
On the possibilities and limitations of pseudodeterministic

algorithms

Oded Goldreich∗ Shafi Goldwasser† Dana Ron‡

August 10, 2012

Abstract

We study the possibilities and limitations of pseudodeterministic algorithms, a notion put
forward by Gat and Goldwasser (2011). These are probabilistic algorithms that solve search
problems such that on each input, with high probability, they output the same solution, which
may be thought of as a canonical solution. We consider both the standard setting of (proba-
bilistic) polynomial-time algorithms and the setting of (probabilistic) sublinear-time algorithms.
Some of our results are outlined next.

In the standard setting, we show that pseudodeterminstic algorithms are more powerful than
deterministic algorithms if and only if P 6= BPP, but are weaker than general probabilistic algo-
rithms. In the sublinear-time setting, we show that if a search problem has a pseudodeterminstic
algorithm of query complexity q, then this problem can be solved deterministically making O(q4)
queries. This refers to total search problems. In contrast, for several natural promise search
problems, we present pseudodeterministic algorithms that are much more efficient than their
deterministic counterparts.

Keywords: Search problems, BPP, ZPP, unique solutions, sublinear-time computations

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il Partially supported by the Israel Science Foundation (grant No. 1041/08).
†MIT (Cambridge, MA, USA) and Weizmann Institute of Science (Rehovot, Israel).

shafi.goldwasser@weizmann.ac.il
‡Department of EE–Systems, Tel-Aviv University, Ramat-Aviv, Israel. danar@eng.tau.ac.il Partially sup-

ported by the Israel Science Foundation (grant No. 246/08).

1 Introduction

In [5], Gat and Goldwasser initiated a study of probabilistic (polynomial-time) search algorithms
that, with high probability, output the same solution. That is, for a fixed binary relation R,
such algorithms associate a canonical solution, denoted s(x), with any instance x such that, with
overwhelmingly high probability, on input x the algorithm outputs s(x).

Algorithms that satisfy the foregoing condition are called pseudodeterministic1, because they
essentially offer the same functionality as deterministic algorithms; that is, they produce a fixed
(canonical) output for each possible input (except with negligible error probability). In contrast,
arbitrary probabilistic algorithms that solve search problems may output different solutions when
presented with the same input (but using different internal coin tosses); that is, on input x, with
overwhelmingly high probability, the output is arbitrarily distributed among all valid solutions for
x (e.g., it may be uniformly distributed).

Pseudodeterministic algorithms have the appealing feature that they (typically) yield the same
result, when invoked on the same input. Thus if two parties invoke the algorithm on the same
input at different times and locations (and using different sources of randomness), they are still
guaranteed to obtain the same result, except very rarely. Needless to say, the lack of such agreement
is a drawback of standard probabilistic algorithms.

The notion of a canonical solution is quite natural, and has appeared in various contexts such
as the notion of canonical labeling of graphs, cf. [1]. Furthermore, probabilistic algorithms that
find canonical solutions for natural problems (for which no deterministic algorithms is known) were
implicit in work of Lenstra and de Smit [14].

In addition to defining pseudodeterministic algorithms and presenting pseudodeterministic
polynomial-time algorithms for several natural search problems (which were previously known to be
solvable probabilistically), Gat and Goldwasser [5] characterized the class of search problems having
such algorithms. They showed that a search problem has a polynomial-time pseudodeterministic
algorithm if and only if solving the search problem is reducible in deterministic polynomial-time to
some set in BPP (see Theorem 2.2).

Many questions come to mind: Do polynomial-time pseudodeterministic algorithms exist for all
search problems that can be solve in probabilistic polynomial-time? Or, to the other extreme, do
polynomial-time pseudodeterministic algorithms exist only for search problems that can be solved
in deterministic polynomial-time? And what happens in the context of sublinear time and query
complexity?

The latter question is appealing since probabilism is essential to any sublinear-time algorithm
that solves a “non-degenerate problem”. Thus, unlike in the context of polynomial-time, there
are a huge number of probabilistic sublinear-time algorithms (cf., the property testing literature).
Furthermore, many property testing algorithms yield algorithms that solve related search problems
(e.g., finding a k-partition with few violating edges [8]), and in all cases that come to mind these
algorithms are not pseudodeterministic. An intriguing question is whether this is inherent.

1.1 Our results

In the current work, we advance the understanding of probabilistic algorithms for finding canonical
solutions, considering both the standard context of polynomial-time algorithms and the context
of sublinear-time algorithms. In both cases, we explore the possibilities and limitations of such
algorithms, but the results provided in the sublinear case are more natural.

1We mention that pseudodeterministic polynomial-time algorithms were also called Bellagio algorithms (in [5]).

1

The standard context (of PPT algorithms). The characterization of the class of search prob-
lems having pseudodeterministic algorithms (in terms of P-reducibility2 to BPP (i.e., Theorem 2.2))
implies that pseudodeterminstic algorithms may exceed the scope of deterministic algorithms only
if BPP 6= P. We first show that this necessary condition is also sufficient; in other words, if pseu-
dodeterminstic algorithms do not exceed the scope of deterministic algorithms, then BPP = P.
On the other hand, we show that there exist search problems that can be solved in probabilistic
polynomial-time but have no pseudodeterminstic algorithms. Thus, in the context of solving search
problems in polynomial-time, pseudodeterminstic algorithms are more powerful than deterministic
algorithms if and only if P 6= BPP, but are weaker than general probabilistic algorithms.

We also discuss a zero-error version of the notion of pseudodeterministic algorithms; that is,
these algorithms never output a solution that differs from the canonical one (but they may rather
halt, with small probability, while providing a special error indication). We show that this class
equals the class of search problems that are P-reducible to ZPP.

The context of sublinear-time algorithms. We show several limitations on the scope of
finding canonical solutions in probabilistic sublinear number of queries. Firstly, this is not possible
for problems that have instances of linear sensitivity (i.e., search problems R having infinitely
many instance x such that the set of solutions associated with x does not intersect the set of
solutions associated with most strings obtained by flipping one bit of x). Note that many natural
search problems have such instances. Secondly, with respect to non-adaptive algorithms, finding
canonical solutions probabilistically is not easier than doing so deterministically. Lastly, even when
adaptivity is allowed, finding canonical solutions probabilistically is not significantly easier than
doing so deterministically. In particular, if this can be done in a constant or poly-logarithmic
number of queries, then it can be done so deterministically. In general, the speed-up offered by
probabilism (over determinism) is at most polynomial.

