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Abstract

Loosely speaking, a proximity-oblivious (property) tester is a randomized algorithm that
makes a constant number of queries to a tested object and distinguishes objects that have a
predetermined property from those that lack it. Specifically, for some threshold probability
c, objects having the property are accepted with probability at least c, whereas objects that
are ǫ-far from having the property are accepted with probability at most c − F (ǫ), where F :
(0, 1] → (0, 1] is some fixed monotone function. (We stress that, in contrast to standard testers,
a proximity-oblivious tester is not given the proximity parameter.)

The foregoing notion, introduced by Goldreich and Ron (STOC 2009), was originally defined
with respect to c = 1, which corresponds to one-sided error (proximity-oblivious) testing. Here
we study the two-sided error version of proximity-oblivious testers; that is, the (general) case of
arbitrary c ∈ (0, 1]. We show that, in many natural cases, two-sided error proximity-oblivious
testers are more powerful than one-sided error proximity-oblivious testers; that is, many natural
properties that have no one-sided error proximity-oblivious testers do have a two-sided error
proximity-oblivious tester.
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1 Introduction

In the last two decades, the area of property testing has attracted much attention (see, e.g., a
couple of recent surveys [R1, R2]). Loosely speaking, property testing typically refers to sub-linear
time probabilistic algorithms for deciding whether a given object has a predetermined property or
is far from any object having this property. Such algorithms, called testers, obtain local views of
the object by performing queries; that is, the object is seen as a function and the testers get oracle
access to this function (and thus may be expected to work in time that is sub-linear in the length
of the object).

The foregoing description refers to the notion of “far away” objects, which in turn presumes
a notion of distance between objects as well as a parameter determining when two objects are
considered to be far from one another. The latter parameter is called the proximity parameter, and
is often denoted ǫ; that is, one typically requires the tester to reject with high probability any
object that is ǫ-far from the property.

Needless to say, in order to satisfy the aforementioned requirement, any tester (of a reasonable
property) must obtain the proximity parameter as auxiliary input (and determine its actions ac-
cordingly). A natural question, first addressed systematically by Goldreich and Ron [GR09b], is
what does the tester do with this parameter (or how does the parameter affect the actions of the
tester). A very minimal effect is exhibited by testers that, based on the value of the proximity
parameter, determine the number of times that a basic test is invoked, where the basic test is obliv-
ious of the proximity parameter. Such basic tests, called proximity-oblivious testers, are indeed at
the focus of the study initiated in [GR09b].

1.1 The notion of a Proximity Oblivious Tester (POT)

Loosely speaking, a proximity-oblivious tester (POT) makes a number of queries that does not
depend on the proximity parameter, but the quality of its ruling does depend on the actual distance
of the tested object to the property.1 (A standard tester of constant error probability can be
obtained by repeatedly invoking a POT for a number of times that depends on the proximity
parameter.)

The original presentation (in [GR09b]) focused on POTs that always accept objects having
the property. Indeed, the setting of one-sided error probability is the most appealing and natural
setting for the study of POT. Still, one can also define a meaningful notion of two-sided error prob-
ability proximity-oblivious testers (POTs) by generalizing the definition (i.e., [GR09b, Def. 2.2]) as
follows:2

Definition 1.1 (POT, generalized): Let Π =
⋃

n∈N
Πn, where Πn contains functions defined over

the domain [n]
def
= {1, ..., n}, and let ̺ : (0, 1] → (0, 1] be monotone. A two-sided error POT with

detection probability ̺ for Π is a probabilistic oracle machine T that makes a constant number of
queries and satisfies the following two conditions, with respect to some constant c ∈ (0, 1]:

1. For every n ∈ N and f ∈ Πn, it holds that Pr[T f (n)=1] ≥ c.

2. For every n ∈ N and f : [n] → {0, 1}∗ not in Πn, it holds that Pr[T f (n)=1] ≤ c − ̺(δΠn(f)),

where δΠn(f) = ming∈Πn{δ(f, g)} and δ(f, g)
def
= |{x ∈ [n] : f(x) 6=g(x)}|/n.

1A formal definition is presented below (cf. Definition 1.1).
2For simplicity, we define POTs as making a constant number of queries, and this definition is used throughout

the current work. However, as in [GR09b], the definition may be extended to allow the query complexity to depend
on n.
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The constant c is called the threshold probability (of T ).

Indeed, one-sided error POTs (i.e., [GR09b, Def. 2.2]) are obtained as a special case by letting
c = 1. Furthermore, for every c ∈ (0, 1], every property having a one-sided error POT also has a
two-sided error POT of threshold probability c (e.g., consider a generalized POT that activates the
one-sided error POT with probability c and rejects otherwise). Likewise, every property having a
(two-sided error) POT, has a two-sided error POT of threshold probability 1/2. Lastly, a standard
property tester is obtained by repeatedly invoking such a POT for O(1/̺(ǫ)2), where ǫ is the value
of the proximity parameter given to the tester. (Indeed, in case of one-sided error POT, we obtain
a one-sided error property tester by O(1/̺(ǫ)) invocations.)

Motivation. Property testing can be thought of as relating local views to global properties, where
the local view is provided by the queries and the global property is the distance to a predetermined
set. Proximity-oblivious testing takes this relation to an extreme by making the local view in-
dependent of the distance. In other words, it refers to the smallest local view that may provide
information about the global property (i.e., the distance to a predetermined set). Hence, POTs are
a natural context for the study of the relation between local views and global properties of various
objects. In addition, a major concrete motivation for the study of POTs is that understanding a
natural subclass of testers (i.e., those obtained via POTs) may shed light on property testing at
large. This motivation was advocated in [GR09b], while referring to one-sided error POTs, but it
extends to the generalized notion defined above.

1.2 On the power of two-sided error POTs

The first question that arises is whether the latter generalization (i.e., from one-sided to two-
sided error POTs) is a generalization at all (i.e., does it increase the power of POTs). This is
not obvious, and for some time the first author implicitly assumed that the answer is negative.
However, considering the issue seriously, one may realize that two-sided error POTs exist also for
properties that have no one-sided error POT. A straightforward example is the property of Boolean
functions that have at least a τ fraction of 1-values, for any constant τ ∈ (0, 1). But this example is
quite artificial and contrived, and the real question is whether there exist more natural examples.
In this paper we provide a host of such examples.

The current work reports of several natural properties that have two-sided error POTs, although
they have no one-sided error POTs. A partial list of such examples includes:

1. Properties of Boolean functions that refer to the fraction of 1-values (i.e., the density of the
preimage of 1). Each such property is specified by a constant number of subintervals of [0, 1],
and a function satisfies such a property if the fraction of 1-values (of the function) resides in
one of these subintervals.

2. Testing graph properties in the adjacency representation model. One class of properties refers
to regular graphs of a prescribed degree and to subclasses of such regular graphs (e.g., regular
graphs that consists of a collection of bicliques). Another class refers to graphs in which some
fixed graph occurs for a bounded number of times (e.g., at most 1% of the vertex triplets
form triangles).

3. Testing graph properties in the bounded-degree model. One class of properties refers to
graphs that contain a fraction of isolated vertices that falls in a predetermined set of densities
(as in the foregoing Item 1).
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It is evident that none of the foregoing properties has a one-sided error POTs.3 The point is showing
that they all have two-sided error POTs. A more detailed account of these and other results is
provided next.

1.3 An overview of our results

In this section and throughout the rest of this paper, unless stated differently, a POT is a two-sided
error one.

We first consider POTs for symmetric properties of Boolean functions, where a property Π =
∪n∈NΠn is symmetric if for every f ∈ Πn and every permutation π : [n] → [n] it holds that f ◦π ∈ Πn

(where (f ◦ π)(x)
def
= f(π(x))). Each symmetric property of Boolean functions, Π = ∪n∈NΠn, is

characterized by a sequence of sets (Sn)n∈N such that for every f : [n] → {0, 1} it holds that f ∈ Πn if
and only if |{x ∈ [n] : f(x)=1}| ∈ Sn. We say that a set of natural numbers is t-consecutive if it can
be partitioned into at most t sequences of consecutive numbers (e.g., {1, 2, 3, 5, 7} is 3-consecutive
but not 2-consecutive).

Theorem 1.2 (POTs for symmetric properties of Boolean functions): Let Π = ∪n∈NΠn be sym-
metric property that is chracterized by the sequence of sets (Sn)n∈N. Then, Π has a POT if and
only if there exists a constant t such that each Sn is t-consecutive.

We stress that subintervals are allowed to have length zero (i.e., [0.5, 0.5] is a vaild subinterval).
Theorem 1.2 is proved by relating uniform symmetric properties of Boolean functions to properties
of distributions that assume values in {0, 1}, whereas chracterization of the binary distributions that
have a POT is provided in Theorem 2.4. Jumping ahead, we mention that this relation generalized
to the relation between functions with range Σ and distributions that assume values in Σ.

We next turn to testing graph properties in the adjacency representation model (as defined
in [GGR]). Here we present POTs for several properties that refer to regular graphs including all
regular graphs, regular graphs of a prescribed degree, and some subclasses of the latter.

Theorem 1.3 (POTs for certain classes of regular graphs, in the adjacency representation model):
The following graph properties have a POT.

1. The set of all regular graphs.

2. The set of all κ · N -regular N -vertex graphs, for any constant κ.

3. The set of all regular complete t-partite graphs, for any constant t ≥ 2.

Item 1 of Theorem 1.3 appears as Theorem 3.6, Item 2 appears as Theorem 3.1, and Item 3 is
derived by combining Theorem 3.2 (which states a general condition) with Proposition 3.3 (which
shows that it holds for complete t-partite graphs).

An altogether different class of properties that have POTs is the class of properties that upper
bounded the density of the occurrences of some fixed graph as an induced subgraph. Specifically,
for any fixed graph H and a generic graph G, let ρH(G) denote the density of H as an induced

3Consider, for example, the task of testing the set of Boolean functions that have at least a τ fraction of 1-values,
for any constant τ ∈ (0, 1). A hypothetical one-sided error POT for this property is required to accept each function
that has exactly a τ fraction of 1-values, with probability 1, which implies that it must accept regardless of the
answers it obtains (since each sequence of answers is consistent with such a function). But, then, this POT accepts
each Boolean function with probability 1, which means that it is a POT for the trivial property (rather than for the
aforementioned one).
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subgraph of G. Let ΠH,τ denote the set of graphs G that satisfy ρH(G) ≤ τ . Recall that Alon
et al. [AFKS] showed that, for every fixed H, the class ΠH,0 has a one-sided error POT, albeit their
lowerbound on the detection probability of this POT is very weak (i.e., a graph that is δ-far from
ΠH,τ is rejected with probability 1/T(poly(1/δ)), where T(m) is a tower of m exponents). Here
we provide a much sharper bound for the case of τ > 0 (while using an elementary proof and a
two-sided error POT, which is necessary in this case).

Theorem 1.4 (a POT for ΠH,τ , still in the adjacency representation model): For every n-vertex
graph H and τ > 0, the property ΠH,τ has a POT. Furthermore, this POT accepts each graph in
ΠH,τ with probability at least 1 − τ and accepts graphs that are δ-far from ΠH,τ with probability at
most 1 − τ − (τn/3) · δ.4

Theorem 1.4 follows from Theorem 3.9, which relates the distance of a graph from ΠH,τ to the
density of H as an induced subgraph in it.

We also consider testing graph properties in the bounded-degree graph model (as defined
in [GR97]). In this case, our results are obtained by simple reductions to the problem of test-
ing binary distributions. Loosely speaking, the main result in this model is a POT for properties
that refer to the number of isolated subgraphs that equal one of the graphs in some fixed family of
graphs. For details, see Section 4 (and Theorem 4.3).

Theorems 1.3, 1.4 and 4.3 refer to the density of the occurrence of some specific patterns in
the tested graph (e.g., Theorem 1.3 refers to the density of edges incident at various vertices,
and Theorem 1.4 refers to the density of occurrence of a fixed graph as an induced subgraph).
These densities correspond to binary distributions, but when one wishes to refer to a number of
densities that correspond to the occurrences of different patterns, then multi-valued distributions
arise. Indeed, a property may be defined by an arbitrary condition of the form “pattern A occurs
between 10%-20% of the time, whereas pattern B occurs at least twice as often as pattern C.” This
motivates the study of POTs for properties of distributions over an arbitrary fixed-size domain
(rather than over a binary domain). This study is initiated in Section 5 and its results are applied
to graph properties in Section 6.

It turns out that POTs for properties of multi-valued distributions are more exceptional than
their binary-valued analogues. As hinted above, Theorem 2.4 asserts that properties (of binary
distributions) that correspond to intervals (bounding the probability that the outcome is 1) have
POTs. It is tempting to hope that properties of ternary distributions that correspond to rectangles
(bounding the probabilities of the outcomes 1 and 2 respectively) also have POTs; however, as shown
in Section 5, this is typically not the case! In contrast, properties of multi-valued distributions that
corresponds to regions that are ellipsoids do have POTs. In general, the question of whether a
property of r-valued distributions has a POT or not is closely related to the question of whether
there exists a polynomial that is non-negative on the distributions (viewed as a set in R

r).

Theorem 1.5 (POTs for testing multi-valued distributions, a coarse version of Theorem 5.1): Let
Π be an arbitrary class of distributions over [r], viewed as the set of all non-negative r-sequences
that sum up to 1. Then, Π has a POT if and only if there is a polynomial P : R

r → R such
that for every distribution q = (q1, . . . , qr) it holds that P(q1, . . . , qr) ≥ 0 if and only if q ∈ Π.
Furthermore, if the total degree of P is t, then Π has a two-sided error POT that makes t queries
and has polynomial detection probability, where the power of the polynomial depends on P.

In light of these limitations of POTs for properties of multi-valued distributions, we focus in
Section 6 on very simple properties of graphs (in the adjacency matrix representation). Specifically,

4This bound assumes that the tested graph has more than 6/δ vertices.
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for every sequence of intervals (IN )N∈N such that IN ⊆ [0, 0.5], we consider the set of graphs
consisting of two isolated cliques such that the density of the smaller clique resides in IN , where
N denotes the number of vertices in the graph. Testing these properties is reduced to testing the
distribution of subgraphs induced by three random vertices, which is a distribution that assumes
four possible values. We show that if for all N ∈ N the interval IN = I for some interval I ⊆ [0, 0.5]
of length that is strictly contained in (0, 0.5) (i.e., I is neither a singleton nor contain all of [0, 0.5]),
then the corresponding property has no POT. In contrast, if the length of IN is either smaller than
N−1/2 or larger than 0.5 − N−1/2, then the corresponding property has a POT.

Conclusion. The current work does not provide conclusive answers regarding the scope of two-
sided error POTs, although some of our results aim at that direction. In particular, Theorem 2.4
provides a characterization of binary distributions having a POT, and Theorem 5.1 provides a less
effective characterization w.r.t multi-valued distributions, and Theorem 3.10 may be viewed as a
programmatic step in the context of graph properties. Indeed, the current work is merely a first
exploration of the notion of two-sided error POTs.

1.4 Organization

In order to facilitate developing an intuition regarding the power of two-sided error POTs, we
partitioned the exposition into two parts. The first part is organized in three sections, which
correspond to three domains: Section 2 deals with properties of Boolean functions, Section 3 deals
with testing graph properties in the adjacency representation model (of [GGR]), and Section 4 deals
with testing graph properties in the bounded-degree model (of [GR97]). In the second part, we revisit
the study of classes of distributions (see Section 5), which underlies the study presented in the first
part, and apply the results to further study of graph properties in the adjacency representation
model (see Section 6).

The second part is far more technical than the first part, and we chose to present it later in
order to allow the reader to go from simple examples to more complex ones. Also, for sake of
readability, the proofs of many technical claims (especially in the second part) were moved to the
appendix.

2 Classes of Boolean Functions

As mentioned above, a simple example of a property of Boolean functions that has a (two-sided
error) POT is provided by the set of all functions that have at least a τ fraction of 1-values, for
any constant τ ∈ (0, 1). In this case, the POT may query the function at a single uniformly
chosen preimage and return the function’s value. Indeed, every function in the foregoing set is
accepted with probability at least τ , whereas every function that is ǫ-far from the set is accepted
with probability at most τ − ǫ.

A more telling example refers to the set of Boolean function having a fraction of 1-values that is
at least τ1 but at most τ2, for any 0 < τ1 < τ2 < 1. This property has a two-sided error POT that
selects uniformly two samples in the function’s domain, obtains the function values on them, and
accept with probability αi if the sum of the answers equals i, where (α0, α1, α2) = (0, 1, 2(τ1+τ2−1)

τ1+τ2
)

if τ1 + τ2 ≥ 1, and (α0, α1, α2) = (2(1−τ1−τ2)
2−τ1−τ2

, 1, 0) otherwise.
In general, we consider properties that are each specified by a sequence of t density thresholds,

denoted τ = (τ1, ..., τt), such that 0 < τ1 < τ2 < · · · < τt < 1. The corresponding property, denoted
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Bτ , consists of all Boolean functions f : [n] → {0, 1} such that for some i ≤ ⌈t/2⌉ it holds that

τ2i−1 ≤ Prr∈[n][f(r)=1] ≤ τ2i, where τt+1
def
= 1 for odd t.

We observe that the foregoing testing task, which refers to Boolean functions, can be reduced
to testing 0-1 distributions when the tester is given several samples of the tested distribution (i.e.,
these samples are independently and identically distributed according to the tested distribution).5

Specifically, the corresponding class of distributions, denoted Dτ , consists of all 0-1 random variables
X such that for some i ≤ ⌈t/2⌉ it holds that τ2i−1 ≤ Pr[X =1] ≤ τ2i. Indeed, (uniformly selected)
queries made to a Boolean function (when testing Bτ ) correspond to samples obtained from the
tested distribution.

2.1 A generic tester and its analysis

A generic tester for Dτ obtains k samples from the tested distribution, where k may (but need not)
equal t, and outputs 1 with probability αi if exactly i of the samples have value 1. That is, this
generic tester is parameterized by the sequence α = (α0, α1, ..., αk). The question, of course, is how
many samples do we need (i.e., how is k related to t and/or to other parameters); in other words,
whether it is possible to select a (k + 1)-long sequence α such that the resulting tester, denoted
Tα, is a POT for Dτ . (We shall show that k = t is sufficient and necessary.) The key quantity to
analyze is the probability that this tester (i.e., Tα) accepts a distribution that is 1 with probability
q. This accepting probability, denoted Pα(q), satisfies

Pα(q) =

k
∑

i=0

(

k

i

)

· qi(1 − q)k−i · αi. (1)

Indeed, the function Pα is a degree k polynomial. Noting that 0-1 distributions are determined by
the probability that they assume the value 1, we associate these distributions with the corresponding
probabilities (e.g., we may say that q is in Dτ and mean that the distribution that is 1 with
probability q is in Dτ ). Thus, Tα is a POT for Dτ if every distribution that is ǫ-far from Dτ is

accepted with probability at most c − ̺(ǫ), where c
def
= minq∈Dτ

{Pα(q)} and ̺ : (0, 1] → (0, 1] is
some monotone function.

One necessary condition for the foregoing condition to hold is that for every i ∈ [t] it holds that
Pα(τi) = c, because otherwise a tiny shift from some τi to outside Dτ will not reduce the value of
Pα(·) below c. Another necessary condition is that Pα(·) is not a constant function. We first show
that there exists a setting of α for which both conditions hold (and, in particular, for k = t).

Proposition 2.1 (on the existence of τ such that Pα is “good”): For every sequence τ = (τ1, ..., τt)
such that 0 < τ1 < τ2 < · · · < τt < 1, there exists a sequence α = (α0, α1, ..., αt) ∈ [0, 1]t+1 such
that the following two conditions hold

1. For every i ∈ [t], it holds that Pα(τi) = Pα(τ1).

2. The function Pα is not a constant function.

Proof: Fixing any q, we view Eq. (1) as a linear expression in the αi’s. Thus, Condition 1
yields a system of t − 1 linear equations in the t + 1 variables α0, α1, ..., αt. This system is not
contradictory, since the uniform vector, denoted u, is a solution (i.e., α = ((t + 1)−1, ..., (t + 1)−1)
satisfies Pα(τi) = (t + 1)−1). Thus, this (t − 1 dimensional) system has also a solution that is

5In this case, the distance between distributions is merely the standard notion of statistical distance.
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linearly independent of u. Denoting such a solution by s, consider arbitrary β 6= 0 and γ such that

βs + γu ∈ [0, 1]t+1 \ {0t+1}. Note that α
def
= βs + γu satisfies the linear system and is not spanned

by u. To establish Condition 2, we show that only vectors α that are spanned by u yield a constant
function Pα. To see this fact, write Pα(q) as a polynomial in q, obtaining:

Pα(q) =

t
∑

d=0

(−1)d

(

t

d

)

·
(

d
∑

i=0

(−1)i

(

d

i

)

· αi

)

· qd. (2)

Hence, if Pα is a constant function, then for every d ∈ [t] it holds that
∑d

i=0(−1)i
(

d
i

)

·αi = 0, which
yields a system of t linearly independent equation in t + 1 unknowns. Thus, the only solutions to
this system are vectors that are spanned by u, and the claim follows.

We next prove that the sequence α guaranteed by Proposition 2.1 yields a POT for Dτ .

Theorem 2.2 (analysis of Tα): For every sequence τ = (τ1, ..., τt) such that 0 < τ1 < τ2 < · · · <
τt < 1, there exists a sequence α = (α0, α1, ..., αt) ∈ [0, 1]t+1 such that Tα is a POT with linear
detection probability for Dτ .

Proof: Let α = (α0, α1, ..., αt) ∈ [0, 1]t+1 be as guaranteed by Proposition 2.1. Then, the (degree
t) polynomial Pα “oscillates” in [0, 1], while obtaining the value Pα(τ1) on the t points τ1, τ2, ..., τt

(and only on these points). Thus, for every i ∈ [t] and all sufficiently small ǫ > 0, exactly one of
the values Pα(τi− ǫ) and Pα(τi + ǫ) is larger than Pα(τ1) (and the other is smaller than it). Without
loss of generality, it holds that Pα(q) ≥ Pα(τ1) for every q in Dτ and Pα(q) < Pα(τ1) otherwise.6

Furthermore, we claim that there exists a constant γ such that, for any probability q that is ǫ-far
from Dτ , it holds that Pα(q) ≤ Pα(τ1) − γ · ǫ. This claim can be proved by considering the Taylor
expansion of Pα; specifically, expanding Pα(q) based on the value at τi yields

Pα(q) = Pα(τi) + P′α(τi) · (q − τi) +

t
∑

j=2

P
(j)
α (τi)

j!
· (q − τi)

j ,

where P′α is the derivative of Pα and P
(j)
α is the jth derivative of Pα. By the above, P′α(τi) 6= 0

(for all i ∈ [t]). Let v
def
= mini∈[t]{|P′α(τi)|} > 0 and w

def
= maxi∈[t],j≥2{|P(j)

α (τi)|/j!}. Then, for

all sufficiently small ǫ > 0 (say for ǫ ≤ min(1, v)/3w), it holds that
∑t

j=2
P
(j)
α (τi)

j! · (q − τi)
j is

upper bounded by
∑

j≥2 w · ǫ(v/3w) · (1/3)j−2 = v · ǫ/2; and so, for every i ≤ ⌈t/2⌉, it holds that
Pα(τ2i−1 − ǫ) < Pα(τ2i−1)− v · ǫ/2 and Pα(τ2i + ǫ) < Pα(τ2i)− v · ǫ/2. Using γ = min(1, v)/3tw, the
claim holds for all ǫ ≤ 1.

Sample optimality: We have analyzed a generic tester that uses k = t samples for testing a
property parameterized by t thresholds (i.e., τ = (τ1, ..., τt)). The proof of Theorem 2.2 implies that
using t samples (i.e., k ≥ t) is necessary, because for α = (α0, α1, ..., αk) we need the (non-constant)
degree k polynomial Pα to attain the same value on t points (i.e., the τi’s).

The case of t = 2: The considerations underlying the proof of Theorem 2.2 imply that in this case
(i.e., t = 2) the polynomial Pα is quadratic and equals Pα(q) = α0−2(α0−α1)·q+(α0−2α1+α2)·q2

6Otherwise, use 1 − Pα.
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(cf. Eq. (2)). Thus, Pα obtains its maximum at the point τ
def
= (τ1 + τ2)/2, which in turn equals

2(α0−α1)
2·(α0−2α1+α2) . The derivative of Pα at τ2 (and likewise −P′α(τ1)) equals

P′α(τ2) = −2(α0 − α1) + 2 · (α0 − 2α1 + α2) · τ2

= −2(α0 − α1) + 2 · α0 − α1

τ
· τ2

=
2

τ
· (τ2 − τ) · (α0 − α1)

= −τ2 − τ1

τ
· (α1 − α0),

where the second equality is due to α0 −α1 = τ · (α0 − 2α1 + α2) (and the last to τ = (τ1 + τ2)/2).
Thus, we wish to maximize α1−α0 subject to α0, α1, α2 ∈ [0, 1]. Using α0−α1 = τ · (α0−2α1 +α2)

again, we obtain α2 = (1−τ)α0+(2τ−1)α1

τ . Hence, if τ ≥ 1/2, then we may just set α0 = 0 and α1 = 1
(and α2 = 2τ−1

τ ∈ [0, 1]). On the other hand, if τ ≤ 1/2, then the maximum of α1 − α0 subject to
α0, α1, α2 ∈ [0, 1] is obtained at α2 = 0, which implies (1 − τ)α0 = (1 − 2τ)α1 (i.e., setting α1 = 1
and α0 = 1−2τ

1−τ ∈ [0, 1]). In both cases, letting γ = max(τ, 1 − τ) ∈ [0, 5, 1), we obtain

−P′α(τ2) =
τ2 − τ1

τ
· (α1 − α0)

=
τ2 − τ1

γ
≥ 2(τ2 − τ1),

which means that distributions that are ǫ-far from Dτ are rejected with probability at least 2(τ2 −
τ1) · ǫ.

2.2 Generalization of Theorem 2.2

So far we considered distribution classes Dτ such that τ = (τ1, ..., τt) and 0 < τ1 < τ2 < · · · < τt < 1.
Recall that this class contains the distribution q if and only if τ2i−1 ≤ q ≤ τ2i for some i ≤ t/2. Here
we also allow τ1 = 0, which corresponds to including in Dτ all distributions X such that Pr[X =
1] ≤ τ2. In such case we define the sequence α = (α0, α1, ..., αt−1) as guaranteed by Proposition 2.1
such that the polynomial Pα of degree t − 1 is non-constant and satisfies Pα(τi) = Pα(τ2) for all
i ≥ 2. Analogously we treat the case of t being even and τt = 1, which corresponds to including in
Dτ all distributions X such that Pr[X = 1] ≥ τt−1. In both cases the induced tester Tα is a POT
for Dτ .

