,n
leq 24

5.2.2 On the restricted complexity of almost all t-linear functions 26

Acknowledgments 28

Bibliography 28

Appendix A: On separating NL from P 30

Appendix B: On worst-case vs average-case 30

Appendix C: On the size of DNFs and CNFs computing multilinear functions 31

A gap between DNF and CNF size . 32
C.1 A lower bound that hold for all t-linear functions . 32
C.2 The intermediate range: a parity-level lower bound . 33
C.3 Lower bounds that are exponential in tn . 34

An upper bound for F 2,n
leq . 34

A general lower bound . 35
Instantiations of the general lower bound . 36

ii

1 Introduction

Strong lower bounds on the size of constant-depth Boolean circuits computing parity and other explicit
functions (cf., e.g., [30, 8] and [22, 25]) are among the most celebrated results of complexity theory. These
quite tight bounds are all of the form exp(n1/(d−1)), where n denote the input length and d the circuit
depth. But we do not know of any exponential lower bounds (i.e., of the form exp(Ω(n))) on the size of
constant-depth circuits computing any explicit function (i.e., a Boolean function in E = ∪c∈NDtime(fc),
where fc(n) = 2cn).

Providing exponential lower bounds on the size of constant-depth Boolean circuits computing explicit
functions is a central problem of circuit complexity, even when restricting attention to depth-three circuits
(cf., e.g., [12, Chap. 11]). It seems that such lower bounds cannot be obtained by the standard interpretation
of either the random restriction method [6, 8, 30] or the approximation by polynomials method [22, 25]. Many
experts have tried other approaches (cf., e.g., [10, 13]2), and some obtained encouraging indications (i.e.,
results that refer to restricted models, cf., e.g., [19]); but the problem remains wide open.

There are many motivations for seeking exponential lower-bounds for constant-depth circuits. Two no-
table examples are separating NL from P (see Appendix A) and presenting an explicit function that does
not have linear-size circuits of logarithmic depth (see Valiant [28]). Another motivation is the derandomiza-
tion of various computations that are related to AC0 circuits (e.g., approximating the number of satisfying
assignments to such circuits). Such derandomizations can be obtained via “canonical derandomizers” (cf. [7,
Sec. 8.3]), which in turn can be constructed based on strong average-case versions of circuit lower bounds;
cf. [17, 18].

It seems that the first step should be beating the exp(
√

n) size lower bound for depth-three Boolean
circuits computing explicit functions (on n bits). A next step may be to obtain a truly exponential lower
bound for depth-three Boolean circuits, and yet another one may be to move to any constant depth.

This paper focuses on the first two steps; that is, it focuses on depth-three circuits. Furthermore, within
that confined context, we focus on a restricted type of circuits, which emerges rather naturally from the class
of functions that we propose to study.

1.1 The candidate functions

We suggest to study specific multilinear functions of relatively low degree over the binary field, GF(2), and
in the sequel all arithmetic operations are over this field. For t, n ∈ N, we consider t-linear functions of the
form F : ({0, 1}n)t → {0, 1}, where F is linear in each of the t blocks of variables (which contain n variables
each). Such a function F is associated with a t-dimensional array, called a tensor, T ⊆ [n]t such that

F (x(1), x(2), ..., x(t)) =
∑

(i1,i2,...,it)∈T

x
(1)
i1

x
(2)
i2
· · ·x(t)

it
(1)

where here and throughout this paper x(j) = (x
(j)
1 , ..., x

(j)
n) ∈ {0, 1}n for every j ∈ [t]. Indeed, we refer to

a fixed partition of the Boolean variables to t blocks, each containing n variables, and to functions that are
linear in the variables of each block. Such functions were called set-multilinear in [19]. Note that the input
length for these functions is t · n; hence, exponential lower bounds mean bounds of the form exp(Ω(tn)).

We will start with a focus on constant t, and at times we will also consider t to be a function of n, but
n will always remain the main length parameter. Actually, it turns out that t = t(n) = Ω(log n) is essential
for obtaining exponential lower bounds (i.e., size lower bounds of the form exp(Ω(tn)) for depth-d circuits,
when d > 2).

A good question to ask is whether there exists any multilinear function that requires constant-depth
Boolean circuit of exponential size (i.e., size exp(Ω(tn))). We conjecture that the answer is positive.

Conjecture 1.1 (a sanity check for the entire approach): For every d > 2, there exist t-linear functions
F : ({0, 1}n)t → {0, 1} that cannot be computed by Boolean circuits of depth d and size exp(o(tn)), where
t = t(n) ≤ poly(n).

2The relevance of the Karchmer and Wigderson approach [13] to constant-depth circuits is stated explicitly in [14,
Sec. 10.5].

1

We believe that the conjecture holds even for t = t(n) = O(log n), and note that, for any fixed t, there exist
explicit t-linear functions that cannot be computed by depth-two circuits of size 2tn/4 (see Appendix C.3).

Merely proving Conjecture 1.1 may not necessarily yield a major breakthrough in the state-of-art re-
garding lower bounds, although it seems that a proof will need to do something more interesting than mere
counting. However, disproving Conjecture 1.1 will cast a shadow on our suggestions, which may nevertheless
maintain their potential for surpassing the exp((tn)1/(d−1)) barrier.3

Assuming that Conjecture 1.1 holds, one should ask which explicit functions may “enjoy” such lower

bounds. Two obviously bad choices are (1) F t,n
all(x

(1), ..., x(t)) =
∑

i1,...,it∈[n] x
(1)
i1
· · ·x(t)

it
and (2) F t,n

diag(x
(1), ..., x(t)) =

∑
i∈[n] x

(1)
i · · ·x

(t)
i , since each is easily reducible to an n-way parity (the lower bounds for which we wish to

surpass).4 The same holds for any function that corresponds either to a rectangular tensor (i.e., I1×· · ·× It,
where I1, .., It ⊆ [n]) or to a sparse tensor (e.g., T ⊆ [n]t such that |T | = O(n)). Ditto w.r.t the sum of
few such tensors. Indeed, one should seek tensors T ⊆ [n]t that are far from the sum of few rectangular
tensors (i.e., far from any tensor of low rank [26]). On the other hand, it seems good to stick to as “simple”
tensors as possible so as to facilitate their analysis (let alone have the corresponding multilinear function be
computable in exponential-time (i.e., in E)).5

A less obvious bad choice. Consider the function F t,n
leq : ({0, 1}n)t → {0, 1} such that

F t,n
leq(x

(1), x(2), ..., x(t)) =
∑

1≤i1≤i2≤···≤it≤n

x
(1)
i1

x
(2)
i2
· · ·x(t)

it
(2)

(having the corresponding tensor T t,n
leq = {(i1, ..., it) ∈ [n]t : i1 ≤ i2 ≤ · · · ≤ it}). Note that this function

is polynomial-time computable (e.g., via dynamic programming),6 and that t = 1 corresponds to Parity.
Unfortunately, for every constant t ≥ 2, the function F t,n

leq is not harder than parity: It has depth-three
circuits of size exp(O(

√
n)); see Proposition 3.4. Thus, we move the slightly less simple candidates presented

next.

Specific candidates. We suggest to consider the following t-linear functions, F t,n
tet and F t,n

mod p (especially

for p ≈ 2t ≈ n), which are presented next in terms of their corresponding tensors (i.e., T t,n
tet and T t,n

mod p, resp).

T t,n
tet =

(i1, ..., it) ∈ [n]t :

∑

j∈[n]

|ij − (n/2)| ≤ n/2

 (3)

T t,n
mod p =

(i1, ..., it) ∈ [n]t :

∑

j∈[t]

ij ≡ 0 (mod p)

 (4)

Note that these functions are also computable in polynomial-time.7 For p < n, it holds that F t,n
mod p(x

(1), ..., x(t))

equals F t,p
mod p(y

(1), ..., y(t)), where y
(j)
r =

∑
i∈[n]:i≡r (mod p) x

(j)
i for every j ∈ [t] and r ∈ [p]. This reduction

3Showing an upper bound of the form exp((tn)1/(d−1)) on the size circuits of depth d that compute any t-linear
function seems unlikely (cf. [19], which proves an exponential in t lower bound on the size of depth-three arithmetic
circuits).

4Note that F t,n
all (x(1), ..., x(t)) =

Q

j∈[t]

P

ij∈[n] x
(j)
ij

, which means that it can be computed by a t-way conjunction

of n-way parity circuits, whereas F t,n
diag is obviously an n-way parity of t-way conjunctions of variables.

5Thus, these tensors should be constructible within exp(tn)-time. Note that we can move from the tensor to the
multilinear function (and vice versa) in nt << exp(tn) oracle calls.

6Note that F t,n
leq (x(1), ..., x(t)) equals

P

i∈[n] F
t−1,i
leq (x

(1)

[1,i], ..., x
(t−1)

[1,i]) ·x
(t)
i , where x

(j)

[1,i] = (x
(j)
1 , ..., x

(j)
i). So, for every

t′ ∈ [t − 1], the dynamic program uses the n values (F t′,i
leq (x

(1)
[1,i], ..., x

(t′)
[1,i]))i∈[n] in order to compute the n values

(F t′+1,i
leq (x

(1)
[1,i], ..., x

(t′+1)
[1,i]))i∈[n].

7Again, we use dynamic programming, but here we apply it to generalizations of these functions. Specif-
ically, let T t,n,d

tet = {(i1, ..., it) ∈ [n]t :
P

j∈[n] |ij − (n/2)| ≤ d} and note that the associated function

2

may have a forbidding “size cost” in the context of circuits of a specific depth (especially if p≪ n), but its
cost is insignificant if we are willing to double the depth of the circuit (and aim at lower bounds that are
larger than those that hold for parity). Thus, in the latter cases, we may assume that p = Ω(n), but of
course p < tn must always hold.

We note that none of the bilinear versions of the foregoing functions can serve for beating the exp(
√

n)
lower bound. Specifically, the failure of F 2,n

mod p is related to the aforementioned reduction, whereas the failure

of F 2,n
tet is related to the fact that boundary of its tensor has linear size (just as in the case of F 2,n

leq). But

these weaknesses do not seem to propagate to the trilinear versions. (In contrast, the function F t,n
leq fails

also for higher values of t, since the boundary of T t,n
leq can be “decomposed” into a constant number of

lower-dimensional tensors. But this does not seem to be the case for F t,n
tet .)

What’s next? In an attempt to study the viability of our suggestions and conjectures, we defined two
restricted classes of depth-three circuits and tried to prove lower bounds on the sizes of circuits from these
classes that compute the foregoing functions. Our success in proving lower bounds was very partial, and will
be discussed next – as part of the discussion of these two classes (in Sections 1.2 and 1.3).

1.2 Design from direct composition: the D-canonical model

What is a natural way of designing depth-three Boolean circuits that compute multilinear functions?
Let us take our cue from the linear case (i.e., t = 1). The standard way of obtaining a depth-three

circuit of size exp(
√

n) for n-way parity is to express this linear function as the
√

n-way sum of
√

n-ary
functions that are linear in disjoint sets of variables. The final (depth-three) circuit is obtained by combing
the depth-two circuit for the outer sum with the depth-two circuits computing the

√
n internal sums.

Hence, a natural design strategy is to express the target multilinear function (F) as a polynomial (H)
in some auxiliary multilinear functions (Fi’s), and combine depth-two circuits that compute the auxiliary
multilinear functions with a depth-two circuit that computes the main polynomial (i.e., H). That is, we
“decompose” the multilinear function on the algebraic level, expressing it as a polynomial in auxiliary
multilinear functions (i.e., F = H(F1, ..., Fs)), and implement this decomposition on the Boolean level (i.e.,
each polynomial is implemented by a depth-two Boolean circuit). Specifically, to design a depth-three circuit
of size exp(O(s)) for computing a multilinear function F the following steps are taken:

1. Select s arbitrary multilinear functions, F1, ..., Fs, each depending on s input bits;

2. Express F as a polynomial H in the Fi’s;

3. Obtain a depth-three circuit by combining depth-two circuits for computing H and the Fi’s.

Furthermore, we mandate that H(F1, ..., Fs) is a syntactically multilinear function; that is, the monomials
of H do not multiply two Fi’s that depend on the same block of variables. The size of the resulting circuit
is taken to be exp(Θ(s)): The upper bound is justified by the construction, and the lower bound by the
assumption that (low degree) polynomials that depend on s variables require depth-two circuits of exp(s)
size. (The latter assumption is further discussed in Section 2.2.)8

Circuits that are obtained by following this framework are called D-canonical, where “D” stands for direct
(or deterministic, for reasons that will become apparent in Section 1.3). D-canonical circuits seem natural
in the context of computing multi-linear functions by depth-three Boolean circuits.

For example, the standard design, reviewed above, of depth-three circuits (of size exp(
√

n)) for (n-
way) parity yields D-canonical circuits. In general, D-canonical circuits for a target multilinear function

satisfies F t,n,d
tet (x(1), ..., x(t)) =

P

i∈[n] F
t−1,n,d−i
tet (x(1), ..., x(t−1)) · x(t)

i . Likewise, consider the tensor T t,n,r
mod p =

n

(i1, ..., it) ∈ [n]t :
P

j∈[t] ij ≡ r (mod p)
o

and note that the associated function satisfies F t,n,r
mod p(x

(1), ..., x(t)) =
P

i∈[n] F
t−1,n,r−i
mod p (x(1), ..., x(t−1)) · x(t)

i .
8In brief, when computing t-linear polynomials, a lower bound of exp(Ω(s/2t)) on the size of depth-two circuits

can be justified (see Appendix C). Furthermore, for 2t ≪ s, a lower bound of exp(Ω(s)) can be justified if the CNFs
(or DNFs) used are “canonical” (i.e., use only s-way gates at the second level).

3

are obtained by combining depth-two circuits that compute auxiliary multilinear functions with a depth-
two circuit that computes the function that expresses the target in terms of the auxiliary functions. The
freedom of the framework (or the circuit designer) is reflected in the choice of auxiliary functions, whereas the
restriction is in insisting that the target multilinear functions be computed by composition of a polynomial
and multilinear functions (and that this composition corresponds to a syntactically multilinear function).

Our main results regarding D-canonical circuits are a generic upper bound on the size of D-canonical cir-
cuits computing any t-linear function and a matching lower bound that refers to almost all t-linear functions.
That is:

Theorem 3.1: For every t ≥ 2, every t-linear function F : ({0, 1}n)t → {0, 1} can be computed by D-canonical
circuits of size exp((tn)t/(t+1)).

(Corollary to) Theorem 4.1: For every t ≥ 2, almost all t-linear functions F : ({0, 1}n)t → {0, 1} require
D-canonical circuits of size at least exp(Ω(tn)t/(t+1)).

Needless to say, the begging question is what happens with explicit multilinear functions.

Problem 1.2 (main problem regarding D-canonical circuits): For every t ≥ 2, prove a exp(Ω(tn)t/(t+1))
lower bound on the size of D-canonical circuits computing some explicit function. Ditto when t may vary
with n, but t ≤ poly(n).

Of course, at this time, it would be interesting to obtain any lower bound that goes beyond the exp(
√

tn)
barrier. As mentioned in Section 1.1, for every t ≥ 2, the function F t,n

leq cannot be used towards that goal: By

Proposition 3.4, F t,n
leq has D-canonical circuits of size exp(O(

√
n)). In contrast, F t,n

tet seems quite promising
(see Section 4.2).

We comment that we obtained the exp(O(
√

n))-sized D-canonical circuits for F t,n
leq by realizing that F t,n

leq

has linear-size circuits of logarithmic depth (i.e., it is simple in the sense of Valiant [28]), and thus it must
have subexponential size depth-three circuits (cf. [28]). Reverse-engineering Valiant’s argument, as applied
to F t,n

leq , and optimizing the design, we arrived at the current proofs, which are presented (in Section 3.2) in
a self-contained manner (without mentioning Valiant’s method).

1.3 Design from nested composition: the ND-canonical model

As appealing as D-canonical circuits may appear, it turns out that one can build significantly smaller
circuits by employing the “guess and verify” technique. This allows to express the target function in terms
of auxiliary functions, which themselves are expressed in terms of other auxiliary functions, and so on. That
is, the “expression depth” is no longer 1, it is even not a priori bounded, and yet the resulting circuit has
depth-three.

The basic idea is to use s non-deterministic guesses for the values of s auxiliary functions, and to verify
each of these guesses based on (some of) the other guesses and at most s bits of the original input. Thus,
the verification amounts to the conjunction of s conditions, where each condition depends on at most 2s bits
(and can thus be verified by a CNF of size exp(2s)). The final depth-three circuit is obtained by replacing
the s non-deterministic guesses by a 2s-way disjunction.

This way of designing depth-three circuits leads to a corresponding framework, and the circuits obtained
by it are called ND-canonical, where “ND” stands for non-determinism. In this framework depth-three
circuits of size exp(O(s)) for computing a multilinear function F are designed by the following three-step
process:

1. Select s auxiliary multi-linear functions, F1, ..., Fs;

2. Express F as well as each of the other Fi as a polynomial in the subsequent Fi’s and in at most s
input bits;

3. Obtain a depth-three circuit by combining depth-two circuits for computing these polynomials, where
the combination implements s non-deterministic choices as outlined above.

4

As in the D-canonical framework, the polynomials used in Step (2) should be such that replacing the functions
Fi’s in them yields multilinear functions (i.e., this is a syntactic condition). Again, the size of the resulting
circuit is taken to be exp(Θ(s)).

Note that, here (in the case of ND-canonical circuits), the combination performed in Step (3) is not a
functional composition (as in the case of the D-canonical circuits). It is rather a verification of the claim
that there exists s + 1 values that fit all s + 1 expressions (i.e., of F and the Fi’s). The implementation of
Step (3) calls for taking the conjunction of these s + 1 depth-two computations as well as taking a 2s+1-way
disjunction over all possible values that these computations may yield.

The framework of ND-canonical circuits allows to express F in terms of Fi’s that are themselves expressed
in terms of Fj ’s, and so on. In contrast, in the D-canonical framework, the Fi’s were each expressed in terms
of s input bits. A natural question is whether this generalization actually helps. We show that the answer
is positive.

Theorem 2.3: There exists bilinear functions F : ({0, 1}n)2 → {0, 1} that have ND-circuits of size exp(O(
√

n))
but no D-circuits of size exp(o(n2/3)).

Turning to our results regarding ND-circuits, the upper bound on D-canonical circuits clearly holds for
ND-circuits, whereas our lower bound is actually established for ND-canonical circuits (and the result for
D-canonical circuits is a corollary). Thus, we have

(Corollary to) Theorem 3.1: For every t ≥ 2, every t-linear function F : ({0, 1}n)t → {0, 1} can be computed
by ND-canonical circuits of size exp((tn)t/(t+1)).

Theorem 4.1: For every t ≥ 2, almost all t-linear functions F : ({0, 1}n)t → {0, 1} require ND-canonical
circuits of size at least exp(Ω(tn)t/(t+1)).

Again, the real challenge is to obtain such a lower bound for explicit multilinear functions.

Problem 1.3 (main problem regarding ND-canonical circuits): For every t ≥ 2, prove a exp(Ω(tn)t/(t+1))
lower bound on the size of ND-canonical circuits computing some explicit function. Ditto when t may vary
with n, but t ≤ poly(n).

For starters, prove a exp(Ω(tn)0.51) lower bound on the size of ND-canonical circuits computing some explicit
t-linear function.

As a possible step towards this goal we reduce the task of proving such a lower bound for F 3,n
tet to proving

a lower bound on the rigidity of matrices with parameters that were not considered before. In particular, an
exp(ω(

√
n)) lower bound on the size of ND-canonical circuits computing F 3,n

tet will follow from the existence
of an n-by-n Toeplitz matrix that has rigidity ω(n3/2) with respect to rank ω(n1/2). For more details, see
Section 4.2 (as well as Section 4.3).