The aforementioned negative result implies a huge gap between probabilistic algorithms and
pseudodeterministic ones: There exist search problems that are solved probabilistically in a constant
number of queries but have no pseudodeterministic algorithm of sublinear query complexity. We
also demonstrate the existence of a three-way separation between probabilism, pseudodeterminism,
and determinism: There exist problems in which the query complexities are O(1), nc for some
c ∈ (0, 1), and Ω(n), respectively.

The above negative results leave some room for sublinear-time pseudodeterministic algorithms.
Firstly, pseudodeterministic algorithms may be somewhat faster than their deterministic counter-
parts, provided that they are adaptive and that the search problem has no instances of linear
sensitivity. Secondly, the negative results refer to total search problems; that is, the search al-
gorithm is required to work for all possible inputs (and not for a subset of them). In contrast,
strong “disconnectivity” of the (promise) set of legitimate inputs allows probabilistic algorithms to
find canonical solutions much more efficiently than deterministic ones. Several natural cases are
presented in Section 4, and include search problems for graphs in the adjacency matrix model and
in the incidence lists model. We discuss one, referring to the adjacency matrix model, next.

Suppose that we are presented with a huge graph G that is obtained by a blow-up of some
small unknown graph H (i.e., each vertex of H is replaced by a cluster of m ∈ [M, 2M] vertices and
edges of H are replaced by complete bipartite graphs). That is, G has some underlying structure
(captured by H), and we are interested in finding this underlying structure (or finding substructures
in it). Then, a pseudodeterministic algorithm may have complexity related to the size of H, whereas
the complexity of any deterministic algorithm will be related to the size of G.

2A P-reduction is a deterministic polynomial-time Turing reduction.

2

1.2 Organization

In Section 2 we present the basic definitions as well as the characterization result of [5], which are
the starting point of our study. In Section 3, we consider the standard context of polynomial-time
algorithms, whereas in Section 4 we consider the context of sublinear time and query algorithms.
Finally, in Section 5, we discuss a zero-error version of the notion of pseudodeterministic algorithms.

2 Background

Our starting point is the following notion, explicitly introduced by Gat and Goldwasser [5]. As
usual, the definition refers to a fixed error probability (of 1/3), and the ramification for other error
bounds is straightforward.

Definition 2.1 (finding canonical solutions and pseudodeterministic algorithms [5]):3 Let R ⊆
{0, 1}∗ × {0, 1}∗ be a binary relation, and let R(x) = {y : (x, y) ∈ R} and SR = {x : R(x) 6=
∅}. Suppose that the empty string is never a solution; that is, λ 6∈ R(x) for all x. A (possibly
probabilistic) algorithm A finds canonical solutions with respect to R if there exists a function s :
{0, 1}∗ → {0, 1}∗ such that the following conditions hold:

1. For every x ∈ SR it holds that s(x) ∈ R(x), whereas s(x) = λ for every x ∈ {0, 1}∗ \ SR.

2. For every x ∈ {0, 1}∗, it holds that Pr[A(x)=s(x)] ≥ 2/3.

The function s is called a canonical solution function for R and A is called a pseudodeterministic
algorithm for R.

In the context of polynomial-time algorithms, Definition 2.1 is robust in the sense that replacing the
threshold 2/3 by either 0.5 + 1/poly(|x|) or 1− exp(−poly(|x|)) yields the same class (via standard
error reduction). In other settings (where the complexity measures are more refined), the same
error reduction applies, but one should bear in mind its cost (e.g., going from error probability
of 1/3 to error probability δ costs a multiplicative factor of O(log(1/δ)) in all complexities). Also,
any deterministic algorithm for finding solutions w.r.t R finds canonical solutions w.r.t R.

Of course, a probabilistic (polynomial-time) algorithm for finding canonical solutions w.r.t R
is of interest only if it is (significantly) faster than the known deterministic algorithm (e.g., if
no deterministic (polynomial-time) algorithms are known for finding solutions w.r.t R). Gat and
Goldwasser presented several such examples as well as established the following necessary and
sufficient condition for such algorithms:

Theorem 2.2 (a characterization [5]): A relation R has a pseudodeterministic polynomial-time
algorithm if and only if finding solutions w.r.t R is P-reducible to some set in BPP, where a
P-reduction is a deterministic polynomial-time Turing reduction.

In particular, if BPP = P, then the existence of a probabilistic polynomial-time algorithm for
finding canonical solutions w.r.t R implies that (canonical) solutions w.r.t R can be found by a
deterministic polynomial-time algorithm.

Proof: The first direction is proved by using the P-reduction as an algorithm, while providing
answers to its queries via a BPP algorithm (of sufficiently low error probability). This yields

3An alternative formulation may refer to R′ such that for every x it holds that R′(x) 6= ∅ and either λ 6∈ R′(x) or
R′(x) = {λ}. Indeed, R′(x) = R(x) if x ∈ SR and R′(x) = {λ} otherwise.

3

a probabilistic algorithm that outputs the same (canonical) solution whenever all the emulated
answers are correct. For the opposite direction, suppose that algorithm A finds canonical solutions
w.r.t R, and consider the set S such that (x, i, b) ∈ S if and only if Pr[A(x)i = b] ≥ 2/3, where
A(x)i denotes the ith bit in the output A(x). Then, (i) the set S is a BPP set (since it is essentially
decided by A(x)), and (ii) finding solutions w.r.t R is P-reducible to S.

Note: A zero-error version of Definition 2.1 and a corresponding chractaterization (in terms of
ZPP) are discussed in Section 5.

3 The standard context (of PPT algorithms)

In this section we consider the standard setting of polynomial-time algorithms.

3.1 Possibilities and impossibilities

Theorem 2.2 implies that relations for which canonical solutions can be found in probabilistic
polynomial-time but not in deterministic polynomial-time may exist only if BPP 6= P. We observe
that this necessary condition is also sufficient.

Proposition 3.1 (on the non-triviality of pseudodeterministic algorithms): If BPP 6= P, then
there exists a search problem that has a pseudodeterministic polynomial-time algorithm but does
not have a deterministic polynomial-time algorithm. Furthermore, for every S ∈ BPP, there exists
a relation R such that (1) deciding S is P-reducible to finding solutions w.r.t R, and (2) canonical
solutions w.r.t R can be found in probabilistic polynomial-time.

Proof: The main claim follows from the furthermore claim. To see this consider, for every
S ∈ BPP, the relation R that is guaranteed by the furthermore claim, and suppose (towards the
contradiction) that whenever canonical solutions can be found in probabilistic polynomial-time they
can also be found in deterministic polynomial-time. Then, S is in P (by combining the guaranteed
P-reduction of S to R with the deterministic algorithm for finding solutions w.r.t R).