We consider also the case that τ2i−1 = τ2i (for some i’s); that is, some of the allowed intervals
can be collapsed to single points. Consider, for example, the distribution classes Dτ,τ , for some
τ ∈ (0, 1). The foregoing design of a POT for Dτ1,τ2 can be easily adapted for the case of Dτ,τ .
Specifically, rather than ensuring that Pα(τ1) = Pα(τ2), we ensure that Pα obtain a maximum at τ

(equiv., P′α(τ) = 0), which is actually what we did in the case of t = 2 in Section 2.1 for τ
def
= (τ1 +

τ2)/2. Thus, we again get τ = α0−α1
α0−2α1+α2

, which implies (α0, α1, α2) = (0, 1, (2τ − 1)/τ) if τ ≥ 1/2

and (α0, α1, α2) = (1−2τ
1−τ , 1, 0) otherwise. Next, we approximate Pα at τ + ǫ by Pα(τ)+P

(2)
α (τ) · ǫ2/2,

where P
(2)
α (τ) = 2(α0 − 2α1 + α2) = 2(α0 − α1)/τ . (Note that a much simpler test and analysis is

begging in the case that t = 2 and τ1 = τ2 = 1/2.)7 More generally, we get

7In this case, a POT may just select two random samples and accept if and only if exactly one of them assumed
the value 1. The probability that this test accepts the distribution q equals 2q(1 − q) = 1

2
− 2(q − 0.5)2.
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Theorem 2.3 (Theorem 2.2, generalized): For every sequence τ = (τ1, ..., τt) ∈ [0, 1]t such that
τ1 ≤ τ2 < τ3 ≤ τ4 < · · · < τt−1 ≤ τt, there exists a sequence α = (α0, α1, ..., αt) ∈ [0, 1]t+1 such
that Tα is a POT with quadratic detection probability for Dτ . Furthermore, if τ2i−1 = τ2i for every
i ∈ [⌈t/2⌉], then Pα(q) = Pα(τ1) for every q in Dτ .

Proof: Let J = {j : τ2j−1 = τ2j}. Then, the system of equations regarding the αi’s contains
t − |J | − 1 equations that arise from the equalities imposed on the values of Pα at t − |J | different
points and |J | additional equalities that arise from equalities imposed on the values of P′α at |J |
different points. The same considerations (as in the proof of Theorem 2.2) imply the existence of a
solution τ such that Pα is not a constant function, but here the analysis of Pα(τj ± ǫ) depends on
whether or not ⌈j/2⌉ ∈ J : The case of ⌈j/2⌉ 6∈ J is handled as in the proof of Theorem 2.2, but

the case of ⌈j/2⌉ ∈ J relies on the fact that P
(2)
α (τ2j) < 0.

2.3 POTs can test only intervals

In this section we show that the only testable classes of Boolean distributions are those defined
by a finite collection of intervals in [0, 1], where intervals of length zero (i.e., points) are allowed.
This means that the only properties of Boolean distribution that have a POT are those covered in
Theorem 2.3.

Theorem 2.4 (characterization of Boolean distributions having a POT): Let DS be a property of
Boolean distributions associated with a set S ⊆ [0, 1] such that distribution X is in DS if and only
if Pr[X = 1] ∈ S. Then, the property DS has a POT if and only if S consists of a finite subset of
subintervals of [0, 1].

Proof: The “if” direction follows from Theorem 2.3. For the other direction, assume that T is
POT for DS that makes k queries. Then, for a view b = (b1, . . . , bk) ∈ {0, 1}k , the tester T accepts
this view with some probability, denoted αb ∈ [0, 1]. Note that when testing a distribution X such

that Pr[X = 1] = p, the probability of seing this view is pw(b)(1 − p)k−w(b), where w(b) =
∑

j bj

denotes the number of 1’s in b. Hence, when given a distribution X such that Pr[X = 1] = p, the
acceptance probability of T on X is

Pr[T accepts X] =
k
∑

i=0





∑

b∈{0,1}k :w(b)=i

αb



 · pi(1 − p)k−i, (3)

which is a polynomial of degree k (in p). Thus, for every r ∈ R, the set of points p ∈ [0, 1] on
which the value of this polynomial is at least r equals a union of up to ⌈(k + 1)/2⌉ intervals. In
particular, this holds for r = c, where c denotes the threshold probability of T , in which case this
set of points equals the set S (because T is POT for DS). The theorem follows.

2.4 Proof of Theorem 1.2

As should be clear by now, the positive part of Theorem 2.4 implies the positive part of Theorem 1.2:
That is, a POT for the the symmetric property Π is obtained by sampling elements in [n], querying
the Boolean function for their value, and invoking the corresponding distribution-POT.

The opposite direction require a little more care, since a tester for the function class Π may
avoid repeated samples, while a distribution-tester may not. Furthermore, the behavior of the
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former may depend on n, whereas the behavior of the latter may not depensd on the unknown
sample space. Still, by considering a sufficiently large n, these effect become negligible. Still, we
may just mimic the argument used in the proof of the corresponding part of Theorem 2.4. The key
obsevation that the probability that a k-query tester accepts a random function f : [n] → {0, 1}
that evaluates to 1 on exactly m inputs equasl

k
∑

i=0





∑

b∈{0,1}k :w(b)=i

αb



 ·
(

Pri−1
j=0

m − j

n − j

)

·
(

Prk−i−1
j=0

n − m − j

n − j

)

, (4)

where the αb are as in Eq. (3) (except that they may depend on n), and we assume (w.l.o.g.) that
the tester always makes k queries and never makes the same query twice. Letting ρ = m/n denote
the density of 1-values in f , observe that Eq. (4) is a polynomail of degree k in ρ. The theorem
follows (exactly as in the case of Theorem 2.4).

3 Graph Properties (in the Adjacency Representation Model)

Symmetric properties of Boolean functions induce graph properties (in the adjacency representation
model of [GGR]), and so the statistical properties of the previous section yield analogous properties
that refer to the edge densities of graphs. The question addressed in this section is whether the
study of two-sided error POT can be extended to “genuine” graph properties. The first property
that we consider is degree regularity.

Recall that, in the adjacency matrix model, an N -vertex graph G = ([N ], E) is represented by
the Boolean function g : [N ]× [N ] → {0, 1} such that g(u, v) = 1 if and only if u and v are adjacent
in G (i.e., {u, v} ∈ E). Distance between graphs is measured in terms of their aforementioned
representation (i.e., as the fraction of (the number of) different matrix entries (over N2)), but
occasionally we shall use the more intuitive notion of the fraction of (the number of) edges over
(N

2

)

.

3.1 The class of k-regular graphs

For every function k : N → N, we consider the set R(k) = ∪N∈NR(k)
N such that R(k)

N is the set of

all k(N)-regular N -vertex graphs. That is, G ∈ R(k)
N if and only if G is a simple N -vertex graph

in which each vertex has degree k(N). Clearly, R(k) has no one-sided error POT, provided that
0 < k(N) < N − 1 (cf. [GR09b, Sec. 4]).8 In contrast, we show that it has a two-sided error POT.

Theorem 3.1 (a POT for R(k)): For every function k : N → N such that k(N) = κN for some
fixed constant κ ∈ (0, 1), the property R(k) has a two-sided error POT. Furthermore, all graphs in
R(k) are accepted with equal probability.

Proof: We may assume that N · k(N) is an even integer (since otherwise the test may reject
without making any queries). On input N and oracle access to an N -vertex graph G = ([N ], E),
the tester sets τ = k(N)/N = κ and proceeds as follows.

1. Selects uniformly a vertex s ∈ [N ] and consider the Boolean function fs : [N ] → {0, 1} such
that fs(v) = 1 if and only if {s, v} ∈ E.

8Specifically, the characterization in [GR09b, Thm. 4.7] implies that it suffices to show that R(k) is not a subgraph
freeness property. Assume, without loss of generality that k(N) > N/2. Then, the subgraphs disallowed in R(k)

cannot contain a clique, and it follows that the N-vertex clique is in R(k), which contradicts k(N) < N − 1.
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2. Invokes the POT of Theorem 2.3 to test whether the function fs has density τ ; that is, it
tests whether the random variable Xs defined uniformly over [N ] such that Xs(v) = fs(v) is
in the class Dτ,τ .

Recall that this POT takes two samples of Xs and accepts with probability αi when seeing i
values of 1. (The values of (α0, α1, α2) are set based on τ .)9

The implementation of Step 2 calls for taking two samples of Xs, which amounts to selecting
uniformly two vertices and checking whether or not each of them neighbors s. Thus, we make two
queries to the graph G.

Turning to the analysis of the foregoing test, let P(q) denote the probability that the POT
invoked in Step 2 accepts a random variable X such that Pr[X = x] = q. Then, the probability
that our graph tester accepts the graph G equals

1

N
·
∑

s∈[N ]

P(dG(s)/N), (5)

where dG(v) denotes the degree of vertex v in G. Thus, every k(N)-regular N -vertex graph G
is accepted with probability P(τ). As we shall show, the following claim (which improves over a

similar claim in [GGR, Apdx D]) implies that every graph that is ǫ-far from R(k)
N is accepted with

probability P(τ) − Ω(ǫ2).

Claim 3.1.1 If
∑

v∈[N ] |dG(v) − k(N)| ≤ ǫ′ · N2, then G is 6ǫ′-close to R(k)
N .

The proof of Claim 3.1.1 is presented in Appendix A.1. Note that the claim is non-trivial, since
it asserts that small local discrepancies (in the vertex degrees) imply small distance to regularity.
The converse is indeed trivial.

Using Claim 3.1.1, we infer that if G is ǫ-far from R(k)
N , then

∑

v∈[N ] |dG(v)− k(N)| > ǫ ·N2/6.
On the other hand, by Theorem 2.3 (or the analysis of the case t = 2 that precedes it), we have,
for some γ > 0,

1

N
·
∑

s∈[N ]

P(dG(s)/N) ≤ 1

N
·
∑

s∈[N ]

(

P(τ) − γ · ((dG(s) − k(N))/N)2
)

= P(τ) − γ

N2
· 1

N
·
∑

s∈[N ]

(dG(s) − k(N))2

≤ P(τ) − γ

N2
·
(
∑

s∈[N ] |dG(s) − k(N)|
N

)2

where the last inequality follows by the Cauchy-Schwarz inequality. Now, using
∑

v∈[N ] |dG(v) −
k(N)| > ǫ · N2/6, we conclude that G is accepted with probability at most P(τ) − γ · (ǫ/6)2. The
theorem follows.

9Recall (cf. Section 2.2) that we may use the setting outlined at the end of Section 2.1: That is, we set α1 = 1,
and if τ ≤ 1/2, then α2 = 0 and α0 = 1−2τ

1−τ
, and otherwise α0 = 1 and α2 = 2τ−1

τ
.
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3.2 Other regular graph properties

The two-sided error POT guaranteed by Theorem 3.1 can be combined with one-sided POT for
other graph properties to yield two-sided error POTs for the intersection. This combination is
possible whenever the two properties behave nicely with respect to intersection in the sense that
being close to both properties (i.e., to both R(k) and Π) implies being close to their intersection
(i.e., to R(k) ∩ Π). Recall that, as pointed out in [GGR], in general it may not be that case that
objects that are close to two properties are also close to their intersection.

Theorem 3.2 (a POT for R(k) ∩ Π): Let Π be a graph property that has a one-sided error and
k(N) = κN for some fixed constant κ ∈ (0, 1). Suppose that there exists a monotone function
F : (0, 1] → (0, 1] such that if G is δ-close to both Π and R(k) then G is F (δ)-close to Π ∩ R(k).
Then, Π ∩R(k) has a two-sided error POT.

Note that the condition made in Theorem 3.2 may not hold in general. For example, consider Π
that consists of all bicliques as well as all graphs that each consist of two isolated cliques. Then,
for k(N) = N/2, it holds that R(k) ∩ Π consists of N -vertex bicliques with N/2 vertices on each
side, and so the graph G consisting of two N/2-vertex cliques is 0.49-far from R(k) ∩ Π. On the
other hand, G is in Π and is 1/N -close to R(k) (by virtue of adding a perfect matching between the
two cliques). In contrast, it can be shown that the condition in Theorem 3.2 holds with respect to
k(N) = 2N/3 and the set Π consisting of all complete tripartite graphs (see either Proposition 3.3
or Proposition 3.4).

Proof: On input N and oracle access to an N -vertex graph G = ([N ], E), the tester proceeds as
follows (while assuming that κN is an integer and κN2 is even).10

1. Invokes the POT for R(k) and reject if it halts while rejecting. Otherwise, proceeds to the
next step.

2. Inkoves the POT for Π and halts with its verdict.

The analysis relies crucially on the fact that the (two-sided error) POT for R(k) accepts any graph
in R(k) with the same probability, denoted c. It follows that any N -vertex graph in Π ∩ R(k) is
accepted with probability c · 1 = c. Next, we show that graphs that are far from Π ∩ R(k) are
accepted with probability that is significantly smaller than c.

Let G be a graph that is δ-far from Π ∩ R(k). Then, by the hypothesis regarding Π and R(k),
either G is F−1(δ)-far from Π or G is F−1(δ)-far from R(k). In the first case, G is accepted with
probability at most c · (1 − ̺1(F−1(δ))), where ̺1 is the detection probability function of the one-
sided error POT for Π. Note that we rely on the fact that the (two-sided error) POT for R(k)

accepts any graph with probability at most c. In the second case (i.e., G is far from R(k)), it holds
that G is accepted with probability at most c − ̺2(F−1(δ)), where ̺2 is the detection probability
function of the two-sided error POT for R(k). The claim follows.

Corollaries. One natural question is which properties Π satisfy the condition of Theorem 3.2 and
what properties arise from their intersection with R(k). Recall that by the characterization result
of [GR09b], the property Π must be defined in terms of subgraph freeness (since only such properties
have a one-sided error POT). However, the intersection Π∩R(k) may not be easy to characterize in
general. Furthermore, as indicated above, some subgraph freeness properties satisfy the condition

10Otherwise, the tester rejects upfront, since no N-vertex graph can be κN-regular.
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of Theorem 3.2 while others do not. We consider this issue in the context of two specific classes
of properties, studied in [GR09a]. The first class consists of all complete t-partite graphs, where a
graph is called complete t-partite if its vertex set can be partitioned into t (independent) sets such
that two vertices are connected by an edge if and only if they belong to different sets.

Proposition 3.3 (on regular complete t-partite graphs): Let t ≥ 2 be an integer and k(N) =
(t − 1)N/t.

1. The set of k-regular complete t-partite graphs equals to the set of complete t-partite graphs in
which each part (i.e., independent set) has density 1/t.

2. If a graph G = ([N ], E) is δ-close to both the set of complete t-partite graphs and to R(k),
then G is O(

√
δ)-close to some k-regular complete t-partite graph.

Thus, the set of k-regular complete t-partite graph has a two-sided error POT.

Proof: Let Π denote the set of t-partite graphs. First, we show that R(k) ∩ Π equals the set of
all k-regular complete t-partite graphs, which we denote by Π′. This follows by considering the
t-partition (V1, ..., Vt) of an arbitrary N -vertex graph in Π, and observing that the degree condition
implies that for every i ∈ [t] such that Vi 6= ∅ it holds that

∑

j 6=i |Vj| = k(N). Thus, for every such
i ∈ [t] it holds that |Vi| = N/t, and Item 1 follows.

Turning to the proof of Part 2, we note that if G is δ-close to both Π and R(k), then there
exists G′ ∈ Π that is 2δ-close to R(k). Let I1, ..., It be the partition of G′ to t independent sets
such that there is a complete bipartite graph between each two Ij ’s. Then, we have

∑

i6=j |Ii| ·
|Ij | ≥ k(N)N − 4δN2, which implies

∑

i∈[t] x
2
i ≤ (1/t) + 4δ, where xi = |Ii|/N . It follows that

∑

i∈[t](xi − (1/t))2 ≤ 4δ, and thus G′ is O(
√

δ)-close to Π′.

The second class, studied in [GR09a], is the class of super-cycle collections, where a super-cycle
(of length ℓ) is a graph consisting of a sequence of disjoint sets of vertices, called clouds, such that
two vertices are connected if and only if they reside in neighboring clouds (i.e., denoting the ℓ
clouds by S0, . . . , Sℓ−1, vertices u, v ∈ ⋃i∈{0,1,...,ℓ−1} Si are connected by an edge if and only if for
some i ∈ {0, 1, ..., ℓ − 1} and j ∈ {i − 1 mod ℓ, i + 1 mod ℓ} it holds that u ∈ Si and v ∈ Sj). Note
that a bi-clique that has at least two vertices on each side can be viewed as a super-cycle of length
four (by partitioning each of its sides into two parts). We denote the set of graphs that consists of
a collection of isolated super-cycles of length ℓ by SCℓC As is shown in the next two propositions,
for every ℓ ≤ 3, there is a dichotomy in the behavior of the set SCℓC ∩ R(k): For some integers t
and k(N) = 2N/tℓ, the sets SCℓC and R(k) satisfy the conditions of Theorem 3.2, whereas for the
remaining values of t the conditions of Theorem 3.2 are not satisfied.

Proposition 3.4 (on SCℓC ∩ R(k) and testing it, for some values of ℓ, t and k(N) = 2N/tℓ): Let
ℓ ≥ 3 be an integer and t ∈ Tℓ, where

Tℓ =







{1, 2, 3} if ℓ ≡ 1 (mod 2)
{1} if ℓ ≡ 2 (mod 4)
N if ℓ ≡ 0 (mod 4)

(6)

and k(N) = 2N/tℓ. Then:

1. The set SCℓC ∩ R(k) equals the set of graphs that consists of t super-cycle of length ℓ, each
containing N/t vertices, such that clouds that are at distance four apart have equal size.
Furthermore, if ℓ 6≡ 0 (mod 4), then each cloud has size N/tℓ.
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2. If a graph G = ([N ], E) is δ-close to both SCℓC and R(k), then G is O(
√

δ)-close to SCℓC∩R(k),
where the hidden constant depends polynomially on tℓ.

Thus, SCℓC ∩ R(k) has a two sided error POT.

The proof of Proposition 3.4 is quite tedious and is deferred to Appendix A.2.

Proposition 3.5 (on SCℓC∩R(k) in other cases): Let ℓ ≥ 3 and t ∈ N\Tℓ, where Tℓ is as in Eq. (6).
Then, for any integer k(N) = 2N/tℓ, there exists an N -vertex graph in R(k) that is O(1/N)-close
to SCℓC but Ω(1)-far from SCℓC ∩ R(k).

Indeed, Proposition 3.5 is non-trivial only in the case that ℓ 6≡ 0 (mod 4). We stress that Proposi-
tion 3.5 does not assert that in certain cases SCℓC∩R(k) has no POT, but rather that the conditions
stated in Theorem 3.2 are not satisfied (and so the approach suggested by its proof will not work).
The proof of Proposition 3.5 refers to some elements of the proof of Proposition 3.4, and thus is
also deferred to Appendix A.2.

3.3 The class of regular graphs

We consider the class REG of regular graphs. Note that this class strictly contains the classes
considered in Section 3.1, since we make no restriction on the degrees. (Still, this does not mean
that testing REG is either easier or harder than testing these subclasses.) Clearly, REG has no
one-sided error POT. In contrast, we show that it has a two-sided error POT.

Theorem 3.6 (a POT for REG): The class REG has a two-sided error POT. Furthermore, all
graphs in REG are accepted with equal probability.

Recall that a standard tester of regularity can be obtained by estimating the degrees of random
vertices (cf. [GGR, Prop. 10.2.1.3]), where these estimations are related to the proximity param-
eter. However, such good approximations are not possible in the context of proximity oblivious
testing. Still, as in Section 3.1, crude approximations (which are obtained by a constant number of
queries) turn out to be sufficiently good. Specifically, we construct a POT that picks two random
vertices in the given graph, and checks that these two vertices have the same degree in a proximity
oblivious manner. This checking is reduced to the problem of testing equality between two Boolean
distributions, where in the reduction the distributions correspond to the density of the neighbors of
each of the chosen vertices.11 We show first that the task of testing that two Boolean distributions
are equal can be tested in a proximity oblivious manner (and will return to Theorem 3.6 later).

Proposition 3.7 (a POT for EQ): Let EQ = {(P,Q) : Pr[P = 1] = Pr[Q = 1]} be the class that
consists of pairs of equal Boolean distributions, and let the distance of a pair (P,Q) from EQ be
defined as

dist ((P,Q), EQ) = |Pr[P =1] − Pr[Q=1]| .
Then, the property EQ has a two-sided error POT. Given two distributions, the tester makes two
queries to each of them, and has quadratic detection probability. Moreover, all pairs of equal dis-
tributions are accepted with the same probability.

11This reduction is analogous to the proof of Theorem 3.1 in which we check that the degree of a vertex equals to
some k ∈ N that is fixed and is known to the tester.
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As shown below (see Proposition 3.8), the property EQ has no POT that (always) makes less than
two queries to one of the two distributions.

Proof: Following the receipt of Section 2.1, the design of the desired POT calls for choosing a
sequence of α(i,j)’s, where α(i,j) represents the acceptance probability when seeing i ones in the
(2-element) sample of P and j ones in the (2-element) sample of Q. The corresponding acceptance
probability is a polynomial of individual degree 2 in p and q, where p = Pr[P =1] and q = Pr[Q=1].
The goal is thus to choose the α(i,j)’s such that this polynomail evaluates to c for every (p, q) such
that p = q, and evaluates to c − Ω((p − q)2) otherwise.

Let c, δ ∈ (0, 1) be two parameters such that c− 2δ, c + δ ∈ [0, 1]. Indeed, we may chose c = 0.5
and δ = 0.25. For every (i, j) ∈ {0, 1, 2}2 define

α(i,j) =







c − 2δ if (i, j) ∈ {(0, 2), (2, 0)}
c + δ if (i, j) = (1, 1)
c otherwise

(7)

Given a pair of distributions (P,Q), the tester, denoted T , proceeds as following:

1. Make two queries to each distribution. Denote by i the number of ones obtained from P , and
denote by j the number of ones obtained from Q.

2. Accept with probability α(i,j).

Letting p = Pr[P =1] and q = Pr[Q=1], the acceptance probability of the tester is

Pr[T accepts (P,Q)] =
∑

i,j∈{0,1,2}

α(i,j) ·
(

2

i

)

pi(1 − p)2−i ·
(

2

j

)

qj(1 − q)2−j. (8)

Note that almost all the α(i,j)’s in Eq. (7) are equal to c, with the exception of α(2,0) = α(0,2) and
α(1,1). Thus, the tester “penalizes” a highly unbalanced view (i.e., (2, 0) or (0, 2)) and “awards” a
balanced view. Indeed, plugging in the parameters in Eq. (8), we get

Pr[T accepts (P,Q)] = c − (p2(1 − q)2 + q2(1 − p)2) · 2δ + 4p(1 − p)q(1 − q) · δ
= c − 2δ ·

(

p2(1 − q)2 + q2(1 − p)2 − 2p(1 − p)q(1 − q)
)

= c − 2δ · (p − q)2

The proposition follows.

Proof of Theorem 3.6. Given an N -vertex graph G = ([N ], E), the tester proceeds as follows.

1. Select uniformly two vertices v1, v2 ∈ [N ] and consider the Boolean functions fv1 : [N ] →
{0, 1} and fv2 : [N ] → {0, 1} such that fvi(w) = 1 if and only if {vi, w} ∈ E.

2. Invoke the POT of Proposition 3.7 to test whether the function fv1 and fv2 have the same
density, and act according to its answer. That is, test whether the random variables Xv1 and
Xv2 defined over [N ] such that Xvi(w) = fvi(w) are equal (i.e., whether the pair (Xv1 ,Xv2)
is in EQ).

Recall that this POT accepts all equal pairs of distributions with the same probability c
(which is an absolute constant independent of dG(v1) and dG(v2)).
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In the implementation of Step 2 the tester takes two samples of Xv1 and two sample of Xv2 , which
amounts to selecting uniformly four vertices, and checking whether that the first two are adjacent
to v1 and the last two are adjacent to v2. Thus, we make four queries to the graph G.

Clearly, if G is a regular graph, then for every pair of vertices (v1, v2), chosen in Step 1, the
POT of Step 2 will accept with the same probability c (which is also independent of the degree
of G). Suppose now that a graph G = ([N ], E) is accepted with probability c − ǫ. Then, by an
averaging argument, there are (1− ǫ)N2 pairs of vertices (v1, v2) such that when these vertex-pairs
are chosen in Step 1, then Step 2 accepts with probability at least c− ǫ. Thus, there exists a vertex
v1 ∈ [N ] and a subset V2 ⊆ [N ] of size at least (1 − ǫ)N such that for every vertex v2 ∈ V2 the
acceptance probability of Step 2 when applied on the pair (v1, v2) is at least c− ǫ. Proposition 3.7
implies that for every such vertex v2 it holds that |Pr[Xv1 =1]−Pr[Xv2 =1]| = O(

√
ǫ), and therefore

|dG(v2) − dG(v1)| < O(
√

ǫ · N).
Let K = dG(v1) be the degree of v1. We show that the graph is close to being K-regular. Indeed,

using the fact that |V2| ≥ (1− ǫ)N and for every v2 ∈ V2 it holds that |dG(v2)−K| < O(
√

ǫN), we
have

∑

v∈[N ]

|dG(v) − K| =
∑

v∈V2

|dG(v) − K| +
∑

v∈[N ]\V2

|dG(v) − K| < O(
√

ǫ · N2).

Therefore, by applying Claim 3.1.1 we get that the graph G is O(
√

ǫ)-close to being K-regular.
This completes the proof of Theorem 3.6.

Comment. A result analogous to Theorem 3.2 can be proved in the current context. That is,
Π ∩REG has a two-sided error POT if Π has a one-sided error POT and there exists a monotone
function F : (0, 1] → (0, 1] such that every graph that is δ-close to both Π and REG is F (δ)-close
to Π ∩REG.

Proposition 3.8 The property EQ has no two-sided error POT that always makes at most one
query to the first (resp., second) distribution.

Indeed, Proposition 3.8 does not rule out the possibility that a POT for EQ can sometimes (i.e.,
depending on its coin tosses) make less than two queries to the first (resp., second) distribution. In
fact, there exists a POT for EQ that always makes two queries (in total) such that with probability
1
4 it makes two queries to the first (resp., second) distribution, and otherwise it makes a single
query to each distribution.12

Proof: Suppose, without loss of generality, that there exists a POT, denoted T , that always
makes t queries to distribution P and a single query to distribution Q. Let us denote the threshold
probability of T by c. Note that, in general, without loss of generality, the activities of any POT for
EQ depend on the number of ones that it sees among the P samples and among the Q samples; that
is, when it sees i ones in the sample of P and j ones in the sample of Q it accepts with probability
α(i,j) (e.g., let α(i,j) be the average acceptance probability taken over all the corresponding cases).
Now, denoting (again) p = Pr[P =1] and q = Pr[Q=1], the acceptance probability of T equals

A(p, q)
def
= Pr[T accepts (P,Q)] =

∑

i∈{0,1,...,t}

(

t

i

)

pi(1 − p)t−i ·
(

qα(i,1) + (1 − q)α(i,0)

)

. (9)

12This tester can be obtained by a reduction to testing a property of an auxiliary 4-valued distribution R such that
R = (1, P ) with probability 1

2
and R = (2, Q) otherwise. Testing whether P equals Q reduces to testing whether

Pr[R = (1, 1)] = Pr[R = (2, 1)], whereas (by Corollary 5.9) this property has a POT that uses two samples. We
comment that a similar POT can be obtained for testing the equality of t ≥ 2 distributions.
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Letting δ = p − q, we have A(p, q) = B(p) + δ · D(p), where

B(p)
def
=

∑

i∈{0,1,...,t}

(

t

i

)

pi(1 − p)t−i ·
(

pα(i,1) + (1 − p)α(i,0)

)

and D(p)
def
=

∑

i∈{0,1,...,t}

(

t

i

)

pi(1 − p)t−i · (α(i,1) − α(i,0)).