1.4 An arithmetic circuit complexity perspective

The two models of canonical (depth-three) Boolean circuits are rooted in and correspond to two models of
arithmetic circuits (for computing multilinear functions). In both arithmetic models, a (multilinear) function
F is computed by composing auxiliary (multilinear) functions and variables of F . The D-canonical circuits
are obtained by a straightforward implementation of some direct composition (i.e., F = H(F1, ..., Fs), where
each Fi depends on at most s variables of F). The ND-canonical circuits are obtained by a Valiant-like
(i.e., akin [28]) implementation of some general nested composition of auxiliary functions and variables; that
is, guessing and verifying the values of all auxiliary functions, where each auxiliary function is expressed in
terms of F ’s variables and subsequent auxiliary functions. In either case, the parameter that determines
the size of the resulting Boolean circuit is the maximum between the number of auxiliary functions and the
number of variables that appear explicitly in each auxiliary function. This parameter restricts the power of
the underlying arithmetic circuits or rather serves as their complexity measure. Let us spell out these two
models of arithmetic circuit complexity.

The arithmetic circuits we refer to arise when viewing the foregoing auxiliary functions as gates that
compute arbitrary multilinear functions of their arguments, which correspond to other auxiliary functions

5

and/or input variables (such that arguments that depend on variables in the same block are not multiplied
by such gates). The aforementioned parameter corresponds to the maximum between the number of gates
and the arity of these gates.9 Direct composition corresponds to depth-two arithmetic circuits (with such
general gates), where the target function corresponds to the top gate and the auxiliary functions correspond
to the gates that feed into the top gate. Nested composition corresponds to arithmetic circuits (with such
general gates) of arbitrary depth, where gates may feed into gates that are not necessarily the top gate.
More specifically:

• Following [19], we say that an arithmetic circuit is multilinear if its input variables are partitioned into
blocks and the gates of the circuit compute multilinear functions such that if two gates have directed
paths from the same block of variables then the results of these two gates are not multiplied together.

• We say that the direct-composition complexity of F , denoted C2(F), is at most s if F can be computed
by a depth-two multi-linear circuit with at most s gates that are each of arity at most s.

• We say that the nested-composition complexity of F , denoted C(F), is at most s if F can be computed
by a multi-linear circuit with at most s gates that are each of arity at most s.

We stress that the multilinear circuits in the foregoing definition employ arbitrary multilinear gates, whereas
in the standard arithmetic model the gates correspond to either (unbounded) addition or multiplication.
Our complexity measure is related to but different from circuit size: On the one hand, we only count the
number of gates (and discard the number of leaves, which in our setting may be larger). On the other hand,
our complexity measure also bounds the arity of the gates.

Note that for any linear function F , it holds that C2(F) = Θ(C(F)), because all intermediate gates
can feed directly to the top gate (since, in this case, all gates compute linear functions).10 Also note that
C2(F) equals the square root of the number of variables on which the linear function F depends. In general,
C(F) ≥

√
tn for any t-linear function F that depends on all its variables, and C(F) ≤ C2(F) ≤ tn for any

t-linear function F . Thus, our complexity measures (for non-degenerate t-linear functions) range between√
tn and tn.

Clearly, F has a D-canonical (resp., ND-canonical) circuit of size exp(Θ(s)) if and only if C2(F) = s (resp.,
C(F) = s). Thus, all results and open problems presented above (i.e., in Sections 1.2 and 1.3) in terms of
canonical (Boolean) circuits are actually results and open problems regarding the complexity of (direct and
nested) composition (i.e., C2(·) and C(·)). Furthermore, the results are actually proved by analyzing these
complexity measures. Specifically, we have:

Thm. 3.1: For every t-linear function F , it holds that C(F) ≤ C2(F) = O((tn)t/(t+1)).

Thm. 4.1: For almost all t-linear function F , it holds that C2(F) ≥ C(F) = Ω((tn)t/(t+1)).

Thm. 2.3: There exists a bilinear function F such that C(F) = O(
√

n) but C2(F) = Ω(n2/3).

We stress that the foregoing lower bounds are existential, whereas we seek ω(
√

n) lower bounds for explicit
multilinear functions.

Hence, this paper introduces and initiates a study of a new model of arithmetic circuits and accompanying
new complexity measures. The new model consists of multilinear circuits with arbitrary multilinear gates,
rather than the standard multilinear circuits that use only addition and multiplication gates. In light of
this generalization, the arity of gates becomes of crucial importance and is indeed one of our complexity
measures. Our second complexity measure is the number of gates in the circuit, which (in our context) is
significantly different from the number of wires in the circuit (which is typically used as a measure of size).

9There is a small discrepancy between the parameter as defined in the prior paragraph and the way it is defined
here: In the prior definition we only bounded the number of leaves (variables) that feed into each gate, while the
number of non-leaves that feed a gate is bounded by the total number of gates. Thus, the arity of the gate (as defined
here) is at most twice the value defined before. Also, our current gate count also counts the top gate, whereas it was
not counted before. On the other hand, when defining direct composition complexity before, we did not allow the
top gate to have leaves, but this can be fixed by adding dummy gates that take a single leaf each.

10A more general argument is presented in Remark 2.4, which asserts that if gate G computes a monomial that
contains no leaves, then this monomial can be moved up to the parent of G.

6

Our main complexity measure is the maximum of these two measures (i.e., the maximum between the arity
of the gates and the number of gates in the circuit). Our initial motivation for the study of this arithmetic
model is its close relation to canonical Boolean circuits, and from this perspective depth-two arithmetic
circuits have a special appeal.

A natural question is whether our complexity measure (i.e., C) decreases if one waives the requirement
that the arithmetic circuit be a multilinear one (i.e., the gates compute multilinear functions and they never
multiply the outcomes of gates that depend on the same block of variables). The answer is that waiving this
restriction in the computation of any t-linear function may decrease the complexity by at most a factor of
2t (see Remark 2.5).

We note that the arithmetic models discuss above make sense with respect to any field. The reader may
verify that all results stated for C2(·) and C(·) hold for every field, rather than merely for the binary field.
Ditto for the open problems.

1.5 Related work

Multilinear functions were studied in a variety of models, mostly in the context of algebraic and arithmetic
complexity. In particular, Nisan and Wigderson [19] initiated a study of multilinear circuits as a natural
model for the computation of multilinear functions. Furthermore, they obtained an exponential (in t) lower
bound on the size of depth-three multilinear circuits that compute a natural t-linear function (i.e., iterated
matrix multiplication for 2-by-2 matrices).11

The multilinear circuit model was studied in subsequent works (cf., e.g., [21]); but, to the best of our
knowledge, the complexity measure introduced in Section 1.4 was not studied before. Nevertheless, it may
be the case that techniques and ideas developed in the context of the multilinear circuit model will be useful
for the study of this new complexity measure (and, equivalently, in the study of canonical circuits). For
example, it seems that the latter study requires a good understanding of tensors, which were previously
studied with focus at a different type of questions (cf., e.g., [20]).

In the following two paragraphs we contrast our model of multilinear circuits, which refers to arbitrary
gates of arity that is reflected in our complexity measure, with the standard model of multilinear circuits [19],
which uses only addition and multiplication gates (of unbounded arity). For the sake of clarity, we shall
refer to canonical circuits rather than to our model of multilinear circuits, while reminding the reader that
the two are closely related.

The difference between the standard model of constant-depth multilinear circuit and the model of
constant-depth Boolean circuits is rooted in the fact that the (standard) multilinear circuit model con-
tains unbounded fan-in addition gates as basic components, whereas unbounded fan-in addition is hard for
constant-depth Boolean circuits. Furthermore, the very fact that n-way addition requires exp(n)-size depth-
two Boolean circuits is the basis of the approach that we are suggesting here. In contrast, hardness in the
multilinear circuit model is related to the total degree of the function to be computed.12

The foregoing difference is reflected in the contrast between the following two facts: (1) multilinear
functions of low degree have small depth-two multilinear circuits (i.e., each t-linear function F : ({0, 1}n)t →
{0, 1} can be written as the sum of at most nt products of variables), but (2) almost all such functions require
depth-three Boolean circuits of subexponential size (because parity is reducible to them). Furthermore,
(2’) almost all t-linear functions require depth-three canonical circuits of size at least exp(Ω(tn)t/(t+1)), see
Theorem 4.1. Hence, in the context of low-degree multilinear functions, depth-three Boolean circuits (let
alone canonical ones) are weaker than standard (constant-depth) multilinear circuits, and so proving lower
bounds for the former may be easier.

11Thus, n = 4 and t is the number of matrices being multiplied.
12Concretely, the conjectured hardness of computing a multilinear function by constant-depth Boolean circuits

may stem from the number (denoted n) of variables of the same type (i.e., the variables in x(j)), even when the
arity of multiplication (denoted t) is relatively small (e.g., we even consider bilinear functions), whereas in the
multilinear circuits hardness seem to be related to t (cf., indeed, the aforementioned lower bound for iterated matrix
multiplication).

7

Decoupling arity from the number of gates. In a work done independently (but subsequent to
our initial posting13), Hrubes and Rao studied Boolean circuits with general gates [11]. They decoupled the
two parameters (i.e., the number of gates and their arity), and studied the asymmetric case of large arity and
a small number of gates. We refrained from decoupling these two parameters here, since for our application
their maximum is the governing parameter.

1.6 Various conventions

As stated up-front, throughout this paper, when we say that a function f : N → N is exponential, we
mean that f(n) = exp(Θ(n)). Actually, exp(n) often means exp(cn), for some unspecified constant c > 0.
Throughout this paper, we restrict ourselves to the field GF(2), and all arithmetic operations are over this
field.14

Tensors. Recall that any t-linear function F : ({0, 1}n)t → {0, 1} is associated with the tensor T ⊆ [n]t

that describes its existing monomials (cf., Eq. (1)). This tensor is mostly viewed as a subset of [n]t, but
at times such a tensor is viewed in terms of its corresponding characteristic predicate or the predicate’s
truth-table; that is, T ⊆ [n]t is associated with the predicate χT : [n]t → {0, 1} or with the t-dimensional
array (χT (i1, ..., it))i1,...,it∈[n]) such that χT (i1, ..., it) = 1 iff (i1, ..., it) ∈ T . The latter views are actually
more popular in the literature, and they also justify our convention of writing

∑
k∈[m] Tk instead of the

symmetric difference of T1, ..., Tm ⊆ [n]t (i.e., (i1, ..., it) ∈
∑

k∈[m] Tk iff |{k ∈ [m] : (i1, ..., it) ∈ Tk}| is odd).

1.7 Organization

The rest of this paper focuses on the study of the direct and nested composition complexity of multilinear
functions (and its relation to the two canonical circuit models). This study is conducted in terms of the
arithmetic model outlined in Section 1.4; that is, of multilinear circuits with general multilinear gates and a
complexity measure that accounts for both the number of these gates and their arity. The basic definitional
issues are discussed in Section 2, upper bounds are presented in Section 3, and lower bounds in Section 4.

In Section 5.2 we study a restricted arithmetic model obtained by allowing only standard addition
and multiplication gates (and considering the same complexity measure as above, except for not counting
multiplication gates that are fed only by variables). While this model is quite natural, it is quite weak.
Nevertheless, this model allows to separate F t,n

all and F t,n
diag from the “harder” F 2,n

leq , which means that in this
model we are able to prove a non-trivial lower bound on an explicit function.

In addition, mainly due to their role in the canonical framework, we also studied the size of depth-two
circuits computing various multilinear functions (see Appendix C). Even in this case, we leave several open
problems. One key notion in our study of depth-two circuits is that of the number of variables that influence
the linear function that is obtained from the t-linear function by fixing random values to all other t−1 blocks
of variables.

Two shorter appendices refer to (1) the effect of lower bounds (on the size of constant-size circuits) on
the class NL, and (2) worst-case vs average-case (size) complexity in the context of constant-depth circuits
for multilinear functions. See Appendices A and B, respectively.

Added after first posting

Lower bounds on the size of ND-canonical circuits will follow also from a relaxed notion rigidity, which we
call structured rigidity. This notion is introduced and studied in Section 4.3. In particular, we show that
structured rigidity is strictly separated from the standard notion of rigidity.

In Section 5.1, we study another restricted model of arithmetic circuits – circuits that compute functions
without relying on cancellations. We show that such circuits are weaker than the general arithmetic circuits
considered in the bulk of the paper. Specifically, we prove a Ω(n2/3) lower bound on the complexity of
circuits that compute an explicit function without cancellation.

13See ECCC TR13-043, March 2013.
14However, as stated in Section 1.4, all results extend to other fields.

8

2 Multilinear circuits with general gates

In this section we introduce a new model of arithmetic circuits, where gates may compute arbitrary multilin-
ear functions (rather than either addition or multiplication, as in the standard model). Accompanying this
new model is a new complexity measure, which takes into account both the number of gates and their arity.
This model (and its restriction to depth-two circuits) is presented in Section 2.1 (where we also present a
separation between the general model and its depth-two restriction). As is clear from the introduction, the
model is motivated by its relation to canonical depth-three Boolean circuits. This relation is discussed in
Section 2.2.

Recall that we consider t-linear functions of the form F : (GF(2)n)t → GF(2), where the tn variables
are partitioned into t blocks with n variables in each block and F is linear in the variables of each block.

Specifically, for t and n, we consider the variable blocks x(1), x(2), ..., x(t), where x(j) = (x
(j)
1 , ..., x

(j)
n) ∈

GF(2)n.

2.1 The two complexity measures

We are interested in multilinear functions that are computed by composition of other multilinear functions,
and define a conservative (or syntactic) notion of linearity that refers to the way these functions are composed.
Basically, we require that this composition does not result in a polynomial that contains terms that are not
multilinear, even if these terms cancel out. Let us first spell out what this means in terms of standard
multilinear circuits that use (unbounded) addition and multiplication gates, as defined in [19]. This is done
by saying that a function is J-linear whenever it is multilinear (but not necessarily homogeneous) in the
variables that belongs to blocks in J .

• Each variable in x(j) is a {j}-linear function.

• If an addition gate computes the sum
∑

i∈[m] Fi, where Fi is a Ji-linear function computed by its ith

child, then this gate computes a (
⋃

i∈[m] Ji)-linear function.

• If a multiplication gate computes the product
∏

i∈[m] Fi, where Fi is a Ji-linear function computed by

its ith child, and the Ji’s are pairwise disjoint, then this gate computes a (
⋃

i∈[m] Ji)-linear function.

We stress that if the Ji’s mentioned in the last item are not pairwise disjoint, then their product cannot be
taken by a gate in a multilinear circuit. We now extend this formalism to arithmetic circuits with arbitrary
gates, which compute arbitrary polynomials of the values that feed into them. Basically, we require that
when replacing each gate by the corresponding depth-two arithmetic circuit that computes this polynomial
as a sum of products (a.k.a monomials), we obtain a standard multilinear circuit. In other words, we require
the following.

Definition 2.1 (multilinear circuits with general gates): An arithmetic circuit with arbitrary gates is called
multilinear if each of its gates satisfies the following condition. Suppose that a gate computes H(F1, ..., Fm),
where H is a polynomial and Fi is a Ji-linear function computed by the ith child of this gate. Then, each
monomial in H computes a function that is J-linear, where J is the disjoint union of the sets Ji that define
the linearity of the functions multiplied in that monomial; that is, if for some set I ⊆ [m] this monomial
multiplies Ji-linear functions for i ∈ I, then these Ji’s should be disjoint and their union should equal J .
The function computed by the gate is J ′-linear, where J ′ is the union of all the sets that define the linearity
of the functions that correspond to the different monomials in H.

Alternatively, we may require that if a gate multiplies two of its inputs (in one of the monomials computed
by this gate), then the sub-circuits computing these two inputs do not depend on variables from the same
block (i.e., the two sets of variables in the directed acyclic graphs rooted at these two vertices belong to two
sets of blocks with empty intersection).

Definition 2.2 (the complexity of multilinear circuits with general gates): The arity of a multilinear circuit
is the maximum arity of its (general) gates, and in the number of gates we count only the general gates and

9

not the leaves (variables). The complexity of a multilinear circuit is the maximum between its arity and the
number of its gates.

• The nested complexity of a multilinear function F , denoted C(F), is the minimum complexity of a
multilinear circuit that computes F .

• The direct complexity of a multilinear function F , denoted C2(F), is the minimum complexity of a
depth-two multilinear circuit that computes F .

More generally, for any d ≥ 3, we may denote by Cd(F) the minimum complexity of a multilinear circuit
that computes F .15

Clearly, C2(F) ≥ C(F) for every multilinear function F . For linear functions F , it holds that C2(F) ≤ 2C(F),
because in this case all gates are addition gates and so, w.l.o.g., all intermediate gates can feed directly to
the top gate. This is no longer the case for bilinear functions; that is, there exists bilinear functions F such
that C2(F)≫ C(F).

Theorem 2.3 (separating C2 from C): There exist bilinear functions F : (GF(2)n)2 → GF(2) such that
C(F) = O(

√
n) but C2(F) = Ω(n2/3). Furthermore, the upper bound is established by a depth-three multilinear

circuit.

The furthermore clause is no coincidence: As outlined in Remark 2.4, for every t-linear function F , the value
of C(F) is obtained by a multilinear circuit of depth at most t + 1.

Proof: Consider a generic bilinear function g : GF(2)n+s → GF(2), where g is linear in the first n bits
and in the last s =

√
n bits. Using the fact that g is linear in the first n variables, it will be useful to write

g(x, z) as
∑

i∈[s] gi((x(i−1)s+1, ..., xis), z), where each gi is a bilinear function on GF(2)s × GF(2)s. Define

f : GF(2)2n → GF(2) such that f(x, y) = g(x, L1(y), ..., Ls(y)), where Li(y) =
∑si

k=(i−1)s+1 yk.

Clearly, C(f) ≤ 2s+1 by virtue of a depth-three multilinear circuit that first computes v ← (L1(y),, Ls(y))
(using s gates each of arity s), then computes wi ← (gi((x(i−1)s+1, ..., xis), v) for i ∈ [s] (using s gates of arity
2s), and finally compute the sum

∑
i∈[s] wi (in the top gate). The rest of the proof is devoted to proving

that for a random g, with high probability, the corresponding f satisfies C2(f) = Ω(n2/3).
We start with an overview of the proof strategy. We consider all functions f : GF(2)n×GF(2)n → GF(2)

that can be derived from a generic bilinear function g : GF(2)n × GF(2)s → GF(2) (by letting f(x, y) =
g(x, L1(y), ..., Ls(y))). For each such function f , we consider a hypothetical depth-two multilinear circuit of
complexity at most m = 0.9n2/3 that computes f . Given such a circuit, we derive a circuit that computes
the underlying function g, whereas the circuit that we derive belongs to a set of size smaller than 20.9sn.
But since the number of possible functions g is 2sn, this means that most functions f derived as above from
a generic g do not have depth-two multilinear circuit of complexity at most m = 0.9n2/3; that is, for almost
all such functions f , it holds that C2(f) > 0.9n2/3. The actual argument follows.

Consider an arbitrary depth-two multilinear circuit of complexity m that computes a generic f (derived
as above from a generic g). (We shall assume that the top gate of this circuit is not fed directly by any
variable, which can be enforced by replacing such variable with singleton linear functions while possibly
doubling m.) By the multilinear condition, the top gate of this circuit computes a function of the form

B(F1(x), ..., Fm′ (x), G1(y), ..., Gm′′(y)) +
∑

i∈[m′′′]

Bi(x, y), (5)

where B is a bilinear function (over GF(2)m′ × GF(2)m′′

), the Fi’s and Gi’s are linear functions, the Bi’s
are bilinear functions, each of these function depends on at most m variables, and m′ + m′′ + m′′′ < m.

We now consider a random restriction of y that selects at random ij ∈ {(j − 1)s + 1, ..., js} for each
j ∈ [s], and sets all other bit locations to zero. Thus, for a selection as above, we get y′ such that y′

i = yi if
i ∈ {i1, ..., is} and y′

i = 0 otherwise. In this case, f(x, y′) equals g(x, yi1 , ..., yis
). We now look at the effect

of this random restriction on the expression given in Eq. (5).

15This general definition is not used in the current paper.