We now turn to the furthermore claim itself. This claim is proved by observing that any decision
problem in BPP is essentially a search problem that has a pseudodeterministic polynomial-time
algorithm. Specifically, for any S ∈ BPP, consider the relation

R = {(x, 1) : x ∈ S} ∪ {(x, 0) : x ∈ {0, 1}∗ \ S} (1)

Clearly, S is P-reducible to solving R, which has unique solutions, which in turn can be found
probabilistically (by running the decision procedure for S). Needless to say, various syntactic
requirements regarding R can be met by simple modifications; for example, if solutions have to be
longer than the input and non-unique, then one may use R′(x) = {σ|x|α : σ ∈ R(x) & α ∈ {0, 1}|x|}.

An impossibility result. On the other hand, there exist search problems that can be solved
in probabilistic polynomial-time but for which canonical solutions cannot be found in probabilistic
polynomial-time.

Proposition 3.2 (search problems solvable in PPT, but not pseudodeterministically): There exists
a search problem R such that R can be solved in probabilistic polynomial-time but no probabilistic
algorithm can find canonical solutions w.r.t R.

4

Proof: Let K(z) denote the Kolmogorov complexity of z, and consider the binary relation

R = {(x, y) : |y| = 2|x| & K(y) > 2|x| − 7}. (2)

(Indeed, the solutions to x only depend on the length of x.) Then, on the one hand, solutions
w.r.t R can be found in probabilistic polynomial-time (by just generating uniformly distributed
2|x|-bit long strings, and hitting a valid solution with probability at least 99%). But, on the other
hand, no probabilistic algorithm can find canonical solutions w.r.t R, because a probabilistic t-time
algorithm A that finds a canonical solution y with probability greater than half yields a deterministic
(indeed, exp(t)-time) algorithm that (on input x) finds this y (which implies K(y) ≤ O(1) + |x|, in
contradiction to K(y) > 2|x| − 7).

On problems with unique solution. Clearly, for any relation R having unique solutions (i.e.,
|R(x)| ≤ 1 for every x), the unique solutions are canonical (i.e., whenever R(x) = {y} we must
use s(x) = y). Thus, a probabilistic algorithm that finds solutions w.r.t R, actually finds canonical
solutions w.r.t R. Many such algorithms are known, especially in the domain of computational
number theory (e.g., finding (the smallest) square root modulo a given prime, or the subexponential-
time algorithms for factoring and discrete logarithms). Hence, while we are still interested in new
probabilistic algorithms that solve natural search problems with unique solutions (and, in general,
in any new probabilistic algorithms that solve natural computational problems), such algorithms
are not necessarily “good” examples for the concept of finding canonical solutions.

3.2 On BPP-search problems

A natural class of “BPP search problems” (studied in [7]) refers to the class of all search problems
that can be solved in probabilistic polynomial-time and for which solutions can be recognized in
probabilistic polynomial-time.

Definition 3.3 (BPP-search problems): A relation R is a BPP-search problem if (1) the set R is
in BPP, and (2) there exists a probabilistic polynomial-time algorithm A such that for every x ∈ SR
it holds that Pr[A(x) ∈ R(x)] ≥ 2/3.

(There is no need to require that for every x 6∈ SR it holds that Pr[A(x) = λ] ≥ 2/3, since this can
be guaranteed by using the algorithm of Item (1).) Note that the relation used in Proposition 3.2
is not a BPP-search problem (since it does not satisfy the first condition (i.e., it is not recognizable
in probabilistic polynomial-time)). A natural question is whether every BPP-search problem has
a polynomial-time pseudodeterministic algorithm. We note that a positive answer would follow if
the “promise problem version of BPP”, denoted prBPP, were P-reducible to BPP itself. This is
the case since Goldreich [7] showed that BPP-search problems are P-reducible to prBPP, whereas
by Theorem 2.2 every search problem that is P-reducible to BPP has a a polynomial-time pseudo-
deterministic algorithm.4 On the other hand, a negative answer must assume that prBPP is not
solvable in deterministic polynomial-time.

Not being able to resolve the above question, we present a search problem that is “semi-
complete” with respect to the class of BPP-search problems in the sense that (i) if this problem

4We note that, in contrast to Theorem 2.2, a P-reduction of BPP-search problems to prBPP (and, in particular,
the one in [7]) does not seem to yield an algorithm for finding canonical solutions: The problem is that queries that
violate the promise may yield arbitrary answers, which may possibly lead the search to different solutions.

5

has a polynomial-time pseudodeterministic algorithm, then so does any problem in the class, and
(ii) the problem itself is “somewhat related” to this class.5

The problem we present is “generic” and is thus denoted G: For a Boolean circuit C, let
p
C(y)

def
= Prz[C(yz) = 1], where |z| = |y| (i.e., we assume that C takes an even number of input

bits, and denote a generic prefix by y and suffix by z). Then, G(C)
def
= {y : p

C(y) ≥ 2/3} if

Prr[pC(r) ≥ 2/3] ≥ 2/3, and G(C)
def
= ∅ otherwise; that is,

G
def
= {(C, y) : p

C(y) ≥ 2/3 & Prr[pC(r) ≥ 2/3] ≥ 2/3}. (3)

This search problem can be solved by merely selecting a random r, since Prr[pC(r) ≥ 2/3] ≥ 2/3
for any C ∈ SC . Thus, G satisfies the second condition of Definition 3.3. It is unclear whether G
satisfies the first condition, but it does satisfy a weak version of this condition: One can distinguish
in probabilistic polynomial-time between pairs (C, y) in G and pairs (C, y) such that either p

C(y) <
0.66 or Prr[pC(r) > 0.66] < 0.66. Furthermore, the set G is recognizable in exponential time.6

Hence, we say that this problem is semi-complete.

Proposition 3.4 Every BPP-search problem is P-reducible to G.

Thus, if G has a polynomial-time pseudodeterministic algorithm, then we obtain such an algorithm
for any BPP-search problem: Invoke the P-reduction and answer its queries using the pseudodeter-
ministic algorithm guaranteed for G, and check the solution before outputting it (i.e., if it is invalid,
then we output a special indicator). This is done after applying an error reduction such that the
G-solver provides the canonical solution with overwhelmingly high probability. Thus, when the
reduction is invoked on a yes-instance, then it yields a canonical solution, and otherwise (by the
additional checking) it outputs a special indicator (as required in Definition 2.1).

Proof: For any BPP-search problem R, we show a P-reduction of R to G. Fixing R, let V and F be
the probabilistic polynomial-time algorithms guaranteed by the two conditions of Definition 3.3 (i.e.,
V recognizes valid instance solution pairs, whereas F finds valid solutions). Assume, without loss of
generality, that each of these algorithms uses the same number of coins (on the respective inputs).
Then, given an input x, consider the circuit Cx that represents the computation of V (x, F (x)); that
is, Cx(r, r′) is the output of V on input (x, s) and coins r′, where s is the output of F on input x and
coins r. (By the above, |r′| = |r|.) Note that p

Cx(r) = Prr′ [Cx(r, r) = 1] = Pr[V (x, F (x; r)) = 1],
where F (x; r) denotes the output of F on input x and coins r.