The following observations only rely on the fact that the acceptance probability A(p, p+δ) is linear
in δ.

1. For every p it holds that B(p) ≥ c, because (P,P ) must be accepted with probability at least
c (i.e., because A(p, p) ≥ c).

2. For every p it holds that B(p) ≤ c, because otherwise for some δ such that |δ| > 0 the no-
instance (P,Q) is accepted with probability at least B(p) − |δ| > c (using |D(p)| ≤ 1), which
violates A(p, q) < c.

3. For every p it holds that D(p) 6= 0, because otherwise for some δ such that |δ| > 0 the
no-instance (P,Q) is accepted with probability B(p) = c.

Using (3), we note that for every p ∈ (0, 1) and ǫ > 0 such that p−ǫ, p+ǫ ∈ [0, 1], either (p, p−ǫ) or
(p, p+ǫ) is accepted with probability greater than B(p) = c (since either ǫD(p) > 0 or −ǫD(p) > 0).
This violates the requirements from a POT for EQ, and the proposition follows.

3.4 Bounded density of induced copies

We now turn to a different type of graph properties; specifically, to sets of graphs in which a fixed
graph appears as an induced subgraph for a bounded number of times.

Fixing any n-vertex graph H, denote by ρH(G) the density of H as a subgraph in G; that is,
ρH(G) is the probability that a random sample of n vertices in G induces the subgraph H. For any

graph H and τ ∈ [0, 1], we consider the graph property ΠH,τ
def
= {G : ρH(G) ≤ τ}; in particular,

ΠH,0 is the class of H-free graphs. Alon et al. [AFKS] showed that, for some monotone function
Fn : (0, 1] → (0, 1] if G is δ-far from the class of H-free graphs, then ρH(G) > Fn(δ). Here we
provide a much sharper bound for the case of τ > 0 (while using an elementary proof).13

Theorem 3.9 (distance from ΠH,τ yields ρH > τ): For every n-vertex graph H and τ > 0, if
G = ([N ], E) is δ-far from ΠH,τ , then ρH(G) > (1 + (δn/3)) · τ , provided that δ > 6/N .

It follows that ΠH,τ has a two-sided error POT, which just inspects a random sample of n vertices
and checks whether the induced subgraph is isomorphic to H. This POT accepts a graph in ΠH,τ

with probability at least 1−τ , whereas it accepts any graph that is δ-far from ΠH,τ with probability
at most 1 − τ − (τn/3) · δ (if δ > 6/N , and with probability at most 1 − τ − (δ/6)n otherwise).

Proof: Let us consider first the case that H contains no isolated vertices. Setting G0 = G,
we proceed in iterations while preserving the invariant that Gi is (δ − 2i/N)-far from ΠH,τ . In
particular, we enter the ith iteration with a graph Gi−1 not in ΠH,τ , and infer that Gi−1 contains

a vertex, denoted vi, that participates in at least M
def
= τ ·

(

N−1
n−1

)

copies of H. We obtain a graph

13In contrast, the proof of Alon et al. [AFKS] relies on Szemeredy’s Regularity Lemma.
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Gi that is (N − 1)/
(N

2

)

-close to Gi−1 by omitting from Gi−1 all edges incident at vi. We stress
that the M copies of H counted in the ith iterations are different from the copies counted in the
prior i− 1 iterations, because all copies counted in the ith iteration touch the vertex vi and do not
touch the vertices v1, ..., vi−1, since the latter vertices are isolated in Gi−1 (whereas H contains no
isolated vertices). Also note that the copies of H counted in the ith iteration also occur in G, since

they contain no vertex pair on which Gi−1 differs from G. Thus, after t
def
= ⌊δN/2⌋ iterations, we

obtain a graph Gt 6∈ ΠH,τ , which contain τ ·
(N

n

)

copies of H that are disjoint from the t ·M copies
of H counted in the t iterations. It follows that

ρH(G) ≥ τ + t · M
(N

n

)

= τ + ⌊δN/2⌋ · n · τ
N

> τ +

(

δn

2
− n

N

)

· τ

and the claim follows (using δ > 6/N). Recall, however, that the foregoing relies on the hypothesis
that H has no isolated vertices. If this hypothesis does not hold, then the complement graph of
H has no isolated vertices, and we can proceed analogously. In other words, if H has an isolated
vertex, then no vertex in H is connected to all the other vertices. In this case, we consider the
graph Gi obtained from Gi−1 by connecting the vertex vi to all other vertices in the graph. Also
in this case, H-copies in Gi cannot touch v1, ..., vi−1 (this time because each vertex in v1, ..., vi−1 is
connected to all vertices in Gi−1), and we can proceed as before.

3.5 Towards a characterization

The foregoing results beg the question of characterizing the class of graph properties that have a
two-sided error POT and also suggest that such a characterization may be related to the densities
in which various fixed-size graphs appear as induced subgraphs in the graph. In the current section
we pursue these ideas.

Recall that, for an n-vertex graph H, we denote by ρH(G) the density of H as a subgraph in G
(i.e., ρH(G) equals the probability that a random sample of n vertices in G induces the subgraph
H). We consider graph properties that are each parameterized by a sequence of weights w = (wH)
and by b ∈ [0, 1], where wH ∈ [0, 1] for each n-vertex (unlabeled) graph H. The corresponding
graph property is denoted Πw,b, and a graph G is in Πw,b if and only if

∑

H wH · ρH(G) ≤ b.
Note that the case of b = 0 corresponds to F-freeness for F = {H : wH > 0}. More generally,

if for every H it holds that wH ≥ b, then Πw,b equals the set of F-free graphs, where F = {H :
wH > b}. Another interesting case is where wH0 = 1 for a unique graph H0 and wH = 0 otherwise
(i.e., for every H 6= H0): In this case the property Πw,b corresponds to having an H0-density that
does not exceed b (i.e., in this case G ∈ Πw,b if and only if ρH0(G) ≤ b, which is the case studied in
Section 3.4).

In the rest of this section, we shall discard the case of a uniform sequence w (i.e., wH = w for
some w and all H’s), since in this case the property is trivial. We conjecture that, for any b > 0
and w, the property Πw,b has a two-sided error POT, but we are only able to establish it in special
cases (see Theorem 3.11). On the other hand, we show that any graph property having a two-sided
error POT is essentially of the foregoing type. The latter statement requires some clarification.

Recall that it was shown in [GR09b, Thm. 4.7] that a graph property has a one-sided error
POTs if and only if it is a subgraph freeness property. However, the equivalence is not to F-freeness
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where F is a fixed set of forbidden subgraphs, but rather to an infinite sequence of subgraph freeness
properties that correspond to different graph sizes. Specifically, it was shown that Π = ∪NΠN has
a one-sided error POT if there exists a constant n and an infinite sequence (FN )N∈N such that for
every N it holds that (1) all graphs in FN are of size n, and (2) ΠN equals the set of all N -vertex
FN -free graphs.

Note that in the latter context there are only finitely many possible sets FN , whereas in our
context there are infinitely many possible sequences w = (wH) (and ditto b’s). In other words, for

every fixed N , the number of possible properties of N -vertex graphs that arises from such (2(n
2)+1)-

long sequences depends on N (and is not upper bounded by a function of n). For example, for
every m(N) ∈ {0, 1, ...,

(N
2

)

}, we may consider the property of N -vertex graphs having at most
m(N) edges.14

Another difficulty that arises regarding the foregoing properties is that, in general, it is not
clear how the following notions of violating the property Πw,b are related:

1. The graph G is δ-far from Πw,b; that is, for every G′ ∈ Πw,b it holds that G and G′ differ on
at least δ fraction of vertex pairs.

2. The graph G satisfies
∑

H wH · ρH(G) ≥ b + ǫ.

Indeed, δ > 0 if and only if ǫ > 0 (since G 6∈ Πw,b if and only if
∑

H wH · ρH(G) > b). It also holds
that ǫ ≤

(n
2

)

· δ (since the probability that a random sample of n vertices hits a pair of vertices that
differs in two graph can be upper bounded in term of the distance between the graphs). But what
is missing is a general bound in the opposite direction, whereas we do have such bounds in special
cases (e.g., either b = 0 or |{H : wH > 0|}| = 1, see Section 3.4).15 In light of this state of affairs,
a first step towards a characterization is provided by the following result (where V (H) denotes the
vertex set of H).

Theorem 3.10 (a kind of characterization): Let Π = ∪NΠN be a graph property. Then, Π has a
two-sided error POT if and only if there exists an integer n, a number b ∈ [0, 1], and a function F
such that for every N there exists a sequence w = (wH)H:|V (H)|=n that satisfies the following two
conditions:

1. ΠN equals the set of N -vertex graphs in Πw,b.

2. If G is δ-far from ΠN , then
∑

H wH · ρH(G) ≥ b + F (δ).

Indeed, the second condition drastically limits the usefulness of the current characterization; still,
Theorem 3.11 (which generalizes Theorem 3.9) presents cases in which this condition holds. Note
that while one direction of Theorem 3.10 is quite obvious (i.e., that properties that correspond to
such sequences of Πw,b’s have a POT), the opposite direction requires a proof (i.e., that having a
POT implies a correspondence to such sequences of Πw,b’s).

Proof: The proof follows the outline of the proof of [GR09b, Thm. 4.7]. Suppose that Π has
a constant-query (two-sided error) POT. Then, by following the proof of [GT03, Thm. 4.5] (see
also [GT05]), we can obtain a POT that inspects the subgraph induced by a random set of n = O(1)
vertices and accepts with probability αH if the induced subgraph seen is isomorphic to H. Note that
n equals twice the query complexity of the original POT, and that the resulting POT maintains the

14This property can be represented by setting b = m(N)/
`

N
2

´

, n = 2, and wH = 1 if H is a connected 2-vertex
graph (i.e., an edge) and wH = 0 if H consists of two isolated vertices.

15A more general result is presented in Theorem 3.11.
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acceptance probability of the original POT (on any random isomorphic copy of any fixed graph G).16

Let c be the acceptance threshold of the original POT (i.e., c = minG∈Π{Pr[TestG(|V (G)|) = 1]}).
Then, ΠN = {G : |V (G)| = N ∧∑H ρH(G) · αH ≥ c}, which equals the set of N -vertex graphs in
Πw,b for wH = 1−αH and b = 1−c. That is, this w satisfies the first condition. Furthermore (by the
POT guarantee), if the N -vertex graph G′ is ǫ′-far from Π, then

∑

H ρH(G′) ·αH ≤ c−̺(ǫ′), where
̺ is the guaranteed detection probability function. That is, this w satisfies the second condition,

with respect to F
def
= ̺, since

∑

H ρH(G′) ·wH ≥ b + F (ǫ′). Thus, we obtained n, b and F such that
for every N there exists a sequence of wH ’s that satisfies both conditions.

Suppose, on the other hand, that for some n, b and F , it holds that for every N there exists
a sequence w = (wH)H:|V (H)|=n that satisfies the two conditions (i.e., (i) ΠN equals the set of
N -vertex graphs in Πw,b, and (ii) if G is δ-far from ΠN then

∑

H wH · ρH(G) ≥ b + F (δ)). Our
goal is to derive a constant-query two-sided error POT for Π, which we achieve using the following
natural test: The test selects a random set of n vertices, inspects the induced subgraph, and accepts
with probability 1 − wH when seeing a subgraph isomorphic to H. Clearly, every graph in ΠN is

accepted with probability at least c
def
= 1− b, whereas if G is δ-far from ΠN then it is accepted with

probability at most
∑

H(1−wH) ·ρH(G) ≤ c−F (δ). Thus, this test is a two-sided error POT with
̺ = F .

Discussion. As admitted upfront, Theorem 3.10 leaves open the question of which graph prop-
erties can be captured by sequences of wH ’s that satisfy the second condition (i.e., that being δ-far
from Πw,b, means satisfying

∑

H wH · ρH(·) ≥ b + F (δ)). Generalizing Theorem 3.9, it is easy to
prove the following.

Theorem 3.11 (Theorem 3.9, generalized): Let b ∈ [0, 1] and w = (wH)H:V (H)=n. If the set
{H : wH ≥ b} contains only graphs with no isolated vertices, then for every graph G that is δ-far

from Πw,b it holds that
∑

H wH · ρH(G) ≥ b + (dn/3) · δ, where d
def
= b − maxH:wH<b{wH} and

provided that δ > 6/|V (G)|. The same holds if {H : wH ≥ b} contains only graphs in which no
vertex neighbors all other vertices.

When applying the argument used in proving Theorem 3.9, each iteration reduces the value of
∑

H wH · ρH(·) by at least d ·
(N−1

n−1

)

units. Thus, we obtain
∑

H wH · ρH(G) ≥ b + (δn/3) · d.
In contrast to Theorem 3.11, we observe that not every Πw,b satisfies the second condition of
Theorem 3.10. Specifically, we show the following

Proposition 3.12 (violating the second condition of Theorem 3.10): There exists b ∈ (0, 1) and
w = (wH)H:V (H)=O(1) such that for every N there exists an N -vertex graph G that is Ω(1)-far from
Πw,b and yet

∑

H wH · ρH(G) = b + O(1/N).

Note that this does not say that Πw,b does not have a POT, since such a possible POT may use an
alternative characterization of the same property (i.e., Πw,b may equal Πw′,b′ such that the former
violates the second condition of Theorem 3.10 whereas the latter satisfies this very condition). In
Proposition 6.12 (see also Corollary 6.11) we provide an example of a property Π = ∪N∈NΠN that
does not have a POT, but for some b ∈ (0, 1) and every N ∈ N there are w = (wH)H:|V (H)|=O(1)

such that ΠN is exactly the set of all N -vertex graphs in Πw,b. Thus, Proposition 6.12 asserts that a
property Πw,b that satisfies the first condition of Theorem 3.10 does not necessarily have a POT.17

16We avoid the final step in [GT03, Sec. 4] (and [GR09b]), where each αH > 0 is replaced by αH = 1, yielding a
deterministic decision (which in turn corresponds to F-freeness).

17We note that Proposition 3.12 is not subsumed by Proposition 6.12, since the parameters w used in the former
are independent of N whereas in the latter w depend on N .
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Proof: Consider any of the properties SCℓC∩R(k) asserted in Proposition 3.5, where k(N) = 2N/ℓt
for some t ∈ N\Tℓ. Next, consider the tester for SCℓC ∩R(k) described in the proof of Theorem 3.2:
This tester selects a random sample of n = O(1) vertices, and inspect the corresponding induced
subgraph, denoted H. Specifically, let H ′ be the subgraph induced by the first three vertices and H ′′

be the subgraph induced by the other n−3 vertices. Then, this tester accepts with probability α′
H′

if H ′′ ∈ AS and rejects otherwise, where (α′
H′)H′ denotes the sequence of probabilities used by the

POT of R(k) and AS denotes the set of all possible induced subgraphs of graphs in SCℓC. Recall that,
for some c′ ∈ (0, 1) and every graph G ∈ R(k), it holds that

∑

H′ ρH(G) · α′
H = c′ (since all graphs

in R(k) are accepted by the corresponding POT with exactly the same probability). Denoting by
H(H ′,H ′′) the set of all n-vertex graphs H that induce the graphs H ′ and H ′′ as above, we observe
that for every graph G it holds that

∑

H∈H(H′,H′′) ρH(G) = ρH′(G) · ρH′′(G) ± O(n/N). Note that

for every H ∈ H(H ′,H ′′), the test accepts a graph when seeing the induced subgraph H with
probability αH = α′

H′ if H ′′ ∈ AS and αH = 0 otherwise. Then, for the N -vertex graph G, we have

∑

H:|V (H)|=n

αH · ρH(G) =
∑

H′:|V (H′)|=3

∑

H′′:|V (H′′)|=n−3

∑

H∈H(H′H′′)

αH · ρH(G)

=
∑

H′:|V (H′)|=3

α′
H′ ·

∑

H′′∈AS

∑

H∈H(H′H′′)

ρH(G)

=
∑

H′:|V (H′)|=3

α′
H′ ·

∑

H′′∈AS

[ρH′(G)ρH′′(G) ± O(n/N)]

=

(

∑

H′

α′
H′ρH′(G)

)

·
(

∑

H′′∈AS

ρH′′(G)

)

± O(2n2
/N)

Recall that n = O(1) and thus O(2n2
/N) = O(1/N). Then, for the N -vertex graph G asserted

in Proposition 3.5, we have
∑

H:|V (H)|=n αH · ρH(G) = c′ − O(1/N), because G ∈ R(k) implies
∑

H′ α′
H′ρH′(G) = c′ whereas the fact that G is O(1/N)-close to SCℓC implies that the density (in

G) of subgraphs not in AS is at most O(n2/N). Finally, using the same translation as in the proof
of Theorem 3.10 (i.e., b = 1 − c′ and wH = 1 − αH), we conclude that although G is Ω(1)-far from
Πw,b it holds that

∑

H wH · ρH(G) = b + O(1/N). The claim follows.

3.6 Impossibility results

It is easy to derive impossibility results regarding general POTs by considering two distributions
on N -vertex such that the following two conditions hold: (1) the two distributions cannot be
distinguished by a constant number of queries, and (2) the first distribution is concentrated on
graphs that have the property whereas the second distribution is concentrated on graphs that do
not have the property.18

For example, wishing to prove that bipartiteness has no constant-query POTs, we consider for
each constant q, the following two distributions that refer to ℓ = 2⌈q/2⌉ + 1: The first distribution
consists of random isomorphic copies of an N -vertex graph that is obtained by a balanced blow-up
of a single 2ℓ-cycle, and the second distribution is analogously obtained by a balanced blow-up
of two ℓ-cycles. Thus, each graph in each of the two distributions consists of 2ℓ clouds such that

18The foregoing method directly establishes the non-existence of a two-sided error POT. Alternatively, one may
use this method to show that the first condition in Theorem 3.10 is not satisfied. Indeed, using Theorem 3.10 merely
allows to replace (1) by (1’) the two distributions have the same densities of various induced subgraphs of constant
size.
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each cloud consists of an independent set of size N/2ℓ, and the clouds are arranged either in a
single 2ℓ-cycle or in two disjoint ℓ-cycles. Clearly, these distributions cannot be distinguished by an
algorithm that makes less than ℓ queries, but graphs in the first distribution are bipartite whereas
graphs in the second distribution are far from being bipartite. Thus, we get:

Theorem 3.13 Bipartiteness has no two-sided error POT.

4 In the Bounded-Degree Graph Model

The bounded-degree graph model refers to a fixed degree bound, denoted d ≥ 2. An N -vertex graph
G = ([N ], E) (of maximum degree d) is represented in this model by a function g : [N ] × [d] →
{0, 1, ..., N} such that g(v, i) = u ∈ [N ] if u is the ith neighbor of v and g(v, i) = 0 if v has less than
i neighbors. Distance between graphs is measured in terms of their aforementioned representation
(i.e., as the fraction of (the number of) different array entries (over dN)).

The straightforward method for showing impossibility results (outlined in Section 3.6), is ap-
plicable also in the current (bounded-degree) model. To demonstrate this, we show that (for any
constant q) the connectivity property has no q-query (two-sided error) POT in this model. The
two distributions that we consider are: (1) a random isomorphic copy of the graph consisting of a
single N -vertex Hamiltonian cycle, and (2) a random isomorphic copy of the graph consisting of
N/(q + 1) isolated (q + 1)-vertex cycles. Thus, we get:

Theorem 4.1 Connectivity has no two-sided error POT (in the bounded-degree graph model, for
any d ≥ 2).

Turning to positive results, we note that the properties of distributions studied in Section 2 give
rise to graph properties that have POTs in the bounded-degree model. The first type of such graph
properties refer to the edge densities of graphs, where in the current section densities are measured
as a fraction of dN/2. (Note that a Boolean function f : [N ] × [d] → {0, 1} can be defined such
that f(v, i) = 1 if and only if g(v, i) ∈ [N ].)19 As in Section 3, we are more interested in “genuine”
graph properties, and the first type of properties that we consider refer to the density of isolated
vertices in the graph.

Recall that for any sequence of t density thresholds, denoted τ = (τ1, ..., τt) ∈ [0, 1]t, such
that τ1 ≤ τ2 < τ3 ≤ τ4 < · · · ≤ τt, we considered (in Section 2) the class of distributions,
denoted Dτ , consists of all 0-1 random variables X such that for some i ≤ ⌈t/2⌉ it holds that
τ2i−1 ≤ Pr[X = 1] ≤ τ2i. The corresponding class of bounded-degree graphs will consist of graphs
that contain a fraction of isolated vertices that corresponds to a distribution in Dτ . That is, Gτ

contains the N -vertex graph G if and only if G contains M isolated vertices such that the fraction
M/N (viewed as a probability) is in Dτ .

Theorem 4.2 (POT for Gτ ): For every τ = (τ1, ..., τt), the property Gτ has a two-sided error POT.

Proof: On input N and oracle access to an N -vertex graph G = ([N ], E), of degree bound d, the
tester proceeds as follows.

1. Selects uniformly and independently t vertices, denoted u1, ..., ut, and explore their immediate
neighborhood. That is, for each i determine whether or not ui is isolated in G.

19Thus, the fraction of 1-values in f equals the fraction of edges in the graph represented by g.
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2. Let j ∈ {0, 1, ..., t} denote the number of isolated vertices seen in Step 1. Then, the tester
accepts with probability αj , where (α0, α1, ..., αt) is the sequence of probabilities used by the
POT that is guaranteed by Theorem 2.3 (i.e., the tester for Dτ ).

Let c be the threshold probability associated with the tester of Theorem 2.3. Then, each graph
G ∈ Gτ is accepted with probability at least c. On the other hand, we shall show that if G is ǫ-far
from being in Gτ , then the fraction of isolated vertices in G is (ǫ/4)-far from Dτ , and the theorem
follows. Actually, the validity of this claim presupposes that all the thresholds in τ are multiples
of 1/N , and we shall defer this issue to the end of the proof.

We shall prove the counterpositive (i.e., if the fraction of isolated vertices in G is ǫ-close to Dτ ,
then G is 4ǫ-close to Gτ ). Suppose that G is an N -vertex graph with M isolated vertices such that
there exists p ∈ Dτ that satisfies |p − (M/N)| ≤ ǫ. If M > pN (and M < N)20, then we may
decrement the number of isolated vertices by connecting any isolated vertex v to some non-isolated
vertex. (If some non-isolated vertex u has degree smaller than d, then we connect v to u, else we
connect v to an arbitrary vertex of degree d while omitting one of its current edges.) The case
M < pN is slightly more complex, since we wish to turn some non-isolated vertex v into an isolated
vertex. If each of the neighbors of v has degree at least two, then these is no problem. Otherwise,
we may need to connect these neighbors among themselves so to prevent them from becoming
isolated. The details are omitted.

Note that the foregoing argument presupposes that pN is an integer, which is indeed the case
when all the thresholds in τ are multiples of 1/N . Thus, our argument needs to be augmented to
deal with the general case, in which the latter presumption does not hold. We distinguish between
dealing threshold pairs of the form τ2i−1 < τ2i and pairs of the form τ2i−1 = τ2i. In the first case,
ignoring finitely many N ’s, we may replace p ∈ [τ2i−1, τ2i] by p′ ∈ [τ2i−1, τ2i]∩{j/N : j = 0, 1, ..., N}
(while increasing ǫ by at most 1/N , which is fine since it suffices to establish an upper bound of
4(ǫ + (1/N))). In the second case, we should actually modify the algorithm and omit the pair
(τ2i−1, τ2i) from τ . That is, the algorithm will refer to a modified τ that contains a pair of the form
τ2i−1 = τ2i if and only if such a pair is a multiple of 1/N (for the current N).21

Generalization. The foregoing treatment can be extended to properties that refer to the density
of certain isolated patterns in the graph. Specifically, for any fixed family of graphs H, we denote
by #H(G) the number of connected components in G that are isomorphic to some graph in H.
Next, for any τ as above, we may consider the property GH,τ that consist of N -vertex graphs G
such that the fraction #H(G)/N is in Dτ . (Indeed, Gτ is a special case obtained when letting H
be a singleton consisting of the 1-vertex graph.) The integrality issue (i.e., the τi’s not necessarily
being multiples of 1/N) dealt with at the end of the proof of Theorem 4.2 takes a more acute form
in the current setting, since if H consists only of n-vertex graphs then #H(G)/N resides in the
interval [0, 1/n] (rather than in [0, 1]). Therefore, letting s(H) denote the (number of vertices in
the) smallest graph in H, we may restrict our attention to the interval [0, 1/s(H)].

Theorem 4.3 (POT for GH,τ ): For every H and every τ = (τ1, ..., τt) such that τt ≤ 1/s(H) the
property GH,τ has a two-sided error POT.

Proof: We build on the proof of Theorem 4.2, while somewhat adapting both the tester and
its analysis. For starters, the tester should look for isolated copies of graphs in H (rather than

20If M = N , then it must be that pN ≤ N − 2, and thus connecting a pair of isolated vertices is fine.
21Indeed, this means that the algorithm may use up to 2t/2 different sequences τ , each having its own corresponding

POT. This requires scaling the threshold probabilities of all these POTs so that they are all equal, and it is indeed
crucial that we are dealing with a finite number of algorithms (or threshold probabilities).
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isolated vertices), and count them in proportion to their size (which reflects the probability that a
uniformly selected vertex hits such a copy). Let n = n(H) denote the (number of vertices in the)
largest graph in H. Then, on input N and oracle access to an N -vertex graph G = ([N ], E), of
degree bound d, the modified tester proceeds as follows.

1. Selects uniformly and independently t vertices, denoted u1, ..., ut, and explore the neighbor-
hood of each vertex ui till discovering at most n+1 vertices. For each i ∈ [t], let pi = 1/|V (H)|
if ui resides in a connected component of G that is isomorphic to H ∈ H, and pi = 0 otherwise.

2. For each i ∈ [t], let ci = 1 with probability pi and ci = 0 otherwise, and let j =
∑t

i=1 ci. Then,
the tester accepts with probability αj , where (α0, α1, ..., αt) is the sequence of probabilities
used by the POT that is guaranteed by Theorem 2.3 (i.e., the tester for Dτ ).

Let c be the threshold probability associated with the tester of Theorem 2.3. Then, each graph
G ∈ GH,τ is accepted with probability at least c, since for each i it holds that Pr[ci = 1] = #H(G)/N .
On the other hand, we shall show that if G is ǫ-far from being in GH,τ , then #H(G)/N is Ω(ǫ)-far
from Dτ , and the theorem follows.