10

The key observation is that the expected number of “live” y′ variables (i.e., y′
i = yi) in each Bi is at

most m/s; that is, in expectation, Bi(x, y′) depends on m/s variables of the y-block. It follows that each
Bi(x, y′) can be specified by ((m + m/s) log2 n) + m2/s bits (in expectation), because Bi(x, y′) is a bilinear
form in the surviving y-variables and in at most m variables of x, whereas such a function can be specified
by identifying the variables and the bilinear form applied to them. Hence, in expectation, the residual∑

i Bi(x, y′) is specified by less than m3/s + 2m2 log2 n bits, and we may pick a setting (of i1, ..., is) that
yields such a description length. This means that, no matter from which function g (and f) we start, the
number of possible (functionally different) circuits that we derive from Eq. (5) is at most

2m2 ·

∑

k∈[m]

(
n

k

)

m

· 2m3/s+2m2 log2 n (6)

where the first factor reflects the number of possible bilinear functions B, the second factor reflects the
possible choices of the linear functions F1, ..., Fm′ , G1, ..., Gm′′ , and the third factor reflects the number of
possible bilinear functions that can be computed by

∑
i Bi(x, y′). However, for m = 0.9n2/3, the quantity

in Eq. (6) is smaller than 21.1m3/s < 20.9sn, which is much smaller than the number of possible functions g
(which is 2sn). Hence, for m = 0.9n2/3, not every function f can be computed as in Eq. (5), and the theorem
follows.

Digest. The proof of the lower bound in Theorem 2.3 is quite unusual in its combination of the method
of random restrictions with a counting argument.16 This argument may be decoupled into two parts pivoted
at an artificial complexity class, denoted G, that contains all functions g that have multilinear circuits of
a small description. Using the random restriction, we show that if f has complexity smaller than 0.9n2/3,
then the underlying g is in G. The counting argument then shows that most g’s are not in G. Combining
these two facts, we conclude that most functions f (constructed based on a function g as in the proof) have
complexity at least 0.9n2/3. A more appealing abstraction is obtained by letting G contains all functions
g that have multilinear circuits of complexity at most 0.9n2/3 such that each gate is fed by at most n1/6

variables from the y-block.

Remark 2.4 (on the depth of multilinear circuits achieving C): In light of the above, it is natural to study
the depth of general multilinear circuits (as in Definition 2.1), and the trade-offs between depth and other
parameters (as in Definition 2.2). While this is not our primary focus here, we make just one observation: If
C(F) = s for any t-linear function F , then there is a depth t + 1 circuit with arity and size O(s) computing
F as well.17 This observation is proved in Proposition 4.5.

Remark 2.5 (waiving the multilinear restriction): We note that arbitrary arithmetic circuits that compute
t-linear functions can be simulated by multilinear circuits of the same depth, while increasing their complexity
measure by a factor of at most 2t. This can be done by replacing any gate in the original circuit with 2t − 1
gates in the multilinear circuit such that the gate associated with I ⊆ [t] computes the monomials that are
I-linear (but not I ′-linear, for any I ′ ⊂ I). The monomials that are not [t]-linear are not computed, and this
is OK because their influence must cancel out at the top gate. This refers to the standard arithmetic model
in which the computation of a polynomial must yield the same polynomial over the extension field.18

2.2 Relation to canonical circuits

As outlined in Section 1.4, the direct and nested complexity of multilinear functions are closely related to the
size of D-canonical and ND-canonical circuits computing the functions. Below, we spell out constructions of
canonical circuits, which are depth-three Boolean functions, having size that is exponential in the relevant
parameter (i.e., D-canonical circuits of size exp(C2) and ND-canonical circuits of size exp(C)).

16Indeed, in some sense, this combination is also present in Andreev’s super-quadratic proof for formula size [1].
17That is, for any t-linear F , it holds that Ct+1(F) = O(C(F)).
18We refer to the infinite extension field obtained by extending the base field with tn formal variables. In this

extension field of GF(2), the polynomials x2 and x are different.

11

Construction 2.6 (D-canonical circuits of size exp(C2)): Let F : (GF(2)n)t → GF(2) be a t-linear func-
tion, and consider a depth-two multilinear circuit that computes F such that the top gate applies an m-ary
polynomial H to the results of the m gates that compute F1, ..., Fm, where each Fi is a multilinear function
of at most m variables. (Indeed, we assume, without loss of generality, that the top gate is fed by the
second-level gates only, which in turn are fed by variables.)19 Consider the following depth-three Boolean
circuit that computes F .

1. Let CH be a CNF (resp., DNF) that computes H.

2. For each i ∈ [m], let Ci be a DNF (resp., CNF) that computes Fi, and let C′
i be a DNF (resp., CNF)

that computes 1 + Fi.

3. Composing CH with the various Ci’s and C′
i’s, while collapsing the two adjacent levels of or-gates

(resp., and-gates), we obtain a depth-three Boolean circuit C.

The derived circuit C is said to be D-canonical, and a circuit is said to be D-canonical only if it can be derived
as above.

Clearly, C computes F and has size exponential in m ≤ C2(F)− 1. In particular, we have

Proposition 2.7 (depth-three Boolean circuits of size exp(C2)): Every multilinear function F has depth-
three Boolean circuits of size exp(C2(F)).

It turns out that the upper bound provided in Proposition 2.7 is not tight: There exists multilinear functions
that have depth-three Boolean circuits of size exp(C2(F)3/4). This follows by combining Theorem 2.3 and
Proposition 2.9, where Theorem 2.3 shows that for some bilinear functions F it holds that C(F) = O(

√
n) =

O(n2/3)3/4 = O(C2(F))3/4, and Proposition 2.9 shows that every multilinear function F has depth-three
Boolean circuits of size exp(C(F)). This leads us to the construction of ND-canonical circuits.

Construction 2.8 (ND-canonical circuits of size exp(C)): Let F : (GF(2)n)t → GF(2) be a t-linear function,
and consider a multilinear circuit that computes F such that the each of the m gates applies an m-ary
polynomial Hi to the results of prior gates and some variables, where H1 corresponds to the polynomial
applied by the top gate. Consider the following depth-three Boolean circuit that computes F .

1. For each i ∈ [m] and σ ∈ GF(2), let Cσ
i be a CNF that computes Hi + 1 + σ. That is, Cσ

i evaluates
to 1 iff Hi evaluate to σ.

2. For each v
def
= (v1, v2, ..., vm) ∈ GF(2)m, let

Cv(x(1), ..., x(t)) =
∧

i∈[m]

Cvi

i (Πi,1(x
(1), ..., x(t), v), ..., Πi,m(x(1), ..., x(t), v)),

where the Πi,j’s are merely the projection functions that describe the routing in the multilinear circuit;
that is, Πi,j(x

(1), ..., x(t), v)) = vk if the jth input of gate i is fed by gate k and Πi,j(x
(1), ..., x(t), v)) =

x
(ℓ)
k if the jth input of gate i is fed by the kth variable in the ℓth variable-block (i.e., the variable x

(ℓ)
k).

3. We obtain a depth-three Boolean circuit C by letting

C(x(1), ..., x(t)) =
∨

(v2,...,vm)∈GF(2)m−1

C(1,v2,...,vm)(x
(1), ..., x(t))

The derived circuit C is said to be ND-canonical, and a circuit is said to be ND-canonical only if it can be
derived as above.

19Variables that feed directly into the top gate can be replaced by 1-ary identity gates.

12

Note that C(x(1), ..., x(t)) = 1 if and only if there exists v = (v11, v2, ..., vm) ∈ GF(2)m such that v1 = 1 and
for every i ∈ [m] it holds that Hi(Πi,1(x

(1), ..., x(t), v), ..., Πi,m(x(1), ..., x(t), v)) = vi. For this choice of v, the
vi’s represent the values computed in the original arithmetic circuit (on an input that evaluates to 1), and
it follows that C computes F . Clearly, C has size exponential in m ≤ C(F). In particular, we have

Proposition 2.9 (depth-three Boolean circuits of size exp(C)): Every multilinear function F has depth-three
Boolean circuits of size exp(C(F)).

A key question is whether the upper bound provided in Proposition 2.9 is tight. The answer depends on two
questions: The main question is whether smaller depth-three Boolean circuits can be designed by deviation
from the construction paradigm presented in Construction 2.8. The second question is whether the upper
bound of exp(m) on the size of the depth-two Boolean circuits used to compute m-ary polynomials (of degree
at most t) is tight. In fact, it suffices to consider t-linear polynomials, since only such gates may be used in
a multilinear circuit.

The latter question is addressed in Appendix C, where it is shown that any t-linear function that depends
on m variables requires depth-two Boolean circuits of size at least exp(Ω(exp(−t) ·m)). (Interestingly, this
lower bound is tight; that is, there exist t-linear functions that depends on m variables and have depth-two
Boolean circuits of size at most exp(O(exp(−t) ·m)).) Conjecturing that the main question has a negative
answer, this leads to the following conjecture.

Conjecture 2.10 (C yields lower bounds on the size of general depth-three Boolean circuits): No t-linear
function F : (GF(2)n)t → GF(2) can be computed by a depth-three Boolean circuit of size smaller than
exp(Ω(exp(−t) · C(F)))/poly(n).

When combined with adequate lower bounds on C (e.g., Theorem 4.1), Conjecture 2.10 yields size lower
bounds of the form exp(Ω(exp(−t) · nt/(t+1))), which yields exp(n1−o(1)) for t =

√
log n. In the special cases

that emerge from lower bounds on C, a tighter relation may hold – as stated in the following Conjecture 2.11,
which allows using larger values of t.

Conjecture 2.11 (Conjecture 2.10, stronger form for special cases): None of the multilinear functions
F ∈ {F t,n

tet , F
t,n
mod p : p ≥ 2} (see Eq. (3) and Eq. (4), resp.) can be computed by a depth-three Boolean circuit

of size smaller than exp(Ω(C(F)))/poly(n). The same holds for almost all t-linear functions.

When combined with adequate lower bounds on C (e.g., Theorem 4.1), Conjecture 2.11 yields size lower
bounds of the form exp(Ω((tn)t/(t+1))), which for t = log n yields exp(Ω(tn)).

The authors are in disagreement regarding the validity of Conjecture 2.10 (let alone Conjecture 2.11),
but agree that also refutations will be of interest.

3 Upper Bounds

We first present a generic upper bound on the direct complexity (i.e., C2-value) of any t-linear function, and
then present improved upper bounds that hold (“non-trivially”) for some specific t-linear functions (e.g.,
F t,n
leq).

3.1 A generic upper bound

The following upper bound is derived by a (depth-two) multilinear circuit with a top gate that computes
addition (i.e., a linear function).

Theorem 3.1 (an upper bound on C2(·) for any multilinear function): Every t-linear function F : (GF(2)n)t →
GF(2) has D-canonical circuits of size exp(O(tn)t/(t+1)); that is, C2(F) = O((tn)t/(t+1)).

13

Here (and elsewhere), we use the fact that tt/(t+1) = Θ(t).

Proof: We partition [n]t into m subcubes such that the side-length of each subcube (i.e., ℓ
def
= n/m1/t)

equals m/t. This balances the number of subcubes against the number of variables corresponding to each
subcube (i.e., t · ℓ). We then write the tensor that corresponds to F as a sum of tensors that are each
restricted to one of the aforementioned subcubes. Details follow.

We may assume that t = O(log n), since the claim holds trivially for t = Ω(log n). Partition [n]t

into m cubes, each having a side of length ℓ = (nt/m)1/t = n/m1/t; that is, for k1, ..., kt ∈ [n/ℓ], let
Ck1,...,kt

= Ik1 × · · · × Ikt
, where Ik = {(k − 1)ℓ + j : j ∈ [ℓ]}. Clearly, [n]t is covered by this collection of

cubes, and the sum of the lengths of each cube is tℓ. Let T be the tensor corresponding to F . Then,

F (x(1), ..., x(t)) =
∑

k1,...,kt∈[n/ℓ]

Fk1,...,kt
(x(1), ..., x(t))

where Fk1,...,kt
(x(1), ..., x(t)) =

∑

(i1,...,it)∈T∩Ck1,...,kt

x
(1)
i1
· · ·x(t)

it
.

It follows that C2(F) ≤ max(tℓ, m), which in turn is O((tn)t/(t+1)) if we choose m = tℓ (and use ℓ = n/m1/t).

3.2 Improved upper bounds for specific functions (e.g., F
t,n
leq)

Clearly, the generic upper bound can be improved upon in many special cases. Such cases include various t-

linear functions that are easily reducible to linear functions such as (1) F t,n
all(x

(1), ..., x(t)) =
∑

i1,...,it∈[n] x
(1)
i1
· · ·x(t)

it
=

∏
j∈[t]

∑
i∈[n] x

(j)
i and (2) F t,n

diag(x
(1), ..., x(t)) =

∑
i∈[n] x

(1)
i · · ·x

(t)
i . Specifically, we can easily get C2(F

t,n
all) ≤

t
√

n + 1 and C2(F
t,n
diag) ≤ t

√
n. In both cases, the key observation is that each n-way sum can be written

as a sum of
√

n functions such that each function depends on
√

n of the original arguments. Furthermore,
in both cases, we could derive (depth-three) multilinear formulae of complexity t

√
n + 1 that use only (

√
n-

way) addition and (t-way) multiplication gates. While such multilinear formulae do not exist for F 2,n
leq (see

Section 5.2), the full power of (depth-two) multilinear circuits with general gates yields C2(F
2,n
leq) = O(

√
n).

Proposition 3.2 (an upper bound on C2(F
2,n
leq)): The bilinear function F 2,n

leq (of Eq. (2)) has D-canonical

circuits of size exp(O(
√

n)); that is, C2(F
2,n
leq) = O(

√
n).

Proof: Letting s
def
=
√

n, we are going to express F 2,n
leq as a polynomial in 3s functions, where each of

these functions depends on O(s) variables. The basic idea is to partition [n]2 into s2 squares of the form
Si,j = [(i − 1)s + 1, is] × [(j − 1)s + 1, js], and note that ∪i<jSi,j ⊂ T 2,n

leq ⊂ ∪i≤jSi,j . Thus, F 2,n
leq can

be computed by computing separately the contribution of the diagonal squares and the contribution of the
squares that are above the diagonal. The contribution of the square Si,i can be computed as a function of
the 2s variables that correspond to it, while the contribution of each off-diagonal square can be computed as
the product of the corresponding sum of x(1)-variables and the corresponding sum of x(2)-variables. Details
follow.

• For every i ∈ [s], let Li(x
(1)) =

∑
j∈[s] x

(1)
(i−1)s+j , which means that Li(x

(1)) only depends on x
(1)
(i−1)s+1, ..., x

(1)
is .

• For every i ∈ [s], let L′
i(x

(2)) =
∑

j∈[s] x
(2)
(i−1)s+j .

• For every i ∈ [s], let Qi(x
(1), x(2)) =

∑
(j1,j2)∈T 2,s

leq
x

(1)
(i−1)s+j1

·x(2)
(i−1)s+j2

, which means that Qi(x
(1), x(2))

only depends on x
(1)
(i−1)s+1, ..., x

(1)
is and x

(2)
(i−1)s+1, ..., x

(2)
is .

Noting that

F 2,n
leq (x(1), x(2)) =

∑

i∈[s]

Qi(x
(1), x(2)) +

∑

1≤i<j≤s

Li(x
(1)) · L′

j(x
(2)),

14

the claim follows.

We turn to another bilinear function, the function F 2,n
mod p, where F t,n

mod p is defined in Eq. (4).

Proposition 3.3 (an upper bound on C2(F
2,n
mod p)): The bilinear function F 2,n

mod p has D-canonical circuits of

size exp(O(
√

n)); that is, C2(F
2,n
mod p) = O(

√
n).

Proof: Let s =
√

n, and let’s consider first the case p ≤ s. For every r ∈ Zp, consider the functions

Lr(x
(1)) =

∑
i≡r (mod p) x

(1)
i and L′

r(x
(2)) =

∑
i≡r (mod p) x

(2)
i . Then, F 2,n

mod p(x
(1), x(2)) =

∑
r∈Zp

Lr(x
(1)) ·

L′
p−r(x

(2)). Each of the foregoing p ≤ s linear functions depend on n/p variables, which is fine if p = Ω(s).
Otherwise, we replace each linear function by ⌈n/ps⌉ auxiliary functions (in order to perform each n/p-way

summation), which means that in total we have 2p · ⌈n/ps⌉ = O(s) functions (each depending on n/p
⌈n/ps⌉ ≤ s

variables).
In the case of p > s, we face the opposite problem; that is, we have too many linear functions, but each

depends on n/p < s variables. So we just group these functions together; that is, for a partition of Zp to s
equal parts, denoted P1, ..., Ps, we introduce s functions of the form

Qi(x
(1), x(2)) =

∑

r∈Pi

∑

j≡r (mod p)

x
(1)
j

 ·

∑

j≡p−r (mod p)

x
(2)
j

where i ∈ [s] (and so avoid using the linear functions). Clearly, F 2,n
mod p(x

(1), x(2)) =
∑

i∈[s] Qi(x
(1), x(2)), and

each Qi depends on 2 · ⌈p/s⌉ · ⌈n/p⌉ = O(s) variables.

Finally, we turn to t-linear functions with t > 2. Specifically, we consider the t-linear function F t,n
leq (of

Eq. (2)), focusing on t ≥ 3.

Proposition 3.4 (an upper bound on C2(F
t,n
leq)): For every t, it holds that C2(F

t,n
leq) = O(exp(t) · √n).

Proof: The proof generalizes the proof of Proposition 3.2, and proceeds by induction on t. We (again) let

s
def
=
√

n and partition [n]t into st cubes of the form Ck1,...,kt
= Ik1 × · · · × Ikt

, where Ik = {(k − 1)s + j :
j ∈ [s]}. Actually, we prove the following inductive claim that refers to the simultaneously expressibility of

the functions F
t,[(k−1)s+1,n]
leq for all k ∈ [s], where

F
t,[i,n]
leq (x(1), ..., x(t)) =

∑

(i1,...,it)∈T t,n
leq : i1≥i

x
(1)
i1
· · ·x(t)

it
. (7)

Indeed, F t,n
leq = F

t,[1,n]
leq . We prove, by induction on t, that the functions F

t,[(k−1)s+1,n]
leq , for all k ∈ [s], can

be expressed as polynomials in t2t · s multilinear functions such that each of these functions depends on t · s
variables. The base case (of t = 1) follows easily by using the s functions Li(x

(1)) =
∑

j∈[s] x
(1)
(i−1)s+j .

In the induction step, for every j ∈ [t], define Tj
def
= {(k1, ..., kt) ∈ T t,s

leq : k1 = kj < kj+1}, where

kt+1
def
= s + 1. Note that, for every k ∈ [s], the elements of T

t,[(k−1)s+1,n]
leq are partitioned according to

these Tj’s; that is, each (i1, ..., it) ∈ T
t,[(k−1)s+1,n]
leq corresponds to some j ∈ [t] and k1 ≥ k such that

(i1, ..., ij) ∈ Ik1 × · · · × Ik1 and (ij+1, ..., it) ∈ T
t−j,[k1s+1,n]
leq . Thus, for every k ∈ [s], it holds that

F
t,[(k−1)s+1,n]
leq (x(1), ..., x(t)) =

∑

j∈[t]

∑

k1≥k

P
(j)
k1

(x(1), ..., x(j)) · F t−j,[k1s+1,n]
leq (x(j+1), ..., x(t))

where P
(j)
k1

(x(1), ..., x(j))
def
=

∑

(i1,...,ij)∈(T j,n
leq ∩(Ik1

)j)

x
(1)
i1
· · ·x(j)

ij
.

15

It follows that all F
t,[(k−1)s+1,n]
leq are expressed in terms of t · s new functions (each depending on at most t · s

inputs) and the functions provided by the induction hypothesis (but with different variable names).20 So,
in total we used ts +

∑
j∈[t−1](t− j)2t−j · s functions, each depending on at most ts variables. Noting that

ts +
∑

j∈[t−1](t− j)2t−j · s is upper bounded by t2ts, and it follows that C(F t,n
leq) =≤ t2t · √n.

In order to prove C2(F
t,n
leq) ≤ t2t · √n, we take a closer look at the foregoing expressions. Specifically,

note that all F
t,[(k−1)s+1,n]
leq are expressed in terms of t2ts such that each function is either expressed in terms

of other functions or expressed in terms of variables. In terms of multilinear circuits this means that each
gate is fed either only by other gates or only by variables. It follows that the top gate is a function of all
gates that are fed directly by variables, and so we can obtain a depth-two multilinear circuit with the same
(or even slightly smaller) number of gates and the same gate arity.