Note that if x ∈ SR, then Prr[pCx(r) ≥ 2/3] ≥ 2/3, which implies that G(Cx) 6= ∅. On the other
hand, G(Cx) ⊆ {r : F (x; r) ∈ R(x)}, since r ∈ G(Cx) implies p

Cx(r) ≥ 2/3. Hence, a P-reduction
of R to G may proceed as follows. On input x, it constructs the circuit Cx, invokes the G-solver to
obtain a solution, denoted r, for Cx w.r.t G, and outputs F (x; r).

4 The context of sublinear-time algorithms

Let us now turn to the sublinear-time model. In this context, the algorithm is given oracle access
to the input, and is only provided with the input’s length as explicit input. Thus, the computation
of machine M with oracle access to x is captured by the notation Mx(|x|).

5Indeed, it would have been better to present a problem in BPP-search that is complete under P-reductions, but
this seems as difficult as presenting a problem in BPP that is complete under P-reductions.

6Moreover, if G is not a BPP-search problem, then this is due to a separation of BPP from EXP, which in turn
implies that BPP can be solved in average subexponential time [13] (and ditto for BPP-search problems [7]).

6

4.1 Limitations

We show several limitations on scope of finding canonical solutions in probabilistic sublinear-time.
Firstly, this is not possible for problems that have instances of linear sensitivity (i.e., search problems
R having infinitely many x ∈ SR such that |{i ∈ [|x|] : R(x) ∩ R(x ⊕ ei) = ∅}| = Ω(|x|), where
ei = 0i−110|x|−i). Note that many natural search problems have such instances (e.g., the number
of connected components in a graph may change if a single edge is added in any of many possible
ways). Secondly, finding canonical solutions probabilistically is not significantly easier than doing
so deterministically. In particular, if this can be done in a constant or poly-logarithmic number of
queries, then it can be done so deterministically.

Theorem 4.1 (on the limitations of sublinear-time algorithms): Let R be an arbitrary search
problem such that SR = {0, 1}∗ and M be a probabilistic machine that makes at most q(n) queries
on any n-bit long input.

1. If for every function f : {0, 1}∗ → {0, 1}∗ there exists an x such that either f(x) 6∈ R(x) or
|{i ∈ [|x|] : f(x) 6= f(x⊕ ei)}| > 3q(|x|), then M fails to find canonical solutions w.r.t R. In
particular, if there exists an x such that |{i ∈ [|x|] : R(x)∩R(x⊕ ei) = ∅}| > 3q(|x|), then M
fails to find canonical solutions w.r.t R.

2. If M is non-adaptive and finds canonical solutions w.r.t R, then canonical solutions w.r.t R
can be found deterministically by making at most 3q(n) non-adaptive queries.

3. If M finds canonical solutions w.r.t R, then canonical solutions w.r.t R can be found de-
terministically by making at most min(28q(n)4, 27`(n)q(n)3) queries (possiblly adaptively),
where `(n) = dlog2 | ∪x∈{0,1}n R(x)|e.

The condition SR = {0, 1}∗ can be assumed, without loss of generality, since, for any R′, we may
consider R such that R(x) = {1y : y∈R′(x)} if x ∈ SR′ and R(x) = {0|x|} otherwise (cf. Footnote 3).
The polynomial blow-up in Item 3 is inherent, since the deterministic query complexity is greater
than Ω(q(n)1.3) even in the special case of decision problems (which correspond to search problems
with unique solutions in {0, 1}). This follows from a gap between the probabilistic and deterministic
decision tree complexity [17] (see also [16]). Item 3 is established by using an upper bound on the
very same question, which asserts that the deterministic decision tree complexity is at most cubic
in the probabilistic complexity [15].

Proof: Consider an arbitrary probabilistic machine M , and let Q(x) denote a random variable that
represents the set of queries made by Mx(|x|); that is, for every coin sequence ω, let Qω(x) denote
the set of queries made by Mx(|x|, ω) , and let Q(x) ← Qω(x) for a uniformly selected ω. Then,

H(x)
def
= {i ∈ [|x|] : Pr[i ∈ Q(x)] ≥ 1/3} has cardinality at most 3q(n). The basic observation is that

if Pr[i ∈ Q(x)] < 1/3, then, for every y, it holds that |Pr[Mx(|x|)=y]− Pr[Mx⊕ei(|x|)=y]| < 1/3.
The first item is proved by considering all possible functions f that may serve as a canonical

solution function w.r.t R; that is, f(x) ∈ R(x) for all x’s. For each such function f , we are
guaranteed (by the hypothesis) that there exists an x such that |{i ∈ [|x|] : f(x) 6= f(x ⊕ ei)}| >
3q(|x|). Fixing such an x, it follows that there exists an i ∈ [|x|] such that f(x) 6= f(x ⊕ ei) and
Pr[i ∈ Q(x)] < 1/3 (since there are at least 3q(n) + 1 indices that satisfy the first condition and at
most 3q(n) violate the second). In such a case, it holds that Pr[Mx⊕ei(|x|)=f(x)] > Pr[Mx(|x|)=
f(x)]− 1/3, which implies that Pr[Mx⊕ei(|x|)=f(x⊕ ei)] < (4/3)− Pr[Mx(|x|)=f(x)]. It follows
that f cannot be the canonical solution function of M , since either Pr[Mx(|x|) = f(x)] < 2/3 or
Pr[Mx⊕ei(|x|)=f(x⊕ ei)] < 2/3. Given that the same argument holds with respect to any possible

7

canonical solution function (w.r.t R), it follows that M has no such function (which means that it
is not a pseudodeterministic algorithm for R).

Turning to the second item, we observe that, in the non-adaptive case, H(x) depends only on

the length of x, and so we may define Hn
def
= H(1n) and note that H(x) = Hn for all x ∈ {0, 1}n.

We claim that every x, x′ ∈ {0, 1}n that agree on bit locations Hn must admit the same canonical
solution. Once this claim is proven, the second item follows, because a non-adaptive deterministic
machine may just query the oracle on positions in Hn, set the other input bits arbitrarily, and
decide accordingly (by emulating all possible executions of the probabilistic algorithm internally).