Following the proof of Theorem 4.2, we show how to decrement and increment the number of
good connected components in a graph, where a component is called good if it is isomorphic to
some H ∈ H (and is bad otherwise). We consider two cases that refer to whether or not the single
vertex is in H (i.e., whether or not s(H) = 1).

We start with the case that s(H) > 1 (i.e., an isolated vertex is a bad component). In this
case, we can decrement the number of good components by omitting all edges that appear in an
arbitrary good component, turning this component to a collection of isolated vertices (which are
bad components in this case). To increment the number of good components, we may combine
s vertices that are taken from bad components, while keeping each of these components bad by
either maintaining its connectivity (by adding edges, if it contains more than n vertices) or replacing
it by isolated vertices (if this component contains at most n vertices). Thus, each decrement or
increment operation is charged with O(n2) edge modifications. This completes the treatment of
the case s(H) > 1.

We now turn to the case that s(H) = 1 (i.e., an isolated vertex is a good component). If we wish
to decrement number of good components, then we pick a (largest) good component, and connect
it to any bad connected component (or to another good component if all components are good).
(This connection is made via a pair of vertices of degree less than d, and if no such vertex exists
in the relevant component then we create it by omitting an arbitrary edge.) This operation either
decreases the number of good components or increases the size of the largest good component, and
so we can decrease the number of good components by O(n) edge modifications. (Note that in case
we connect two good components, the number of good component may decrease by two units.)

If we wish to increment the number of good components, then we select a vertex that belong
to any bad connected component (or from a non-singleton good component if all components are
good), and disconnect it from its current neighborhood, thus creating a new isolated vertex (which
is a good component). When disconnecting this vertex from its neighbors, we may add edges so
to maintain the connectivity of this component. Note that when modifying the said component,
we may turn a bad component to a good one (or turn a good one to a bad one). Thus, either the
number of good components increases (by either one or two units) or a bad component is created
and can be used in our next attempt.

The forgoing description suffices for getting the number of good components to either equal the
desired number or be one unit below the desired number. To close this final gap, we make two
observations.
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1. Suppose that the graph contains at least n + 2 vertices in bad components. Then, by picking
at most (n + 2)/2 bad components that contain m ≥ n + 2 vertices, we can form a new
collection of connected components with exactly one good component (by creating a single
isolated vertex and a single bad component that contains all the other m−1 ≥ n+1 vertices).

2. Suppose that the graph contains at least n + 2 good non-singleton components. Then, by
picking n + 2 such components, we can form a new collection of connected components with
exactly n+3 good component (by creating n+3 isolated vertices and a single bad component
that contains all the other vertices, the number of which is at least 2(n + 2) − (n + 3) > n).

In both cases, O(n2) edge modifications are used. The only case where we cannot apply either of
these observations is when the number of isolated vertices is N −O(n2). Fortunately, we can ignore
this case, because it may occur only if 1 ∈ Dτ and in such a case we may just increase the number
of isolated vertices to N in the trivial manner. This completes the treatment of the case s(H) = 1.

5 Classes of Non-binary Distributions

In this section we generalize the results from Section 2 to distributions over larger (finite) domains.
We give a characterization for the classes of distributions that have a two-sided error POT. For
r ∈ N we shall identify a distribution q = (q1, . . . , qr) on [r] with a point in ∆(r), where

∆(r) = {(q1, . . . , qr) ∈ [0, 1]r :
∑

i∈[t]

qi = 1}. (10)

Similarly, a class of distributions with domain [r] will be identified with a subset of ∆(r) in a natural
way. The special case of boolean distributions discussed in Section 2 corresponds to r = 2, for which
∆(2) = {(p, 1 − p) : p ∈ [0, 1]}.

5.1 Characterizing the classes of distributions that have a POT

The following result asserts that a class of distributions has a POT if and only if there exists a
polynomial that is non-negative exactly on the points that correspond to distributions in that class.
Thus, the question of whether or not there exists a POT for Π ⊆ ∆(r) reduces to whether or not
some polynomial can be non-negative on Π and negative on ∆(r) \ Π.

Theorem 5.1 (POT and polynomials in the context of distribution testing): Let Π be an arbitrary
class of distributions q = (q1, . . . , qr) with domain [r]; that is, Π ⊆ ∆(r). Then, Π has a two-sided
error POT if and only if there is a polynomial P : ∆(r) → R such that for every distribution
q = (q1, . . . , qr) ∈ ∆(r) it holds

P(q1, . . . , qr) ≥ 0 ⇐⇒ q ∈ Π. (11)

If the total degree of P is t, then Π has a two-sided error POT TΠ that makes t queries and
has polynomial detection probability ̺(ǫ) = Ω(ǫC), where C < tO(r).22 Moreover, the acceptance
probability of TΠ when testing q ∈ ∆(r) can be written as

Pr[TΠ accepts q] =
1

2
+ δ · P(q1, . . . , qr) (12)

for some constant δ > 0 that depends only on the degree of P and on an upper bound of the absolute
value of all coefficients of P.

22The constant in the Ω() notation depends on P, while the O() notation hides some absolute constant.
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Proof: The “only if” direction is proved by using the independence of samples of the given
distribution. Consider a POT TΠ for Π, that makes t sampling queries and accepts each distribution
in Π with probability at least c.

When testing q = (q1, . . . , qr), for every view v = (v1, . . . , vt) ∈ [r]t, the probability of seeing this
view is

∏t
i=1 qvi . Denoting by αv the probability that the tester accepts the view v = (v1, . . . , vt),

we have

Pr[TΠ accepts q] =
∑

v=(v1,...,vt)∈[r]t

(

t
∏

i=1

qvi

)

· αv.

Define a polynomial P to be

P(q1, . . . , qr) =





∑

v∈[r]t

αv

t
∏

i=1

qvi



− c.

Then, by definition of the tester, P satisfies Eq. (11).

For the other direction, let P : ∆(r) → R be a polynomial of degree t. We show that the class

Π = {(q1, . . . , qr) ∈ ∆(r) : P(q1, . . . , qr) ≥ 0} (13)

has a POT, that makes t queries, and has polynomial detection probability.
In order to simplify the proof, we shall slightly modify P, while making sure that the modifica-

tions of P does not affect Π in Eq. (13). Specifically, we multiply each monomial of degree d < t
(of P) by (

∑

i∈[r] qi)
t−d. This does not change the value of P in ∆(r), and hence does not affect Π.23

Henceforth we shall assume that P is a homogeneous polynomial of degree t, and therefore can be
written as

P(q1, . . . , qr) =
∑

v∈[r]t

αv

t
∏

i=1

qvi (14)

for some coefficients αv ∈ R.
Assume that Π is non trivial. This implies that not all coefficients αv are zeros. Given Eq. (14),

we define a POT TΠ for Π as follows. The tester makes t queries to a given distribution, gets t
samples, denoted by v = (v1, . . . , vt), and accepts with probability

βv =
1

2
+ δ · αv,

where we choose δ = 1
2·max{|αv|:v∈[r]t} > 0, in order to assure that βv ∈ [0, 1] for all v. Therefore,

when testing q = (q1, . . . , qr) the acceptance probability of the test is

Pr[TΠ accepts q] =
∑

v∈[r]t

βv

t
∏

i=1

qvi =
1

2
+ δ ·





∑

v∈[r]t

αv

t
∏

i=1

qvi



 ,

and hence, by Eq. (14), the equality above becomes

Pr[TΠ accepts q] =
1

2
+ δ · P(q1, . . . , qr). (15)

23This grouping of monomials to homogeneous monomials maps at most 2t monomials to a single homogeneous
monomials, and thus the coefficients in the P may grow by a factor of at most 2t.
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Next, we analyze the acceptance probability in Eq. (15). If q ∈ Π, then, by Eq. (13), we have
P(q1, . . . , qr) ≥ 0, and therefore

Pr[TΠ accepts q] ≥ 1

2
.

Assume q is ǫ-far from Π. Then, in particular q /∈ Π, and hence P(q1, . . . , qr) < 0. Thus, using
Eq. (15), we have Pr[TΠ accepts q] < 1

2 . In order to prove that TΠ is a POT, we need to show
that Pr[TΠ accepts q] is bounded below 1

2 by some function that depends on ǫ. This type of
result is known in real algebraic geometry as the  Lojasiewicz inequality (see [BCR, Chapter 2.6]).
Specifically, we use the following theorem of Solernó [Sol].

Theorem 5.2 (Effective  Lojasiewicz inequality): Let P : ∆(r) → R be a polynomial, and let

Π = {(p1, . . . , pr) ∈ ∆(r) : P(p1, . . . , pr) ≥ 0}.

Assume that for q = (q1, . . . , qr) ∈ ∆(r) it holds

dist(q, Π) = inf{1

2

∑

i∈[r]

|qi − pi| : (p1, . . . , pr) ∈ Π} > ǫ.

Then, P(q1, . . . , qr) < −Ω(ǫC) for some constant C < deg(P)O(r), where the constant in the Ω()
notation depends on P, and the O() notation hides some absolute constant.

By applying Theorem 5.2 on Eq. (15), we conclude that if q ∈ ∆(r) is ǫ-far from Π, then
Pr[TΠ accepts q] < 1

2 − Ω(ǫC), where C < deg(P)O(r). This completes the proof of Theorem 5.1.

Corollaries: As hinted upfront, Theorem 5.1 provides a tool towards proving both positive and
negative results regarding the existence of POTs for various properties. First, we use this tool to
show that classes of distributions that have a POT are closed under taking disjoint unions. Next,
we use it to present POTs for some concrete properties of interest, and lastly we use it to derive
impossibility results about other concrete properties of interest.

5.2 Closure under disjoint union

Recall that in the standard property testing model, as well as in one-sided error POT model,
testable properties are closed under union. However, for properties of distributions with two-sided
error POT, the closure under union does not hold: Indeed, in Proposition 5.13 (see Section 5.4),
we show two properties that have two-sided error POTs, but their union does not have a POT.
Nevertheless, we prove next that if two disjoint classes of distributions have two-sided error POTs,
then so does their union.

Corollary 5.3 (closure under disjoint union): Let Π and Π′ be two disjoint classes of distributions
with domain [r], and suppose that both Π and Π′ have a two-sided error POT. Then, then their
union Π ∪ Π′ also has a two-sided error POT.

Proof: By Theorem 5.1 if Π has a POT, then there is a polynomial P : ∆(r) → R, such that
Π = {q ∈ ∆(r) : P(q) ≥ 0}. Similarly, there is a polynomial P′ : ∆(r) → R, such that Π′ = {q ∈
∆(r) : P′(q) ≥ 0}. Define a polynomial Punion : ∆(r) → R to be

Punion(q) = −P(q) · P′(q).
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Since Π and Π′ are disjoint subsets of ∆(r), it holds that Punion(q) ≥ 0 if and only if q ∈ Π ∪ Π′:
Indeed, if q ∈ Π, then q /∈ Π′ (since the classes are disjoint), and therefore Punion(q) = −P(q)·P′(q) ≥
0. Similarly Punion(q) ≥ 0 for q ∈ Π′. On the other hand, if q /∈ Π∪Π′, then P(q) < 0 and P′(q) < 0,
and hence Punion(q) = −P(q) · P′(q) < 0. By Theorem 5.1 the class Π ∪ Π′ has a two-sided error
POT.

By applying Corollary 5.3 repeatedly, we get

Corollary 5.4 Let Π1, . . . Πk be disjoint classes of distributions with domain [r], and suppose that
each of the classes Πi has a two-sided error POT. Then, their union Π = ∪k

i=1Πi also has a
two-sided error POT.

In Proposition 5.5 we strengthen the foregoing corollary. Specifically, we prove a result specifying
(and improving) the query complexity and the detection probability of a POT for disjoint union of
properties. We defer the proof of the proposition to Appendix A.3.

Proposition 5.5 (Corollary 5.4, revisited): Let Π1, . . . Πk be disjoint classes of distributions with
domain [r]. Suppose that for each i ∈ [k] the class Πi has a two-sided error POT that makes ti
queries and has detection probability ̺i. Then, their union Π = ∪i∈[k]Πi has a two-sided error POT
that makes

∑

i∈[k] ti queries and has detection probability Ω(min{̺i : i ∈ [k]}).

Closure to complement: It is natural to ask whether properties having POTs are closed under
taking the complement. Note, however, that if Π has a POT, then Π = {q ∈ ∆(r) : P(q) ≥ 0} for
some polynomial P : ∆(r) → R, and thus is a closed24 subset of ∆(r). Hence, its complement is an
open set, and cannot have a POT. Still, it could be natural to conjecture that the closure25 of the
complement, denoted by cl(∆(r) \ Π), has a POT. In Appendix A.5 we show that this is not true
in general, by presenting a class of distributions Π ⊆ ∆(3), that has a POT, such that cl(∆(r) \ Π)
does not have one.

5.3 Positive corollaries

In this section we give several concrete examples of properties that have two-sided error POTs.
We first note that (a weaker quantitative version of) Theorem 2.3 can be derived by observing
that for every segment there exists a quadratic polynomial that is non-negative on this segment
and negative outside it. Indeed, this claim appears explicitly in Section 2 and underlies all results
presented there. Still, the quadratic detection probability in Theorem 2.3 doesn’t follow from
Theorem 5.1, and requires explicit calculations as done in Section 2. For similar reasons, the proof
of the following corollary requires an explicit calculation beyond the application Theorem 5.1.

Corollary 5.6 (classes containing a single distribution have POTs): For a fixed r ≥ 2, and a
distribution p = (p1, . . . , pr) with domain [r], let Π(p) be the class consisting of the single distribution
p. Then, the property Π(p) has a two-sided error POT that makes two queries, and has quadratic
detection probability.

24A set A ⊆ ∆(r) is a closed subset of ∆(r) if the complement set ∆(r) \ A is open in ∆(r), where a B is open in
∆(r) if each point in B has a small neighborhood that is contained in B; that is, for every q ∈ B there exists an ǫ > 0
such that every q′ ∈ ∆(r) that is at distance at most ǫ from q is actually in B.

25For a set A ⊆ ∆(r), the closure of A, is the set of all q ∈ ∆(r) that are arbitrarily close to A; that is, q is in the
closure of A if for every ǫ > 0 there is q′ ∈ A such that dist(q, q′) < ǫ.
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Proof: Define a quadratic polynomial P in r variables that is negative for all (q1, . . . , qr) ∈
∆(r) \ {(p1, . . . , pr)} and equals zero in (p1, . . . , pr). Specifically, let

P(q1, . . . , qr) = −
∑

i∈[r]

(qi − pi)
2.

It is immediate that P satisfies the required conditions. Therefore, by Theorem 5.1, we get a POT
for Π(p), which makes 2 queries.

In order to show that the POT has quadratic detection probability, by Theorem 5.1, it is enough
to show that for any q ∈ ∆(r) that satisfies dist(q, p) > ǫ it holds P(q1, . . . , qr) < −Ω(ǫ2). Indeed,
by Cauchy-Schwarz inequality we have

P(q1, . . . , qr) = −
∑

i∈[r]

(qi − pi)
2 ≤ −1

r
·





∑

i∈[r]

|qi − pi|





2

< −1

r
· ǫ2,

which completes the proof.

By combining Corollary 5.6 with Proposition 5.5 we can test any property that consists of
finitely many distributions.

Corollary 5.7 (finite classes of distributions have POTs): Fix r ≥ 2 and k ≥ 2, and let Π be a
property that contains exactly k distributions with domain [r]. Then, Π has a POT that makes 2k
queries and has quadratic detection probability.

POTs for infinite classes of distributions. By slightly generalizing the proof of Corollary 5.6,
we show POTs for classes that contain infinitely many distributions. Specifically, we first shall show
that any class of distributions that correspond to an ellipsoid has a POT. Let p = (p1, . . . , pr) be a
distribution, and let B = (B0; B1, . . . , Br) ∈ R

r+1 such that B0 ≥ 0 and Bi > 0 for all i ∈ [r]. Let

Π(p,B) be a class of distributions that lie within an ellipsoid centered at p = (p1, . . . , pr) with radii

(
√

B0
B1

, . . .
√

B0
Br

). That is

Π(p,B) =







q = (q1, . . . , qr) ∈ ∆(r) :
∑

i∈[r]

Bi(qi − pi)
2 ≤ B0







. (16)

In the special case of B0 = 0, the property Π(p,B) contains exactly one distributions; that is, it
corresponds to the properties discussed in Corollary 5.6.

Corollary 5.8 (classes that correspond to ellipsoids have POTs): Fix r ≥ 2, and let p = (p1, . . . , pr)

and B = (B0; B1 . . . Br) as above. Then, the property Π(p,B) has a two-sided error POT that makes
two queries and has polynomial detection probability.

Proof: As in the proof of Corollary 5.6, define a polynomial P in r variables, that is non-negative
for all points (q1, . . . , qr) in the ellipsoid, and negative outside the ellipsoid. Specifically, let

P(q1, . . . , qr) = B0 −
∑

i∈[r]

Bi(qi − pi)
2.

By Eq. (16), it is immediate that P satisfies the required conditions. The corollary follows by
applying Theorem 5.1.
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In Appendix A.4 we strengthen Corollary 5.8; specifically, we show that for B0 > 0 the POT given
in the foregoing proof has linear detection probability (rather than some polynomial probability,
as guaranteed by Theorem 5.1).

Corollary 5.9 (POT for classes of distributions that satisfy polynomial equalities): Let P1, ..., Pt :
R

r → R be polynomials of total degree at most d. Then, the class of distributions

{

q = (q1, . . . , qr) ∈ ∆(r) : (∀i∈ [t]) Pi(q1, ..., qr) = 0
}

(17)

has a two-sided error POT. Furthermore, this POT makes 2d queries and has polynomial detection
probability.

An appealing special case of Corollary 5.9 refers to the case that each Pi asserts the equality of two
arguments (i.e., Pi(q1, . . . , qr) = qi1 − qi2). This case corresponds to the class of distributions in
which some outcomes occur with the same probability (i.e., the probability that the outcome is i1
equals the probability that the outcome is i2).

Proof: Consider the polynomial P(q1, . . . , qr) = −∑i∈[t] Pi(q1, . . . , qr)2. Clearly, P(q1, . . . , qr) ≥ 0
if and only if for every i ∈ [t] it holds that Pi(q1, . . . , qr) = 0. The corollary follows by applying
Theorem 5.1.

5.4 Negative corollaries

In this section we give examples of classes of distributions that do not have a POT. We start with
a simple claim.

Claim 5.10 (a polynomial cannot be non-negative only in one quarter): Let B ⊆ R
2 be a neigh-

borhood26 of (0, 0) ∈ R
2. Then, there is no real polynomial P : R

2 → R such that for all (x, y) ∈ B
it holds

1. P(x, y) ≥ 0, if x < 0 and y < 0

2. P(x, y) ≤ 0, if either x > 0 or y > 0

Proof: Assume towards contradiction that there exists a polynomial satisfying the conditions of
the claim, and let P be such polynomial of minimal degree. The conditions on P, together with
the continuity of P, implies that P(x, 0) = 0 for all sufficiently large x < 0 (since for all sufficiently
small δ > 0 it holds that (x, δ), (x,−δ) ∈ B, which implies P(x, δ) ≤ 0 and P(x,−δ) ≥ 0). By
considering P(x, 0) as a univariate polynomial in x, we conclude that for some small enough δ > 0,
it holds P(x, 0) = 0 for all x ∈ [−δ, 0]. Thus, this univariate polynomial must be identically zero
(i.e., P(x, 0) = 0 for all x ∈ R), which means that P(x, y) can be written as P(x, y) = y · P′(x, y) for
some polynomial P′ : R → R of degree smaller than deg(P). Then, for all (x, y) ∈ B, we have

1. P′(x, y) ≤ 0, if x < 0 and y < 0

2. P′(x, y) ≤ 0, if x < 0 and y > 0

3. P′(x, y) ≥ 0, if x > 0 and y < 0

26A set B ⊆ R
n is a neighborhood of x ∈ R

n if for some δ > 0 it holds that {y ∈ R
n : dist(x, y) < δ} ⊆ B, where

dist(x, y) = 1
2

P

i∈[n] |xi − yi|
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4. P′(x, y) ≤ 0, if x > 0 and y > 0

Thus, by considering the polynomial P′′(x, y) = P′(−x, y), we are getting a polynomial that satisfies
the conditions of the claim, whose degree is strictly smaller than deg(P). This contradicts the choice
of P.

By “shifting”, we obtain the following corollary to Claim 5.10.

Corollary 5.11 Let (x0, y0) ∈ R
2 and let B ⊆ R

2 be a neighborhood of (x0, y0). Then, there is no
real polynomial P : R

2 → R such that for all (x, y) ∈ B it holds

1. P(x, y) ≥ 0, if x < x0 and y < y0

2. P(x, y) ≤ 0, if either x > x0 or y > y0

Proof: Assume towards contradiction that there exists a polynomial P : R
2 → R satisfying the

foregoing conditions. Define a polynomial P′(x, y) = P(x − x0, y − y0), and let B′ = {(x, y) :
(x + x0, y + y0) ∈ B} be a neighborhood of (0, 0). The set B′ satisfies the conditions of Claim 5.10,
whereas the polynomial P′ violates its conclusion. This contradicts the hypothesis that the poly-
nomial P exists.

Now, using Theorem 5.1 and Corollary 5.11, we show a negative result for a large family of classes
of distributions that correspond to polytopes in ∆(r). For sake of simplicity, we restrict ourselves
to ternary distributions (i.e., r = 3).27 A more general result will appear in Proposition 5.15.

Proposition 5.12 (a simple impossibility result): For β, γ ∈ (0, 1) let Πβ,γ the class of distribu-
tions q = (q1, q2, q3) with domain {1, 2, 3}, such that q1 ≤ β and q2 ≤ γ; that is

Πβ,γ = {q = (q1, q2, q3) : q1 ≤ β, q2 ≤ γ}.

If β + γ < 1, then the class Πβ,γ does not have a POT.

Proof: Let β, γ ∈ (0, 1) such that β + γ < 1, and assume, towards a contradiction, that Πβ,γ has
a POT. Then, according to Theorem 5.1, there is a polynomial P(q1, q2, q3) : ∆(3) → R, such that

1. P(q1, q2, q3) ≥ 0, if q1 ≤ β and q2 ≤ γ.

2. P(q1, q2, q3) < 0, otherwise.

By substituting q3 = 1 − q1 − q2, the polynomial P induces a bi-variate polynomial P′ : B → R,
where B = {(q1, q2) ∈ R

2 : q1, q2 ≥ 0 and q1 + q2 ≤ 1}, such that

1. P′(q1, q2) ≥ 0, if q1 ≤ β and q2 ≤ γ.

2. P′(q1, q2) < 0, otherwise.

Now, if β + γ < 1, then B is a neighborhood of (β, γ) ∈ R
2. Hence, the existence of such P′

contradicts Corollary 5.11. Therefore the property Πβ,γ does not have a POT.

27Note that by Theorem 2.2 every class of binary distributions that corresponds to a polytope in ∆(2) has a POT
(since this polytope must be a segment in R

2). Thus, r ≥ 3 is necessary for a result of the kind of Proposition 5.12.
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Remark: The restriction β + γ < 1 in Proposition 5.12 is necessary. Indeed, if β + γ ≥ 1, then
the class Πβ,γ = {q = (q1, q2, q3) : q1 ≤ β, q2 ≤ γ} has a two-sided error POT, as can be seen by
considering the polynomial Pβ,γ(q1, q2, q3) = (β − q1)(γ − q2). The reader can easily verify that for
all (q1, q2, q3) ∈ ∆(3) it holds that Pβ,γ(q1, q2, q3) ≥ 0 if and only if q1 ≤ β and q2 ≤ γ. Thus, by
Theorem 5.1, for β + γ ≥ 1, the property Πβ,γ has a POT.

Next, we use a similar argument in presenting two classes of distributions that have two-sided
error POTs, whose union does not have one.

Proposition 5.13 (failure of closure under non-disjoint union): Fix β, γ > 0 that satisfy β+γ < 1.
Let Π1 = {q = (q1, q2, q3) : q1 ≥ β} and Π2 = {q = (q1, q2, q3) : q2 ≥ γ} be classes of distributions
with domain {1, 2, 3}. Then, both Π1 and Π2 have a two-sided error POT, while their union does
not have one.

Proof: Clearly Π1 has a two-sided error POT that makes one query and has linear detection
probability:28 Specifically, let the test make one query to the given distribution and accept if and
only if the outcome is 1. If q ∈ Π1, then the test accepts with probability at least β, while any
distribution q ∈ ∆(3) that is ǫ-far from Π1 is accepted with probability at most β − ǫ. Similarly Π2

has a two-sided error POT.
We prove that Π1 ∪ Π2 = {q = (q1, q2, q3) : q1 ≥ β or q2 ≥ γ} does not have a POT by,

essentially, repeating the argument in the proof of Proposition 5.12. Assume towards contradiction
that Π1 ∪ Π2 has a POT. Then, there is a polynomial P : ∆(3) → R, such that P(q1, q2, q3) ≥ 0 if
and only if either q1 ≥ β or q2 ≥ γ. By substituting q3 = 1 − q1 − q2, the polynomial P induces a
bi-variate polynomial P′ : B → R, where B = {(q1, q2) ∈ R

2 : q1, q2 ≥ 0 and q1 + q2 ≤ 1}, such that

1. P′(q1, q2) ≥ 0, if either q1 ≥ β or q2 ≥ γ.

2. P′(q1, q2) < 0, if q1 < β and q2 < γ.

By letting P′′(q1, q2) = −P′(q1, q2) we get a polynomial that violates the conclusion of Corollary 5.11.
Hence, we conclude that the polynomials P′ and P can not exist, thus contradicting the hypothesis
that Π1 ∪ Π2 has a POT.

Finally, in the following Proposition 5.15 we generalize Proposition 5.12. Specifically, Proposi-
tion 5.15 makes assertions regarding the boundaries of properties having a POT, which in turn
may lead to the impossibility results (regarding POTs). We will need the following definition of
boundary of a class of distributions.

Definition 5.14 (boundary of subsets to ∆(r)): Let Π ⊆ ∆(r) be a class of distributions with
domain [r]. The boundary of Π, denoted by ∂Π, is the set of all distributions q = (q1, . . . , qr) ∈ ∆(r)

that are arbitrary close both to Π and to ∆(r) \ Π. That is, q ∈ ∂Π if, for every ǫ > 0, there is
a distribution q′ ∈ Π such that dist(q, q′) < ǫ, and there is a distribution q′′ ∈ ∆(r) \ Π such that
dist(q, q′′) < ǫ. In particular, the boundary of ∆(r) is the empty set.

Proposition 5.15 (on the boundaries of properties that have a POT): Let Π ⊆ ∆(r) be a property
of distributions and suppose that Π has a POT.

1. If P : ∆(r) → R is a polynomial that satisfies Π = {q ∈ ∆(r) : P(q) ≥ 0}, then P(q) = 0 for all
q ∈ ∂Π. In particular, ∂Π ⊆ Π.

28Indeed, this test in analogous to the first example that was presented in the introduction (and labeled
“straightforward”).
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2. Let S ⊆ ∆(r) be a non-trivial segment.29 If S ⊆ ∂Π, then Π contains the entire line that goes
through S (restricted to ∆(r)).