4 Lower Bounds

We believe that the generic upper bound established by Theorem 3.1 (i.e., every t-linear function F satisfies
C(F) ≤ C2(F) = O((tn)t/(t+1)) is tight for many explicit functions. However, we were only able to show that
almost all multilinear functions have a lower bound that meets this upper bound. This result is presented in
Section 4.1, whereas in Section 4.2 we present an approach towards proving such lower bounds for explicit
functions.

Before proceeding to these sections, we comment that it is easy to see that the n-way Parity function
Pn has complexity at least

√
n. Of course, C(Pn) = Ω(

√
n) follows by combining Proposition 2.9 with

either [8] or [10], but the foregoing proof is much simpler (to say the least) and yields a better constant in
the Ω-notation.

4.1 On the complexity of almost all multilinear functions

Theorem 4.1 (a lower bound on C(·) for almost all t-linear functions): For all t = t(n), almost all t-linear
functions F : (GF(2)n)t → GF(2) satisfy C(F) = Ω(tnt/(t+1)). Furthermore, such a t-linear function can be
found in exp(nt) time.

Recall that t = Θ(tt/(t+1)). Combined with Theorem 3.1, it follows that almost all t-linear functions satisfy
C(F) = Θ(tnt/(t+1)).

Proof: For m > t
√

n to be determined at the end of this proof, we upper bound the fraction of t-linear
functions F that satisfy C(F) ≤ m. Each such function F is computed by a multilinear circuit with at most
m gates, each of arity at most m. Let us denote by Hi the function computed by the ith gate.

Recall that each of these polynomials (i.e., Hi’s) is supposed to compute a [t]-linear function. We shall
only use the fact that each Hi is t-linear in the original variables and in the other gates of the circuit; that
is, we can label each gate with an integer i ∈ [t] (e.g., i may be an block of variables on which this gate
depends) and require that functions having the same label may not be multiplied nor can they be multiplied
by variables of the corresponding block.

Thus, each gate specifies (1) a choice of at most m original variables, (2) a t-partition of the m auxiliary
functions, and (3) a t-linear function of the m variables and the m auxiliary function. (Indeed, choice (2) is
common to all gates.) Thus, the number of such choices is upper bounded by

(
tn

m

)
· tm · 2((2m/t)+1)t

(8)

where ((2m/t) + 1)t is an upper bound on the number of monomials that may appear in a t-linear function
of 2m variables, which are partitioned into t blocks. (Denoting by mj the number of variables and/or

20By the induction hypothesis, for every t′ ∈ [t− 1], we can express the functions F
t−t′,[(k−1)s+1,n]
leq (x(1), ..., x(t−t′))

for all k ∈ [s], but here we need the functions F
t−t′,[(k−1)s+1,n]
leq (x(t′+1), ..., x(t)). Still, these are the same functions,

we just need to change the variable names in the expressions.

16

gates that belong to the jth block, the number of possible monomials is
∏

j∈[t](mj + 1), where in our case∑
j∈[t] mj ≤ 2m.) Note that Eq. (8) is upper bounded by exp((m/t)t + m log tn) = exp((m/t)t), where the

equality is due to m > t
√

n > t log n and t ≥ 2 (as we consider here).
It follows that the number of functions that can be expressed in this way is exp((m/t)t)m, which equals

exp(mt+1/tt). This is a negligible fraction of the number (i.e., 2nt

) of t-linear functions over (GF(2)n)t,
provided that mt+1/tt ≪ nt, which does hold for m = O(tnt/(t+1)). The main claim follows.

The furthermore claim follows by noting that, as is typically the case in counting arguments, both the
class of admissible functions and the class of computable functions (or computing devices) are enumerable
in time that is polynomial in the size of the class. Moreover, the counting argument asserts that the class
of t-linear functions is the larger one (and it is also larger than 2tn, which represents the number of possible
inputs to each such function).

Open problems. The obvious problem that arises is proving a similar lower bound for some explicit
multilinear function. A modest start is the following:

Problem 4.2 (the first goal regarding lower bounds regarding C): Prove that C(F) = Ω((tn)c) for some
c > 1/2 and some explicit multilinear function F : (GF(2)n)t → GF(2).

Actually, an even more modest start is to prove that C2(F) = Ω((tn)c) for some c > 1/2 and some explicit
multilinear function F : (GF(2)n)t → GF(2); that is, to consider only depth-two multilinear circuits.

Problem 4.3 (the ultimate goal regarding lower bounds regarding C): For every t ≥ 2, prove that C(F) =
Ω((tn)t/(t+1)) for some explicit t-linear function F : (GF(2)n)t → GF(2). Ditto when t may vary with n,
but t ≤ poly(n).

Actually, a lower bound of the form C(F) = Ω((tn)ǫt/(ǫt+1)), for some fixed constant ǫ > 0, will also allow to
derive exponential lower bounds when setting t = O(log n). A concrete suggestion regarding Problem 4.2 is
presented in the next subsection.

4.2 The complexity of bilinear functions and matrix rigidity

In this section we show that lower bounds on the rigidity (i.e., Valiant’s matrix rigidity) of matrices yield
lower bounds on the C-value of bilinear functions associated with these matrices. We then show that even
lower bounds for non-explicit matrices (e.g., generic Toeplitz (or circulant) matrices) would yield lower
bounds for explicit trilinear functions, specifically, for our candidate function F 3,n

tet (of Eq. (3)).
Let us first recall the definition of matrix rigidity (as defined by Valiant [27] and surveyed in [15]). We

say that a matrix A has rigidity d for target rank r if every matrix of rank at most r disagrees with A on
more than d entries. Although matrix rigidity problems are notoriously hard, it seems that they were not
extensively studied in the range of parameters that we need (i.e., rigidity Ω(n3/2) for rank Ω(n1/2)). Here is
its basic connection to our model.

Theorem 4.4 (reducing C lower bounds to matrix rigidity): If T is an n-by-n matrix that has rigidity m3

for rank m, then the corresponding bilinear function F satisfies C(F) > m/2.

In particular, if there exists an n-by-n Toeplitz matrix that has rigidity m3 for rank m, then the corresponding
bilinear function F satisfies C(F) > m/2.

Proof: As a warm-up, we first prove that C2(F) > m/2; that is, we prove a lower bound referring to
depth-two multilinear circuits rather than to general multilinear circuits. Suppose towards the contradiction
that C2(F) ≤ m, and consider the multilinear circuit that guarantees this bound. Without loss of generality
(while possiblly doubling C2(F)),21 it holds that F (x(1), x(2)) = H(F1(x

(1), x(2)), ..., Fm−1(x
(1), x(2))), where

21As in Construction 2.6, we may replace variables that feed directly into the top gate by 1-ary identity gates. That
is, if F (x(1), x(2)) = H(F1(x

(1), x(2)), ..., Fm′(x(1), x(2)), zm′+1..., zm−1), where each zi belongs either to x(1) or to x(2),
then we let F (x(1), x(2)) = H(F1(x

(1), x(2)), ..., Fm−1(x
(1), x(2)), where Fi(x

(1), x(2)) = zi for every i ∈ [m′ +1,m− 1].

17

H is computed by the top gate and Fi is computed by its ith child. W.l.o.g, the first m′ functions (Fi’s)
are quadratic functions whereas the others are linear functions (in either x(1) or x(2)). Furthermore, each
Fi depends on at most m variables. Since H(F1(x

(1), x(2)), ..., Fm−1(x
(1), x(2))) is a syntactically bilinear

polynomial (in x(1) and x(2)), it follows that it has the form
∑

i∈[m′]

Qi(x
(1), x(2)) +

∑

(j1,j2)∈P

Lj1(x
(1))Lj2(x

(2)), (9)

where P ⊂ [m′ +1, m−1]× [m′+1, m−1] and each Qi and Lj depends on at most m variables. (Indeed, the
Qi’s are bi-linear functions, whereas the Lj’s are linear functions.) Note that the matrix that corresponds to
the first sum in Eq. (9) has less than m3 one-entries (since the sum of the Qi’s depends on at most m′·m2 < m3

variables), whereas the matrix that corresponds to the second sum in Eq. (9) has rank at most m− 1 (since∑
(j1,j2)∈P Lj1(x

(1))Lj2(x
(2)) equals

∑m−1
j=m′+1 Lj(x

(1)) · L′
j(x

(2)), where L′
j(x

(2)) =
∑

j′ :(j,j′)∈P Lj′(x
(2))).

But this contradicts the hypothesis that T has rigidity m3 for rank m.
Turning to the actual proof (of C(F) > m/2), which refers to multilinear circuits of arbitrary depth, we

note that in the bilinear case the benefit of depth is very limited. This is so because nested composition
is beneficial only when it involves free occurrence of the original variables (since terms that are product
of auxiliary functions only can be moved from the expression for Fi to the expressions that use Fi). In
particular, without loss of generality, linear Fi’s may be expressed in terms of the original variables only,
whereas quadratic Fi’s are expressed in terms of the original variables and possibly linear Fi’s. Thus, the
expression for F (x(1), x(2)) is as in Eq. (9), except that here for every (j1, j2) ∈ P either Lj1 or Lj2 is
one of the auxiliary functions Fi’s (whereas the other linear function may be arbitrary).22 This suffices for
completing the argument. Details follow.23

The key observation, when moving from depth-two circuits to arbitrary circuits, is that (w.l.o.g.) these
circuits do not contain an internal I-linear gate that is fed by an I-linear gate. Recall that a gate is called
I-linear if the function computed by it is linear in the variables of each block with index in I (and is
independent of the variables of other blocks). The “w.l.o.g” claim refers to a revised notion of complexity
that refers to the variable-arity of gates (the number of original variables that are directly fed into the gate)
rather than to its actual arity (which also accounts for the number of gates that feed into the gate). Hence,
the complexity of a circuit is upper bounded by twice its revised complexity.

Claim 4.4.1 Consider an arbitrary circuit that contains an internal gate that computes an I-linear function.
Then, without loss of generality, this gate is not fed by a gate that computes an I-linear function, where the
w.l.o.g.-claim holds while preserving the number of gates in the circuit as well as their variable-arity.

Proof: Suppose that an internal gate i computes an I-linear function Fi via Fi(x) = Hi(Fi1 (x), ..., Fim′
(x), xJ),

where the Fij
’s are computed by gates that feed into gate i and xJ is a sequence of original variables that are

22Actually, we can combine all products that involve Fi, see below.
23An alternative presentation of the following argument was suggested to us by Avishay Tal (in Feb. 2015). The

proof shows that any bi-linear function that is computed by a circuit of complexity m can be computed by a circuit
of depth two in which the top gate is feed by m − 1 linear functions (of unbounded arity) and m − 1 quadratic
functions that each depends on m input variables. As shown in the warm-up, this implies that the corresponding
matrix does not have rigidity m3 for rank m. Hence, the point is transforming any bilinear circuit into the foregoing
form. Let F0, F1, ...Fm−1 be the functions computed by the gates in the original circuit, and assume that F0, ..., Fm′

are quadratic functions (of the circuit inputs), and the rest are linear functions. First, replace gates m′ + 1 through
m−1 by linear gates (of unbounded arity) taking only input variables (and computing the very same linear functions
Fi’s). Next, note that if gate i ∈ [m′] (computing a quadratic function) is fed into gate j ∈ [m′], then (since the
circuit is multilinear), the value Fi appears as an additive term in the output of Fj , and we can feed Fi directly to
the gates that are fed by Fj (rather than feeding Fi into Fj). (This argument is detailed in the proof of Claim 4.4.1.)
Repeatedly doing so, gates computing quadratic functions are only fed into the root (computing F0). Hence, we get
a root that is fed by quadratic gates, linear gates, and variables, where the quadratic gates are fed with linear gates
and variables. Indeed, the internal quadratic gates compute the sum of products such that each product multiplies
a linear gate or a variable by a linear gate or a variable. Lastly, we take products that involve a linear gate out of
the quadratic gates, and gather together all products that involve the same linear gate obtaining m −m′ products
of linear gates of unbounded arity (as done in the case of depth-2 circuits). What remains in the internal quadratic
gates are products of pairs of variables, whereas each quadratic gate is feed by at most m variables.

18

directly fed into gate i. Supposing that Fi1 is also I-linear, we modify the circuit by letting gate i compute
F ′

i (x) = H ′
i(Fi2 (x), ..., Fim′

(x), xJ), where H ′
i(z) = Hi(0, z), and feeding Fi1 to each gate G that was fed by

Fi while letting it use F ′
i +Fi1 instead of Fi; that is, if G = H(Fi, z), then we let G = H ′(F ′

i , Fi1 , z) such that
H ′(A, B, z) = H(A+B, z). Note that this transformation maintains the function computed by all other gates
in the circuit (i.e., all gates except gate i), because Fi(x) = Hi(Fi1 (x), Z) = Fi1 (x)+H ′

i(Z) = Fi1(x)+F ′
i (x)

(since I-linearity does not allow to multiply Fi1 by anything when computing Fi). Noting that the number
of gates and the variable-arity are preserved too, the claim follows.

Suppose towards the contradiction that C(F) ≤ m/2, and consider a multilinear circuit that supports this

bound. It holds that F (x(1), x(2)) = H(F1(x
(1), x(2)), ..., Fm−1(x

(1), x(2)), x
(1)
I1

, x
(2)
I2

), where H is the bilinear
function computed by the top gate, |I1|+ |I2| ≤ m/2 and the Fi’s are auxiliary functions that are computed
by other gates of the circuit, where each such gate has arity at most m/2. Each gate computes a bilinear
(or linear) function of its arguments, which we express as a sum of monomials of the following three types.

1. Monomials that contain only auxiliary functions Fj ’s: Such a monomial may be either a single multilinear
function or a product of two linear functions. Without loss of generality (see Claim 4.4.1), such
monomials exist only in the computation of the top gate (and not in the computation for any other
gate).

We comment that the case of a single function is explicitly handled in Claim 4.4.1, whereas the case of a
monomial that is a product of (several) auxiliary functions (only) can be handled similarly. Specifically,
we can move the computation of such monomials from the current gate to all gates to which it feeds
without increasing the number of variables that feed directly to these gates. For example, we replace

F = H(F1, F2, x
(1)
3) and F1 = F5F6 + x

(1)
1 x

(2)
1 by F ′

1 = x
(1)
1 x

(2)
1 (i.e., omitting F5F6 from F1) and

F = H ′(F ′
1, F5, F6, F2, x

(1)
3), where H ′(X1, X2, X3, X4, X5) = X2X3 + H(X1, X4, X5).

2. Monomials that contain only original variables. Each quadratic (resp., linear) function computed by any
gate has at most m2 (resp., m) such monomials.

3. Mixed monomials that consist of the product of a linear function and an original variable. Such monomials
cannot exist in the computation of linear functions.

Summing together all mixed monomials (regardless of the gate to which they belong), we obtain at most m−1
quadratic forms, since each quadratic form is the product of one of the auxiliary (linear) functions Fi and a
linear combination (of an arbitrary number) of the original variables. Adding to this sum (denoted S1) the
sum (denoted S2) of all monomials (computed by the top gate) that are a product of two linear Fi’s, we still
have at most m− 1 quadratic forms that are each a product of one of the auxiliary (linear) functions Fi and
a linear combination of the original variables.24 Let us denote the resulting function (i.e., S1 + S2) by F ′,
and the corresponding matrix by T ′. Note that T ′ has rank at most m − 1 (since it is the sum of at most
m− 1 rank-1 matrices, which correspond to the different linear Fi’s). Lastly, note that F +F ′ contains only
quadratic monomials that are each either a product of two variables or an auxiliary function, which in turn
consists of at most m2 monomials that are each a product of two variables.25 Thus, F + F ′ consists of at
most m ·m2 such products, which implies that T ′ differs from T on less than m3 entries. This implies that
T does not have rigidity m3 for rank m, and the claim follows.

Before proceeding, let us generalize one of the observations used in the proof of Theorem 4.4 in order to
prove the following

24This relies on the fact that Fi · Fj may be viewed as a product of Fi and the linear combination of the original
variables given by the expression for Fj .

25In other words, assuming that the first m′ < m auxiliary functions (i.e., Fi’s) are bilinear functions, we observe
that

F = F0 =
m′

X

i=0

Qi +
m−1
X

i=m′+1

LiFi ,

where Qi is the sum of the products of pairs of variables that appear in Fi and the Li’s are arbitrary linear functions
(which may depend on an arbitrary number of variables in either x(1) or x(2)). Thus, F ′ =

Pm−1
i=m′+1 LiFi corresponds

to a tensor of rank at most m− 1, whereas F − F ′ =
Pm′

i=1Qi is the sum of at most (m′ + 1) ·m2 products of pairs
of variables.

19

Proposition 4.5 (on the depth of multilinear circuits achieving C): If C(F) = s for any t-linear function
F , then there is a depth t + 1 circuit with arity and size O(s) that computes F .

Proof: Generalizing an observation made in the proof of Theorem 4.4, note that monomials in the expression
for Fi that contain only auxiliary functions can be moved to the expressions of all functions that depend on
Fi (while increasing the arity of gates by at most s). Thus, without loss of generality, each auxiliary function
Fi (computed by a internal gate) can be expressed in terms of input variables and auxiliary functions that
are of smaller degree (than the degree of Fi). It follows that the depth of multilinear circuits computing a
t-linear function needs not exceed t + 1.

Implications on F 3,n
tet . We now suggest to try to obtain an improved lower bound on C(·) for the trilinear

function F 3,n
tet (see Eq. (3)), which is an explicit multilinear function (with t = 3), via a reduction to proving

a rigidity lower bound for a random (or actually any) Toeplitz matrix (corresponding to t=2). Recall that
a Toeplitz matrix is a matrix (ti,j)i,j∈[n] such that ti+1,j+1 = ti,j . The reduction, which is presented next,

actually reduces proving lower bounds on C(F 3,n
tet) to proving lower bounds on the C-value of any bilinear

function that corresponds to a Toeplitz matrix.

Proposition 4.6 (from F 3,n
tet to Toeplitz matrices): If there exists an n-by-n Toeplitz matrix such that the

corresponding bilinear function F satisfies C(F) ≥ m, then C(F 3,n
tet) = Ω(m).

Proof: For simplicity, assume that n = 2n′+1 is odd, and consider the trilinear function F3 : (GF(2)n′+1)3 →
GF(2) associated with the tensor T3 = {(i1, i2, i3) ∈ [[n′]]3 :

∑
j ij ≤ n/2}, where [[n′]]

def
= {0, 1, ..., n′}. Note

that multilinear circuits for F 3,n
tet yield circuits of similar complexity for F3: For y

(j)
[[n′]] = (y

(j)
0 , y

(j)
1 , ..., y

(j)
n′),

the value of F3(y
(1)
[[n′]], y

(2)
[[n′]], y

(3)
[[n′]]) equals F 3,n

tet (0n′

y
(1)
[[n′]], 0

n′

y
(2)
[[n′]], 0

n′

y
(3)
[[n′]]). This means that we may modify

each of the expressions used for F 3,n
tet by replacing the first n′ variables in each variable-block with the value 0

(i.e., omit the corresponding monomials).26

Next, note that if F3(x, y, z) =
∑

(i,j,k)∈T3
xiyjzk satisfies C(F3) ≤ m, then the same upper bound holds

for any bilinear function that is associated with an (n′ + 1)-by-(n′ + 1) triangular Toeplitz matrix (i.e.,
tj+1,k+1 = tj,k and tj,k = 0 if j < k). This holds because any linear combination of the 1-slices of T3 (i.e.,
the two-dimensional tensors T ′

i = {(j, k) : (i, j, k) ∈ T } for every i ∈ [[n′]]) yields a transpose of a triangular
Toeplitz matrix, and all such matrices can be obtained by such a combination; that is, for every I ⊆ [[n′]],
it holds that the matrix (tj,k)j,k∈[[n′]] such that tj,k = |{i ∈ I : (i, j, k) ∈ T }| mod 2 satisfies tj,k+1 = tj+1,k

and tj,k = 0 if j + k > n′, and each such matrix can be obtained by a choice of such an I. (We can and will
ignore the transpose operation in the sequel.)

Finally, note that multilinear circuits for any bilinear function that is associated with a triangular Toeplitz
matrix yields circuits of similar complexity for general Toeplitz matrix. This holds because each Toeplitz
matrix can be written as the sum of two triangular Toeplitz matrices (i.e., an upper-triangular one and a
lower-triangular one).