The foregoing claim (i.e., inputs that agree on bits in Hn must admit the same canonical
solution) is proved by considering a “Hamming walk” from x to x′ (i.e., considering a sequence
x = v1, v2, . . . , vt = x′ such that each pair (vi, vi+1) differ in a single bit), and using Pr[Mvi+1(n) =
y] > Pr[Mvi(n) = y] − 1/3. Specifically, suppose that y is a canonical solution found by Mx (i.e.,
Pr[Mx(n) = y] ≥ 2/3), then y must also be a canonical solution for v2 (since Pr[Mv2(n) = y] > 1/3),
and the same holds for v3, . . . , vt (since if y is a canonical solution for vi, then Pr[Mvi(n) = y] ≥ 2/3,
which implies Pr[Mvi+1(n) = y] > 1/3, which in turn implies that y is a canonical solution for vi+1).

Turning to the third item, we define Sn = {s(x) : x ∈ {0, 1}n}, where s : {0, 1}∗ → {0, 1}∗
describes the canonical solutions used by M . We shall prove (below) that |Sn| < 2q(n)+1. Now,
consider an arbitrary (deterministic) binary decision tree Tn of depth q(n) + 1 for the set Sn, where
each internal node v of the tree is associated with some subset Sv ⊆ Sn as well as a partition of this
subset into two equals subsets, denoted (S0

v , S
1
v) associated with its children (i.e., if the children

are v0 and v0, then Svσ = Sσv for each σ ∈ {0, 1}). Machine M can be used to decide each of the
corresponding “bits” (since it actually yields the entire value of s(·)). Formally, for every internal
node v of Tn, we consider an oracle machine Mv, derived from M , that probabilistically decides
the corresponding bit (i.e., Mx

v (n) = σ if and only if s(x) ∈ Sσv) by making at most q(n) queries
(to x).7 Replacing Mv by a deterministic counterpart (denoted M ′v) that is guaranteed by Nisan’s
result [15], we obtain a deterministic algorithm that (on input x) finds s(x) by making at most
(q(n) + 1) · 27q(n)3 queries. (That is, our algorithm goes down Tn by using the various machines
M ′v to make the relevant decisions.)

It is thus left to show that |Sn| < 2q(n)+1. For each y ∈ Sn, let χy(ω) = 1 if there exists an input
x ∈ {0, 1}n such that machine M outputs y on input x when using coins ω, and χy(ω) = 0 otherwise.
Clearly,

∑
y χy(ω) ≤ 2q(n), for any ω, and so

∑
y Pr[χy(ω) = 1] ≤ 2q(n). Assuming towards the

contradiction that |Sn| ≥ 2q(n)+1, we obtain an x ∈ {0, 1}n such that Pr[χs(x)(ω)=1] ≤ 1/2, which
implies Pr[Mx(n)=s(x)] ≤ 1/2 (in violation of the correctness of M). The theorem follows.

Corollary 4.2 (Corollary to Theorem 4.1): There exist search problems that can be solved proba-
bilistically in a constant number of queries, but have no pseudodeterministic algorithm of sublinear
query complexity.

Proof: Consider, for example, the search problem R
def
= {(x, v) : |wt(x)−v| < |x|/10}, where wt(x)

is the Hamming weight of x. Clearly, R can be solved probabilistically with a constant number of
queries, and we shall use Item 1 of Theorem 4.1 to show that it has no pseudodeterministic algorithm
that makes less than |x|/4 queries. Towards this end, we have to show that the hypothesis of Item 1
(of Theorem 4.1) holds for q(n) = n/4. Indeed, let f be a function such that f(x) ∈ R(x) holds for
every x. Starting at x0 = 0n, we seek an x such that |{i ∈ [|x|] : f(x) 6= f(x ⊕ ei)}| > 3n/4. We

7In the next line, we consider Mv as a depth q(n) probabilistic decision tree. This tree should not be confused
with the tree Tn introduced above.

8

call such an x unstable. We proceed in n/4 iterations such that (in the jth iteration) if the current

xj−1 is not unstable, then we select xj in Nj
def
= {xj−1⊕ ei : i ∈ [n] & wt(xj−1⊕ ei) = wt(xj−1) + 1}

such that f(xj) = f(xj−1), which is possible since the set Nj has cardinality n− j + 1 > 3n/4. As
long as the process goes on, we have f(xj) = f(x0), which implies that we must find a string that
is unstable (since R(x0) ⊆ [0, 0.1n], whereas R(xn/4) ⊆ [0.15n, 0.35n]).

Proposition 4.3 (probabilism vs pseudodeterminism vs determinism): There exists a search prob-
lem R such that

1. R can be solved probabilistically in a constant number of queries;

2. R has a pseudodeterministic algorithm of query complexity n0.76, but no pseudodeterministic
algorithm of query complexity n0.33;

3. R cannot be solved deterministically in sublinear query complexity.

Proof: By [17, 16], there exists a Boolean function, denoted b, that cannot be computed deter-
ministically in a sublinear number of queries but can be computed probabilistically (with error
probability at most 1/3) in n0.76 queries; Let R = R1 ∪ R2, where R1 = {(x, b(x)) : x ∈ {0, 1}∗}
and R2 = {(x, i) ∈ {0, 1}∗× IN : |i−10ρ(x)| ≤ 1}, where ρ(x) = wt(x)/|x|. (Assume that v ∈ R2(x)
is encoded by several bits and so is different from the single bit solution to R1.) Then, R can be
solved probabilistically in a constant number of queries (via R2) and has a pseudodeterministic
algorithm of query complexity n0.76 (via R1). To see that R cannot be solved deterministically in a
sublinear number of queries, note that we may “force” the solver to solve R1. Specifically, consider
a (sublinear-query) deterministic algorithm that on some input x outputs a solution y. Then, y
cannot be in R2(x), because this algorithm also outputs y on any string x′ that agrees with x on the
o(n) queries bits (whereas R2(x)∩R2(x) = ∅ for some of these x′). Lastly, the lower bound on the
query complexity of pseudodeterministic algorithms for R follows by combining the deterministic
lower bound with Item 3 of Theorem 4.1, while using | ∪ x ∈ {0, 1}nR(x)| < 15.

Discussion. Theorem 4.1 leaves some room for sublinear-time probabilistic algorithms for finding
canonical solutions. Such algorithms may be somewhat faster than their deterministic counterparts,
provided that they are adaptive and that the search problem has no instances of linear sensitivity.
Even in these cases, the speed-up offered by probabilism (over determinism) is at most polynomial,
but on the other hand polynomial differences do matter (also in the sublinear-time context, cf.,
e.g., [11]).

Theorem 4.1 refers to total search problems; that is, the searching algorithm is required to work
for all possible inputs (and not for a subset of them). The claim of Item 2 holds whenever the set of
legitimate inputs is sufficiently connected (w.r.t the Boolean lattice).8 In contrast, disconnectivity
of this (promise) set allow probabilistic algorithms to find canonical solutions more efficiently than
deterministic ones.