3. More generally, let S ⊆ ∆(r) be a convex set30 containing more than a single point. If S ⊆ ∂Π,
then Π contains the entire affine hull31 of S (restricted to ∆(r)).

Proposition 5.12 can be derived by using a special case of the second item: Indeed, for β + γ < 1,
the segment S = {(β, t, 1 − β − t) : t ∈ [0, γ]} is contained in the boundary of Πβ,γ (which consists
of S ∪{(t, γ, 1− t−γ) : t ∈ [0, β]}). On the other hand, the line {q = (β, t, 1−β − t) : t ∈ [0, 1−β]}
that contains S is not contained in Πβ,γ (since (β, 1 − β, 0) 6∈ Πβ,γ , as 1 − β > γ). Thus, Πβ,γ

violates the assertion of this item, and so it can not have a POT. More generally, Proposition 5.15
implies, for example, that a large family of classes of distributions Π ⊆ ∆(r) that correspond to
polytopes do not have POTs (see Corollary 5.16 below).

Proof: Let P : ∆(r) → R be a polynomial such that Π = {q ∈ ∆(r) : P(q) ≥ 0}, and let q ∈ ∂Π.
Then, for every ǫ > 0, there is some q′ ∈ ∆(r) such that dist(q, q′) < ǫ and q′ ∈ Π, and hence
P(q′) ≥ 0. Therefore, by continuity of P, we have P(q) ≥ 0. Similarly, for every ǫ > 0, there is some
q′ ∈ ∆(r) such that dist(q, q′) < ǫ and q′ /∈ Π, and hence P(q′) < 0. Therefore, again, by continuity
of P, we have P(q) ≤ 0. We conclude that P(q) = 0 for all q ∈ ∂Π, and in particular ∂Π ⊆ Π. This
completes the proof of the first part.

For the second part let S ⊆ ∂Π be a segment, and let P : ∆(r) → R be a polynomial such that
Π = {q ∈ ∆(r) : P(q) ≥ 0} (as guaranteed by Theorem 5.1). By the first part we have P(q) = 0
for every q ∈ S. Consider the restriction of P to the line containing S. The univariate polynomial
describing this line is zero on the (infinitely many points residing on the) segment S, and thus it
must be zero on the entire line containing S. That is, P is non-negative on the entire line containing
S, and so it must be the case that the entire line (restricted to ∆(r)) is contained in Π.

For the third part denote by aff(S) the affine hull of S. For any p ∈ aff(S) there are two distinct
points q, q′ ∈ S such that p belongs to the line containing both q and q′.32 Since S is convex, the
segment defined by q and q′ is contained in S. Thus, by the second part, Π contains the entire
line that goes though S, and in particular contains the points p itself. Therefore aff(S) ⊆ Π as
required.

Corollary 5.16 (in general, polytopes have no POT): Let r ≥ 3. Let Π ⊂ ∆(r) be a non-trivial
polytope33 that has a vertex v that is internal to ∆(r) (i.e., v is not a convex combination of Π \ {v}
and all coordinates of v are positive). Then, Π does not have a POT.

Proof: We shall prove that there exists a non-trivial segment S that satisfies the conditions (1)
S is contained in ∂Π, and (2) the entire line that passes through S is not contained in Π. Thus, by
the contrapositive of the second item of Proposition 5.15, we will conclude that Π does not have a
POT. Actually, as we shall shortly see, such a segment can be found under more general conditions.

29A non-trivial segment S is defined by two distinct points p, q ∈ ∆(r), and is the set of all convex combinations of
these points; that is, S = {λp + (1−λ)q : λ ∈ [0, 1]}. The line that goes through S is the set {λp + (1− λ)q : λ ∈ R}.

30A set S ⊆ R
r is said to be convex if for every p, q ∈ S and every λ ∈ [0, 1], it holds λp + (1 − λ)q ∈ S. In

particular, every segment is a convex set.
31For a set S ⊆ R

r, the affine hull of S is the smallest affine subspace of R
r containing S. For example, if S contains

just two points (or the segment between them), then the affine hull of S is the line that goes through these points.
32This fact follows from the convexity of S and the minimality of aff(S).
33A non-trivial polytope Π is a set in R

r of more than a single point (i.e., |Π| > 1) that satisfy a system of linear
inequalities; that is, each point in Π satisfies all inequalities.
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We first dispose of the case that the polytope is a line segment. In that case, the polytope itself
may serve as the line segment S, and we are done by Proposition 5.15. Otherwise, the polytope
has (non-trivial) faces.

Recall that Π can be expressed as the intersection of t half-spaces (corresponding to linear
conditions), such that the i-th half-space is given by

Hi = {(q1, . . . , qr) ∈ R
r :
∑

j∈[r]

α
(i)
j qj ≤ βi}.

Claim 5.16.1 There exists i1, i2 ∈ [t] and points p, q ∈ Π that are internal to ∆(r) such that p satis-

fies
∑

j∈[r] α
(ik)
j pj = βik for k = 1, 2, whereas q satisfies

∑

j∈[r] α
(i1)
j qj = βi1 and

∑

j∈[r] α
(i2)
j qj < βi2 .

Indeed, we may use p = v and let q 6= v be an arbitrary point that is internal to a face that contains
v but is on the boundary of the polytope (w.r.t ∆(r)). The existence of such a face follows from the
hypothesis that v has no zero coordinates and is a vertex of a multi-dimentional polytope (which
resides inside ∆(r)). Note that picking q as internal to this face, guarantees that q too has no zero
coordinates. Without loss of generality, we may assume that i1 = 1 and i2 = 2, and proceed with
any two points p and q that satisfy the above claim.

We first observe that the line segment, S, defined by p and q is on the boundary of Π, because
for every p′ ∈ S and ǫ > 0 there exists a vector d that is shorter than ǫ such that p′ + d ∈ ∆(r) \ Π

(i.e., in particular,
∑

j∈[r] α
(1)
j (p′j +dj) > β1). Next, observe that the entire line that passes through

S is not contained in Π, because for some ǫ > 0 it holds that p′ = (1 + ǫ)p + ǫq′ ∈ ∆(r) \ Π (i.e., in

particular,
∑

j∈[r] α
(2)
j p′j > β2). Thus, the corollary follows by (the second item of) Proposition 5.15.

6 More on Graph Properties in the Adjacency Rep. Model

In this section we utilize the POTs for general distributions, presented in Section 5, in order to
obtain additional results regarding POTs for graph properties (in the adjacency representation
model, aka the dense graph model). Let us start with a useful claim regarding the distributions of
random induced subgraphs of two close graphs.

Claim 6.1 Let H = ([n], F ) be a fixed graph. For every two graphs G = ([N ], E) and G′ = ([N ], E′)
such that N ≥ n, if G and G′ are ǫ-close, then

|ρH(G) − ρH(G′)| =
|indH(G) − indH(G′)|

(N
n

) ≤ ǫn2,

where indH(G) = ρH(G) ·
(N

n

)

denotes the number of induced copies of H in G.

The straightforward proof of this claim appears in Appendix A.6. Note that the converse of
Claim 6.1 does not hold in general (e.g., consider a regular N -vertex graph consisting of a single
super-cycle of length 2n + 2 versus one that consists of two disjoint super-cycles of length n + 1).34

However, in certain special cases that we shall encounter, a (quantitatively weaker) converse does
hold.

34See definition preceding Proposition 3.4.
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Testing collections of cliques. We consider subclasses of the property called “clique collection”,
which was studied in [GR09a, GR09b]. A graph is a clique collection if it consists of isolated cliques,
and we shall be interested in graphs that are further restricted.

Definition 6.2 (density-parameterized clique collections): Denote by CC≤t the class of all graphs
that consist of at most t isolated cliques. For ρ = (ρ1, . . . , ρt) ∈ ∆(t), where ∆(t) is as in Eq. (10),
denote by CC(ρ) the class of graphs that consists of exactly t isolated cliques of densities ρ1, . . . , ρt.
For D ⊆ ∆(t) define CC(D) = ∪ρ∈DCC(ρ).

More generally, let D : N → P(∆(t)) be a function that assigns to each N ∈ N a subset of ∆(t).
Denote by CC(D) the subclass of CC≤t such that an N -vertex graph G that consists of t isolated
cliques of densities ρ1, . . . , ρt belongs to CC(D) if and only if (ρ1, . . . , ρt) ∈ D(N).

We first show in Proposition 6.4 that for any finite set D ⊆ ∆(t) the property CC(D) has a POT.
This result generalizes Proposition 3.3, which deals with a special case where all cliques are required
to have equal sizes (i.e., ρi = 1

t for all i ∈ [t]).35 Next, we restrict ourselves to t = 2 and construct

POTs for a larger family of subclasses of CC≤2. Specifically, we consider D : N → P(∆(2)) such
that for every N ∈ N the set D(N) consists of a constant number of intervals (or segments) of ∆(2).
We obtain POTs for CC(D) in two extreme cases: (1) when these intervals cover a relatively small
portion of ∆(2) (see Proposition 6.7), and (2) when these intervals cover a almost all of ∆(2) (see
Proposition 6.9). In contrast, when these intervals cover a (non-trivial) constant fraction of ∆(2),
no POT exists for CC(D) (see Proposition 6.12).

6.1 Testing CC(D) for finite sets D ⊆ ∆(t).

Let us start with by sketching the proposed POT for CC(D), where D ⊆ ∆(t) is a finite set. On
an input graph G, the tester checks that the distribution of the subgraphs of G induced by t + 1
vertices fits a distribution that would have been observed when considering some graph in CC(D).
(This fit will be checked by a distribution tester as described in Section 5.) In particular, G ∈ CC≤t

must be {P3, It+1}-free, where P3 is a path with 3 vertices, and It+1 is an independent set of t + 1
vertices. Now, consider two cases for G that is far from CC(D).

1. Suppose first that G is far from the CC≤t. Then, by the result of [GR09b], the graph G
contains many induced copies of either P3 or It+1, which means that our test will observe
a distribution different from any of the ones expected (i.e., corresponding to some graph in
CC(D)). Thus, the distribution tester will accept with probability that is is noticeably smaller
than its threshold probability.

2. Suppose now that G belongs to CC≤t (or is very close to it), and yet is far from CC(D).
Intuitively, in such a case the distribution induced by (t + 1)-vertex subgraphs of G is far
from all distributions induced by CC(D). (This intuition, which reverses Claim 6.1 in the
special case of graphs in CC≤t, is proved in Lemma 6.3.2.) Thus, again, the distribution tester
will also accept with probability that is noticeably smaller than the threshold probability.

Hence, for any D ⊆ ∆(t) (not merely a finite one), constructing a POT for the graph property
CC(D) reduces to constructing a POT for the class of distributions of random (t + 1)-vertex in-
duced subgraphs of graphs in CC(D), where the reduction amounts to sampling the distribution of

35Actually, Proposition 3.3 refers to the complementary graphs (i.e., regular complete t-partite graphs).
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subgraphs induced by a random set of t + 1 vertices in the graph.36 Indeed, we shall rely on the
above conclusion both in this subsection and in subsequent ones.

For sake of technical convenience (or simplicity), we shall consider a distribution that slightly
differs from the one given by the induced subgraphs of G on t + 1 vertices. Specifically, we shall
consider the distribution of subgraphs induced by selecting t + 1 random vertices in the graph
with repetitions (rather than without repetitions), and treat the (rare) event in which two sampled
vertices collide as if these vertices are different but connected by an edge.

Definition 6.3 (Sk
G) For a given graph G = ([N ], E), define distribution Sk

G as following: The dis-
tribution is supported on unlabeled graphs with k vertices. The sampler picks k vertices v1, . . . , vk ∈
[N ] uniformly at random with repetitions, and outputs the graph ([k], ES), where (i, j) ∈ ES if and
only if either (vi, vj) ∈ E or vi = vj .

For ρ = (ρ1, . . . , ρt) ∈ ∆(t) and a graph G = ([N ], E) ∈ CC(ρ), define St+1
ρ to be St+1

G .

Note that the latter definition is independent of N , and depends only on ρ.
For a graph H = ([k], EH ), we shall use interchangeably the notations Pr[Sk

G = H] and Sk
G(H)

to denote the probability that Sk
G is isomorphic to H. For example, if G ∈ CC(ρ), we may write

St+1
G (It+1) = 0, St+1

G (Kt+1) =
∑

i∈[t] ρ
t+1
i , and Pr[St+1

G contains induced P3] = 0. One can easily

adapt the proof of Claim 6.1 to show an analogous claim for Sk
G (and all H’s):

Claim 6.3.1 Fix k ≥ 2. For every two graphs G = ([N ], E) and G′ = ([N ], E′), if G and G′ are
ǫ-close, then for every graph H on k vertices it holds that

∣

∣

∣
Sk

G(H) − Sk
G′(H)

∣

∣

∣
≤ ǫk2.

Hence, the statistical distance between Sk
G and Sk

G′ is bounded by

dist(Sk
G,Sk

G′) ≤ O(ǫ),

where the constant in the O() notation depends only on k.

A key step in the proof of Proposition 6.4 (and other results in this section), is that for graphs
in CC≤t (a weak quantitative version of) the inverse claim also holds; that is, if G,G′ ∈ CC≤t and
dist(St+1

G ,St+1
G′ ) is small, then the graphs G and G′ are close. Quantitatively, we prove the following

lemma.

Lemma 6.3.2 Fix t ≥ 2 and let ρ = (ρ1, . . . , ρt). Let G′ = ([N ], E′) ∈ CC≤t, and assume that
dist(St+1

ρ ,St+1
G′ ) ≤ ǫ′. Then, G′ is O( t

√
ǫ′)-close to CC(ρ), where the constant in the O() notation

depends only on t.

The lemma generalizes the structural claims of Proposition 3.3, which deals with a special case in
which all ρi’s are equal. We defer the proof of the lemma to Appendix A.7, and show how it implies
existence of a POT for CC(D), where D is a finite subset of ∆(t).

Proposition 6.4 (POT for CC(D) when D ⊆ ∆(t) is finite): Fix t ≥ 1 and let D ⊆ ∆(t) be a
finite set of size k. Then, the property CC(D) has a POT that makes k · (t2 + t) queries and has
polynomial detection probability.

36Actually, it suffices to construct a POT for a class of distributions that contain all distributions induced by
graphs in CC(D) and none of the distributions induced by graphs that are not in CC(D). This relaxation of the
POT-construction task simplifies our exposition.
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Proof: On input G the POT for CC(D) tests that the distribution St+1
G belongs to the set

SD = {St+1
ρ : ρ ∈ D}. That is, by considering distributions whose domain is the set of unlabeled

graphs with t + 1 vertices, our goal is to test that St+1
G belongs to the finite set SD. Using

Corollary 5.7, we obtain a test that takes 2k independent samples of St+1
G , accepts all distributions in

SD with probability at least c (for some c > 0), and has quadratic detection probability. Therefore,
for G ∈ CC(D), the test accepts G with probability at least c. Since each sample from St+1

G requires
(

t+1
2

)

queries to G, the test makes total of 2k
(

t+1
2

)

queries to G.
Assume that on input G = ([N ], E) the test accepts with probability c− ǫ. Our aim is to show

that G is O(ǫ1/t2)-close to CC(D). We first note that by Corollary 5.7, if the test accepts with
probability c − ǫ, then there is some ρ ∈ D such that

dist(St+1
G ,St+1

ρ ) = O(
√

ǫ). (18)

In particular

Pr[St+1
G = It+1] = O(

√
ǫ) and Pr[Sk

G contains induced P3] = O(
√

ǫ).

Thus, by [GR09b, Proposition 4.11], the graph G is O(ǫ1/t)-close to CC≤t. Let us fix a graph
G′ = ([N ], E′) ∈ CC≤t such that G′ is O(ǫ1/t)-close to G. Then, according to Claim 6.3.1, the
statistical distance between the distributions St+1

G and St+1
G′ is

dist(St+1
G ,St+1

G′ ) = O(ǫ1/t). (19)

Hence, by the triangle inequality, the statistical distance between St+1
G′ and St+1

ρ is bounded by

dist(St+1
G′ ,St+1

ρ ) ≤ dist(St+1
G′ ,St+1

G ) + dist(St+1
G ,St+1

ρ ) ≤ O(ǫ1/t), (20)

where in the second inequality we used Eq. (18) and Eq. (19).
So far we have shown that G′ = ([N ], E′) ∈ CC≤t satisfies dist(St+1

G′ ,St+1
ρ ) ≤ O(ǫ1/t) for some

ρ ∈ D. By applying Lemma 6.3.2 with G′ and ρ, we conclude that G′ is O(ǫ1/t2)-close to CC(ρ).
Recalling that G′ is O(ǫ1/t)-close to G, we infer, using the triangle inequality, that G is O(ǫ1/t2)-close
to CC(ρ). This completes the proof of the proposition.

Digest. For the sake of future use, it is good to distill the essence of the proof of Proposition 6.4.
We start by establishing the following corollary to Lemma 6.3.2, and then conclude with a reduction

of testing CC(D) to testing St+1
D

def
= {St+1

G : G ∈ CC(D)}. (Actually, we may also reduce the
testing of CC(D) to testing any class of distributions that contains St+1

D but does not contain any
distribution St+1

G such that G 6∈ CC(D).)

Corollary 6.5 Fix t ≥ 2 and D ⊆ ∆(t). Suppose that G = ([N ], E) is ǫ′-close to CC≤t but ǫ-far
from CC(D). Then, St+1

G is (Ω(ǫt) − O(ǫ′))-far from St+1
D , where the constants in the Ω() and O()

notation depend only on t.

Proof: Let G′ ∈ CC≤t be ǫ′-close to G, and suppose that St+1
G′ ) is δ-close to St+1

D . Then, by
Lemma 6.3.2, the graph G′ is O(δ1/t)-close to CC(D). It follows that G is (ǫ′ + O(δ1/t))-close to
CC(D), which implies δ = Ω(ǫ−ǫ′)t. On the other hand, by Claim 6.3.1, we have dist(St+1

G ,St+1
G′ ) =

O(ǫ′), and hence St+1
G is (Ω(ǫ − ǫ′)t − O(ǫ′))-far from St+1

D . The claim follows.

Corollary 6.6 Fix t ≥ 2 and D ⊆ ∆(t). If G = ([N ], E) is ǫ-far from CC≤t, then St+1
G is Ω(ǫt2)-far

from St+1
D .
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Proof: Let ǫ′ = ǫ2t. If G is ǫ′-far from CC≤t, then St+1
G is Ω((ǫ′)t/2)-far from St+1

D (by [GR09b,
Proposition 4.11]). On the other hand, if G is ǫ′-close to CC≤t, then St+1

G is (Ω(ǫt)−O(ǫ′))-far from
St+1

D , (by Corollary 6.5). In both cases the claim follows.

6.2 Testing CC(D) when D(N) ⊆ ∆(2) is tiny

In this section we restrict ourselves to subclasses of CC≤2, namely the graphs consisting of two
disjoint cliques. Recall the previous section where we have shown a POT for CC(D) where D ⊆ ∆(t)

is a finite set. Here we extend Proposition 6.4 for the special case of t = 2 by considering subclasses
of CC≤2 where we allow the number of N -vertex graphs in the subclass to grow (slowly) with N .

We introduce the following notation. Let α, β : N → [0, 1
2 ] be two functions that satisfy

0 ≤ α(N) ≤ β(N) ≤ 1
2 for all N ∈ N. For each N ∈ N define Dα(N),β(N) ⊆ ∆(2) to be the set of

all pairs (ρ, 1 − ρ) ∈ ∆(2) such that min(ρ, 1 − ρ) ∈ [α(N), β(N)], and define Dα,β : N → P(∆(2))
to be Dα,β(N) = Dα(N),β(N). Then, the class CC(Dα,β) consists of all graphs in CC≤2 such that an
N -vertex graph G belongs to CC(Dα,β) if and only if G ∈ CC(Dα(N),β(N)), i.e., the density of its
smaller clique belongs to the interval [α(N), β(N)].

Similarly, let α, β : N → [0, 1
2 ]t such that α1(N) ≤ β1(N) < . . . < αt(N) ≤ βt(N) for all N ∈ N.

Define Dα,β : N → ∆(2) to be Dα,β(N) = ∪i∈[t]Dαi,βi
(N). That is, (ρ, 1− ρ) ∈ Dα,β(N) if and only

if min(ρ, 1 − ρ) ∈ [αi(N), βi(N)] for some i ∈ [t]. Then, the class CC(Dα,β) consists of all graphs

in CC≤2 such that an N -vertex graph belongs to CC(Dα,β) if and only if the density of the smaller
clique belongs to [αi(N), βi(N)] for some i ∈ [t], i.e., CC(Dα,β) = ∪i∈[t]CC(Dαi,βi

).

We show in Proposition 6.7 that for any d ∈ (0, 1] and for any α, β : N → [0, 1
2 ] as above that

satisfy βi(N)−αi(N) ≤ N−d for all i ∈ [t] the class CC(Dα,β) has a POT whose parameters depend
on d and t. The special case of d = 1 corresponds to Dα,β being a finite set, which has already
been covered in Proposition 6.4. Therefore, the result of this section generalizes Proposition 6.4 in
the special case of CC≤2.

Proposition 6.7 (POT for CC(Dα,β), when
∑

i βi(N) − αi(N) < N−Ω(1)): Let α, β : N → [0, 1
2 ]t

and d ∈ (0, 1] be such that for every N ∈ N it holds that 0 ≤ βi(N) − αi(N) ≤ N−d for all i ∈ [t].
Then, the class CC(Dα,β) has a POT that makes O(t/d) queries, and has detection probability

̺(ǫ) = Ω(ǫO(t/d)).

For the sake of simplicity we shall first prove Proposition 6.7 in the special case of t = 1, and later
discuss the generalization to larger values of t.

Proposition 6.8 (Proposition 6.7, the case of t = 1): Let α, β : N → [0, 1
2 ] and d ∈ (0, 1] be such

that for every N ∈ N it holds that 0 ≤ β(N) − α(N) ≤ N−d. Then, the class CC(Dα,β) has a POT
that makes O(1/d) queries, and has detection probability ̺(ǫ) = Ω(ǫO(1/d)).

Proof: In light of Corollary 6.6, it suffices to present a POT for the class of distributions S3
Dα,β

(which equals {S3
G : G ∈ Dα,β}), since testing G (for the graph property CC(Dα,β)) is reduced to

testing the distribution S3
G (induced by random 3-subgraphs of the input graph G). We identify

such distribution with S3
G = (q0, q1, q2, q3) ∈ ∆(4), where qi denotes the density of the subgraph

with 3 vertices and i edges in G. The existence of a POT for S3
Dα,β

⊆ ∆(4) is proved by presenting

a polynomial P : ∆(4) → R such that P is non-negative on distributions in S3
Dα,β

and is negative

for distributions that are not in S3
Dα,β

. The POT for S3
Dα,β

is obtained by invoking Theorem 5.1.
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(Actually, we shall present a POT for a superset of S3
Dα,β

that contains no distribution S3
G such

that G 6∈ CC(Dα,β).)
Denote by Gρ the N -vertex graph consisting of two cliques of densities ρ and 1 − ρ, and let

κ3(ρ) = ρ3+(1−ρ)3 be the K3-density in Gρ. Let m(N) = κ3(α(N))+κ3(β(N))
2 be the average between

κ3(α(N)) and κ3(β(N)), and let f(N) = |κ3(α(N))−κ3(β(N))|
2 be the distance from m(N) to each of

κ3(α(N)) and κ3(β(N)). The hypothesis 0 ≤ β(N) − α(N) ≤ N−d implies that f(N) < 3 · N−d.
Using the above notation, it suffices to construct a polynomial P : ∆(4) → R such that P(q0, q1, q2, q3)
is non-negative if and only if (1) q0 + q2 < N−3 and (2) |q3 − m(N)| ≤ f(N). When applying P

to a distribution induced by 3-subgraphs of any graph G condition (1) implies that G ∈ CC≤2, and
condition (2) implies that G has the right K3-density. Now, define P : ∆(4) → R to be

P(q0, q1, q2, q3) = f(N)k − (q3 − m(N))k − q0 − q2, (21)

where k ∈ 2N is an even integer such that f(N)k < N−3/3. By our choice of f(N), and using the
fact that f(N) < 3N−d, it is enough to take k = O(1/d). Note that P is a polynomial of total
degree k = O(1/d), and all its coefficients are upper bounded by a constant that does not depend
on N , e.g. by

(

k
k/2

)

< 2O(1/d). Thus, although the polynomial P depends on N , its degree and an
upper bound on its coefficient sizes do not depend on N . This observation is important, because
we want to use the POT derived from P in order to derive a POT for CC(Dα,β), while the latter
POT invokes the former POT with a varying value of N .

Still, by Theorem 5.1, there exists a distribution tester T that makes k queries, whose acceptance
probability when given a distribution q = (q0, q1, q2, q3) ∈ ∆(4) is

Pr[T accepts q] = 0.5 + δ · (f(N)k − (q3 − m(N))k − q0 − q2) (22)

for some absolute constant δ > 0 that only depends on d (since all coefficients of the polynomial P
have absolute value at most 2O(1/d)).37 We cannot rely on Theorem 5.1 in order to obtain a bound
on the detection probability of T , since the bound provided in the theorem may depend arbitrarily
on the polynomial P, which in turn depends on N . Instead, we shall lower bound the detection
probability of T by directly referring to Eq. (22).

But first, we verify that, for every graph G, the polynomial P is non-negative on (q0, q1, q2, q3) =
S3

G if and only if G ∈ CC(Dα,β).
Indeed, suppose first that G = ([N ], E) ∈ CC(Dα,β). Then, the distribution S3

G = (q0, q1, q2, q3)
induced by 3-subgraph of G satisfies q0 = q2 = 0 (since G ∈ CC≤2) and |q3 − m(N)| ≤ f(N) (since
G = Gρ for some ρ ∈ [α(N), β(N)], and so q3 = κ3(ρ) ∈ [κ3(α(N)), κ3(β(N))] = [m(N) ± f(N)]).
Therefore, by Eq. (21), we have P(q0, q1, q2, q3) ≤ f(N)k − f(N)k − 0.

On the other hand, suppose that for some N -vertex graph G the polynomial P is non-negative
on the distribution S3

G = (q0, q1, q2, q3). Since k is even, this implies that q0 + q2 ≤ f(N)k <
N−3 as well as |q3 − m(N)| ≤ f(N). Noting that qi comes in multiples of N−3, the fact that
q0 + q2 ≤ f(N)k < N−3 implies that q0 = q2 = 0 and hence G ∈ CC≤2 (since CC≤2 coincides with
the class of graphs that are both P3-free and I3-free). Hence, G = Gρ for some ρ ∈ [0, 0.5]. Using
|q3 − m(N)| ≤ f(N), it follows that κ3(ρ) = q3 ∈ [m(N) ± f(N)] = [κ3(α(N)), κ3(β(N))], which
implies that G ∈ CC(Dα,β).