Hence, establishing an Ω(nc) lower bound on C(F 3,n
tet) reduces to establishing this bound for some Toeplitz

matrix. This gives rise to the following

Problem 4.7 (on the complexity of Toeplitz matrices): Prove that there exists an n-by-n Toeplitz matrix
such that the corresponding bilinear function F satisfies C(F) ≥ nc, for some c > 1/2.

As we saw, Problem 4.7 would be resolved by

Problem 4.8 (on the rigidity of Toeplitz matrices): For some c > 1/2, prove that there exists an n-by-n
Toeplitz matrix T that has rigidity n3c for rank nc.

26The opposite direction is equally simple: Just note that F 3,n
tet can be expressed as a sum of the values in the eight

directions corresponding to {±1}3.

20

4.3 On structured rigidity

The proof of Theorem 4.4 shows that if a bilinear function F has complexity at most m, then the corre-
sponding matrix T can be written as a sum of a rank m − 1 matrix T ′ and a matrix that has at most m3

one-entries. However, even a superficial glance at the proof reveals that the matrix T − T ′ is structured:
It consists of the sum of m matrices such that the one-entries of each matrix are confined to some m-by-m
rectangle. This leads us to the following definition.

Definition 4.9 (structured rigidity): We say that a matrix T has structured rigidity (m1, m2, m3) for rank

r if for every matrix R of rank at most r and for every I1, ..., Im1 , J1, ..., Jm1 ⊆ [n] such that |I1| = · · · =
|Im1 | = m2 and |J1| = · · · = |Jm1 | = m3 it holds that T − R 6⊆ ⋃m1

k=1(Ik × Jk), where M ⊆ S means that
all non-zero entries of the matrix M reside in the set S ⊆ [n]× [n]. We say that a matrix T has structured

rigidity m3 for rank r if T has structured rigidity (m, m, m) for rank r.

Clearly, rigidity is a lower bound on structured rigidity (i.e., if T has rigidity m3 for rank r, then T has
structured rigidity m3 for rank r), but (as shown below) this lower bound is not tight. Before proving the
latter claim, we apply the notion of structured rigidity to our study.27

Theorem 4.10 (reducing C lower bounds to structured rigidity): If T is an n-by-n matrix that has structured
rigidity m3 for rank m, then the corresponding bilinear function F satisfies C(F) ≥ m.

In particular, if there exists an n-by-n Toeplitz matrix that has structured rigidity m3 for rank m, then the
corresponding bilinear function F satisfies C(F) ≥ m. Hence, Problem 4.7 would be resolved by

Problem 4.11 (on the structured rigidity of Toeplitz matrices): For some c > 1/2, prove that there exists
an n-by-n Toeplitz matrix T that has structured rigidity n3c for rank nc.

In light of the following separation result, Problem 4.11 may be easier than Problem 4.8.

Theorem 4.12 (rigidity versus structured rigidity): For any m ∈ [n0.501, n0.666], consider a uniformly
selected n-by-n Boolean matrix M with exactly 3mn ones. Then, with very high probability, M has structured
rigidity m3 for rank m.

Note that M does not have rigidity t = 3nm ≪ m3 for rank zero, let alone for rank m. Hence, the gap
between structured rigidity and standard rigidity (for rank m) is a factor of at least m3/t = Ω(m2/n).

Proof: For each sequence M0, R1, ..., Rm such that M0 has rank m and each Ri ⊆ [n] × [n] is an m-by-m
rectangle, we shall show that

PrM

M −M0 ⊆
⋃

i∈[m]

Ri

 < 2−3nm, (10)

where M is a uniformly selected n-by-n matrix with exactly t = 3mn ones (and M −M0 ⊆ S means that all
non-zero entries of the matrix M−M0 reside in the set S ⊆ [n]×[n]). The theorem follows since the number of

such sequences (i.e., a rank m matrix M0 and sparse rectangles R1, ..., Rm) is at most 22mn ·
(

n
m

)2m ≪ 22.5nm,

using m2 log n < nm/4 (equiv., m = o(n/ log n)). We shall also use m ≤ n2/3/2, which implies m3 ≤ n2/8
and t = o(n2). We consider two cases

Case 1: M0 has at least n2/3 one-entries. Since t = o(n2), it follows that M −M0 has at least n2/4
non-zero entries, but these cannot be covered by the

⋃
i Ri, since the latter has at most m3 ≤ n2/8

elements. Hence, M −M0 ⊆
⋃

i∈[m] Ri never holds in this case.

27As stated above, Theorem 4.10 follows from the proof of Theorem 4.4.

21

Case 2: M0 has at most n2/3 one-entries. In this case the union of the one-entries of M0 and
⋃

i Ri,
denoted U , covers at most half of a generic n-by-n matrix. Now, selecting t random entries in the
matrix, the probability that all entries reside in U at most (1/2)t. But if some one-entry of M does
not reside in U , then this entry is non-zero in M −M0 but does not reside in

⋃
i Ri. In this case,

M − M0 6⊆
⋃

i∈[m] Ri holds. Hence, the expression at the l.h.s. of Eq. (10) is upper bounded by

2−t = 2−3nm.

We conclude that with probability at least 1 − 2−mm/2, the matrix M has (m, m, m) rigidity for rank m.

Perspective. Recall that T has rigidity s for rank r if for every rank r matrix R and every matrix S of at
most s one-entries it holds that T = R+S. The definition of structure rigidity further restricts the structure
of S. Although we proved that this restriction may significantly increase the measure of density of the
potential matrices S, we were not able to capitalize on it in order to prove rigidity bounds that improve over
the n2/r barrier for explicit matrices T . We note that an alternative restriction that allows for improving
over this barrier was introduced by Dvir et al. [4], where it was called monotone rigidity. Specifically, T has
monotone rigidity s for rank r if for every rank r matrix R and every matrix S of at most s one-entries it
holds that T = R ∨ S; that is, the effect of S is restricted to turning zero-entries of R into one-entries of T
(equiv., turning one-entries of T into zero-entries of R). They presented an explicit matrix T such that for
any matrix R of real28 rank n/100, the matrix S must have at least n1.1 ones.

5 On two restricted models

Focusing on our arithmetic circuit model, we consider two restricted versions of it: The first restricted
model is of computation without cancellation, and the second is of computation that use only addition and
multiplication gates while parametrizing their arity.

5.1 On computing without cancellation

A natural model in the context of arithmetic computation is that of computing without cancellations. We
note that all our upper bounds (of Section 3) were obtained by computations that use no cancellations.
Nevertheless, as one may expect, computations that use cancellation may be more efficient than computations
that do not use it. Furthermore, obtaining such a separation result is quite easy. A striking example is
provided by the bilinear function F 2,n

had that corresponds to the Hadamard matrix T 2,n
had (i.e., T 2,n

had = {(i, j)∈
[n]2 : ip2(i, j)}, where n = 2ℓ and ip2(i, j) is the inner product (mod 2) of the ℓ-bit binary expansions of
i− 1 and j − 1).

Proposition 5.1 (computing F 2,n
had without cancellation): Computing F 2,n

had without cancellations requires a
circuit of complexity Ω(n2/3), where complexity is as in Definition 2.2. In contrast, F 2,n

had can be computed

by a circuit of complexity Õ(
√

n) with cancellation; actually, C2(F
2,n
had) = O(

√
n log n).

Proof: Suppose that F 2,n
had can be computed by a circuit of complexity m that uses no cancellation. Following

the argument in the proof of Theorem 4.4 and assuming that the first m′ < m auxiliary functions (i.e., Fi’s)
are bilinear functions, we observe that

F 2,n
had = F0 =

m′∑

i=0

Qi +

m−1∑

i=m′+1

LiFi , (11)

28Indeed, in contrast to the rest of our exposition, which refers to the arithmetics of GF(2) (and, in particular, to
rank over GF(2), the result of [4] refers to the rank of the matrix over the real.

22

where Qi is a sum of the products of pairs of variables that appear in Fi and the Li’s are arbitrary linear
functions (which may depend on an arbitrary number of variables in either x(1) or x(2)).29 Hence, each
Qi corresponds to a tensor (or matrix) with at most m2 one-entries, whereas each LiFi corresponds to
a rectangular tensor. By the non-cancellation hypothesis, these rectangles must be pairwise disjoint and
their one-entries must be contained in T 2,n

had (since they cannot be cancelled). But by Lindsey’s Lemma
(cf., e.g., [5, p. 88]) rectangles of area greater than n must contain zero-entries of T 2,n

had , which implies that
each rectangle may have area at most n. It follows that the total area covered by all m tensors is at most
(m′ + 1) ·m2 + (m−m′) · n, whereas T 2,n

had has n2/2 one-entries. The main claim follows.
The secondary claim follows by the fact that T 2,n

had has rank ℓ = log2 n. Specifically, any binary function
F that corresponds to a rank r matrix can be computed as the sum of r functions that correspond to
rectangular tensors, where each of these r functions is computed as the product of two linear functions,
and each linear function is computed as the sum of

√
n/r functions that compute the sum of at most

√
rn

variables. This yields a depth-two circuit of complexity
√

rn, where the top gate is a quadratic expression
in
√

rn linear functions.

Computing F 3,n
tet without cancellation. While we were unable to prove that C(F 3,n

tet) = ω(
√

n), it
is quite easy to prove such a lower bound for circuits that compute F 3,n

tet without cancellation.

Proposition 5.2 (computing F 3,n
tet without cancellation): Computing F 3,n

tet without cancellations requires a
circuit of complexity Ω(n2/3), where complexity is as in Definition 2.2.

Proof: Proceeding as in the proof of Proposition 5.1, we consider the top gate of a circuit (with m gates)
that computes F 3,n

tet without cancellations. Here, we can write F 3,n
tet as

F0 =
m′∑

i=0

Ci +
m′+m′′∑

i=m′+1

LiFi +
m′+m′′+m′′′∑

i=m′+m′′+1

QiFi , (12)

where m′ + m′′ + m′′′ ≤ m − 1, the cubic function Ci is a sum of the products of triples of variables that
appear in the cubic function Fi (for i ∈ [0, m′]), the Li’s (resp., Qi’s) are arbitrary linear (resp., quadratic)
functions (which may depend on an arbitrary number of variables in either x(1), x(2), x(3)), and the other Fi’s
are either quadratic (for i ∈ [m′ +1, m′ +m′′]) or linear (for i ∈ [m′ +m′′ +1, m′ +m′′ +m′′′]).30 Combining
the two last summations in Eq. (12), we obtain

F0 =

m′∑

i=0

Ci +

m−1∑

i=m′+1

LiQi (13)

29Recall that, w.l.o.g., gates that compute quadratic Fi’s (for i ∈ [m′]) may only feed into the top gate. Ditto for
gates computing products of two linear Fi’s (for i ∈ [m′ + 1, m− 1]). Thus, F0 = Q0 +

P

i∈[m′] Fi +
Pm−1

i=m′+1 L0,iFi,
where Q0 is a sum of the products of pairs of variables that appear in F0, the L0,i’s are arbitrary linear functions,
and for i > m′ the linear function Fi is computed by an internal gate. Furthermore, for every i ∈ [m′], it holds
that Fi = Qi +

Pm−1
j=m′+1 Li,jFj , where Qi is a sum of the products of pairs of variables that appear in Fi, the

Li,j ’s are arbitrary linear functions, and for j > m′ the linear function Fj is computed by an internal gate. Letting

Lj =
Pm′

i=0 Li,j , we get Eq. (11).
30Recall that, w.l.o.g., gates that compute cubic Fi’s (for i ∈ [m′]) may only feed into the top gate. Ditto for

gates computing products of linear Fi’s and quadratic Fi’s (for i ∈ [m′ + 1, m − 1]). Thus, F0 = C0 +
P

i∈[m′] Fi +
Pm′+m′′

i=m′+1 L0,iFi +
Pm′+m′′+m′′

i=m′+m′′+1Q0,iFi, where C0 is a sum of the products of triples of variables that appear in F0,
the L0,i’s (resp., Q0,i’s) are arbitrary linear (resp., quadratic) functions, and for i > m′ the quadratic (resp., linear)

function Fi is computed by an internal gate. Furthermore, for every i ∈ [m′], it holds that Fi = Ci+
Pm′+m′′

j=m′+1 Li,jFj +
Pm′+m′′+m′′

j=m′+m′′+1Qi,jFj , where Ci is a sum of the products of triples of variables that appear in Fi, the Li,j ’s (resp.,

Qi,j ’s) are arbitrary linear (resp., quadratic) functions, and for j > m′ the quadratic (resp., linear) function Fj is

computed by an internal gate. Letting Lj =
Pm′

i=0 Li,j and Qj =
Pm′

i=0Qi,j , we get Eq. (12).

23

where Ci is a sum of the products of triples of variables that appear in a cubic Fi, and the Li’s (resp., Qi’s)
are arbitrary linear (resp., quadratic) functions (which may depend on an arbitrary number of variables in
either x(1), x(2), x(3)). Note that Ci corresponds to a tensor with one-entries that are confined to a m-by-m-
by-m box, and each LiQi corresponds to a tensor that is the outer product of a subset of [n] and a subset
of [n]2. By the non-cancellation condition, all these tensors are disjoint, and none may contain a zero-entry
of T 3,n

tet .
We consider the boundary of the tensor T 3,n

tet (i.e., the set of one-entries that neighbor zero-entries),
and consider the contributions of the aforementioned tensors to covering this boundary (without covering
zero-entries of F 3,n

tet). We will upper bound this contribution by m3 +mn, and the claim will follow since the
size of the boundary is Ω(n2).

Actually, we shall consider covering the upper-boundary of T 3,n
tet , defined as the part of the boundary that

resides in [n/2, n]3. In other words, the upper-boundary consists of all points (i1, i2, i3) ∈ [n/2, n] such that
i1 + i2 + i3 = 2n, and it has size Ω(n2).

We first observe that the tensor corresponding to each Cj can cover at most m2 points of the upper-
boundary, because this tensor is confined to an m-by-m-by-m box I ′j × I ′′j × I ′′′j and for each (i1, i2) ∈ I ′j × I ′′j
there exists at most one i3 such that (i1, i2, i3) resides in the upper-boundary. Hence, the contribution of∑m′

j=0 Cj to the cover is at most m3.
Turning to the tensors that correspond to the LjQj ’s, we note that (w.l.o.g.) each such tensor has the

form I ′j×I ′′j , where I ′j ⊆ [n] and I ′′j ⊆ [n]2. We first observe that only the largest i1 ∈ I ′j can participate in (a
point that resides in) the upper-boundary, because if (i1, i2, i3) ∈ I ′j × I ′′j participates in the upper-boundary

and i′1 > i1, then (i′1, i2, i3) must be a zero-entry of T 3,n
tet (and contradiction is reached in case i′i ∈ I ′j , since

then (i′1, i2, i3) ∈ I ′j × I ′′j). Next, fixing the largest i1 ∈ I ′j , we observe that the upper-boundary contains at

most n points of the form (i1, ·, ·). Hence, the contribution of
∑m−1

j=m′+1 LjQj to the cover is at most mn.

Having shown that the union of the aforementioned tensors can cover at most m3 + mn points in the
upper-boundary, the claim follows since the size of the upper-boundary is Ω(n2).

5.2 Addition and multiplication gates of parameterized arity

In continuation to Definition 2.2, we consider a restricted complexity measure that refers only to multilinear
circuits that use standard addition and multiplication gates. Needless to say, the multiplication gates in
a multilinear circuit computing a t-linear function have arity at most t, whereas the arity of the addition
gates is accounted for in our complexity measure. Furthermore, in our complexity measure we do not count
multiplication gates that are fed by variables only. For sake of clarify, we spell out the straightforward
adaptation of Definition 2.2:

Definition 5.3 (the complexity of multilinear circuits with standard gates): A standard multilinear circuit is
a multilinear circuit (as in Definition 2.2) having only addition and multiplication gates, and its complexity
is the maximum between the arity of its gates and the number of its non-trivial gates, where the trivial gates

are multiplication gates that are fed by variables only. The restricted complexity of a multilinear function F ,
denoted RC(F), is the minimum complexity of a standard multilinear circuit that computes F .

Indeed, we avoided introducing a depth-two version of Definition 5.3. Note that for every t-linear function
F , it holds that C(F) ≤ t · RC(F), since trivial multiplication gates can be eliminated by increasing the arity
of the circuit (in the general model) by a factor of at most t.31

5.2.1 The restricted model separates F t,n
all and F t,n

diag from F 2,n
leq

As stated (implicitly) in Section 3.2, it holds that RC(F t,n
all) ≤ t

√
n + 1 and RC(F t,n

diag) ≤ t
√

n. We show that

this upper bound does not hold for F 2,n
leq . We start with a general result.

31In a gate that is fed by a trivial multiplication-gate, the argument representing the trivial gate’s output is replaced
by the (up to) t input variables feeding this trivial gate.

24

Theorem 5.4 (lower bound on the restricted complexity of bilinear functions): Let F : (GF(2)n)2 → GF(2)
be a bilinear function with a corresponding tensor T ⊆ [n]2. If T has rigidity ǫn2 with respect to rank r > 1,
then RC(F) ≥ min(r,

√
ǫ · n).

Using r = Ω(1/ǫ), we obtain RC(F) = Ω(min(1/ǫ,
√

ǫ ·n)), which is optimized at ǫ = n−2/3 yielding RC(F) =
Ω(n2/3). Such a rigidity bound can be established for T 2,n

leq (cf. Proposition 5.5). For a random matrix T ,

we can obtain rigidity Ω(n2) with respect to rank Ω(n), which implies that for almost all bilinear functions
F it holds that RC(F) = Ω(n). The latter lower bound is tight, since (for any t ≥ 1) any t-linear function F
satisfies RC(F) ≤ nt/2 (via a multilinear formula with addition gates that sum-up all the relevant monomials).

Proof: We assume that m
def
= RC(F) <

√
ǫ · n, and show that m ≥ r. Consider a standard multilinear

circuit that computes F with m′ addition gates of arity at most m and m′′ non-trivial multiplication gates,
where m′ + m′′ ≤ m. Note that the top gate cannot be a multiplication gate, because such a multilinear
circuit can only compute bilinear functions that correspond to rank-1 matrices. Thus, the circuit, which is
a directed acyclic graph (DAG) rooted at the top gate, can be decomposed into a top layer that consists of
a DAG of addition gates, an intermediate layer of multiplication gates, and a bottom layer that consists of
a DAG of addition gates and variables (which feeds linear functions to the multiplication gates). We note
that the number of trivial multiplication gates that feed the top DAG is at most m2, because this DAG has
m′ ≤ m addition gates each of in-degree at most m.

We truncate the foregoing circuit at the trivial multiplication gates (which compute products of vari-
ables), obtaining a new circuit that computes a bilinear function F ′ with a tensor T ′ such that |T +T ′| ≤ m2

(since T + T ′ corresponds to the function computed by the sum of the trivial multiplication gates). This
new circuit has no trivial gates and it has m′′ non-trivial multiplication gates (each computing a bilinear
function that corresponds to a rank-1 matrix). Hence T ′ has rank at most m′′ (since it is the sum of m′′

rank-1 matrices). We consider two cases:

1. If m′′ ≤ r, then T ′ has rank at most r, and we derive a contradiction to the hypothesis that T
has rigidity ǫn2 with respect to rank r, since |T + T ′| ≤ m2 < ǫn2 (recalling our assumption that
m <

√
ǫ · n).

2. Otherwise, m′′ ≥ r, and it follows that m ≥ r.

The claim follows.

Proposition 5.5 (a bound on the rigidity of T 2,n
leq): For every r < n/O(1), the tensor T 2,n

leq (of Eq. (2)) has

rigidity at least Ω(n2/r) with respect to rank r.