8The claim of Item 1 holds when modified to the promise set (i.e., x and the x⊕ ei’s have to satisfy the promise).
Regarding Item 2, consider, for example, the promise problem that consists of finding a 1-entry in a string x that
contains a majority of 1-entries. Clearly, this promise problem can be solved probabilistically with a constant number
of queries, but cannot be solved deterministically in less than |x|/2 queries. By an extension of Item 2 of Theorem 4.1,
this problem cannot be solved by a non-adaptive pseudodeterministic algorithm that makes less than |x|/6 queries.
The claim extends to adaptive algorithms by observing that any adaptive pseudodeterministic algorithm for this
problem can be converted into a non-adaptive one, while maintaining the query complexity (cf. [2]).

9

The role of a promise can be demonstrated by considering the problem of estimating the fraction
of 1-values in a binary string. As shown in the proof of Corollary 4.2, no sublinear-time probabilistic

algorithm can find a canonical solution w.r.t the relation R
def
= {(x, v) : |wt(x) − v| < |x|/10}.

However, if we restrict the set of admissible x’s to those that satisfy wt(x) ∈ {i · (|x|/10)± s : i ∈
[10], s ∈ [|x|/30]}, then canonical solutions w.r.t the resulting promise problem can be found by a
constant-time probabilistic algorithm. More interesting examples are presented next.

4.2 Possibilities

In light of Theorem 4.1, we focus on search problems with a promise. The promise consists of
several “instance regions” such that only (distant) regions can be associated with different canonical
solutions. That is, the allowed instances are partitioned into sets I1,, IM ⊂ {0, 1}n such that
the canonical solution for each Ij is the same and strings in different Ij ’s are far apart.

The above formulation is closely related to error correcting codes, and it suggests that we may
get search problems for which canonical solutions can be found in sublinear-time by considering
locally decodable codes. Specifically, we consider codes that stretch k-bit messages into n-bit
codewords, which are at relative distance δ > 0. (Recall that local decodability means that each
message bit can be correctly recovered (with probability 2/3) from a corrupted codeword (at error
rate δ/3) by making few queries to that codeword.) Two concrete proposals follow.

1. Recall that for n = poly(k) local decodability is feasible with poly-logarithmic many queries
(and some constant δ > 0). Let ` = poly(log n). Then, considering only strings w ∈ {0, 1}n
that are δ/3-close to the code, we define a relation R such that y ∈ R(w) if y is an `-bit
(consecutive) substring of x and w is δ/3-close to an encoding of x.

Canonical solutions w.r.t this relation can be found probabilistically by making poly-
logarithmically many queries. For example, by invoking the local decoder (O(log log n) times)
to recover each bit position i ∈ {1, . . . , `}. Note that we have intentionally defined R in a
way that avoids having unique solutions.

2. Recall that for n = 2k local decodability is feasible with a constant number of queries (and
δ = 1/2). Indeed, this refers to the Hadamard code. Then, considering only strings that are
0.24-close to the code, we define a relation R such that y ∈ R(w) if w ∈ {0, 1}n is 0.24-close
to an encoding of y. Canonical solutions w.r.t this relation can be found probabilistically
by making logarithmically many queries (indeed, the double-logarithmic overhead involved in
error reduction can be avoided; see [6, Sec. 2.5.2, Fn. 11]).9

Indeed, as defined, R has unique solutions.

Both search problems can be generalized so that the sought solutions are not the strings denoted
y, but rather search problems regarding y; that is, for any R as above and any search problem R′,
consider composed search problem R′′ such that z ∈ R′′(w) if y ∈ R(w) and z ∈ R′(y). Indeed, if
canonical solutions can be found w.r.t R′ (by a standard probabilistic algorithm), then canonical
solutions w.r.t R′′ can be found in a number of queries that equals the number of queries needed
for finding canonical solutions w.r.t R.

The above examples refer to somewhat artificial objects (i.e., (corrupted) codewords w.r.t some
error correcting codes). As in the context of property testing, the real question is whether we

9The idea is to self-correct O(k) positions in the codeword, where these positions correspond to an auxiliary good
(and linear) error correcting code, and capitalize on the fact that it suffices to correctly recover each such auxiliary
bit with constant probability.

10

can present examples that refer to natural objects, under a natural representation. It seems that
natural examples arise in the case of huge structures that are based on some small substructure.
We consider such cases in two natural models of graphs.10

4.2.1 Graph problems in the adjacency matrix representation

A very natural model of direct access to graphs refers to providing oracle access to their adjacency
predicate; that is, a query of the form (u, v) is answered by 1 if there exists an edge between vertices
u and v in the graph, and by 0 otherwise. In the context of sublinear-time algorithms, this model
is most suitable for dense graphs (cf. [8]).

In this model, a natural notion of a small substructure is provided by the notion of graph blow-
up. Indeed, the notion of a graph blow-up yields natural examples of problems for which canonical
solutions can be found in probabilistic constant time (but not in deterministic sublinear-time).

Graph blow-up. Recall that a blow-up of a graph H = ([n], L) is a graph G = ([N], E) obtained
by replacing each vertex i ∈ [n] of H by a (non-empty) subset Ci ⊂ [N] (which may be called a
cloud or a cluster) such that (C1, . . . , Cn) is a partition of [N], and placing a complete bipartite
graph between Ci and Cj if and only if (i, j) ∈ L. That is, if (i, j) 6∈ L, then there will be no edges
between Ci and Cj (and, in particular, there are no edges within each Ci). One usually looks at
balanced blow-ups, in which all clouds are of the same size, but we may look at ε-balanced blow-up
in which each cloud contains at least an ε fraction of the vertices (i.e., |Ci| ≥ εN for each i ∈ [n]).
Finally, call H irreducible if it is not a blow-up of any smaller graph.

Now, consider an arbitrary (solvable) search problem R for graphs (e.g., finding spanning forests,
shortest paths trees, Eulerian or Hamiltonian cycles, maximum matching, minimum vertex cover,
etc). Define a parameterized search problem BLk,ε(R) as follows:

Input: A graph G = ([N], E) that is an ε-balanced blow-up of some irreducible k-vertex graph.

Valid solution: Any solution y for a graph H (i.e., (H, y) ∈ R), where H is a k-vertex graph such
that G is an ε-balanced blow-up of H.

(Indeed, this is a promise problem, and it is parameterized by k and ε.) Note that ε-balanced
blow-ups provide a reasonable model for some types of clustering situations; the search problems
R relate to the structure that underlies these clusters.