It is left to provide a upper bound on the value that P takes on an arbitrary (q0, q1, q2, q3) ∈ ∆(4)

that is ǫ-far from the set of probabilities on which P is non-negative. Again, it actually suffices
to provide such a bound for distributions (q0, q1, q2, q3) that are of the form S3

G = (q0, q1, q2, q3)

37The proof of Theorem 5.1 asserts that δ > 2−k/3B, where B is an upper bound on the absolute value of all
coefficients of the polynomial P (and k is its degree).
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for some N -vertex graph G ∈ CC(Dα,β). Suppose that S3
G is at distance ǫ > 0 from the non-

negative region (of P), which implies that it is ǫ-far from S3
Dα(N),β(N)

. Since the coordinates of

S3
G (and of any distribution in S3

Dα(N),β(N)
) are multiples of N−3, it follows that ǫ ≥ N−3. Now,

let (p0, p1, p2, p3) ∈ S3
Dα(N),β(N)

be closest to (q0, q1, q2, q3). Recall that (p0, p1, p2, p3) ∈ S3
Dα(N),β(N)

implies p0 = p2 = 0 and |p3 − m(N)| ≤ f(N). Then, either q0 + q2 ≥ ǫ/2 or |q3 − p3| ≥ ǫ/2. In the
first case (i.e., q0 + q2 ≥ ǫ/2), it follows that P(S3

G) ≤ f(N)k − ǫ/2 < −ǫ/6 (since f(N)k < N−3/3
and ǫ ≥ N−3). In the second case (i.e., |q3−p3| ≥ ǫ/2), it must be that |q3 −m(N)| > f(N) (since,
otherwise, p′0 = p′2 = 0 and p′3 = q3 yields (p′0, p

′
1, p

′
2, p

′
3) ∈ S3

Dα(N),β(N)
that is closer to (q0, q1, q2, q3)).

Likewise, it must be that p3 = m(N)+sgn(q3−m(N))·f(N). It follows that |q3−m(N)| ≥ f(N)+ǫ/2
(since |p3−m(N)| = f(N)+|q3−p3|), which implies that P(S3

G) ≤ f(N)k−(f(N)+ǫ/2)k < −(ǫ/2)k.
Finally, combining the above analysis with Corollary 6.6, we conclude that each graph in

CC(Dα,β) is accepted with probability at least 1/2, whereas each graph that is ǫ-far from CC(Dα,β)
is accepted with probability at most 0.5 − Ω(ǫO(1))k. The claim follows.

Generalization to t ≥ 2: We now show how the proof of Proposition 6.8 can be generalized to
larger values of t, and so establish Proposition 6.7. The generalization follows the proof idea of
Corollary 5.4 (regarding disjoint union of testable classes of distributions). For each i ∈ [t], define

the parameters mi(N) = κ3(αi(N))+κ3(βi(N))
2 and fi(N) = |κ3(αi(N))−κ3(βi(N))|

2 (analogously to the

proof Proposition 6.8). Then, analogously to Eq. (21) define the polynomial P : ∆(4) → R to be

P(q0, q1, q2, q3) = (−1)t+1 ·
∏

i∈[t]

(

fi(N)k − (q3 − mi(N))k − q0 − q2

)

for k ∈ 2N chosen as in the proof of Proposition 6.8. By following the proof of Proposition 6.8 (and
the proof of Corollary 5.3), the reader can verify that this polynomial P yields a POT for CC(Dα,β),

which makes O(t/d) queries and has detection probability ̺(ǫ) = Ω(ǫO(t/d)). We omit the details.

6.3 Testing CC(D) when D(N) ⊆ ∆(2) is almost everything

Recall that by the characterization result of [GR09b], the class CC≤2 has a one-sided error POT.
However, if we remove from CC≤2 even just a single N -vertex graph for every N ∈ N, we will obtain
a class that does not have a one-sided error POT. Nevertheless, as we prove in this section, such a
class has a two-sided error POT. This fact is as a special case of Proposition 6.9.

Recall, that for α, β : N → [0, 1
2 ]t such that α1(N) ≤ β1(N) < . . . < αt(N) ≤ βt(N) for all

N ∈ N, the class CC(Dα,β) = ∪i∈[t]CC(Dαi,βi
) consists of all graphs in CC≤2 such that an N -vertex

graph belongs to CC(Dα,β) if and only if the density of the smaller clique belongs to [αi(N), βi(N)]
for some i ∈ [t]. For example, the classes considered in the first paragraph of this section can be
described as CC(Dα,β) for some α, β : N → [0, 1

2 ]2.

We show in Proposition 6.9 that for α(N), β(N) ∈ [0, 1
2 ]t as above, if for each N ∈ N almost all

graphs on N vertices in CC≤2 belong to CC(Dα,β), then CC(Dα,β) has a two-sided error POT. In

particular, the class of graphs obtained from CC≤2 by removing any constant number of graphs on
N vertices (for every N ∈ N) has a two-sided error POT.

Proposition 6.9 (POT for CC(Dα,β), when
∑

i βi(N)−αi(N) > 1
2−N−Ω(1)): Let α, β : N → [0, 1

2 ]t

be such that for every N ∈ N it holds that α1(N) ≤ β1(N) < . . . < αt(N) ≤ βt(N). If for some
d ∈ (0, 1] and all N ∈ N it holds that

∑

i∈[t](βi(N) − αi(N)) > 1
2 − N−d, then the class CC(Dα,β)

has a POT that makes 6t queries and has polynomial detection probability (where the exponent of
the polynomial depends on t and d).
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Similarly to the previous section, we shall first prove Proposition 6.9 in the special case of t = 1,
and later discuss the generalization to larger values of t.

Proposition 6.10 (Proposition 6.9, the case of t = 1): Let α, β : N → [0, 1
2 ] and d ∈ (0, 1] be such

that for every N ∈ N it holds that α(N) < N−d and β(N) > 1
2 − N−d. Then, the class CC(Dα,β)

has a POT that makes 6 queries, and has detection probability ̺(ǫ) = Ω(ǫ8/d).

Proof: In order to develop some intuition, note that the assumption α(N) < N−d and β(N) >
1
2−N−d implies that no graph G ∈ CC≤2 is too far from CC(Dα,β). Indeed, suppose that G consists of
two cliques of sizes K and N−K, with K ≤ N−K, such that either K/N < α(N) or K/N > β(N).
Then, the graph G is N−d-close to CC(Dα,β). Hence, graphs that are in CC≤2 \ CC(Dα,β) are N−d-
close to CC(Dα,β), and it suffices to detect such graphs with probability 1/poly(N) (since this
probability is polynomially related to its distance from the property being tested). On the other
hand, any graph that is ǫ-far from CC(Dα,β) for ǫ > 2/Nd must be ǫ

2 -far from CC≤2, and it suffices
to detect such graphs with probability poly(ǫ). Thus, it is enough to design a tester that satisfies
the following three conditions, with respect to some threshold c:

1. Graphs in CC(Dα,β) are accepted with probability at least c;

2. Graphs that are ǫ-far from CC≤2 are accepted with probability lower than c − Ω(ǫ2);

3. Graphs that are not in CC(Dα,β) are accepted with probability lower than c − Ω(N−8).

For sake of simplicity, we consider first the simpler case in which either α = 0 or β = 1/2. In this
case, the test we propose and analyze examines the subgraph induced by three random vertices
and accepts according to some (carefully chosen) predetermined probabilities. That is, we associate
four probabilities with the four possible 3-vertex subgraphs that can be seen such that pi denotes
the probability that the test accepts when seeing a subgraph with i edges. Since we wish to accept
only graphs in CC≤2, we may set p0 = p2 = 0 and p1, p3 > 0. Thus, in designing such a test,
our only freedom is in the choice of min(p1, p3) > 0, since without loss of generality we may have
max(p1, p3) = 1. Note that in order to satisfy the relation between Items 1 and 2, we must require
p1 ≈ p3 (e.g., |p1 − p3| < 1/N3).38 Picking p1 and p3 such that |p1 − p3| < 1/N3 means that
each N -vertex graph in CC≤2 is accepted with probability approximately p1, whereas N -vertex
graphs that are ǫ-far from CC≤2 are accepted with probability at most p1 − poly(ǫ), which follows
from [GR09b, Proposition 4.11] using the bound ǫ > 1/N2 (i.e., each N -vertex graph not in a class
is at least 1/N2-far from it). Finally, setting p1 > p3 favors graphs in CC≤2 that consist of two
cliques of (approximately) the same size, whereas p1 < p3 favors graphs in CC≤2 that consist of
two cliques such that one is significantly larger than the other. Note, however, that this favoring
amounts to at most |p1 − p3|, but nevertheless this will suffice for Item 3.

In the general case, where both α > 0 and β < 1/2, we view the distribution induced by 3-
subgraphs of G as an element of ∆(4). Thus, the tester needs to check that this distribution lies
in some (carefully chosen) predetermined subset of ∆(4). Note that graphs in CC≤2 are associated
with distributions (q0, q1, q2, q3) ∈ ∆(4) such that q0 = q2 = 0, where qi is the probability that a
random induced 3-vertex graph has i edges. Furthermore, graphs in CC(Dα,β) are associated with

38To see why p1 ≈ p3 must hold, consider the graph Gρ consisting of two cliques such that the smaller one has
density ρ ≤ 1/2. This graph is accepted with probability κ3(ρ) · p3 + (1 − κ3(ρ)) · p1 = p3 − (p3 − p1)(1 − κ3(ρ)),
where κ3(ρ) = ρ3 + (1− ρ)3 ∈ [0.25, 1] is the K3-density of Gρ. On the other hand, a graph obtained from Gρ by an
omission of a single edge is accepted with probability that is Θ(N−2) smaller. Thus, |p3 − p1| = O(N−2) is required
for guaranteeing that both G0.01 and G0.49 are accepted with probability that is higher than either of the graphs
obtained from them by omission of a single edge.
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a segment Iα,β of the line {(0, q1, 0, 1 − q1) : q1 ∈ [0, 1]}. Thus, the desired test may be thought
of as a test of Iα,β ⊆ ∆(4) that is required to (1) accept points on Iα,β with probability at least c,
(2) accept points that are ǫ-far from the entire line (which passes through Iα,β) with probability
at most c − poly(ǫ), and (3) accept points that are on the line but outside Iα,β with probability
at most c − poly(1/N). Corollary 5.8 suggests that such a test can be obtained by considering an
ellipsoid that contains an Θ(1/N3)-neighborhood of Iα,β. (This ellipsoid has a very long axis in the
direction of Iα,β, and is very slim in all the directions orthogonal to Iα,β.) Note, however, that in
the analysis we cannot just invoke Corollary 5.8, because we need stronger bounds; i.e., for points
that are far from the long axis of the ellipsoid we need bounds that do not depend on the volume
of the ellipsoid. (Such bounds are readily obtained by using the ideas that underly the proof of
Corollary 5.8.)

We now turn to the actual proof. Let us fix N ∈ N, and denote for simplicity α = α(N) and
β = β(N). We restrict ourselves to designing a POT for N -vertex graphs of CC(Dα,β). Similarly to
the proof of Proposition 6.8 the POT for CC(Dα,β) relies on testing the distribution induced by 3-
subgraphs of a given graph G. Specifically, we consider the distributions S3

G = (q0, q1, q2, q3) ∈ ∆(4)

induced by 3-subgraphs of G as given in Definition 6.3, where qi denotes the density of the subgraph
with 3 vertices and i edges in G. As in the proof of Proposition 6.8 we show that there exists a
polynomial P : ∆(4) → R with bounded coefficients such that P is positive on distributions induced
by graphs in CC(Dα,β), and is bounded below zero for distributions induced by graphs that are
far from CC(Dα,β). The POT is derived from such polynomial by following the recipe given in
Theorem 5.1.

For every ρ ∈ [0, 1
2 ] let Gρ be the graph consisting of two cliques of densities ρ and 1− ρ. Then,

the distribution induced by Gρ is

S3
Gρ

= S3
(ρ,1−ρ) = (0, 3ρ(1 − ρ), 0, ρ3 + (1 − ρ)3).

Thus, by considering the segment Iα,β ⊆ ∆(4) contained in the line {(0, q1, 0, 1 − q1) : q1 ∈ [0, 1]}
between the points S3

(α,1−α) and S3
(β,1−β) we see that G ∈ CC(Dα,β) if and only if S3

G ∈ Iα,β.

Next, define an ellipsoid Eα,β such that for every N -vertex graph G it holds that S3
G ∈ Iα,β if

and only if S3
G ∈ Eα,β. This is done by taking an ellipsoid that contains only distributions that

are N−3/2-close to Iα,β (since for every two distinct graphs induce distributions that are Ω(N−2)

from each other). Specifically, let m = (m0,m1,m2,m3) = 1
2

(

S3
(α,1−α) + S3

(β,1−β)

)

be the midpoint

of the interval Iα,β, and let r denote the L2-distance between this midpoint and either endpoints
of the segment Iα,β. (Note that for α ≈ 0 and β ≈ 1

2 we have Iα,β ≈ [(0, 0, 0, 1), (0, 0.75, 0, 0.25)]

and so r ≈
√

2 · (0.75/2)2 ≈ 0.53.) Since we wish the ellipsoid to contain Iα,β and no point
(q0, q1, q2, q3) that is (1/2N3)-far from this segment, we relax the conditions q0 = q2 = 0 and
(q1−m1)2 + (q3−m3)2 ≤ r2 into (q2

0 + q2
2) · (2N3)2 + (q1−m1)2/r2 + (q3−m3)2/r2 ≤ 1. This yields

the following ellipsoid Eα,β (which contains Iα,β, has radius r in the direction of Iα,β and radius
1/2N3 in the orthogonal directions):

Eα,β =

{

(q0, q1, q2, q3) ∈ ∆(4) : 4N6 · q2
0 +

1

r2
· (q1 − m1)2 + 4N6 · q2

2 +
1

r2
· (q3 − m3)2 ≤ 1

}

.

Note that by applying Corollary 5.8 we obtain a POT for Eα,β whose detection probability depends
on the parameters of the ellipsoid, and in particular depends on N . Since we are interested in
detection probability that is independent of N , we use a more careful analysis of the tester for Eα,β.
Specifically we define a polynomial P that is non-negative on Eα,β and is bounded below zero for
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distributions that is far from Eα,β. The ellipsoid Eα,β defines naturally a polynomial P′ : ∆(4) → R

P′(q0, q1, q2, q3) = 1 −
(

4N6 · q2
0 +

1

r2
· (q1 − m1)2 + 4N6 · q2

2 +
1

r2
· (q3 − m3)2

)

such that P′(q0, q1, q2, q3) ≥ 0 if and only q ∈ Eα,β . However, in order to apply Theorem 5.1 it
is required that the coefficients of P′ be upper bounded independently of N . Such polynomial
P : ∆(4) → R is obtained from P′ by normalizing the coefficients so that all coefficients of P are
bounded by 1 in absolute value.

P(q0, q1, q2, q3) =
1

4N6
−
(

q2
0 +

1

4r2N6
· (q1 − m1)2 + q2

2 +
1

4r2N6
· (q3 − m3)2

)

. (23)

Clearly for every q = (q0, q1, q2, q3) ∈ ∆(4) it holds that P(q0, q1, q2, q3) ≥ 0 if and only q ∈ Eα,β . By
Theorem 5.1 since all coefficients of the polynomial P of degree deg(P) = 2 are bounded in absolute
value, there exists a POT T that accepts all distributions q = (q0, q1, q2, q3) ∈ ∆(4) with probability

Pr[T accepts q] = 0.5 + δ · P(q0, q1, q2, q3).

for some absolute constant δ > 0 (that depends only on the degree of P and the maximal coefficient
of P). We claim that such tester gives us a POT for CC(Dα,β) with threshold probability 0.5.
Indeed, if G ∈ CCN (Dα,β), then the distribution S3

G = (q0, q1, q2, q3) belongs to Eα,β, and hence
P(q0, q1, q2, q3) ≥ 0, thus implying that the tester accepts G with probability at least 1

2 .
Assume now that an N -vertex graph G is ǫ-far from CC(Dα,β) for some ǫ > 0, and let S3

G =
(q0, q1, q2, q3). We shall prove that P(q0, q1, q2, q3) ≤ −Ω(ǫ8/d), thus implying that the tester accepts
G with probability that is as most 0.5−Ω(ǫ8/d). The proof is partitioned into two cases, depending
on ǫ.

Case 1: ǫ > 2N−d. Then, by the observation in the beginning of the proof the graph G is ǫ
2 -far

from CC≤2. Thus, by [GR09b, Proposition 4.11] it holds that q0 + q2 = Ω(ǫ), and hence, using
ǫ
2 > N−d ≥ N−1, we get

P(q0, q1, q2, q3) ≤ 1

4N6
−
(

q2
0 + q2

2

)

≤ 1

4N6
− Ω(ǫ2) = −Ω(ǫ2),

where the constants in different Ω() notations might be different.

Case 2: ǫ ≤ 2N−d. We shall show next that G /∈ CC(Dα,β) implies P(q0, q1, q2, q3) = −Ω(N−8),
which is −Ω(ǫ8/d) by the case hypothesis.

We consider two subcases.

1. If G /∈ CC≤2, then either q0 ≥ N−3 or q2 ≥ N−3 (because q0 + q2 > 0 whereas each
comes at multiples of N−3). Therefore, P(q0, q1, q2, q3) ≤ 1

4N6 − 1
N6 , which is definitely

smaller than −Ω(N−8).

2. If G ∈ CC≤2, then q0 = q2 = 0 and q1 = 1 − q3. In this case, G consists of two cliques of
sizes K and N − K such that either K ≤ αN − 1 or βN + 1 < K ≤ ⌊N

2 ⌋. Assume that
K ≥ βN + 1 (the case K ≤ αN − 1 is handled analogously). Then, the K3-density of G
is

q3 = (K/N)3 + (1−K/N)3 ≥ (β + 1/N)3 + (1− (β + 1/N))3 ≥ β3 + (1− β)3 + Ω(N−2),
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where the first inequality is due to monotonicity of the function x3 + (1 − x)3 for x ∈
[0, 0.5], and the second inequality follows from β ≤ K−1

N ≤ 0.5 − N−1. Hence, the
distance of q = (0, 1− q3, 0, q3) from m is r + Ω(N−2), where Ω(N−2) is the distance of q
to S3

(β,1−β) to m and r is the distance of S3
(β,1−β) to m (since the three points lie on the

line (0, 1 − x, 0, x)). Hence, (q1 −m1)2 + (q3 −m3)2 = (r + Ω(N−2))2 > r2 + Ω(r2N−2),
which implies the required bound on P because

P(q0, q1, q2, q3) ≤ 1

4N6
− (q1 − m1)2

4r2N6
− (q3 − m3)2

4r2N6
<

1

4N6
− r2 + Ω(r2N−2)

4r2N6
< −Ω(N−8).

We have shown that if G is ǫ-far from CC(Dα,β), then the tester accepts G with probability that
is as most 0.5 − Ω(ǫ8/d), and thus the tester has detection probability ̺(ǫ) = Ω(ǫ8/d), as required.
Since deg(P) = 2, it follows that given a graph G the distribution tester needs 2 samples from S3

G,
thus making 6 queries to the graph G itself. This completes the proof of the proposition.

Remark regarding the bounds on α(N) and β(N): Note that we can relax the restrictions
on α(N) and β(N) at the cost of detection probability of the tester. Specifically, let µ : R → [0, 1]
be a monotone function such that µ(x) → 0 as x grows to infinity. If we assume in Proposition 6.10
that α(N) < µ(N) and β(N) > 1

2 − µ(N) for all N ∈ N, then the POT described in the proof has

detection probability ̺(ǫ) = poly
(

1
µ−1(ǫ)

)

, where µ−1 denotes the inverse function of µ.

Generalization to t ≥ 2: In order to generalize the above proof to larger values of t, we will
need to define a collection of t segments {Iαi,βi

: i ∈ [t]}, and t ellipsoids {Eαi,βi
: i ∈ [t]}, instead

of a single segment (and ellipsoid) as done in the proof of Proposition 6.10. The desired POT
is obtained by constructing a tester analogous to the one in Proposition 5.5 for disjoint union of
ellipsoids.

The following corollary follows from the proof of Proposition 6.10. Note that this corollary uses
only trivial conditions regarding α and β (i.e., 0 ≤ α(N) ≤ β(N) ≤ 0.5), but yields no POT.

Corollary 6.11 (For the discussion in Section 3.5): Let α, β : N → [0, 1
2 ]t such that for every

N ∈ N it holds that α1(N) ≤ β1(N) < . . . < αt(N) ≤ βt(N) for all N ∈ N. Then, there is a
constant b ∈ (0, 1) and for every N ∈ N there are w = (wH)H:|V (H)|=O(1) such that CCN (Dα,β) is
exactly the set of all N -vertex graphs in Πw,b.

Proof: By the proof above there is a universal constant c and a (weak) tester for CC(Dα,β) that
accepts graph G ∈ CCN (Dα,β) with probability at least c, and accepts graph G /∈ CCN (Dα,β)
with probability smaller than c. The corollary follows by letting b = 1 − c and using the proof of
Theorem 3.10 to obtain a characterization of CCN (Dα,β) in terms of Πw,b.

6.4 Impossibility results for subclasses of CC≤2

In this section we prove that for any constants 0 ≤ α < β ≤ 1
2 such that β − α < 0.5, the class

CC(Dα,β) does not have a two-sided error POT. This impossibility result complements Proposi-
tions 6.7 and 6.9 by explaining why the POTs provided by the latter results apply to α, β : N →
[0, 0.5] such that limN→∞(β(N) − α(N)) ∈ {0, 0.5}.

The argument uses Theorem 3.10, which allows us to consider only potential testers that on
input a graph G rule based on the distribution induced by O(1)-vertex subgraphs of G. We show
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that if such a potential tester T provides a characterization of CC(Dα,β) with respect to some
threshold c (i.e., T accepts G with probability at least c if and only if G ∈ CC(Dα,β)), then
there exist infinitely many graphs G that are Ω(1)-far from CC(Dα,β) such that T accepts G with
probability c − O(1/|V (G)|2). It follows that T cannot be a POT.

Proposition 6.12 (classes CC(Dα,β) that have no POT): Let 0 ≤ α < β ≤ 1
2 be constants such

that either α > 0 or β < 1
2 . Then, the class CC(Dα,β) does not have a two-sided error POT.

Proof: We start with an overview of the proof, where we assume towards the contradiction that
there is a constant query tester T for CC(Dα,β) with threshold probability c. Then (similarly to the
proof of Theorem 3.10), we may assume that, for some constant t, the tester T reads a subgraph of G
induced by random uniformly chosen t vertices, and accepts a view H = ([h], EH ) with probability
wH ∈ [0, 1]. Hence the probability that T accepts G can be written as

∑

H wH · ρH(G), where the
sum is over all t-vertex graphs, ρH(G) denotes the density of H as an induced subgraph of G, and
wH ∈ [0, 1] for each t-vertex graph H.

We first claim that all N -vertex graphs G ∈ CC(Dα,β) are accepted with probability that is at
most c + O(N−2). This follows from the fact that every graph G ∈ CC(Dα,β) is (N−2)-close to
a graph G′ that is not in CC(Dα,β), since we can remove an edge from the larger clique of G to
obtain such G′. Therefore, the distribution (ρH(G′))H:|V (H)|=t is O(N−2)-close to the distribution
(ρH(G))H:|V (H)|=t, and so

∑

H wH · ρH(G′) < c (per G′ /∈ CC(Dα,β)) implies
∑

H wH · ρH(G) =
c + O(N−2).

In the second step we shall claim (see proof outline below) that since all graphs G ∈ CC(Dα,β)
are accepted with probability that deviates from c by at most O(N−2), it must be the case that
all graphs in CC≤2 are accepted by T with probability that is O(N−2)-close to c, and hence with
probability at least c − O(N−2). In particular, if β < 1

2 , then the graph consisting of two cliques
each of density 1

2 is Ω(1)-far from CC(Dα,β), yet it is accepted with probability at least c−O(N−2).
Similarly, if α > 0, then the graph G = Kn is Ω(1)-far from CC(Dα,β), yet it is accepted with
probability at least c − O(N−2). Therefore, the detection probability of T , on some N -vertex
graphs that are Ω(1)-far from the property, is at most O(N−2), thus implying that T is not a POT
for CC(Dα,β).

The second step is proven by focusing on the behavior of T on the various graphs in CC≤2, while
noting that this behavior (or rather T ’s acceptance probability) depends only on the density of the
smallest clique, denoted ρ, which in turn determines a unique N -vertex graph in CC≤2, denoted Gρ.
Recall that the probability that T accepts the graph Gρ is a linear combination (with coefficients
in [0, 1]) of the corresponding densities (ρH(Gρ))H:|V (H)|=t. Moreover, for every t-vertex graph
H, the density ρH(Gρ) is a polynomial (in ρ) of degree at most t.39 Therefore, the probability
that T accepts Gρ can be written as a polynomial (in ρ) of degree at most t. Let us denote this
polynomial by P : [0, 1

2 ] → R. Recall that (by the first step) P is almost constant on the interval
[α, β]. We claim that this implies that P is almost constant also on the entire interval [0, 1

2 ], where
the “almost” in the conclusion depends on deg(P), on the ratio between the length of the interval
β − α, and on the “almost” parameter in the hypothesis. (This claim follows almost immediately
from Claim 6.12.1, which in turn follows by polynomial interpolation.) Now, using the first step by
which P(ρ) is O(1/N2)-close to c for every ρ ∈ [α, β], we infer that P(ρ) is O(1/N2)-close to c for
every ρ ∈ [0, 1

2 ], where the constants in the O() notations might differ. Since, for every ρ ∈ [0, 1
2 ],

39For example, for t ≥ 3 the density of Kt in Gρ is ρKt(Gρ) =
(ρN

t )
(N

t )
+

((1−ρ)N
t )

(N
t )

, and the density of H that consists

of Kt−1 with additional isolated vertex is ρH(Gρ) =
( ρN

t−1)·(1−ρ)N

(N
t )

+
((1−ρ)N

t−1 )·ρN

(N
t )

.
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we have Pr[T accepts Gρ] = P(ρ) it follows that all graphs in CC≤2 are accepted with probability
that is O(1/N2)-close to the threshold. As explained above, this implies that T is not a POT for
CC(Dα,β). The detailed argument is given next.

Assume towards contradiction that CC(Dα,β) has a POT T with threshold probability c. Then,
as explained in the proof overview, we may assume that for some constant t and for every N ∈
N there exists a sequence w = (wH)H:|V (H)|=t taking values in [0, 1], such that the acceptance
probability of T when given a graph G on N vertices can be written as

Pr[T accepts G] =
∑

H:|V (H)|=t

wH · ρH(G), (24)

where the sum is over all unlabeled t-vertex graphs H, and ρH(G) denotes the density of H as a
subgraph in G.