The rigidity lower bound is quite tight, since T 2,n
leq is O(1/r)-close to

∑
k∈[r](Ik ×Jk), where for every k ∈ [r]

it holds that Ik = {(k − 1)n/r + 1, ..., kn/r} and Jk = {(k − 0.5)n/r + 1, ..., n}.
Proof: For a constant c > 1 to be determined later, we consider any r < n/c. We shall prove that any

matrix T ′ = (T ′
i,j)i,j∈[n] of rank r is Ω(1/r)-far from T

def
= T 2,n

leq ; that is, |T ′ + T | = Ω(n2/r).
Let T ′ be an arbitrary matrix of rank at most r. We say that i ∈ [n] is good if |{j ∈ [n] : T ′

i,j 6= Ti,j}| <
n/cr. The claim of the proposition reduces to proving that at least half of i ∈ [n] are not good, since in this

case T ′ disagrees with T on at least n
2 · n

cr = n2

2cr entries. It is thus left to prove the latter claim.
Let G denote the set of good i ∈ [n], and supposed towards the contradiction that |G| > n/2. For

c′ ∈ [1, c/2] to be (implicitly) determined later, select c′r indices i1, ..., ic′r ∈ G such that for every k ∈ [c′r−1]
it holds that ik+1 > ik + (n/2c′r). Let us denote the ithk row of T by vk, and the ithk row of T ′ by v′k. Then,
for a random non-empty set K ⊆ [c′r], it holds that

1. with probability greater than 1− 2−r, the vector
∑

k∈K vk has weight greater than n/6; and

2. with probability at least 2−r, the vector
∑

k∈K v′k has weight 0.

25

(The first claim follows from the structure of T and the distance between the ik’s, whereas the second claim
follows from the rank of T ′.)32 Combining (1) and (2), it follows that there exists non-empty set K ⊆ [c′r]
such that the vector

∑
k∈K vk has weight greater than n/6 but the vector

∑
k∈K v′k has weight 0. But this

is impossible because the distance between these two vectors is at most |K| · n/(cr) ≤ c′n/c < n/6, where
the last inequality require selecting c > 6c′. The claim (that |G| ≤ n/2) follows.

Corollary 5.6 (lower bound on the restricted complexity of F 2,n
leq): RC(F 2,n

leq) = Ω(n2/3).

Indeed, Corollary 5.6 follows by combining Theorem 5.4 and Proposition 5.5, while using r = n2/3 and
ǫ = 1/r. The resulting lower bound is tight:

Proposition 5.7 (upper bound on the restricted complexity of F 2,n
leq): RC(F 2,n

leq) = O(n2/3).

Proof: Consider a partition of [n]2 into n4/3 squares, each with side ℓ = n1/3: For i, j ∈ [n/ℓ], let
Si,j = [(i − 1)n/ℓ + 1, in/ℓ] × [(j − 1)n/ℓ + 1, jn/ℓ], and note that ∪i<jSi,j ⊂ T 2,n

leq ⊂ ∪i≤jSi,j . Thus,

F 2,n
leq can be computed by computing separately the contribution of the n/ℓ = n2/3 diagonal squares and the

contribution of the squares that are above the diagonal. The contribution of the square Si,i can be computed
as the sum of its relevant ℓ2 = n2/3 entries, which means that the sum of the contribution of all diagonal
squares consists of less than n4/3 monomials. This sum can be computed by n2/3 + 1 addition gates, each of
arity n2/3.

The contribution of the above-diagonal squares can be computed by writing ∪i<jSi,j as
∑

i∈[n/ℓ] Ri,

where Ri = [(i − 1)n/ℓ + 1, in/ℓ] × [(i − 1)n/ℓ]. The contribution of each of the n/ℓ = n2/3 rectangles
(i.e., Ri’s) can be computed by multiplying two linear expressions. The point is that there are n2/3 linear
expressions each involving ℓ = n1/3 variables of the first block, and n2/3 linear expressions each involving a
prefix of the sequence of variables of the second block. The former n2/3 linear expressions can be computed
by n2/3 addition gates, each of arity n1/3, whereas the latter can be computed by n2/3 addition gates, each
of arity n1/3 + 1 by using [(i− 1)n/ℓ] = [(i− 2)n/ℓ] ∪ [(i− 2)n/ℓ + 1, (i− 1)n/ℓ] (i.e., the ith addition gate
sums the result of the i− 1st addition gate and ℓ new variables). The claim follows.

5.2.2 On the restricted complexity of almost all t-linear functions

Recall that for every t-linear function F , it holds that RC(F) = O(nt/2), by a circuit that merely adds
all relevant monomials. We prove that for almost all t-linear functions this upper bound is tight up to a
logarithmic factor.

Proposition 5.8 (a lower bound on RC(·) for almost all t-linear functions): For all t = t(n), almost all
t-linear functions F : (GF(2)n)t → GF(2) satisfy RC(F) = Ω(nt/2/ log nt).

Proof: We just upper bound the number of standard multilinear circuits of complexity m. Each such
circuit corresponds to a DAG with m vertices, each representing either an addition gate or a (non-trivial)
multiplication gate. In addition, each of these non-trivial gates may be fed by some variables or trivial
multiplication gates (which are not part of this DAG), but the number of such feeds is at most m and each
is selected among at most (n + 1)t possibilities. Thus, the number of such circuits is at most

32Specifically, for a random K, the weight of the vector
P

k∈K vk is distributed as
P

j∈[c′r−1](ij+1 − ij) · Xj ,

where Xj =
P

k∈K Tik,ij
(mod 2, as always). Thus, Xj =

P

k≤j Yk, where Yk = 1 if k ∈ K and Yk = 0

otherwise, which implies that the Xj ’s are IIDs uniformly distributed in {0, 1}. For sufficiently large c′, we in-
deed have Pr[

P

j∈[c′r−1]Xj > c′r/3] > 1 − 2−r, and (1) follows since
P

j∈[c′r−1](ij+1 − ij) · Xj is greater than

(n/2c′r) ·
P

j∈[c′r−1]Xj . Turning to (2), consider a maximal set of independent vectors among the v′1,, v
′
c′r, and

denote its set of indices by I . Then, PrK [
P

k∈K v′k = 0] can be computed by first selecting a random K′ ⊆ ([c′r] \ I),
and then (for any outcome K′) selecting a random K′′ ⊆ ([c′r] ∩ I), which implies that this probability equals
2−|I| ≥ 2−r.

26

2m · 2(m

2) ·
(

(n + 1)t

m

)m

(14)

where 2(m

2) upper bounds the number of m-vertex DAGs, 2m accounts for choice of the gate types, and(
(n+1)t

m

)
accounts for the choice of DAG-external feeds to each gate. Clearly, Eq. (14) is upper bounded by

((n + 1)t)m2

= exp(tm2 log n), whereas the number of t-linear functions is 2nt

. The claim follows.

27

Acknowledgments

We are grateful to Or Meir for extremely helpful discussions. We also thank Avisay Tal for pointing out
several errors in the origianl text and suggesting some clarifications.

Research was partially done when O.G. visited the IAS. O.G. was partially supported by the Israel
Science Foundation (grant No. 1041/08) and by the Minerva Foundation (with funds from the Federal
German Ministry for Education and Research).

References

[1] A.E. Andreev. On a method for obtaining more than quadratic effective lower bounds for the
complexity of π-schemes. Moscow Univ. Math. Bull., Vol. 42 (1), pages 63–66, 1987.

[2] M. Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, Vol. 24 (1), pages 1–48, 1983.

[3] L. Babai. Random oracles separate PSPACE from the Polynomial-Time Hierarchy. IPL, Vol. 26,
pages 51–53, 1987.

[4] Z. Dvir, S. Saraf, and A. Wigderson. Improved rank bounds for design matrices and a new proof
of Kelly’s theorem. ECCC, TR12-138, 2012.

[5] P. Erdos and J. Spencer. Probabilistic Methods in Combinatorics. Academic Press, Inc., New York,
1974.

[6] M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy. Math-
ematical Systems Theory, Vol. 17 (1), pages 13–27, 1984. Preliminary version in 22nd FOCS,
1981.

[7] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press,
2008.

[8] J. Hastad. Almost Optimal Lower Bounds for Small Depth Circuits. Advances in Computing
Research: a research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 143–170,
1989. Extended abstract in 18th STOC, 1986.

[9] J. Hastad. Computational Limitations for Small Depth Circuits. MIT Press, 1987.

[10] J. Hastad, S. Jukna. and P. Pudlak. Top-Down Lower Bounds for Depth-Three Circuits. Compu-
tational Complexity, Vol. 5 (2), pages 99–112, 1995.

[11] P. Hrubes and A. Rao. Circuits with Medium Fan-In. ECCC, TR14-020, 2014.

[12] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Algorithms and Combinatorics,
Vol. 27, Springer, 2012.

[13] M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity Require Super-Logarithmic
Depth. SIAM J. Discrete Math., Vol. 3 (2), pages 255–265, 1990.

[14] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press, 1997.

[15] S.V. Lokam. Complexity Lower Bounds using Linear Algebra. Foundations and Trends in Theo-
retical Computer Science, Vol. 4, pages 1–155, 2009.

[16] D. van Melkebeek. A Survey of Lower Bounds for Satisfiability and Related Problems. Foundations
and Trends in Theoretical Computer Science, Vol. 2, pages 197-303, 2007.

[17] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, Vol. 11 (1), pages 63–70,
1991.

[18] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer and System Science,
Vol. 49, No. 2, pages 149–167, 1994. Preliminary version in 29th FOCS, 1988.

28

[19] N. Nisan and A. Wigderson. Lower Bound on Arithmetic Circuits via Partial Derivatives. Compu-
tational Complexity, Vol. 6, pages 217–234, 1996.

[20] R. Raz. Tensor-Rank and Lower Bounds for Arithmetic Formulas. Proceeding of the 42nd STOC,
pages 659–666, 2010.

[21] R. Raz and A. Yehudayoff. Lower Bounds and Separations for Constant Depth Multilinear Circuits.
ECCC, TR08-006, 2008.

[22] A. Razborov. Lower bounds on the size of bounded-depth networks over a complete basis with
logical addition. In Matematicheskie Zametki, Vol. 41, No. 4, pages 598–607, 1987 (in Russian).
English translation in Mathematical Notes of the Academy of Sci. of the USSR, Vol. 41 (4), pages
333–338, 1987.

[23] W.J. Savitch. Relationships between nondeterministic and deterministic tape complexities. JCSS,
Vol. 4 (2), pages 177-192, 1970.

[24] R. Shaltiel and E. Viola. Hardness Amplification Proofs Require Majority. SIAM J. Comput.,
Vol. 39 (7),pages 3122–3154, 2010. Extended abstract in 40th STOC, 2008.

[25] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity.
In 19th STOC pages 77–82, 1987.

[26] V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., Vol. 264, pages 182–202, 1973.

[27] L.G. Valiant. Graph-theoretic arguments in low-level complexity. Mathematical Foundations of
Computer Science, Springer, Lecture Notes in Computer Science, Vol. 53, pages 162–176, 1977.

[28] L.G. Valiant. Exponential lower bounds for restricted monotone circuits. In 15th STOC, pages
110–117, 1983.

[29] U.V. Vazirani. Efficiency Considerations in Using Semi-Random Sources. In 19th STOC, pages 160-
168, 1987.

[30] A.C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. In 26th FOCS, pages 1-10, 1985.

29

Appendices
Throughout the rest of this paper (i.e., in the appendices), by circuits we mean Boolean circuits. Since we are
mainly interested in constant-depth circuits and in their size as being exponential in some parameters (while
disregarding the constant factor in the exponent), the difference between formulas and circuits is immaterial
here. Ditto with respect to the difference between the maximal fan-in of gates in the circuit (or formula)
and the total size. Indeed, a depth-d formula (or circuit) of fan-in bound B, has size at most Bd, which is
poly(B) = exp(log B), whenever d is constant. In other words, for a constant depth circuit (or formula) C
it holds that log(size(C)) is linear in the logarithm of the fan-in bound.

Appendix A: On separating NL from P
This appendix provides details for a comment made in the introduction regarding the effect of exponential
lower bounds on the size of depth-three Boolean circuits on separating NL from P .

We start by recalling a folklore result regarding the circuit complexity of NL, which can be proved by
a natural generalization of the well-known idea underlying Savitch’s Theorem [23].

Theorem A.1 Every set in NL has constant-depth Boolean circuits of sub-exponential size. That is, for
every set S ∈ NL, there exists a constant c such that for any constant d > c, the set S has depth-d circuits
of exp(nc/d) size.

(In his survey of lower bounds for Satisfiability [16], van Melkebeek describes this result and its proof in
terms of alternating time; cf. [16, Sec. 3.2].)

Proof: We shall show that directed st-connectivity can be solved by depth-d circuits of size exp(Õ(n2/d)),

where n denotes the number of vertices (and factors that depend on d are hidden in the Õ-notation). Let
Φ(G, u, v, ℓ) denote the predicate indicating that there is a path of length at most ℓ from u to v in the graph
G. Observe that Φ(G, v0, vm+1, ℓ) can be written as

∃v1, ..., vm∀i ∈ [m + 1] Φ(G, vi−1, vi, ⌈ℓ/m⌉).

Indeed, in the proof of Savitch’s Theorem [23], one sets m = 1 (and recurses for log2 n steps), but here we
set m = n2/d and recurse for d/2 steps. We obtain the desired circuit by replacing the existential quantifiers
with 2m log2 n-way OR-gates and the universal quantifiers with ((m + 1)-way) AND-gates.

Corollary A.2 If there is a function in the class C that has no constant-depth circuits of subexponential
size, then C is not contained in NL.

Indeed, the same argument can be applied whenever the lower bound on the size of depth-d circuits (for
the function in C) is higher than exp(nO(1/d)). A simple case is when the lower bound is oblivious of the
constant depth (or rather holds uniformly over all constant depths). In general, the lower bound may have
the form Ld(n), and in such a case it suffices that for every c there exists a d such that for sufficiently large
n it holds that Ld(n) > exp(nc/d).

Appendix B: On worst-case vs average-case

The application of circuit lower bounds to derandomization (via the hardness-to-randomness connection of
cf. [17, 18]) requires strong average-case bounds, not merely worst-case ones. Here average-case refers to the
uniform distribution. Before continuing the discussion, let us clarify the above notions.

We say that a circuit C approximates the Boolean function F with error probability ǫ if Prx[C(x) 6=F (x)] ≤
ǫ, where the probability is taken over the uniform distribution (over strings of adequate length), and its
advantage (over a coin toss) is defined as (1 − ǫ) − 0.5 = 0.5 − ǫ. The notion of worst case corresponds to

30

error probability 0, a mild level of average case may refer to some constant error probability ǫ ∈ (0, 0.5),
whereas a strong level of average case may refer to error probability that has the form ǫ(n) = 0.5 − µ(n),
where µ is some negligible function (e.g., µ(n) = 2−Θ(n)).

The point is that even if one obtains exponential lower bounds (on the size of constant-depth circuits)
for computing some explicit function, these worst-case bounds do not necessarily yield average-case lower
bounds. In other settings, hardness amplification can be used to bridge the gap, but in the context of
constant-depth circuits generic hardness amplification to exponentially vanishing advantage is quite unlikely
(cf. [24], which assert that such a black-box amplification implies a circuit for majority). Nevertheless, for
t-linear function, hardness amplification to very moderate error rate is possible.33

Proposition B.1 (implicit in [2, 3]): Let F : ({0, 1}n)t → {0, 1} be a t-linear function. If F cannot be
computed by depth d circuits of size s, then F cannot be approximated with error probability at most 2−(t+2)

by depth d− 4 circuits of size s/(exp(2t) · poly(n)).

Proof: Suppose that C approximates F with error probability at most ǫ; that is,

Prx(1),...,x(t) [C(x(1), ..., x(t)) 6=F (x(1), ..., x(t))] ≤ ǫ.

Then, following Babai [3], we can obtain a randomized circuit C′ such that for every (x(1), ..., x(t)) ∈ ({0, 1}n)t

it holds that Pr[C′(x(1), ..., x(t))=F (x(1), ..., x(t))] ≥ 1− 2tǫ. Specifically, C′ selects uniformly r(1), ..., r(t) ∈
{0, 1}n, and computes

C′(x(1), ..., x(t); r(1), ..., r(t))
def
=

∑

(σ1,...,σt)∈{0,1}t

C(σ1x
(1) + r(1), ..., σtx

(t) + r(t)).

Note that C′ can be implemented in depth depth(C)+2 and size exp(2t)·size(C). Assuming that ǫ ≤ 2−(t+2),
the error probability of C′ is at most 1/4, since

∑
(σ1,...,σt)∈{0,1}t F (σ1x

(1) + r(1), ..., σtx
(t) + r(t)) equals

F (x(1), ..., x(t)).
We now apply Ajtai’s amplification procedure [2]. First, we reduce the error probability to below

n−3 by invoking C′ for ℓ = O(log n) times (with independent coins) and taking a majority vote; that is,
C′′(x; ω1, ..., ωℓ) = MAJ(C′(x; ωi)i∈[ℓ]). This yields a (randomized) circuit C′′ of depth depth(C′)+1 and size
poly(n) ·size(C′). Next, we constructs a (randomized) circuit C′′′ that on input x invokes C′′(x) for n2 times,
using coins ω1,1, ..., ωn,n, and outputs

∨
i∈[n]

∧
j∈[n] C

′′(x; ωi,j). Note that C′′′ errs on x only if at least n

invocations returned the wrong answer, which happens with probability at most
(
n2

n

)
· (n−3)n < 2−tn (using

t < log2 n or else the claim holds vacuously). Fixing a sequence of coins that is good for all 2tn possible
inputs, we obtain a (deterministic) circuit of depth depth(C)+4 and size exp(2t)poly(n) · size(C). The claim
follows.

Comment. Indeed, the foregoing argument produces a non-canonical circuit. The first step (i.e., self-
correction) would have been canonical if the r(j)’s were considered input variables, but taking majority and
computing a “weird” function (which corresponds to a “vast majority” promise problem) are not canonical.
Surely, there are things that canonical circuits cannot do well, but the question is whether this matters when
computing multilinear functions (rather than when doing mild hardness amplification).

Appendix C: On the size of DNFs and CNFs computing multilinear

functions

We shall care both of the size of DNFs and CNFs computing various multilinear functions. The main
motivation is to establish a lower bound that will be used in the sanity check for depth-three (and larger

33Indeed, this result falls short of obtaining a strong level of average-case hardness. Thus, it is our hope that
exponential lower bounds for exact computation of multilinear functions will extend to approximation with error
probability of the form 0.5 − µ where µ is an exponentially vanishing function. Note that this was the case with
respect to the parity lower bounds (cf., e.g., [9, Chap. 8]).

31

constant depth) circuits: The canonical rules for designing circuits, which are the core of these sanity checks,
include the use of depth-two circuits for computing multilinear functions. (We shall actually need both DNFs
and CNFs for computing each required multilinear function.) Additional motivation comes from the feeling
that the depth-two case may teach us something about larger depth, but we actually doubt that feeling. Let
us also warn that there may be a significant difference between the size of DNFs and CNFs, as indicated by

the t-linear function F t,n
all(x

(1), ..., x(t))
def
=

∑
i1,...,it∈[n] x

(1)
i1
· · ·x(t)

it
.

Proposition C.1 (a gap between CNFs and DNFs): The function F t,n
all has CNFs of size Õ(2n), but no

DNFs of size smaller than 2tn−t. In general, for any d ≥ 2, the function F t,n
all has depth-d circuits of size

exp(n1/(d−1)).

Proof: A depth-d circuit of size exp(n1/(d−1)) for computing F t,n
all follows from the fact that

∑
i1,...,it∈[n] x

(1)
i1
· · ·x(t)

it

equals
∏

j∈[t]

∑
i∈[n] x

(j)
i . (Thus, F t,n

all can be written as a conjunction of t (depth-d) parity circuits.)

The lower bound on the size of DNFs follows by observing that (1) each (non-trivial) term in such
DNF must contain an occurrence of each variable, and (2) the probability that F t,n

all evaluates to 1 is 2−t.
Specifically, regarding (1), assume towards the contradiction that some term φ lacks an occurrence of variable

x
(j)
i , and consider an arbitrary assignment that satisfies this term. Then, flipping the value of x

(j)
i keeps this

term satisfied, whereas Fall cannot evaluate to 1 under both assignments. (Here, as well as for verifying (2),

it is useful to write F t,n
all(x

(1), ..., x(t)) as
∏

j∈[t]

∑
ij∈[n] x

(j)
ij

.) Combining (1) with (2), we infer that the

number of terms, denoted M , must satisfy M · 2−tn ≥ 2−t.