Proposition 4.4 (pseudodeterministic algorithms for BLk,ε(R)): For every R, k, and ε > 0 as
above, canonical solutions w.r.t BLk,ε(R) can be found by a probabilistic algorithm that makes
O(ε−1 log k)2 adjacency queries.

Typically (i.e., ignoring pathological cases such as ε ≥ 1/k or a trivial R), no deterministic algorithm
making N/4 queries can find solutions w.r.t BLk,ε(R), since such an algorithm may never encounter
any vertex of the smallest cloud.

Proof: Consider a randomized algorithm that uniformly selects a set S of O(ε−1 log k) vertices in
G, queries all vertex pairs, finds the unlabeled irreducible graph H such that the induced subgraph
of G (i.e., GS) is a blow-up of H, labels H in a canonical way, and finds a solution by running a
deterministic algorithm on H. Note that the graph H that emerges from the sample is unlabeled
and it is crucial for our application to obtain a canonical labeling of it (since the labeling will effect

10Interestingly, similar substructures were used in the (different) context of [9].

11

the solution found for H). However, a canonical labeling of a k-vertex graph can always be found
deterministically in time k! (e.g., by finding the lexicographically first representation among all
possible labeling of H).

The analysis amounts to observing that, with high probability, the initial sample S will hit each
cloud of the graph G, since G is an ε-balanced blow-up of some (irreducible) k-vertex graph. The
irreducibility condition guarantees that, in that case, the graph H is uniquely determined by GS
(i.e., the subgraph of G induced by S).

Note. It is possible to relax the formalism in various ways, while maintaining the result (i.e.,
a pseudodeterministic algorithm of poly(k/ε) query complexity). For example, we may allow the
input to be any graph that can be obtained from an ε-balanced blow-up of some irreducible k-vertex
graph by changing at most εN/6 of the neighbors of each vertex.11

4.2.2 Graph problems in the incidence-lists representation

A standard model of direct access to graphs refers to providing oracle access to their incidence
function; that is, a query of the form (v, i) is answered by the ith neighbor of v if v has at least
i neighbors, and by 0 otherwise. In the context of sublinear-time algorithms, this model is most
suitable for bounded-degree graphs (cf. [10]).

In this model, a natural notion of a small substructure is provided by the notion of recurring
connected components; for example, we may consider graphs that consist of connected components
of bounded size, and further restrict the graphs such that each subgraph either appears in very
few connected component or appears in many such components. Indeed, this notion yields natural
examples of problems for which canonical solutions can be found in probabilistic constant time (but
not in deterministic sublinear-time).

Specifically, consider an arbitrary search problem R for graphs, and define a parameterized
search problem RPk,ε(R) as follows:

Input: A graph G = ([N], E) that consists of connected components such that (1) each connected
component is of size at most k, and (2) each connected component is isomorphic to a a number
of connected components that is either greater than εN or smaller than εN/2.

Valid solution: Any solution y for a graph H (i.e., (H, y) ∈ R), where H is isomorphic to at least
εN connected components of G. (If there is no such H, then the solution is a special symbol.)

Proposition 4.5 (pseudodeterministic algorithms for RPk,ε(R)): For every R, k, and ε > 0 as
above, canonical solutions w.r.t RPk,ε(R) can be found by a probabilistic a algorithm that makes

Õ(k2/ε) incidence queries.

Typically (i.e., ignoring pathological cases such as ε ≥ 1/k or a trivial R), no deterministic algorithm
making εN/4 queries can find solutions w.r.t BLk,ε(R), since such an algorithm cannot distinguish
subgraphs that are isomorphic to at least εN connected components from subgraphs that are
isomorphic to less than εN/2 such components.

Proof: Consider a randomized algorithm that samples Õ(ε−1 log k) vertices in G, and explores
their connected component (by making at most k2 incidence queries). The algorithm also estimates

11In such a case, vertices that belong to the same cloud will differ on at most εN/3 neighbors, while vertices that
belong to different clouds will differ on at least 2εN/3 neighbors. Note that if we can change εN/2 neighbors of 2εN
vertices, then the graph H may no longer uniquely recovered from G.

12

the number of connected components (in G) that are isomorphic to each k′-vertex possible graph,
for k′, such that all estimates are correct in the sense discussed below. Next, among the graphs
that had an estimate above 3εN/4, the algorithm selects one graph (in a canonical fashion), and
labels it (canonically, as in the proof of Proposition 4.4). Finally, it finds the desired canonical
solution by running a deterministic algorithm on this graph.

The analysis amounts to observing that, with high probability, the initial sample will provide
adequately good estimates of the various subgraphs that appear as connected components. Specif-
ically, note that by taking O(ε−1 log(1/δ)) one can estimate with probability at least 1 − δ the
frequency of events such that events that have frequency below ε/2 (resp., at least ε) are judged to
have frequency below 3ε/4 (resp., above 3ε/4).

Note. It is possible to generalize the formalism and extend the results in various ways. For
example, we may consider search problems R that refer to sets of graphs (e.g., we may seek a
sequence of solutions such that each solution correspond to one of the graphs). Alternatively, we
may consider highly connected components that are connected via a structure of lower connectivity
(e.g., the superstructure may be a ring or a two-dimensional grid and its nodes may be 5-connected
graphs).

4.3 On the class of graph problems having pseudodeterministic algorithms

The examples presented in Section 4.2 correspond to search problems that refer to small sub-
structures of graphs. We claim that this is no coincidence in the sense that pseudodeterministic
algorithms of low query complexity may exist only for problems that are defined in terms of the
frequency in which various small graphs appear as induced subgraphs. Our discussion is restricted
to “search problems regarding graphs” and to algorithms that access graphs via their adjacency
predicate (i.e., as in §4.2.1).

A natural notion of “search problems regarding graphs” corresponds to binary relations R such
that if y ∈ R(G) then y is a solution for any graph that is isomorphic to G. For example, R(G) may
consist of approximate values of a graph parameter such as the diameter or the conductance of G.
(Other examples are the classes of problems BLk,ε(·) and RPk,ε(·) considered in Section 4.2.) This
notion of search problems extends the standard notion of decision problems for graphs (a.k.a graph
properties).12 The natural promise problem version of this notion couples such search problems
with promises that are graph properties (i.e., G satisfies the promise P if and only if each graph
that is isomorphic to G satisfies P).

Definition 4.6 (search promise problem for graphs): A search promise problem for graphs (for short,
graph problem) is a pair (P,R) such that P is a graph property and R is closed under isomorphism
in the sense that if G and G′ are isomorphic, then R(G) = R(G′).

For a graph G = ([N], E) and a set of vertices S ⊆ [N], we denote by GS the subgraph of G induced

by S. By
([N]
k

)
we denote the set of all k-subsets of [N].