Note that for every graph G ∈ CCN (Dα,β) we can drop an internal edge of the larger clique to
obtain a graph G′ that does not belong to CCN (Dα,β). Hence, the graphs G and G′ are (N−2)-close.
Therefore, by Claim 6.1, the densities ρH(G) and ρH(G′) differ by at most t2 · N−2 for every H.
We conclude that T accepts the graph G and G′ with almost the same probability. That is:

∣

∣Pr[T accepts G] − Pr[T accepts G′]
∣

∣ =

∣

∣

∣

∣

∣

∑

H

wH · ρH(G) −
∑

H

wH · ρH(G′)

∣

∣

∣

∣

∣

≤
∑

H

wH · |ρH(G) − ρH(G′)|

≤ rt2 · N−2,

where r < 2t2 denotes the number of unlabeled t-vertex graphs.
Since any graph G′ /∈ CCN (Dα,β) must be accepted with probability smaller than c, we conclude

that any graph G ∈ CCN (Dα,β) is accepted by T with probability at most c + O(N−2), where the
constant in the O() notation depends only on t. This implies the following inequality:

c ≤ Pr[T accepts G] ≤ c + rt2 · N−2 for every G ∈ CCN (Dα,β). (25)

In order to complete the proof we shall prove that for all N -vertex graphs G ∈ CC≤2 the acceptance
probability of T is O(N−2)-close to the threshold c, where the constant in the O() notation depends
only on t and β−α. As explained in the proof overview, since α, β are constants, there is a graph in
CC≤2 that is Ω(1)-far from CC(Dα,β). Yet, since this graph is in CC≤2, it is accepted with probability
at least c − O(N−2), thus implying that T is not a POT for CC(Dα,β).

In light of the above, we now focus on the behavior of T only on N -vertex input graphs that
are in CC≤2. For every ρ ∈ [0, 1

2 ] such that ρN ∈ N, let Gρ be the N -vertex graph in CC≤2 with
cliques of densities ρ and 1 − ρ. Then, as noted in the proof overview, for every t-vertex graph H
the density of H in Gρ is a polynomial (in ρ) of degree t, and thus, by Eq. (24), the probability that
T accepts the input graph Gρ is also a polynomial of degree t. Consider a polynomial P : [0, 1

2 ] → R

defined as
P(ρ) = Pr[T accepts Gρ] − c.

Recall that we have shown, in the first step of the proof, that Pr[T accepts Gρ] is (1/N2)-close to
c for every ρ ∈ [α, β] that satisfies ρN ∈ N. Specifically, by Eq. (25), the polynomial P satisfies the
following condition:

P(ρ) ∈ [0,
rt2

N2
] for all ρ ∈ [α, β] that satisfy ρN ∈ N. (26)
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It follows from the next claim that a polynomial P(ρ) that satisfies Eq. (26) cannot deviate from
zero by more than O(N−2) also on a larger interval [0, 1

2 ].

Claim 6.12.1 Let P : [0, 1
2 ] → R be a polynomial of degree at most t. Assume that for some ǫ, δ > 0

there are t+1 points ρ1, . . . , ρt+1 ∈ [0, 1
2 ] such that |ρi−ρj| ≥ δ for all i 6= j ∈ [t+1], and |P(ρi)| ≤ ǫ

for all i ∈ [t + 1]. Then, for every x ∈ [0, 1
2 ], it holds that |P(x)| < (t + 1) 1

2tδt ǫ.

Before proving the claim, let us see how it allows us to complete the proof of Proposition 6.12.
Let δ = β−α

t , and assume that N is large enough (e.g., N > 4
δ ). Let us choose t + 1 values

α ≤ ρ1 < ρ2 . . . < ρt+1 ≤ β that satisfy ρiN ∈ N for all i ∈ [t + 1] and |ρi+1 − ρi| ≥ δ − 2
N > 1

2δ

for all i ∈ [d].40 Then, by applying Claim 6.12.1 (and recalling that P(ρ) ∈ [0, rt2

N2 ] for all ρ ∈ [α, β]
that satisfy ρN ∈ N), we conclude that

|P(ρ)| ≤ (t + 1)
1

δt
· rt2

N2
= (t + 1)

(

t

β − α

)t

· rt2 · N−2 for all ρ ∈ [0, 1
2 ] . (27)

Therefore, the tester T accepts all N -vertex graphs Gρ ∈ CC≤2 with probability

Pr[T accepts Gρ] = c + P(ρ) > c − O(N−2),

where the constant in the O() notation depends only on t and β − α. Since there are graphs in
CC≤2 that are Ω(1)-far from CC(Dα,β), we conclude that T is not a POT for CC(Dα,β).

Extension to smaller intervals (i.e., β(N) = α(N) + N−o(1)). The proof of Proposition 6.12
extends also to the case that α and β are functions that are relatively close. The point is that the

only dependence on β − α occurs when we use the hypothesis that (t + 1)
(

t
β−α

)t
· rt2 = o(N2),

which implied that Ω(1)-far graphs are accepted with probability c − o(1). Recalling that t and r
are constants (which are determined by the query complexity of the potential tester), we infer that
the argument holds as long as β(N) = α(N) + o(N2/t). Since we should fail each potential POT
(i.e., each constant t), we can support any β(N) = α(N) + N−o(1), which perfectly complements
Proposition 6.8.

We return to the proof of Claim 6.12.1.

Proof of Claim 6.12.1 The proof uses interpolation of polynomials. Specifically, if we are given
the values of P in t + 1 points ρ1, . . . , ρt+1 ∈ [0, 1

2 ], then the polynomial P can be written as

P(x) =
∑

i∈[t+1]





∏

j 6=i

x − ρj

ρi − ρj



 P(ρi).

Therefore, for every x ∈ [0, 1
2 ] we can upper bound |P(x)| as follows:

|P(x)| ≤
∑

i∈[t+1]

∣

∣

∣

∣

∣

∣





∏

j 6=i

x − ρj

ρi − ρj



 P(ρi)

∣

∣

∣

∣

∣

∣

40This can be done by letting ρi = α + (i − 1)δ ∈ [α, β] for all i ∈ [t + 1] (recall δ = β−α
t

). Then |ρi − ρj | ≥ δ for
all i 6= j ∈ [d + 1]. Note that ρi’s might not satisfy the condition ρiN ∈ N. However, by modifying ρi by at most 1

N

we can obtain ρi ∈ [α, β] for which ρiN ∈ N holds. Such modification changes the distance between ρi and ρj by at
most 2

N
.
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[using |ρi − ρj| ≥ δ and |P(ρi)| ≤ ǫ] ≤
∑

i∈[t+1]

∣

∣

∣

∣

∣

∣

∏

j 6=i

x − ρj

δ

∣

∣

∣

∣

∣

∣

· ǫ

[using x, ρj ∈ [0, 1
2 ]] ≤

∑

i∈[t+1]





∏

j 6=i

1

2δ



 · ǫ

= (t + 1)

(

1

2δ

)t

· ǫ.

This completes the proof of the claim.
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Appendices: Proofs of Technical Claims

A.1 Proof of Claim 3.1.1

The following claim improves over a similar claim that appeared in [GGR, Apdx D].

Claim 3.1.1, restated: If NK is even and
∑

v∈[N ] |dG(v) − K| ≤ ǫ′ · N2, then G is 6ǫ′-close to
the set of K-regular N -vertex graphs.

Proof: We modify G in three stages, while keeping track of the number of edge modifications.
In the first stage we reduce all vertex degrees to at most K, by scanning all vertices and omitting

dG(v) − K edges incident at each vertex v ∈ H
def
= {u : dG(u) > K}. Since

∑

v∈H(dG(v) − K) ≤
ǫ′N2, we obtain a graph G′ that is 2ǫ′-close to G such that dG′(v) ≤ K holds for each vertex
v, because every omitted edge reduces

∑

v∈H(dG(v) − K) by at least one unit. Furthermore,
∑

v∈[N ] |dG′(v) − K| ≤ ǫ′ · N2, because each omitted edge {u, v} reduces either |d(u) − K| or
|d(v) − K| (while possibly increasing the other by one unit).

In the second stage, we insert an edge between every pair of vertices that are currently non-
adjacent and have both degree smaller than K. Thus, we obtain a graph G′′ that is ǫ′-close to G′

such that {v : dG′′(v) < K} is a clique (and dG′′(v) ≤ K for all v).
In the third stage, we iteratively increase the degrees of vertices that have degree less than K

while preserving the degrees of all other vertices. Denoting by Γ(v) the current set of neighbours
of vertex v, we distinguish two cases.

Case 1: There exists a single vertex of degree less than K. Denoting this vertex by v, we
note that |Γ(v)| ≤ K − 2 must hold. We shall show that there exists two vertices u,w such
that {u,w} is an edge in the current graph but u,w 6∈ Γ(v) ∪ {v}. Adding the edges {u, v}
and {w, v} to the graph, while omitting the edge {u,w}, we increase |Γ(v)| by two, while
preserving the degrees of all other vertices.

We show the existence of two such vertices by starting with an arbitrary vertex u 6∈ Γ(v)∪{v}.
Vertex u has K neighbors (since u 6= v)41, and these neighbors cannot all be in Γ(v) ∪ {v}
(which has size at most K − 1). Thus, there exists w ∈ Γ(u) \ (Γ(v) ∪ {v}), and we are done.

Case 2: There exist at least two vertices of degree less than K. Let v1 and v2 be two ver-
tices such that |Γ(vi)| ≤ K − 1 holds for both i = 1, 2. Note that {v1, v2} is an edge in the
current graph, since the set of vertices of degree less than K constitute a clique. We shall
show that there exists two vertices u1, u2 such that {u1, u2} is an edge in the current graph
but neither {v1, u1} nor {v2, u2} are edges (and so |Γ(u1)| = |Γ(u2)| = K). Adding the edges
{u1, v1} and {u2, v2} to the graph, while omitting the edge {u1, u2}, we increase |Γ(vi)| by
one (for each i = 1, 2), while preserving the degrees of all other vertices.

We show the existence of two such vertices by starting with an arbitrary vertex u1 6∈ Γ(v1)∪
{v1, v2}. Such a vertex exists since v2 ∈ Γ(v1) and so |Γ(v1) ∪ {v1, v2}| ≤ K < N . Vertex
u1 has K neighbors (since u1 6∈ Γ(v1), whereas all vertices of lower degree are neighbors
of v1). Note that Γ(u1) cannot be contained in Γ(v2) ∪ {v2}, because v1 6∈ Γ(u1) whereas
v1 ∈ Γ(v2) (and Γ(u1) ⊆ Γ(v2) ∪ {v2} would have implied Γ(u1) ⊆ Γ(v2) ∪ {v2} \ {v1}, which
is impossible since |Γ(u1)| = K whereas |Γ(v2) ∪ {v2} \ {v1}| ≤ K − 1). Thus, there exists
u2 ∈ Γ(u1) \ (Γ(v2) ∪ {v2}).

41Recall that, by the case hypothesis, all vertices other than v have degree K.
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Thus, in each step of the third stage, we decrease
∑

v∈[N ] |dG′′(v)−K| by two units, while preserving
both the invariances established in the second stage (i.e., {v : dG′′(v) < K} is a clique and dG′′(v) ≤
K for all v). Since in each step we modified three edges, we conclude that G′′ is 3ǫ′-close to R(k)

N ,
and the claim follows (by recalling that G is 3ǫ′-close to G′′).

A.2 Proofs of Propositions 3.4 and 3.5

Proposition 3.4, restated: Let ℓ ≥ 3 be an integer and t ∈ Tℓ, where

Tℓ =







{1, 2, 3} if ℓ ≡ 1 (mod 2)
{1} if ℓ ≡ 2 (mod 4)
N if ℓ ≡ 0 (mod 4)

(28)

and k(N) = 2N/tℓ. Then:

1. The set SCℓC ∩ R(k) equals the set of graphs that consists of t super-cycle of length ℓ, each
containing N/t vertices, such that clouds that are at distance four apart have equal size.
Furthermore, if ℓ 6≡ 0 (mod 4), then each cloud has size N/tℓ.

2. If a graph G = ([N ], E) is δ-close to both SCℓC and R(k), then G is O(
√

δ)-close to SCℓC∩R(k),
where the hidden constant depends polynomially on tℓ.

Thus, SCℓC ∩ R(k) has a two sided error POT.

Proof: Once Item 2 is proved, we use Theorem 3.2 to conclude that SCℓC ∩ R(k) has a two sided
error POT. The proof of Item 2 is facilitated by Item 1, which anyhow serves as a good warm-up
towards Item 2. Our exposition breaks down to several cases (i.e., ℓ = 4, other ℓ ≡ 0 (mod 4), and
ℓ 6≡ 0 (mod 4)), where in each case we first prove Item 1 and next prove Item 2.

We start with the case that ℓ = 4. Recalling that a super-cycle of length four can be viewed
as a bi-clique, we consider the class BCC ∩ R(k), where BCC denote the class of graphs that are
each a collection of isolated bi-cliques. Suppose that G ∈ BCC ∩ R(k), and consider the sequences

of pairs (S
(1)
0 , S

(1)
1 ) through (S

(m)
0 , S

(m)
1 ) that are guaranteed by G ∈ BCC. That is, vertices u and

v are connected in G if and only if there exist j ∈ [m] and i ∈ {0, 1} such that u ∈ S
(j)
i and

v ∈ S
(j)
1−i. Using G ∈ R(k), we infer that for every j ∈ [m] and every i ∈ {0, 1} it holds that

|S(j)
i | = k(N) = N/2t. (Indeed, if N/2k(N) is not an integer, then BCC ∩R(k) = ∅.) Thus, G may

be viewed as a collection of t super-cycles of length four in which each cloud has size N/4t, and
Item 1 follows.

Towards Item 2, suppose that G is δ-close to both BCC and R(k), and let G′ ∈ BCC be δ-close
to G. Then, G′ is 2δ-close to R(k), and thus

∑

v∈[N ] |dG′(v) − (N/2t)| ≤ 2δ · N2, where dG′(v)

denotes the degree of v in G′. Fixing any integer q (e.g., q = Θ(1/
√

δ), we call a vertex v good if
|dG′(v) − (N/2t)| ≤ N/q, and note that all but at most 2qδ · N vertices are good. Consider the

sequences of pairs (S
(1)
0 , S

(1)
1 ) through (S

(m)
0 , S

(m)
1 ) that are guaranteed by G′ ∈ BCC. If vertex

v ∈ S
(j)
i is good, then S

(j)
1−i must have size at least (N/2t) − (N/q) > 2δN , and so must also

contain a good vertex. Hence, any biclique containing a good vertex has (N/2t)± (N/q) vertices on
each side (i.e., each cloud). Letting m′ denote the number of bicliques that contain good vertices
and assuming q > 2(t + 1)2 and q <

√

1/δ, it follows that m′ = t (because m′ > t is ruled out by
2(t+1)((N/2t)−(N/q)) > N , whereas m′ < t is ruled out by 2(t−1)((N/2t)+(N/q)) < N−2qδN).
Moving all vertices to these m′ = t bicliques and modifying the edges accordingly, we obtain a graph
G′′ that is 2qδ-close to G′. Furthermore, each biclique of G′′ has (N/2t) ± (N/q) good vertices on
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each side. Thus, by moving at most 2t · (N/q) + 2qδN = 2(tN/q + qδ)N vertices and modifying the
edges accordingly, we obtain a graph in BCC ∩ R(k). It follows that G is (δ + 4qδ + 2t/q)-close to
BCC ∩ R(k). Using q = 1/

√
4δ, the claim follows in the current case (i.e., for ℓ = 4).

We now turn to the general case that ℓ ≡ 0 (mod 4). Starting with Item 1, suppose that

G ∈ SCℓC ∩ R(k) and consider the sequences of clouds (S
(1)
0 , ..., S

(1)
ℓ−1) through (S

(m)
0 , ..., S

(m)
ℓ−1)

that are guaranteed by G ∈ SCℓC. Using G ∈ R(k), we infer that for every j ∈ [m] and every
i ∈ {0, 1, ..., ℓ − 1} it holds that

|S(j)
i−1 mod ℓ| + |S(j)

i+1 mod ℓ| = k(N) (29)

and so |S(j)
i | = |S(j)

i+4 mod ℓ| holds for every i, j. Combining the latter with Eq. (29), it follows that
∑

i |S
(j)
i | = (ℓ/2) · k(n) = N/t for every j, which establishes Item 1. (Indeed, if 2N/tℓ is not an

integer, then SCℓC ∩ R(k) = ∅.)
Turning to Item 2, suppose that G is δ-close to both SCℓC and R(k), and let G′ ∈ SCℓC be

δ-close to G. Then, G′ is 2δ-close to R(k), and thus all but at most 2qδ · N vertices have degree
k(N) ± (N/q). (We shall again use q = Θ(1/

√
δ).) We call these non-exceptional vertices good.

Consider the sequences of clouds (S
(1)
0 , ..., S

(1)
ℓ−1) through (S

(m)
0 , ..., S

(m)
ℓ−1) that are guaranteed by

G′ ∈ SCℓC. We say that a cloud S
(j)
i is small (resp., big) if |S(j)

i | < 3qδN (resp., if |S(j)
i | ≥ 3qδN),

and note that big clouds contain good vertices. For each j ∈ [m], we consider the following three
cases.

Case 1: all clouds in the jth super-cycle are small. Assuming that k(N)−N/q > 6qδ ·N , we conclude
that vertices on such super-cycles are not good, and thus their total number is at most 2qδN .

Case 2: the jth super-cycle contains four consecutive clouds that are big; that is, there exists an i0
such that the clouds S

(j)
i0

, S
(j)
i0+1 mod ℓ, S

(j)
i0+2 mod ℓ, S

(j)
i0+3 mod ℓ are all big. In this case, we can

proceed analogously to the perfect case (where all degrees equal k(N)), and infer that |S(j)
i |+

|S(j)
i+2 mod ℓ| = k(N) ± N/q holds for every i, and the number of vertices residing on this

super-cycle is (ℓ/2) · (k(N) ± (N/q)) = (N/t) ± (ℓN/2q). Details follow.

The forgoing claim is established in ℓ − 3 iterations, where in the (i + 1)st iteration we use

hypotheses regarding the sets S
(j)
i0+i mod ℓ, S

(j)
i0+i+1 mod ℓ, S

(j)
i0+i+2 mod ℓ, S

(j)
i0+i+3 mod ℓ and make

an inference reagrding the set S
(j)
i0+i+4 mod ℓ. Specifically, we assume that sets S

(j)
i0+i+1 mod ℓ

and S
(j)
i0+i+3 mod ℓ contain good vertices and that S

(j)
i0+i| ≥ 3qδN − (i − 1)N/2q, and infer

that |S(j)
i0+i+4 mod ℓ| = |S(j)

i0+i| ± 2N/q and thus |S(j)
i0+i+4 mod ℓ| ≥ 3qδN − 2iN/q. Using i < ℓ

and 2ℓN/q < qδN , it follows that S
(j)
i0+i+4 mod ℓ contain good vertices. Having inferred that

all clouds in the jth super-cycle contain good vertices, we infer that |S(j)
i | + |S(j)

i+2 mod ℓ| =
k(N) ± N/q holds for every i.

Case 3: the jth super-cycle has big clouds but no four consecutive clouds are big. We shall show that
in this case the set of these super-cycles is close to one that satisfies the conclusion of Case 2.

Focusing on one such super-cycle (i.e., the jth super-cycle), suppose that the ith cloud is

big and the i − 1st cloud is small. Then, the i + 1st cloud must be big (since |S(j)
i−1 mod ℓ| +

|S(j)
i+1 mod ℓ| ≥ k(N) − N/q > 6qδN), and so either the i + 3rd or the i + 2nd cloud must be

small (because otherwise Case 2 holds). It follows that |S(j)
i+1 mod ℓ| = k(N)±N/q±3qδN and
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|S(j)
i | + |S(j)

i+2 mod ℓ| = k(N) ± N/q, which means that these three sets form a bi-clique with
approximately k(N) vertices on each side and approximately 2k(n) = 4N/tℓ vertices in total.

Considering the approximate number of vertices counted in each of the three cases, we may
ignore Case 1 and conclude that each super-cycle of Case 2 contributes (approximately) N/t
vertices whereas the contribution of Case 3 comes in multiples of 4 · (N/tℓ). Thus, if we
have t′ ≤ t super-cycles in Case 2, then we must have (t − t′) · ℓ/4 bicliques in Case 3. But
in such a case, we can rearrange these bicliques in t − t′ super-cycles of length ℓ such that
each super-cycle contains ℓ/4 bicliques and ℓ/2 small clouds such that each two consecutive
bicliques are connected via a super-path of two small clouds (i.e., the resulting super-cycle
will consist of ℓ clouds such that the ith cloud has size k(N)± (N/q)± 3qδN if ⌊i/4⌋ ∈ {0, 1},
and is small otherwise). Indeed, this may require changing the edges of all vertices that reside
in small clouds, but the number of such vertices is less than tℓ · 3qδN .

Thus, G′ is 3tℓqδ-close to a graph that consists of t super-cycles in which each vertex has degree
k(N)± (N/q)± 3qδN . It follows that G′ is tℓ · (6qδ + 1/q)-close to R(k), and the claim follows (for
any ℓ ≡ 0 (mod 4)).

Finally, we turn to the case that ℓ 6≡ 0 (mod 4). Using notations as in the case of ℓ ≡ 0 (mod 4),

we again have |S(j)
i | = |S(j)

i+4 mod ℓ| for every i, j. However, here (using ℓ 6≡ 0 (mod 4)), we can infer

that |S(j)
i | = |S(j)

i+2 mod ℓ|, and (combining this with Eq. (29)) it follows that |S(j)
i | = k(N)/2 = N/tℓ

holds for each i, j. This establishes Item 1. (Indeed, if N/tℓ is not an integer, then SCℓC ∩R(k) = ∅
follows.)

When proving Item 2, we again let G be δ-close to both SCℓC and R(k), and let G′ ∈ SCℓC be
δ-close to G. Using the same notions of ‘good’ and ‘small’ as before, we again consider the same

three cases regarding each super-cycle (S
(j)
0 , ..., S

(j)
ℓ−1) of G′, where again q = Θ(1/

√
δ).

Case 1: all clouds in the jth super-cycle are small. Again, we conclude that the total number of ver-
tices on such super-cycles is at most 2qδN .

Case 2: the jth super-cycle contains four consecutive clouds that are big. Again, it follows that all clouds

on this super-cycle contain good vertices, and |S(j)
i | + |S(j)

i+2 mod ℓ| = k(N) ± N/q for every
i. However, here we can also infer that each cloud has size (N/tℓ) ± (ℓN/q). This holds

because, using ℓ 6≡ 0 (mod 4), it holds that |S(j)
i | = |S(j)

i+2 mod ℓ| ± 2(ℓ− 1)N/q for every i, and

|S(j)
i | = (k(N) ± (2ℓN/q))/2 = (N/tℓ) ± (ℓN/q) follows. This means that, in this case, all

clouds are big.

Case 3: the jth super-cycle has both small and big clouds. Here we shall show that this case is actu-
ally impossible.

As in the case of ℓ ≡ 0 (mod 4), we first observe that the approximate number of vertices
that resides on super-cycles that satisfy Case 3 is a multiple of 4N/tℓ. Thus, if we have t′ ≥ 0
super-cycles in Case 2, then t′ · ℓ ≡ tℓ (mod 4), whereas t′ ≤ t ∈ Tℓ. By considering both cases
for ℓ 6≡ 0 (mod 4), we infer that t′ = t must hold42, which leaves no room for Case 3.

We conclude that almost all vertices reside in one of t super-cycles, which in turn contain clouds
that are each of size (N/tℓ)±(ℓN/q). Thus, G′ is tℓ2N/q-close to SCℓC∩R(k), and the claim follows
(when using q = Θ(1/

√
δ) again).

42If ℓ ≡ 1 (mod 2), then t′ℓ ≡ tℓ (mod 4) implies t′ ≡ t (mod 4), which implies t′ = t (since t < 4). If ℓ ≡ 2 (mod 4),
then t′ℓ ≡ tℓ (mod 4) implies t′ ≡ t (mod 2), which implies t′ = t (since t = 1).
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Proposition 3.5, restated: Let ℓ ≥ 3 and t ∈ N \ Tℓ, where Tℓ is as in Eq. (28). Then, for any
integer k(N) = 2N/tℓ, there exists an N -vertex graph in R(k) that is O(1/N)-close to SCℓC but
Ω(1)-far from SCℓC ∩ R(k).

Proof: Fix any ℓ 6≡ 0 (mod 4) and t ∈ N \ Tℓ. Then, SCℓC ∩R(k) consists of super-cycles of length
ℓ such that each cloud has size N/tℓ (see the proof of Item 1 of Proposition 3.4, and note that it
does not use the hypothesis t ∈ Tℓ).

43 Indeed, if N/tℓ is not an integer, then SCℓC ∩ R(k) = ∅ and
we are done. Otherwise, let i = 4 if ℓ is odd and i = 2 otherwise, and note that i ≤ t (since t ≥ 4
if ℓ is odd and t ≥ 2 if ℓ ≡ 2 (mod 4)). Note that iℓ ≡ 0 (mod 4), and consider the N -vertex
graph G ∈ R(k) that consists of t − i super-cycles of length ℓ with clouds of size N/tℓ and iℓ/4
bicliques with 2N/tℓ vertices on each side. Observing that we can transform each such biclique
into a super-cycle of length ℓ by moving ℓ − 2 vertices into singleton clouds, it follows that G is
O(1/N)-close to SCℓC (i.e., the distance of G to SCℓC is smaller than 2iℓ2 · (2k(N)/N2) ≤ 32ℓ/tN).
The claim follows by observing that G is Ω(1)-far from SCℓC ∩R(k) (because the collection of iℓ/4
bi-cliques in G is far from a collection of i super-cycles of length ℓ with clouds of size N/tℓ).

A.3 Proof of Proposition 5.5

Proposition 5.5, restated: Let Π1, . . . Πk be disjoint classes of distributions with domain [r].
Assume that for each i ∈ [k] the class Πi has a two-sided error POT that makes ti queries and has
detection probability ̺i. Then, their union Π = ∪i∈[k]Πi has a two-sided error POT that makes
∑

i∈[k] ti queries and has detection probability Ω(min{̺i : i ∈ [k]}).

Before proving the proposition, let us make a comment on the proof of Theorem 5.1. The proof
gives us more information than what is stated in the theorem. Specifically, the proof gives us some
relations between the class of distributions Π and the polynomial P in the statement of the theorem.
This extra information is summarized in Proposition A.14 below. The following definition will be
convenient in the statement of the proposition.

Definition A.13 Let P(q1, . . . , qr) : ∆(r) → R be a polynomial of total degree at most t. Write

P(q1, . . . , qr) =
∑

m:deg(m)≤t

αm · m(q1, . . . , qr),

where the sum is over monomials m of total degree at most t, and αm ∈ R for each monomial m.
The polynomial P is called γ-normalized if |αm| ≤ γ for each monomial m.

Note that, for every γ-normalized polynomial P : ∆(r) → R of degree t, there is a homogeneous
2tγ-normalized polynomial P∗ of the same degree such that P(q) ≥ 0 if and only if P∗(q) ≥ 0 (for
every q in the domain). Specifically, suppose that P(q1, . . . , qr) =

∑

m αm · m(q1, . . . , qr) is a non-
zero polynomial of degree t. By multiplying each monomial m of degree d < t by (

∑

i∈[r] qi)
t−d, we

obtain a homogeneous polynomial P∗(q1, . . . , qr) =
∑

v=(v1,...,vt)∈[r]t
(
∏t

i=1 qvi

)

· βv of degree t that

agrees with P on every point in ∆(r). Note that for each v ∈ [r]t we have βv =
∑

m αm, where
the sum is over all monomials m that divide

∏t
i=1 qvi . (Indeed, the above reproduces an argument

that was outlined in the proof of Theorem 5.1.) We note that the proof of Theorem 5.1 actually
establishes the following.