The rest of this appendix. This appendix consists of a very basic study of the size of depth-two
circuits computing various multilinear functions. To set the stage, recall that a generic t-linear function

F has the form F (x(1), ..., x(t)) =
∑

(i1,...,it)∈T x
(1)
i1
· · ·x(t)

it
, where T ⊆ (I1 × · · · × It) ⊆ [n]t. Needless

to say, we shall consider the smallest possible rectangle I1 × · · · × It that contains T , which means that
Ij = {i∈ [n] : ∃(i1, ..., ij−1, i, ij+1, ..., it)∈T }.

It turns out that the size of depth-two circuits for such a function F may range between exponential in
2−t ·∑j∈[t] |Ij | and exponential in

∑
j∈[t] |Ij |. We shall consider both cases, as well as the intermediate case

in which the size is exponential in maxj∈[t]{|Ij |}.
Clearly, exp(

∑
j∈[t] |Ij |) is an obvious upper bound on the size of DNFs and CNFs computing F . We

shall see that in some cases there exists a matching lower bound (of the form exp(Ω(
∑

j∈[t] |Ij |)), which

means that we discard polynomial relations in size). But we first turn to lower bounds that hold in all cases,
which have the weaker form of exp(2−t ·∑j∈[t] |Ij |).

C.1 A lower bound that hold for all t-linear functions

As will be proved next, a lower bound that holds for all t-linear functions F : ({0, 1}n)t → {0, 1} has the
form exp(2−t ·∑j∈[t] |Ij |), where the I1 × · · · × It is the smallest rectangle that contains the corresponding

tensor T . We shall also see that this lower bound is the best possible (with respect to lower bounds that are
stated in terms of t and

∑
j∈[t] |Ij |).

Proposition C.2 (on the size of DNFs computing any multilinear function):

(general lower bound) For every T ⊆ [n]t, if (I1 × · · · × It) is the minimal rectangle that contains T ,

then F (x(1), ..., x(t)) =
∑

(i1,...,it)∈T x
(1)
i1
· · ·x(t)

it
has neither a DNF nor a CNF of size smaller than

exp(exp(−t) ·∑j∈[t] |Ij |).

(matching upper bound) For every n ≥ m ≥ 3t−1, there exists a non-empty T ⊆ (I1 × · · · × It) ⊆ [n]t such
that

∑
j∈[t] |Ij | ∈ [m, m+O(log m)] and the corresponding F has DNFs and CNFs of size exp(exp(−t)·∑

j∈[t] |Ij |).

32

Proof: In proving the lower bound, we assume, w.l.o.g, that |I1| = maxj{|Ij |}. Note that F (x(1), ..., x(t))

can be written as
∑

i∈I1
Fi(x

(2), ..., x(t)) · x(1)
i , where each Fi(x

(2), ..., x(t)) is a (non-trivial) (t − 1)-linear
function. Hence, by the Schwartz–Zippel Lemma (for small fields), it holds that, for every i ∈ I1, the

probability that F ′(x(1)) = F (x(1), r(2), ..., r(t)) depends on x
(1)
i , for uniformly chosen r(2), ..., r(t) ∈ {0, 1}n,

is at least 2−(t−1). It follows that there exists r(2), ..., r(t) ∈ {0, 1}n such that F ′(x(1)) is a linear function of

at least v
def
= |I1|/2t−1 variables, and thus has no DNF or CNF of size smaller than 2v−1. The lower bound

follows, since v > |I1|/2t = Ω(exp(−t) ·∑j∈[t] |Ij |).
For proving the upper bound, we first consider the case of m = 3t−1. Associate [m] ⊆ [n] with the set,

denoted 3[t−1], of all 3-way (ordered) partitions of [t− 1], and consider the function

F (x(1), ..., x(t)) =
∑

(A,B,C)∈3[t−1]

∏

j∈A

x
(j)
1

 ·

∏

j∈B

x
(j)
2

 ·

∏

j∈C

(x
(j)
1 + x

(j)
2)

 · x(t)

(A,B,C)

Indeed, this function is t-linear (since each j ∈ [t−1] appears in exactly one part of any 3-partition (A, B, C) ∈
3[t−1]) and it depends on the variables x

(1)
1 , x

(1)
2 , ..., x

(t−1)
1 , x

(t−1)
2 and x(t) (i.e., x

(t)
(A,B,C) for all (A, B, C) ∈

3[t−1]). Thus, the corresponding tensor is minimally bounded by the rectangle {1, 2}t−1 × 3[t−1].
We show that, for any possible assignment to x(1), ..., x(t−1), at most 2t−1 of the 3t−1 variables of x(t)

are influential. First note that for each j ∈ [t − 1] it cannot hold that r
(j)
1 = r

(j)
2 = r

(j)
1 + r

(j)
2 = 1. Thus,

for every r(1), ..., r(t−1) ∈ {0, 1}n, it holds that |{(A, B, C) ∈ 3[t−1] : M(A,B,C)(r
(1), ..., r(t−1)) = 1}| ≤ 2t−1,

where M(A,B,C)(r
(1), ..., r(t−1)) = (

∏
j∈A r

(j)
1)·(∏j∈B r

(j)
2)·(∏j∈C(r

(j)
1 +r

(j)
2)). This established the foregoing

claim.
Now, we can write a disjunction over all 22(t−1) assignments to x

(1)
1 , x

(1)
2 , ..., x

(t−1)
1 , x

(1)
2 and for each such

assignment write a DNF on 2t−1 influential variables. That is, letting r = (r
(1)
1 , r

(1)
2 , ..., r

(t−1)
1 , r

(t−1)
2), we

write
F (x(1), ..., x(t)) =

∨

r∈{0,1}2(t−1)

φr(x
(1)
1 , x

(1)
2 , ..., x

(t−1)
1 , x

(t−1)
2 , x

(t)
I(r))

where x
(t)
I(r) denote the sequence of variables in x(t) that are influential under the assignment r. (Indeed, the

DNF φr computes the Boolean function (
∧

j∈[t],i∈{1,2} x
(j)
i = r

(j)
i) ∧ PAR(x(t)

I(r)), which we do not bother to

write in DNF.) Thus, we obtained a DNF of size exp(t+2t) = exp((2/3)t−1 ·m), since m = 3t−1. (The same
can be done with a top conjunction and CNFs, yielding a CNF.)34 In general, when m > 3t−1, the claim
follows by partitioning [m] into ⌊m/3t−1⌋ blocks of length 3t−1 and treating each block as above.

Corollary C.3 (lower bounds on the size of DNFs computing any multilinear function): Every t-linear
function that depends on all its variables has no depth-two circuits of size exp(o(exp(−t) ·n)). Furthermore,
the claim hold even if the function depends only on Ω(n) of its tn variables.

C.2 The intermediate range: a parity-level lower bound

For many natural t-linear functions, it is easy to obtain an exponential in n lower bound by reducing Ω(n)-
way parity to the t-linear function F : ({0, 1}n)t → {0, 1} at hand. Such a reduction amounts to showing
that fixing nt − n′ of the input bits of F results in the parity of the remaining n′ = Ω(n) bits. Using such
reductions, one can easily show the following.

Proposition C.4 (reductions from parity): Almost all t-linear function F : ({0, 1}n)t → {0, 1} cannot be
computed by depth-two circuits of size 20.49n. The t-linear functions F t,n

leq , F t,n
tet , and F t,n

mod p for p ≤ n, cannot

be computed by depth-two circuits of size 2n−2.

34Indeed, a corresponding CNF ψr computes the function (
W

j∈[t],i∈{1,2} x
(j)
i 6= r

(j)
i) ∧ PAR(x

(t)

I(r)).

33

The first part (i.e., regarding almost all multilinear function) is stated merely for sake of demonstrating the
technique. We shall see a stronger results for almost all functions in Section C.3.

Proof: When considering a random t-linear function F : ({0, 1}n)t → {0, 1}, we consider the corresponding

tensor T , which is uniformly distributed among all subsets of [n]t. Hence, F (x(1), 1(t−1)·n) =
∑

i∈[n] σi ·x(1)
i ,

where σi = |{(i, i2, ..., it) ∈ T : i2, ..., it ∈ [n]}| mod 2. Thus, with overwhelmingly high probability over the
choice of T , at least 0.49n of the σi’s will be set to 1, which means that we can use any depth-two circuit
computing T in order to compute the parity of 0.49n bits.

Turning to F t,n
leq , note that F t,n

leq(x
(1), ..., x(t)) equals

∑
i∈[n] Fi(x

(2), ..., x(t))·x(1)
i , where Fi(x

(2), ..., x(t)) =
∑

i≤i2≤···≤it≤n x
(2)
i2
· · ·x(t)

it
. Hence, for every j ∈ [2, t], setting r

(j)
n = 1 and r

(j)
k = 0 for every k ∈ [n − 1],

we get Fi(r
(2), ..., r(t)) = 1 for every i ∈ [n] (since r

(2)
i2
· · · r(t)

it
= 1 if and only if i2 = · · · = it = n). Thus,

F t,n
leq(x

(1), r(2), ..., r(t)) equals
∑

i∈[n] x
(1)
i . A similar argument applies to F t,n

tet except that here (for every

j ∈ [2, t]) we set r
(j)
n/2 = 1 and r

(j)
k = 0 for every other k ∈ [n].

Lastly, considering F t,n
mod p, for every j ∈ [3, t], we set r

(j)
1 = 1 and r

(j)
k = 0 for every k ∈ [2, n],

whereas r
(2)
k = 1 iff k ∈ [p]. Note that F t,n

mod p(x
(1), ..., x(t)) equals

∑
i∈[n] Fi(x

(2), ..., x(t)) · x(1)
i , where here

Fi(x
(2), ..., x(t)) =

∑
(i2,...,it):(i,i2,...,it)∈T t,n

mod p
x

(2)
i2
· · ·x(t)

it
, and the only term that contributes to Fi(r

(2), ..., r(t))

is the one that satisfies i3 = · · · = it = 1 and i2 ∈ [p] such that i2 ≡ −(i + (t − 2)) (mod p). Indeed, for

each i ∈ [n] there exists exactly one such term. Thus, F t,n
mod p(x

(1), r(2), ..., r(t)) equals
∑

i∈[n] x
(1)
i .

C.3 Lower bounds that are exponential in tn

Some indication towards the non-triviality of such lower bounds comes from looking at bilinear functions (i.e.,
t = 2). In contrast to what one may think, the size of depth-two circuits that compute F 2,n

leq is significantly

below 22n (i.e., it is at most 21.6n). The same holds for almost all bilinear functions. Also, for p ≤ n, the
size of depth-two circuits that compute F 2,n

mod p is at most 22n−Ω(p)). (In the context of t = 2, it makes no

sense to consider F t,n
mod p for p > 2n.)

Proposition C.5 (upper bounds for some bilinear functions): The bilinear function F 2,n
leq (x, y) =

∑
i≤j≤n xiyj

has depth-two circuits of size 21.6n. The same upper bound holds for almost all bilinear functions. The bi-
linear function F 2,n

mod p has depth-two circuits of size 2max(1.51n,2n−Ω(p)).

Proof: In all cases, the key observation is that, for all but a small fraction of the settings of the y-
variables, the number of relevant x-variables is significantly smaller than n. Thus, the DNF can consist
of the disjunction of DNFs that correspond to each of the possible assignments to y, and most of these
DNFs will be significantly smaller than 2n. (For implementation details, see the proof of the upper bound
in Proposition C.2.)

Starting with F 2,n
leq (x, y), we write F 2,n

leq (x, y) =
∑

i∈[n] cixi, where ci =
∑n

j=i yj. Note that the ci’s are
obtained by a full-rank linear transformation of the yj ’s. Thus, the number of relevant x-variables for a
random assignment to the y-variables (represented by k below) behaves like the Binomial distribution on n
events (with success probability 1/2), and so the size of the final DNF will be

poly(n) ·
n∑

k=0

(
n

k

)
· 2k = poly(n) · max

k∈[n]

{(
n

k

)
· 2k

}

= poly(n) · 2maxα∈[0,5,1]{α+H2(α)}·n

where H2 denotes the binary entropy function. Noting that maxα∈[0,5,1]{α + H2(α)} < 1.6, we are done.
In the case of an arbitrary bilinear function F that is associated with the tensor T ⊆ [n]2, we have

F (x, y) =
∑

i∈[n] cixi, where ci =
∑

j∈[n]:(i,j)∈T yj . For a random tensor T ⊆ [n]2, with very high probability,

the ci’s are obtained by a rank (n− o(n))-rank linear transformation of the yj ’s. In such a case, the number
of relevant x-variables for a random assignment to the y-variables behaves like Bn−o(n) + o(n), where Bn′

34

is the Binomial distribution on n′ events (with success probability 1/2). Thus, the size of the DNF will be
smaller than 2maxα∈[0,5,1]{α+H2(α)}·n+o(n), which is smaller than 21.599n+o(n).

Turning to F 2,n
mod p, we write F 2,n

mod p(x, y) =
∑

r∈[p] Lr(x) ·Lp−r(y), where Lk(z)
def
=

∑
j∈[n]:j≡k (mod p) zj .

Thus, the number of relevant x-variables for a random assignment to the y-variables behaves like (n/p) ·Bp,
where Bp is the Binomial distribution on p events (which here reflect the values of the linear functions
Lp−r(y)); that is, here the size of the DNF will be poly(n) · 2n · E[2Bp·(n/p)], which is upper bounded by
21.51n + Pr[Bp > 0.51p] · 22n = 21.51n + 22n−Ω(p).

Lower bounds for bilinear functions. We do not know whether the bilinear functions F 2,n
leq and

F 2,n
mod p (for p < n) require depth-two circuits of size that is significantly larger than 2n. This is quite annoying

but of no real significance, since we seek lower bounds of the form exp(Ω(tn)) for t-linear functions. Still,
the following problem is of natural interest.

Problem C.6 (does F 2,n
leq require significantly larger CNFs than parity?) Is it true that the bilinear function

F 2,n
leq (x, y) =

∑
i≤j≤n xiyj has no depth-two circuits of size smaller than 21.5n? Ditto for the bilinear function

F 2,n
mod p, when p ≤ n.35

In fact, the same may be asked of almost all bilinear functions.

Lower bounds for t-linear functions. Turning to larger values of t,we proceed in two steps. The
first step (captured by Proposition C.7) reduces establishing lower bounds on the size of depth-two circuits
computing a t-linear function F to establishing lower bounds on the number of variables that influence the
linear function that is obtained from F by fixing random values to all other t − 1 blocks of variables. The
second step (represented by the subsequent propositions) establishes lower bounds of the latter form for
various t-linear functions.

Proposition C.7 (exponential lower bounds for some multilinear functions): Let F : ({0, 1}n)t → {0, 1}
be a t-linear function, n1, ..., nt ≥ 0 and ǫ1, ..., ǫt ≥ 0 such that

∑
j∈[t] nj ≥ 1 and

∑
j∈[t] ǫj < 1/4. Suppose

that for each j ∈ [t], with probability at least 1 − ǫj over the choice of r(1), ..., r(t) ∈ {0, 1}t·n, the residual
function F (r(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least nj variables. Then, every depth-two circuit

computing F has size at least 2m−3, where m
def
=

∑
j∈[t] nj.

The hypothesis holds for almost all t-linear functions with nj = (0.5 − o(1))n and ǫj = 1/5t for all j ∈ [t]
(provided t = exp(o(n)), see Proposition C.8). On the other hand, the hypothesis does not hold for t-linear
functions F that can be presented as a product of a pair of a multilinear functions (i.e., a t′-linear function
and a (t− t′)-function).36

Proof: It will be more convenient to show that neither F nor F + 1 has a DNF of size smaller than 2m−3.
For any σ ∈ {0, 1}, suppose that F (x(1), ..., x(t))+σ =

∨
k∈[M] φk(x(1), ..., x(t)), where each φk is a non-trivial

conjunction. We shall show that M ≥ 2m−3.

For each k ∈ [M] and j ∈ [t], let D
(j)
k denote the set of variables in x(j) on which φk depends, and

let G
def
= {k ∈ [M] : (∀j ∈ [t]) |D(j)

k | ≥ nj} (denote the set of good φk’s). Letting F ′(x(1), ..., x(t))
def
=

σ +
∨

k∈G φk(x(1), ..., x(t)), we shall prove that F ′ + σ is ǫ-close to F + σ, where ǫ =
∑

j∈[t] ǫj .

Assume, towards the contradiction, that F ′ + σ =
∨

k∈G φk is ǫ-far from F + σ =
∨

k∈[M] φk, and

let Bj
def
= {k ∈ [M] : |D(j)

k | < nj} (denote the set of φk that are bad for j). Note that G = [M] \
(∪j∈[t]Bj), and that a random assignment to all the variables satisfies

∨
k∈([M]\G) φk with probability greater

35Note that T t,n
mod p = ∅ for p > tn.

36That is, if F (x(1), ..., x(t)) equals F1(x
(1), ..., x(t′)) · F2(x

(t′+1), ..., x(t)), then for every j ∈ [t′] with probability at

least 1/2 the function F2 evaluates to 0 under a random assignment to x(t′+1), ..., x(t), and in this case the value of
the residual F does not depend only any variable in x(j).

35

than ǫ (since Pr[
∨

k∈([M]\G) φk(r(1), ..., r(t)) = 1] equals Pr[F (r(1), ..., r(t)) + σ 6= F ′(r(1), ..., r(t)) + σ],

which is greater than ǫ by the contradiction hypothesis). Then, there exists j ∈ [t] such that, with
probability greater than ǫj , a random assignment to all the variables satisfies

∨
k∈Bj

φk. Fixing such

a j and recalling the main hypothesis, it follows that there exists an assignment r(1), ..., r(t) such that∨
k∈Bj

φk(r(1), ..., r(t)) = 1 and f(x(j))
def
= F (r(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least nj vari-

ables (and is linear). Fix this assignment as well as a k ∈ Bj such that φk(r(1), ..., r(t)) = 1. Recalling that

φ(x(j))
def
= φk(r(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on less than nj variables and is not identically 0,

we reach a contradiction (because we can set nj − 1 variables of φ(x(j)) such that φ is determined to the
value 1, and then set the remaining variables such that f + σ is 0.37

Having established that F ′(x(1), ..., x(t)) + σ =
∨

k∈G φk(x(1), ..., x(t)) is ǫ-close to F + σ, where ǫ < 1/4,
we note that F +σ evaluates to 1 with probability at least maxj∈[t]:nj≥1{(1− ǫj)} ·1/2 > 3/8, where the first

factor lower bounds the probability that assigning random values to the variables x(1), .., x(j−1), x(j+1), ..., x(t)

of F yields a non-trivial linear function in x(j). It follows that F ′ + σ, which is 1/4-close to F + σ, evaluates
to 1 with probability at least (3/8) − (1/4) = 1/8. This implies that

∑
k∈G 2−ℓk ≥ 1/8, where ℓk =

∑
j∈[t] |D

(j)
k | ≥

∑
j∈[t] nj = m for every k ∈ G. Hence, |G| ≥ 2m−3.

Proposition C.8 (almost all multilinear functions satisfy the hypothesis of Proposition C.7 with linear
nj ’s): For every ǫ > 0, for almost all t-linear functions F : ({0, 1}n)t → {0, 1}, it holds that for each j ∈ [t],
with probability at least 1 − exp(−Ω(ǫ2n)) over the choice of r(1), ..., r(t) ∈ {0, 1}t·n, the residual function
F (r(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least (0.5− ǫ) · n variables.

Thus, for any t = exp(o(n)), almost all t-linear functions F : ({0, 1}n)t → {0, 1}, satisfy the hypothesis of
Proposition C.7 with nj = (0.5− o(1)) · n and ǫj = 1/5t for every j ∈ [t].

Proof: For simplicity of notation, let j = 1. For a generic t-linear function F associated with the tensor

T ⊆ [n]t and a generic assignment r(2), ..., r(t), we have F (x(1), r(2), ..., r(t)) =
∑

i∈[n] vix
(1)
i , where vi =

∑
(i,i2,...,it)∈T r

(2)
i2
· · · r(t)

it
. Defining Ik = {i ∈ [n] : r

(k)
i = 1}, it follows that vi = |T ∩ ({i} × R)|, where

R
def
= I2 × · · · × It. Note that, with probability 1 − exp(−n) over the choice of r(2), ..., r(t) ∈ {0, 1}(t−1)·n,

the (t − 1)-dimensional rectangle R is non-empty, and in such a case vi = |T ∩ ({i} × R)| will be odd with
probability 1/2 when T is selected at random. Thus, with probability 1−exp(−ǫ2n) over the random choice of
both r(1), ..., r(t) ∈ {0, 1}t·n and a t-linear function F : [n]t → {0, 1}, the residual function F (x(1), r(2), ..., r(t))
will depend on at least (n/2)− ǫn variables. The same holds to any other j ∈ [t], and the claim follows by
an averaging argument.