43The hypothesis t ∈ Tℓ is only used when establishing Item 2 of Proposition 3.4 (for the case of ℓ 6≡ 0 (mod 4)).
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Proposition A.14 (Theorem 5.1, revised): A property Π of distributions with domain [r] has a
two-sided error POT that makes t queries and has detection probability ̺ : (0, 1] → (0, 1] if and
only if there exists a 1-normalized polynomial P : ∆(r) → R of degree t satisfying the following
conditions:

1. P(q) ≥ 0 for every q ∈ Π.

2. If q ∈ ∆(r) is ǫ-far from Π, then P(q) < −̺(ǫ).

Moreover, if P is a γ-normalized polynomial of degree t, then Π = {q ∈ ∆(r) : P(q) ≥ 0} has a
two-sided error POT TΠ that makes t queries, whose acceptance probability when testing q ∈ ∆(r)

can be written as

Pr[TΠ accepts q] =
1

2
+

1

2t+1γ
P(q).

We now turn to the proof of Proposition 5.5.

Proof: We give a proof for the special case of k = 2. The proof for larger values of k follows by
induction on k.

Since each of the classes Πi (i = 1, 2) has a two-sided error POT, by Proposition A.14 there
are 1-normalized polynomials Pi : ∆(r) → R of degree ti, such that Pi(q) ≥ 0 for all q ∈ Πi, and
Pi(q) < −̺i(ǫ) for any q ∈ ∆(r) that is ǫ-far from Πi. Define a polynomial P : ∆(r) → R of degree
t1 + t2 to be

P(q) = −δ · (P1(q) · P2(q)),

where δ > 0 is some constant (e.g., δ = 2−2(t1+t2+1)), assuring that P is 2−t1−t2−1-normalized. By
applying Proposition A.14 with the polynomial P, we obtain a POT TΠ for Π = Π1∪Π2 that makes
t1 + t2 queries, as the total degree of P is at most t1 + t2.

We show below that the detection probability of TΠ is Ω(min(̺1, ̺2)). By Proposition A.14
it is enough to show that any q ∈ ∆(r) that is ǫ-far from Π satisfies the inequality P(q) <
−Ω(min(̺1(ǫ), ̺2(ǫ))).

By continuity of P1, since Π1 = {q : P1(q) ≥ 0} is the preimage of closed set [0,∞) ⊆ R under P1,
it follows that Π1 is a closed subset of ∆(r). Similarly Π2 is also a closed subsets of ∆(r). Therefore,
since Π1 and Π2 are disjoint closed sets, there exists some γ > 0 such that dist(q(1), q(2)) > γ for

all q(1) ∈ Π1 and q(2) ∈ Π2.
Fix ǫ < γ/2 and let q = (q1, . . . , qr) be a distribution satisfying dist(q, Π) = ǫ. If dist(q, Π1) = ǫ,

then, by letting η = dist(q, Π2), the triangle inequality gives us η > γ/2. Therefore, by using the
bounds P1(q) < −̺1(ǫ) and P2(q) < −̺1(η) we have

P(q) = −δ · (P1(q) · P2(q))

< −δ · ̺1(ǫ) · ̺2(η)

≤ −δ · ̺1(ǫ) · ̺2(γ/2),

where the second inequality follows from monotonicity of ̺2. Similarly, if dist(q, Π2) = ǫ, then
P(q) < −δ · ̺2(ǫ) · ̺1(γ/2). In both cases we have P(q) < −Ω(min(̺1(ǫ), ̺2(ǫ))), where the constant
in the Ω() notation depends only on Π1 and Π2 (i.e., it is δ ·min(̺1(γ/2), ̺2(γ/2))). This completes
the proof of Proposition 5.5.
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A.4 Strengthening Corollary 5.8

In this section we strengthen Corollary 5.8 on testing classes of distributions defined by an ellipsoid.
Recall the definition of Π(p,B) in Eq. (16). For p = (p1, . . . , pr) and B = (B0; B1 . . . Br) ∈ R

r+1,

such that B0 ≥ 0 and Bi > 0 for all i ∈ [r], let Π(p,B) be the ellipsoid in ∆(r) defined as

Π(p,B) = {q = (q1, . . . , qr) :
∑

i∈[r]

Bi(qi − pi)
2 ≤ B0}.

Proposition A.15 Fix r ≥ 2, and let p = (p1, . . . , pr) and B = (B0; B1 . . . Br) ∈ R
r+1, such that

Bi > 0 for all i = 0, 1, . . . , r. Then, the property Π(p,B) has a two-sided error POT, that makes two
queries and has linear detection probability.

Proof: As in the proof of Corollary 5.8, define a polynomial P in r variables, that is non-negative
for all points (q1, . . . , qr) in the ellipsoid, and negative outside the ellipsoid. Namely

P(q1, . . . , qr) = B0 −
∑

i∈[r]

Bi(qi − pi)
2.

Clearly Π(p,B) = {q : P(q) ≥ 0}. The following claim completes the proof of the proposition.

Claim A.15.1 For any q = (q1, . . . , qr) that is ǫ-far from Π(p,B), it holds that

∑

i∈[r]

Bi(qi − pi)
2 > B0 + Ω(ǫ), (30)

where the constant in the Ω() notation depends only on B.

According to Claim A.15.1 for any q = (q1, . . . , qr) ∈ ∆(r) that is ǫ-far from Π(p,B) it holds that
P(q1, . . . , qr) < −Ω(ǫ). The proposition follows by normalizing P and applying the characterization
given in Proposition A.14.

We return to the proof of Claim A.15.1.

Proof: Consider the distribution q′ = (q′1, . . . , q
′
r), which is a convex combination of p and q, such

that
∑

i∈[r] Bi(q
′
i − pi)

2 = B0. The expression
∑

i∈[r] Bi(qi − pi)
2 can be bounded from below as

follows:
∑

i∈[r]

Bi(qi − pi)
2 =

∑

i∈[r]

Bi((q
′
i − pi) + (qi − q′i))

2

=
∑

i∈[r]

Bi(q
′
i − pi)

2 +
∑

i∈[r]

Bi(qi − q′i)
2 + 2

∑

i∈[r]

Bi(q
′
i − pi)(qi − q′i)

≥
∑

i∈[r]

Bi(q
′
i − pi)

2 + 2
∑

i∈[r]

Bi(q
′
i − pi)(qi − q′i).

Since q′ is a convex combination of p and q, for each i ∈ [r] it holds that q′i ≥ pi if and only if
q′i ≤ qi, and in particular (q′i − pi)(qi − q′i) ≥ 0. Therefore

∑

i∈[r] Bi(qi − pi)
2 can be bounded from

below by

∑

i∈[r]

Bi(qi − pi)
2 ≥

∑

i∈[r]

Bi(q
′
i − pi)

2 + 2 min
i∈[r]

{Bi} ·





∑

i∈[r]

(q′i − pi)(qi − q′i)



 . (31)
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By the choice of q′ ∈ ∆(r) the first sum equals to B0. Therefore, in order to prove the claim it is
enough to show that

∑

i∈[r](q
′
i−pi)(qi− q′i) > Ω(ǫ), where the constant in the Ω() notation depends

only on B.
Using again the fact that q′ is a convex combination of p and q, we conclude that the vectors

(

q′ − p
)

and
(

q − q′
)

are co-linear, and thus

∑

i∈[r]

(q′i − pi)(qi − q′i) =

√

∑

i∈[r]

(q′i − pi)2 ·
√

∑

i∈[r]

(qi − q′i)
2. (32)

We bound from below each term of the product separately. The first term is upper bounded as
following.

√

∑

i∈[r]

(q′i − pi)2 ≥
√

√

√

√

∑

i∈[r]

Bi

maxj∈[r]{Bj}
· (q′i − pi)2 =

√

B0

maxj∈[r]{Bj}
.

where the equality is by the choice of q′ that satisfies
∑

i∈[r] Bi(q
′
i − pi)

2 = B0. The second term
can be upper bounded by applying Cauchy-Schwarz inequality.

√
r

√

∑

i∈[r]

(qi − q′i)
2 ≥

∑

i∈[r]

|qi − q′i| > 2ǫ,

where the second inequality uses the assumption that q′ ∈ Π(p,B), and q is ǫ-far from Π(p,B). This
implies a lower bound on Eq. (32). Specifically, we have

∑

i∈[r]

(q′i − pi)(qi − q′i) ≥
2√
r
·
√

B0

maxj∈[r]{Bj}
· ǫ.

Then, by plugging it in Eq. (31) we complete the proof of the claim.

A.5 Testable classes of distributions are not closed under taking complements

Following the remark in the end of Section 5.2, we describe a class of ternary distributions Π ⊆ ∆(3)

that has a POT, while cl(∆(3) \ Π) does not have one44. We start with the following claim.

Claim A.16 Let D = {(x, y) ∈ [0, 1]2 : x + y ≤ 1} be a subset of R
2. For α ∈ (0, 1) let A =

{(x, y) ∈ D : P(x, y) ≥ 0}, where P : D → R is the polynomial P(x, y) = y2 − (x − α) · x2. Then,
there is no real polynomial Q such that cl(D \ A) = {(x, y) ∈ D : Q(x, y) ≥ 0}, where cl(D \ A) is
the closure of the complement45 of A in D.

Proof: Note first that A can be written as

A = {(x, y) ∈ D|x ≤ α} ∪ B,

where

B =

{

(x, y) ∈ D
∣

∣

∣

∣

x ≥ α, y ≥ x
√

(x − α)

}

.

44By cl(∆(3) \ Π) we refer to the set of all (q1, q2, q3) ∈ ∆(3), such that for all ǫ > 0 there is (q′1, q
′
2, q

′
3) ∈ ∆(3) \ Π

that satisfies 1
2
(|q1 − q′1| + |q2 − q′2| + |q3 − q′3|) < ǫ.

45By cl(D \ A) we refer to the set of all (x, y) ∈ D, such that for all ǫ > 0 there is (x′, y′) ∈ D \ A that satisfies
1
2
(|x − x′| + |y − y′|) < ǫ.
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In particular the boundary of A is ∂A =

{

(

x, x
√

(x − α)
)

∣

∣

∣

∣

x ∈ [α, 1]

}

, which can also be written

as
∂A =

{(

x2, x2 · (x − α)
)

|x ∈ [
√

α, 1]
}

.

Assume towards contradiction that there is a polynomial Q that satisfies the condition stated
in the claim, namely cl(D \ A) = {(x, y) ∈ D : Q(x, y) ≥ 0}. Then, in particular (1) Q must be zero
on the boundary of A, and (2) for any (x, y) ∈ A \ ∂A, it must be the case that Q(x, y) < 0. We
prove below that no polynomial satisfies these two conditions simultaneously. Specifically we show
that any polynomial satisfying (1), must vanish at the point (0, 0) ∈ A \ ∂A, thus contradicting
condition (2).

Let Q be a polynomial that vanishes of ∂A. Note that the polynomial P is irreducible46, and
the two polynomials P and Q agree on the curve ∂A =

{(

x2, x2 · (x − α)
)

|x ∈ [
√

α, 1]
}

, Therefore,
since the two polynomials have infinitely many common zeros, by Bezout’s theorem, they have
a common non-trivial factor, i.e., there is a non-constant polynomial R, such that P = R · P′ and
Q = R · Q′, for some polynomials P′ and Q′. However, since P is irreducible, we conclude that P′ is
some constant polynomial and R = cP for some non-zero constant c ∈ R, and thus Q can be written
as Q = c · P · Q′. Therefore, since P vanishes at (0, 0) it follows that Q also vanishes and (0, 0). The
claim follows.

Using Claim A.16 we exhibit a property of ternary distributions Π that has a POT, while
cl(∆(3) \ Π) does not have one.

Proposition A.17 Let α ∈ (0, 1) and let P(x, y) = y2 − (x − α) · x2 be as in Claim A.16. Define
Π ⊆ ∆(3) to be

Π = {(q1, q2, q3) ∈ ∆(3) : P(q1, q2) ≥ 0}.
Then, Π has a two-sided error POT, while the property cl(∆(3) \ Π) does not have one.

Proof: Clearly, by Theorem 5.1, Π has a two-sided error POT. In order to prove that Π′ :=
cl(∆(3) \Π) does not have a two-sided error POT, it is enough to show that there is no polynomial
P′ : ∆(3) → R, that satisfies Π′ = {(q1, q2, q3) ∈ ∆(3) : P′(q1, q2, q3) ≥ 0}, which follows easily from
Claim A.16. Details follow.

Assume towards contradiction that such polynomial P′ exists. Define a real polynomial Q : D →
R to be

Q(x, y) = P′(x, y, 1 − x − y),

where D = {(x, y) ∈ [0, 1]2 : x + y ≤ 1}, as in Claim A.16. Note that (x, y, 1 − x − y) ∈ ∆(3) for all
(x, y) ∈ D, and thus Q is well defined.

Let A = {(x, y) ∈ D : P(x, y) ≥ 0}. It is a routine exercise to show that Q(x, y) ≥ 0 if and
only if (x, y) ∈ cl(D \ A), by using the definition of Q, as well as the definitions of cl(∆(3) \ Π) and
cl(D\A). By Claim A.16, such polynomial does not exists, thus contradicting the assumption that
Π′ has a POT.

46Namely, P cannot be written as a product of two polynomials of smaller degree. This can be checked by writing
P either as P(x, y) = (y2 + ay +

P3
i=0 bix

i)(
P3

i=0 cix
i) or P(x, y) = (y +

P3
i=0 dix

i)(y +
P3

i=0 eix
i), and verifying that

P has no non-trivial factorizations.
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A.6 Proof of Claim 6.1

Claim 6.1, restated: Let H = ([n], F ) be a fixed graph. For every two graphs G = ([N ], E) and
G′ = ([N ], E′) such that N ≥ qn, if G and G′ are ǫ-close, then

|ρH(G) − ρH(G′)| =
|indH(G) − indH(G′)|

N choosen
≤ ǫn2,

where indH(G) = ρH(G) ·
(N

n

)

denotes the number of induced copies of H in G.

Proof: Assume that G and G′ are ǫ-close. Then, there is a sequence of graphs on N vertices
(G0 = G,G1, . . . , Gt = G′), where t ≤ ǫN2, such that Gi and Gi+1 differ by exactly one edge, for
every i ∈ {0, . . . , t − 1}. Note that for every such i we have

|indH(Gi) − indH(Gi+1)| ≤
(

N − 2

n − 2

)

as one pair of vertices is contained in at most
(N−2

n−2

)

subgraphs on n vertices. Therefore, by the
triangle inequality, we have

|indH(G) − indH(G′)|
(N

n

) ≤
t
∑

i=1

|indH(Gi) − indH(Gi+1)|
(N

n

) ≤ ǫN2

(N−2
n−2

)

(N
n

) ≤ ǫn2.

The claim follows.

A.7 Proof of Lemma 6.3.2

Lemma 6.3.2, restated: Fix t ≥ 2 and let ρ = (ρ1, . . . , ρt). Let G′ = ([N ], E′) ∈ CC≤t, and
assume that dist(St+1

ρ ,St+1
G′ ) ≤ ǫ′. Then, G′ is O( t

√
ǫ′)-close to CC(ρ), where the constant in the

O() notation depends only on t.

We first observe that for any ρ = (ρ1, . . . , ρt) and ρ′ = (ρ′1, . . . , ρ
′
t), the distance between (N -

vertex) graphs in CC≤t that have the corresponding clique-densities is upper bounded by δ
def
=

∑

i∈[t] |ρi − ρ′i|. This holds because it suffices to move δN vertices among the cliques of one graph
in order to result in the other. This observation, which will be used several times in the section, is
summarized in the following claim.

Claim A.18 Fix t ≥ 2. For given ρ = (ρ1, . . . , ρt) and ρ′ = (ρ′1, . . . , ρ
′
t), let G = ([N ], E) ∈ CC(ρ)

and G′ = ([N ], E′) ∈ CC(ρ′). If
∑

i∈[t] |ρi − ρ′i| < ǫ, then G is ǫ-close to G′.

A warm-up (the case t = 2). Before proving Lemma 6.3.2 for all t ≥ 2, let us consider a special
case of t = 2, i.e., the graph G′ consists of two cliques of densities ρ′ and 1 − ρ′. Then

α′
0 := Pr[S3

G = I3] = 0

α′
1 := Pr[S3

G is a graph with exactly one edge] = ρ′(1 − ρ′)

α′
2 := Pr[S3

G = P3] = 0

α′
3 := Pr[S3

G = K3] = (ρ′)3 + (1 − ρ′)3.

By the hypothesis of Lemma 6.3.2 we have |ρ′(1 − ρ′) − ρ(1 − ρ)| < ǫ′, which implies either
|ρ − ρ′| < O(

√
ǫ′) or |ρ − (1 − ρ′)| < O(

√
ǫ′). By applying Claim A.18 we conclude the lemma for

the special case of t = 2.
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The general case (i.e., t ≥ 2). We shall proceed in two steps corresponding to the two parts
of the following lemma, while noting that the second part coincides with Lemma 6.3.2.

Lemma A.19 (Lemma 6.3.2, rephrased) Fix t ≥ 2 and let G = ([N ], E) ∈ CC≤t. Then

1. The distribution St+1
G uniquely defines the graph G. That is, the distribution St+1

G uniquely
determines ρ such that G ∈ CC(ρ).

2. If G′ = ([N ], E′) ∈ CC≤t and the statistical distance between St+1
G and St+1

G′ is at most ǫ′, then

G′ is O( t
√

ǫ′)-close to G, where the constant in the O() notation depends only on t.

Proof: Since G ∈ CC≤t, it holds that G ∈ CC(ρ) for some ρ = (ρ1, . . . , ρt). In the first item we
need to show that St+1

G uniquely defines ρ. In order to achieve this goal, we use the following two
claims. (which will be proved later).

Claim A.19.1 There are s1, s2, . . . , st ∈ [0, 1] that depend only on St+1
G such that

∑

i∈[t]

(ρi)
k = sk for k = 1, . . . , t. (33)

More specifically, each sk can be expressed as

sk =
∑

H

αk(H)St+1
G (H), (34)

where the sum is over graphs H with t + 1 vertices, and αk(H) depends only on k and H.

Claim A.19.2 For any given s1, . . . , st ∈ R the system of equation in Eq. (33) (in variables
ρ1, . . . , ρt) has a unique solution over the complex numbers, up to a permutation of the variables.

Given the two claims, consider the unique solution of the system Eq. (33). Since the clique
densities of G constitutes a solution, it follows that it is the unique solution, which proves the first
item of the lemma.

For the second item, let G′ ∈ CC≤t. Then we can write G′ ∈ CC(ρ′) for some ρ′ = (ρ′1, . . . , ρ
′
t).

Define s′k analogously to Claim A.19.1, such that
∑

i∈[t](ρ
′
i)

k = s′k for k = 1, . . . , t. Applying
expression Eq. (34) for every k = 1, . . . , t we have

|sk − s′k| =

∣

∣

∣

∣

∣

∑

H

αk(H)St+1
G (H) −

∑

H

αk(H)St+1
G′ (H)

∣

∣

∣

∣

∣

≤
∑

H

αk(H) ·
∣

∣St+1
G (H) − St+1

G′ (H)
∣

∣

= 2 max
H

{αk(H)} · dist(St+1
G (H),St+1

G′ (H))

= O(ǫ′),

where the constant in the O() notation depends only on t. The following claim (to be proved later)
allows us to complete the proof of the lemma. (Actually, given Claim A.19.1, the following claim
is the actual core of the lemma.)
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Claim A.19.3 Let s1, . . . , st, s
′
1, . . . , s

′
t ∈ [0, 1] such that, for every k ∈ [t], we have |sk−s′k| ≤ O(ǫ′).

Assume that (ρ1, . . . , ρt) ∈ [0, 1]t satisfy

∑

i∈[t]

(ρi)
k = sk for k = 1, . . . , t, (35)

and (ρ′1, . . . , ρ
′
t) ∈ [0, 1]t satisfy

∑

i∈[t]

(ρ′i)
k = s′k for k = 1, . . . , t. (36)

Then, there is a permutation π of the index set {1, . . . , t}, that satisfies |ρi − ρ′π(i)| = O( t
√

ǫ′) for

every i ∈ [t], where the constant in the O() notation depends only on t.

By Claim A.19.3 above, we have G ∈ CC(ρ) and G′ ∈ CC(ρ′) such that

∑

i∈[t]

|ρi − ρ′i| = O(
t
√

ǫ′).

By applying Claim A.18, we conclude that G and G′ are O( t
√

ǫ′)-close, where the constant in the
O() notation depends only on t. This completes the proof of the lemma.

We now turn to the proofs of the subclaims stated during the proof of Lemma A.19. The proofs
rely on basic results regarding symmetric polynomials, power sums, and continuity of the roots in
algebraic equation.

Proof of Claim A.19.1 For the special case of k = 1 we have s1 = 1, as
∑

i∈[t] ρi = 1. Therefore
we let k ∈ {2, . . . , t} and consider the following polynomial.





∑

i∈[t]

(ρi)
k



 ·





∑

j∈[t]

ρj





t+1−k

. (37)

Since
∑

i∈[t] ρi = 1, the expression in Eq. (37) equals to
∑

i∈[t](ρi)
k. Thus it is enough to show that

Eq. (37) can be written as
∑

H

αk(H)St+1
G (H)

for some αk(H). Let H = ([t+1], EH ) ∈ CC≤t be a graph with at most t cliques of sizes (c1, . . . , ct),
where some of ci’s might be zeros. Then

St+1
G (H) =

1

KH

∑

σ∈St

∏

i∈[t]

(ρσ(i))
cσ(i) , (38)

where St denotes the set of permutations on [t], and KH ≥ 1 is some constant47 that depends only
on (c1, . . . , ct).

It is a standard fact that the set {St+1
G (H) : H = ([t], E)}, considered as polynomials in the

variables ρ1, . . . , ρt, forms a basis for the space of symmetric polynomial of degree t + 1. Thus,
since the expression Eq. (37) is a symmetric homogeneous polynomial of degree t + 1, it can be

47In fact, KH = k1! · k2! · · · kt!, where ki = |{j : cj = i}| is the number of i-cliques in H .
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written as a linear combination of polynomials in Eq. (38). Therefore for every k the power sum
∑

i∈[t](ρi)
k can be written as

∑

H αk(H)St+1
G (H) for some coefficients αk(H).

Proof of Claim A.19.2 The system of equations Eq. (33), can be solved using Newton’s
identities, by reducing the problem to a univariate monic polynomial of degree t. More explicitly,
define the matrix Mk(s) ∈ R

k×k as

Mk(s) =





















s1 1 0 . . . 0 0
s2 s1 2 . . . 0 0

s3 s2 s1
. . . 0 0

...
...

...
. . .

. . .
...

sk−1 sk−2 sk−3 . . . s1 k − 1
sk sk−1 sk−2 . . . s2 s1





















for k = 1 . . . t. (39)

Define Λk(s) to be

Λk = Λk(s) =
(−1)k

k!
det[Mk(s)], (40)

and consider the polynomial

Ps(x) = xt + Λ1x
n−1 + Λ2x

n−2 + . . . + Λn.

Then, the t roots of Ps are the unique, up to a permutation, solution of the system Eq. (33) (for
details see, e.g., [WH]).

Proof of Claim A.19.3 As explained in the proof of Claim A.19.2, the vector (ρ1, . . . , ρt) consist
exactly of all the roots of the monic polynomial

Ps(x) = xt + Λ1x
t−1 + Λ2x

t−2 + . . . + Λt, (41)

where Λk’s are given in Eq. (40). That is Ps(x) =
∏t

i=1(x − ρi). Similarly, the vector (ρ′1, . . . , ρ
′
t)

contains exactly all the roots of the polynomial

Ps′(x) = xt + Λ′
1x

t−1 + Λ′
2x

t−2 + . . . + Λ′
t (42)

with Λ′
k = Λ′

k(s′) defined analogously, i.e., Ps′(x) =
∏t

i=1(x − ρ′i).
Next, we claim that

|Λk − Λ′
k| = O(ǫ′) for k = 1, . . . , t. (43)

Indeed, by the assumption of the claim we have |si − s′i| < O(ǫ′) for every i = 1, . . . , t. Thus,
considering Eq. (39) and Eq. (40), we have

|Λk − Λ′
k| =

∣

∣

∣

∣

(−1)k

k!
det[Mk(s)] − (−1)k

k!
det[Mk(s′)]

∣

∣

∣

∣

[ triangle inequality] ≤ 1

k!

∑

σ∈Sk

∣

∣

∣

∣

∣

∣

t
∏

i=1

(M(s))i,σ(i) −
t
∏

j=1

(M(s′))j,σ(j)

∣

∣

∣

∣

∣

∣

≤ max
σ∈Sk





t
∏

i=1

(M(s))i,σ(i) −
t
∏

j=1

(M(s′))j,σ(j)





≤ O(ǫ′),
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where the last inequality relies on the fact that all entries of the matrices M(s) and M(s′) are
between 0 and k−1, together with the observation that for all m1, . . . ,mk ∈ [0, k−1] and ǫi, . . . , ǫk,
such that |ǫi| < O(ǫ′) for all i, we have |∏i∈[k](mi + ǫi) −

∏

i∈[k] mi| = O(ǫ′).
Having established Eq. (43), we have two monic polynomials Ps and Ps′ in Eq. (41) and Eq. (42),

whose coefficients differ by at most O(ǫ′). Recall, the roots of Ps are (ρ1, . . . , ρt), and the roots of Ps′

are (ρ′1, . . . , ρ
′
t). The claim follows from continuity of the roots of monic polynomials. Specifically,

we quote a theorem due to Ostrowski [Ost, Appendix A].

Theorem A.20 Let f and g be two monic polynomials f(z) =
∑t

i=1 aiz
i and g(z) =

∑t
i=1 biz

i

such that at = bt = 1. Let x1, . . . , xt be the t roots of f(z) (with multiplicities), and let y1, . . . , yt

be the roots of g(z). For
γ = max

i∈[t]
{|xi|, |yi|} (44)

introduce the expression

ǫ = t

√

√

√

√

t
∑

i=1

|bi − ai|γi. (45)

Then, the roots xi and yi can be ordered in such a way that

|xi − yi| < 2tǫ for i = 1, . . . , t. (46)

We apply Theorem A.20 to the polynomials Ps and Ps′ . By Eq. (43), the coefficients of the
polynomials differ by at most O(ǫ′). Recall that the roots of the polynomials are the densities of
the cliques in G and G′, and hence they all lie in the interval [0, 1]. Therefore, γ in Eq. (44) is
bounded by 1, and hence ǫ is Eq. (45) is bounded by O( t

√
ǫ′). Hence, by Theorem A.20 there is an

ordering of the roots such that |ρi − ρ′i| < O( t
√

ǫ′). This completes the proof of Claim A.19.3.
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