Proposition C.9 (Fmod satisfies the hypothesis of Proposition C.7 with linear nj’s): Let p ≤ n, and suppose
that p is a prime such that 2 is a primitive root modulo p (i.e., 2 generates Z

∗
p). Then, for any ǫ > 0 and

each j ∈ [t], with probability at least 1−4(t−1) ·2−p−2 ·e−2ǫ2p over the choice of r(1), ..., r(t) ∈ {0, 1}t·n, the
residual function F t,n

mod p(r
(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least (0.5− ǫ) · n− ((p− n) mod p)

variables.38

In particular, using p = p(n) and t = o(2p), with probability at least 1 − exp(−√p) over the choice of

r(1), ..., r(t) ∈ {0, 1}t·n, the residual function F t,n
mod p(r

(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least
(0.5− o(1)) · n variables.

Proof: Since the function is symmetric, it suffices to establish the claim for j = 1. We shall also start by
considering the case that p = n.

37That is, we can set r(j) such that φ(r(j)) = 1 but f(r(j)) = σ, which means that
φk(r(1), ..., r(j−1), r(j), r(j+1), ..., r(t)) = 1 whereas F (r(1), ..., r(j−1), r(j), r(j+1), ..., r(t)) = σ, which contradicts the
hypothesis that F (x(1), ..., x(t)) + σ =

W

k∈[M] φk(x(1), ..., x(t)).
38Here, e denotes the natural logarithm base.

36

For simplicity of notation, we shall replace [n] by Zn. For every i ∈ Zn, let F t,n
mod n,i denote the function

associated with the tensor T
(t,n)
i = {(i1, ..., it) ∈ Z

t
n :

∑
j∈[t] ij ≡ i (mod n)}. Indeed, T

(t,n)
0 ≡ T t,n

modn, and

we can write F t,n
mod n,i as ∑

i∈[n]

∑

(i2,...,it)∈T
(t−1,n)
n,n−i

x
(2)
i2
· · ·x(t)

it
· x(1)

i . (15)

We shall prove, by induction on t ≥ 2, that, with probability at least 1−4(t−1) ·2−n over the uniform choice

of r(2), ..., r(t) ∈ {0, 1}n, setting R
(t)
i =

∑
(i2,...,it)∈T

(t−1,n)
n,n−i

r
(2)
i2
· · · r(t)

it
(for each i ∈ Zp) yields a distribution

(R
(t)
1 , ..., R

(t)
n) of min-entropy at least n− 1 (i.e., no outcome occurs with probability greater than 2−(n−1)).

Observing that the residual function F t,n
mod n,i(x

(1), r(2), ..., r(t)) depends on x
(1)
i if and only if R

(t)
i = 1, we

conclude that, with probability at least 1− 4(t− 1) · 2−n− 2e−2ǫ2n, the residual function depends on at least
(0.5− ǫ) · n variables.

The base of the induction (at t = 2) holds, since in that case R
(2)
1 , ..., R

(2)
n is merely a permutation of the

sequence r(2) (i.e., i2 ∈ T
(1,n)
n,n−i iff i2 ≡ n − i (mod n)). In the induction step, we use the fact that R

(t+1)
i

can be written as
∑

k∈Zn
r
(2)
k F t−1,n

mod n,n+i−k(r(3), ..., r(t+1)), which is distributed identically to
∑

k∈Zn
BkR

(t)
i−k,

where the Bk’s are IIDs each uniformly distributed in {0, 1}. Letting R denote an n-by-n matrix in which

the ith column is the result of i downward rotations of (R
(t)
1 , ..., R

(t)
n)⊤, it holds that (R

(t+1)
1 , ..., R

(t+1)
n) is

distributed identically to bR, where b = (B1, ..., Bn).
We now invoke a result of [29] that states that if R (which is a shifted matrix (of dimension n with 2

generating Z
∗
n)) is neither identically zero nor identically one, then it has rank at least n− 1. Recalling that

the induction hypothesis asserts that, with probability at least 1− 4(t− 1)2−n, the vector (R
(t)
1 , ..., R

(t)
n) has

min-entropy at least n− 1, it follows that with probability 1− 4(t− 1)2−n− 2 · 2 · 2−n the matrix R has rank
at least n− 1. In that case bR has min-entropy at least n− 1 (since b us uniformly distributed in {0, 1}n).

This complete the proof for the case that p = n. The case of p < n is treated by observing that

F t,n
mod p(x

(1), ..., x(t)) equals F t,p
mod p(y

(1), ..., y(t)), where y
(j)
r =

∑
i∈[n]:i≡r (mod p) x

(j)
i , for every j ∈ [t] and

r ∈ [p]. Thus, fixing the values of x(2), ..., x(t) at random, means doing so to y(2), ..., y(t), and if the residual
function F t,p

mod p depends on k of the variables y(1), then the corresponding residual function F t,n
mod p depends

on at least k · ⌊n/p⌋ of the variables x(1). Noting that k · ⌊n/p⌋ = (k/p) · n − ((p− n) mod p), the claim
follows.

Proposition C.10 (Ftet satisfies the hypothesis of Proposition C.7 with linear nj ’s): For each j ∈ [t], with
probability at least 1 − nt−2 · exp(−Ω(n)) over the choice of r(1), ..., r(t) ∈ {0, 1}t·n, the residual function
F t,n
tet(r

(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least n/5 variables.

Proof: Since the function is symmetric, it suffices to establish the claim for j = 1. For simplicity, we

shall consider the related functions F
(t,n)
m , for m = 0, 1, ..., n/2, that correspond to the tensors T

(t,n)
m =

{(i1, ..., it) ∈ {0, 1, ..., m}t :
∑

j∈[t] ij ≤ m}. Clearly, if F
(t,n)
n/2 satisfies the hypothesis of Proposition C.7 with

linear nj ’s, then so does F t,n
tet . For every m ∈ {0, 1, ..., n/2}, we write the function F

(t,n)
m (x(1), x(2), ..., x(t))

as ∑

i∈[n]

F
(t−1,n)
m−i (x(2), ..., x(t)) · x(1)

i . (16)

We shall prove, by induction on t ≥ 2, setting X
(t)
i = F

(t−1,n)
i (r(2), ..., r(t)) (for each i ∈ {0, 1, ..., n/2}),

where r(2), ..., r(t) ∈ {0, 1}n are uniformly distributed, yields a distribution (X
(t)
0 , ..., X

(t)
n/2) of min-entropy

at least (n/2) + 1− (t− 2) · log2 n (i.e., no outcome occurs with probability greater than nt−2 · 2−((n/2)+1)).

Observing that the residual function F
(t,n)
n/2 (x(1), r(2), ..., r(t)) depends on x

(1)
i if and only if X

(t)
i = 1, we

conclude that, with probability at least 1 − nt−2 · exp(−ǫ2n), the residual function depends on at least
(0.5− ǫ) · (n/2) variables.

37

The base of the induction (at t = 2) holds, since in that case X
(2)
0 , X

(2)
1 , ..., X

(2)
n/2 is uniformly dis-

tributed (since, X
(t)
i =

∑i
k=0 r

(2)
k). In the induction step, we use the fact that X

(t+1)
i can be written as∑i

k=0 X
(t)
k r

(t+1)
i−k . For m = (n/2) + 1, letting R denote an m-by-m matrix in which the ith row equals

(X
(t)
0 , X

(t)
1 , ..., X

(t)
i−1, 0, ..., 0), it holds that (X

(t+1)
0 , X

(t+1)
1 , ..., X

(t+1)
m) is distributed identically to Rb, where

b = (r
(t+1)
0 , r

(t+1)
1 , ..., r

(t+1)
m). We now make the following observations:

1. If X
(t)
0 , X

(t)
1 , ..., X

(t)
n/2 were uniformly distributed, then for every i ∈ [m], the matrix R would have

had rank m − i + 1 with probability 2−i. This is because R has rank m + 1 − i if and only if

(X
(t)
0 , X

(t)
1 , ..., X

(t)
i−1) = 0i−11.

2. Since X
(t)
0 , X

(t)
1 , ..., X

(t)
n/2 has min-entropy m − (t− 2) · log2 n, the matrix R has rank m + 1 − i with

probability at most nt−2 · 2−i.

3. If R has rank r, then Rb has min-entropy r, which implies that Pr[Rb=v] ≤ 2−r for every v.

Thus, for any v ∈ {0, 1}m+1,

Pr[Rb = v] =

m∑

i=0

Pr[rank(R) = m + 1− i] · Pr[Rb = v | rank(R) = m + 1− i]

≤
m∑

i=0

(nt−2 · 2−i) · 2−(m+1−i)

which is upper bounded by nt−1 · 2−(m+1), and the induction claim follows.

Proposition C.11 (Fleq satisfies the hypothesis of Proposition C.7 with linear nj’s): For t < o(
√

log n)

and each j ∈ [t], with probability at least 1 − o(1/t) over the choice of r(1), ..., r(t) ∈ {0, 1}t·n, the residual
function F t,n

leq(r
(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least (0.25− o(1)) · n variables. Furthermore,

for j ∈ {1, t}, a lower bound of (0.5− o(1)) · n holds.

Combined with Proposition C.7, the furthermore claim implies that for any t ∈ [3, o(
√

log n)], the t-linear
function F t,n

leq has no depth-two circuits of size 2n+0.24·(t−2)·n. On the other hand, for t > 4n, the function

F t,n
leq evaluates to 1 with exponentially vanishing probability, and (by Eq. (17) (below)) this implies that F t,n

leq

violates the hypothesis of Proposition C.7.

Proof: The key observation is that for every j ∈ [t], it holds that

F t,n
leq(x

(1), ..., x(t)) =
∑

i∈[n]

F j−1,i
leq (x

(1)
[1,i], ..., x

(j−1)
[1,i]) · F t−j,n−i+1

leq (x
(j+1)
[i,n] , ..., x

(t)
[i,n]) · x

(j)
i , (17)

where x
(k)
[a,b] = (x

(k)
a , ..., x

(k)
b). It will also be useful to let x

([c,d])
[a,b] denote the variable sequence x

(c)
[a,b], ..., x

(d)
[a,b].

Thus, Eq. (17) can be written as

F t,n
leq(x

([1,t])
[1,n]) =

∑

i∈[n]

F j−1,i
leq (x

([1,j−1])
[1,i]) · F t−j,n−i+1

leq (x
([j+1,t])
[i,n]) · x(j)

i , (18)

and we are interested in the distribution of the pair of n-bit long sequences (F j−1,i
leq (x

([1,j−1])
[1,i]))i∈[n] and

(F t−j,n−i+1
leq (x

([j+1,t])
[i,n]))i∈[n], when x

([1,t])
[1,n] are assigned random values. Note that these two sequences are

independent of one another (since the first depends only on x(1), ..., x(j−1) whereas the second depends
only on x(j+1), ..., x(t)). Hence, if in each of these two sequences almost each element is 1 with probability
approximately 1/2 and this holds also conditioned on the value of almost each other element in the sequence,
then the fraction of influential variables in x(j) would be approximately 1/4.

38

In general, for every t′ ≥ 1, we shall be interested in the behavior of the distribution of the (n-bit

long) sequence (F t′,i
leq (x

([1,t′])
[1,i])i∈[n], when x(1), ..., x(t′) are uniformly and independently distributed in {0, 1}n.

Note that this corresponds directly to the sequence (F j−1,i
leq (x

([1,j−1])
[1,i]))i∈[n] (by setting t′ = j − 1), and also

represents the sequence (F t−j,n−i+1
leq (x

([j+1,t])
[i,n]))i∈[n] (by setting t′ = t − j and replacing [i, n] with [i] (and

n− i + 1 with i)).
We first observe that for t′ = 1 the foregoing sequence is uniformly distributed in {0, 1}n, since

(F 1,i
leq(x

([1,1])
[1,i])i∈[n] equals (

∑
k∈[i] x

(1)
k)i∈[n]. A key observation regarding t′ > 1 is that

F t′,i
leq (x

([1,t′])
[1,i]) =

∑

k∈[i]

F t′−1,k
leq (x

([1,t′−1])
[1,k]) · x(t′)

k . (19)

In general, it is useful to realize that we are dealing with a sequence of sequences of random variables, which

are each defined on top of the previous one. That is, let X
[t′]
i

def
= F t′,i

leq (x
([1,t′])
[1,i]), and note that Eq. (19) asserts

that X
[t′]
i =

∑
k∈[i] X

[t′−1]
k ·R(t′)

k , where (R
(t′)
1 , ..., R

(t′)
n) is uniformly distributed in {0, 1}n independently of

anything else. (Indeed, we may also introduce dummy X
[0]
k ’s set to 1, and write X

[1]
i =

∑
k∈[i] X

[0]
k ·R

(1)
k .)

We shall prove that, for adequate functions ℓt′ : (0, 1] → N, it holds that for every i2 ≥ i1 + ℓt′(ǫ) and
every σ, τ ∈ {0, 1}:

Pr
[
X

[t′]
i2

= X
[t′]
i1

+ τ
∣∣∣ X

[t′]
i1

= σ
]
≤ 0.5 + ǫ (20)

In particular, this means that Pr[X
[t′]
i2

=1] ∈ [0.5± ǫ]. We note that the case of τ = 1 (in Eq. (20)) is actually

trivial, since by Eq. (21)-(22), it suffices to show that Pr[
∑i2

k=i1+1 X
[t′−1]
k ·R(t′)

k =1] ≤ 1/2, which just holds

by the independence and uniformity of the R
(t′)
k ’s. Also note that we have already shown that Eq. (20) holds

for t′ = 1 with ℓ1 ≡ 1. We shall proceed by induction on t′. The key observation is that, for any i2 > i1, it
holds that

X
[t′]
i2

=

i2∑

k=1

X
[t′−1]
k ·R(t′)

k (21)

= X
[t′]
i1

+

i2∑

k=i1+1

X
[t′−1]
k · R(t′)

k . (22)

Thus, if the sequence X
[t′−1]
i1+1 , ..., X

[t′−1]
i2

is not all zeros, then Pr[X
[t′]
i2

= X
[t′]
i1

] = 1/2. So we will be done
if i2 is sufficiently larger than i1 such that the former condition holds with probability at least 1 − ǫ. For

t′ = 2, this happens whenever i2 > i1 + log2(1/ǫ), since the sequence X
[1]
i1+1, ..., X

[1]
i2

is uniformly distributed

in {0, 1}i2−i1 . For general t′ > 2, we use the induction hypothesis regarding the sequence X
[t′−1]
i1+1 , ..., X

[t′−1]
i2

,
which asserts that, in intervals of length ℓt′−1(ǫ), value-changes occur with probability at least 0.5− ǫ > 0.4.
Intuitively, this means that ℓt′(ǫ) = O(ℓt′−1(ǫ) · log(1/ǫ)) should do, but this intuition is based on the false
assumption that what happens within disjoint intervals (of length ℓt′−1(ǫ)) is statistically independent. Yet,
as shown next, picking ℓt′(ǫ) = O(ℓt′−1(ǫ/O(1)) · ǫ−1) will do; that is, in this case, with probability at least

1− ǫ, the sequence X
[t′−1]
i1+1 , ..., X

[t′−1]
i2

will not be the all-zero sequence. This is a special case of the following
more general claim.39

Technical Claim: For γ < δ/4 and m′ < γm/3, let Z1, ..., Zm be an arbitrary sequence of (possibly dependent)
0-1 random variables. Suppose that, for every j2 ≥ j1 + m′ and every σ, τ ∈ {0, 1}, it holds that Pr[Zj2 =
Zj1 + τ |Zj1 = σ] ≤ 0.5 + γ. Then,

Pr

∑

i∈[m]

Zi 6∈ [(0.5± δ) ·m]

 <

12γ

δ2

39Use γ = ǫ/50 and δ = 0.49, and set m = i2 − i1, m
′ = ℓt′−1(ǫ/50) < ǫm/150, and Zi = X

[t′−1]
i1+i for every i ∈ [m].

39

Proof: Let S =
∑

i∈[m] Zi and µ = E[S], and note that |µ − (m/2)| ≤ γm + m′ < δm/2. Applying
Chebyshev’s Inequality, we have

Pr[|S − µ| > δm/2] ≤ Var[S]

δ2m2/4

=
4

δ2m2
·

∑

j1,j2∈[m]

(E[Zj1Zj2]− E[Zj1] · E[Zj2]) . (23)

The contribution of the pairs that are at distance at most m′ apart totals in less than m · (2m′ +1) < 3m′m.
As for the other (j1, j2) pairs, each has a contribution of

Pr[Zj1Zj2 =1]− Pr[Zj1 =1] · Pr[Zj2 =1] = Pr[Zj1 =1] · (Pr[Zj2 =1|Zj1 =1]− Pr[Zj2 =1])

< 2γ

Thus, Eq. (23) is upper bounded by 4·(3m′m+2γm2)
δ2m2 < 12γ

δ2 , and the claim follows.

Let us re-cap: By the Technical Claim, if i2 ≥ i1 + ℓt′(ǫ), where ℓt′(ǫ) = O(ℓt′−1(ǫ/O(1))/ǫ), then, with

probability at least 1−ǫ, the sequence X
[t′−1]
i1+1 , ..., X

[t′−1]
i2

will not be the all-zero sequence, and conditioned on

that event X
[t]
i2

= X
[t]
i1

with probability 1/2. This establishes the induction claim for t′; that is, for every i2 ≥
i1 + ℓt′(ǫ), the probability that X

[t′]
i2

= X
[t′]
i1

, conditioned on any value of X
[t′]
i1

, is between 0.5− ǫ and 0.5+ ǫ.
Note that we are using ℓt′(ǫ) = O(ℓt′−1(ǫ/O(1))/ǫ), which solves to ℓt′(ǫ) = exp(O(t′)2 + O(t′ log(1/ǫ))).

We are almost done. Applying the Technical Claim with γ = ǫ/20, δ = ǫ1/3, while setting m = n,

m′ = ℓt′(ǫ/20) < ǫn (which is possible for t = o(
√

n) and some ǫ = o(1)), and Zi = X
[t′]
i for every i ∈ [n], we

conclude that, with probability at least 1− ǫ1/3, the sequence X
[t′−1]
1 , ..., X

[t′−1]
n has at least (0.5− ǫ1/3) · n

ones. This does not quite finish the entire proof, because it could hypothetically be that (when x
([1,t])
[1,n] are

assigned random values) the ones in the sequences (F j−1,i
leq (x

([1,j−1])
[1,i]))i∈[n] and (F t−j,n−i+1

leq (x
([j+1,t])
[i,n]))i∈[n]

(almost) always reside in different locations. Of course, this cannot be the case, but proving this fact requires
a small generalization of the Technical Claim: Specifically, under the same conditions as in the claim, one
can show that for every set S ⊆ [m],

Pr

[
∑

i∈S

Zi 6∈ [(0.5± δ) · |S|]
]

<
12γm

δ2|S|

Now, we can first fix at random the sequence (F j−1,i
leq (x

([1,j−1])
[1,i]))i∈[n], let S denote the set of indices assigned

the value 1, and now set at random the sequence (F t−j,n−i+1
leq (x

([j+1,t])
[i,n]))i∈[n]. Finally, the proposition follows.

Problem C.12 (Improving Proposition C.11): Does a statement analogous to Proposition C.11 holds for
higher values of t? Specifically, does it hold for t = Ω(log n) rather than for all t = o(

√
log n)?

Corollary C.13 (exponential lower bounds for almost all functions and for Fleq, Ftet and Fmod): For
t = exp(o(n)), almost all t-linear functions F : ({0, 1}n)t → {0, 1} require depth-two circuits of size at least
2(0.5−o(1))·tn. Ditto for F t,n

mod n if t = o(2n) and n is a prime with 2 as a primitive root modulo n. Likewise,

if t = o(
√

log n), then F t,n
leq require depth-two circuits of size at least 20.5+(0.25−o(1))·tn, and if t < n/ log2 n,

then F t,n
tet require depth-two circuits of size at least 2tn/5.

40