Theorem 4.7 Let Π = (P,R) be a search promise problem for graphs. Then, Π has a pseudo-
deterministic algorithm of query complexity q if and only if there exists k that is polynomially

12One may also consider search problems of a different type in which solutions are sets of vertices and it is required
that S ∈ R(G) if and only if {π(v) : v ∈ S} is a solution to the graph π(G) (i.e., the relabelling of G under the
permutation π). For example, R(G) may consist of all triples of vertices that form a triangle in G. For further
discussion, see the end of this section.

13

related to q and a function f such that for every G = ([N], E) ∈ P there exists a y ∈ R(G) such
that Pr

S∈([N]
k)[f(N,GS) = y] ≥ 2/3. In particular, if Π has a pseudodeterministic algorithm then

k = 18q will do, whereas if such a k and f exist then Π has a pseudodeterministic algorithm of
query complexity q =

(
k
2

)
.

The function f associates a candidate solution with each k-vertex graph such that a large fraction
of all induced k-vertex subgraphs of each G ∈ P are associated with the same candidate solution
(which is in R(G)). The search problem Π has a poly(k)-query pseudodeterministic algorithm if
and only if such a function f exists.

Proof: Suppose that there exists k and a function f such that for every G = ([N], E) ∈ P
there exists a y ∈ R(G) such that Pr

S∈([N]
k)[f(N,GS) = y] ≥ 2/3. Then, a pseudodeterministic

algorithm of query complexity q =
(
k
2

)
is obtained by just sampling k vertices at random in the

graph, obtaining the induced subgraph, denoted G′, and outputting f(N,G′).
To prove the opposite direction, we follow the transformation13 of [12, Sec. 4], while observing

that its steps are still applicable. Loosely speaking, in [12, Sec. 4] it is shown that any q-query
property tester (in the adjacency matrix model) can be transformed into one that takes a random
sample of 2q vertices, queries the induced subgraph, and decides based on that subgraph. Here
we show that this transformation applies also in the case of pseudodeterministic algorithms for
graph problems (as in Definition 4.6). The point is that a canonical solution that is output with
probability at least 2/3 can be treated as a decision bit. The following steps correspond to the
transformation of [12, Sec. 4] (and the specific pointers are included as a source of additional
details).

Step 1: Obtaining a vertex-uncovering algorithm (first part of [12, Lem. 4.1]).

A vertex-uncovering algorithm proceeds in iterations such that in each iteration a new vertex
v is selected (possibly based on prior answers) and queries of the form (v, u) are made for
each u that was selected in prior iterations. The transformation here is rather generic. Each
query (v1, v2) is emulated by two iterations of the vertex-uncovering algorithm, which means
that the query complexity may get squared. Actually it is more important to note that the
number of vertices selected, denoted k1, is at most twice the original query complexity.

Step 2: Obtaining an algorithm that inspects a random induced subgraph (second part of [12,
Lem. 4.1]).

This step consists of observing what happens when we let the algorithm query a random iso-
morphic copy of the input graph. The original analysis relies on the fact that the algorithm’s
decision should remain valid also in this case, and this reasoning holds in our setting as well.
Specifically, if the pseudodeterministic algorithm outputs y (with probability at least 2/3) as
canonical solution for the graph G ∈ P , then the algorithm must output y with probability
at least 2/3 when given an isomorphic copy of G.

Step 3: Obtaining a sample-independent output [12, Sec. 4.2.1].

In the context of [12], the output is a decision, but again the analysis generalizes. The issue
at hand is that the original algorithm selects a random k1-set of vertices S uniformly, and
given that it saw the induced subgraph α, it outputs y with probability q

S,α(y). Instead,

13This transformation of [12, Sec. 4] is often referred to as a “canonization” procedure, yielding a “canonical”
tester. But this notion of “canonical” has nothing to do with the notion of canonical solutions.

14

when seeing the induced subgraph α, the new algorithm outputs y with probability q
α(y)

def
=

ES [qS,α(y)], which is independent of the selected sample S. Note that if G ∈ P , then there
exists a y such that ES [qS,π(G)S (y)] ≥ 2/3, for every relabeling π of the graph G. Noting that
π(G)S = Gπ(S), for a random permutation π, it holds that ES,π[qS,Gπ(S)(y)] ≥ 2/3, which

implies that ES,S′ [qS,GS′ (y)] ≥ 2/3. But this means that ES′ [qGS′ (y)] ≥ 2/3, which means
that the new algorithm satisfies the pseudodeterministic requirement.

Step 4: Obtaining an isomorphism-oblivious output [12, Sec. 4.2.2].

Step 3 established that the output depends only on the induced subgraph seen, and here we
claim that it is oblivious of the labeling of this subgraph. The analysis is similar to the one
underlying Step 3.

Step 5: Obtaining an output that is determined by the induced subgraph [12, Sec. 4.2.3].

Step 4 established that the output depends only on the unlabeled induced subgraph, but this
dependence may take a probabilistic form; that is, seeing a subgraph H causes the algorithm
to output y with probability pH(y). Our goal is to have the output be uniquely determined as
a function of the (unlabeled) induced subgraph. Following [12], we assume that the algorithm
has error probability less than 1/6 (i.e., the probability that it outputs the canonical solution is
at least 5/6). This assumption can be enforced by error reduction (but the number of vertices
increases from k1 to 9k1). At this point, we introduce a new algorithm that, upon seeing the
subgraph H, outputs y if pH(y) > 1/2 (and outputs nothing if maxy{pH(y)} ≤ 1/2). Since
the original algorithm outputs canonical solutions with probability at least 5/6, for every
G ∈ P , it holds that ES [pGS (y)] ≥ 5/6 for the canonical solution y ∈ R(G). Therefore,
PrS [pGS (y) > 1/2] ≥ 2/3. Define fN (H) = y if pH(y) > 1/2 (and fN (H) = ⊥ if no such y
exists).

We now obtain the desired function f : For any k-vertex graph H, define f(N,H) = fN (H).
By Step 5, we know that for every G = ([N], E) ∈ P there exists a y ∈ R(G) such that
Pr

S∈([N]
k)[f(N,GS) = y] ≥ 2/3. The theorem follows.

A different type of graph problems. In continuation to Footnote 12, we stress that Defini-
tion 4.6 only covers one type of graph problems; that is, graph problems for which solutions are
values that are invariant under isomorphism of the input graph. In contrast, one may consider
a more general type of graph problems, which we call labeled graph problems. In these problems
solutions are triples (v, S, f) where v is a value (as in Definition 4.6), S is a set of vertices and
f : S → {0, 1}∗ such that the following (“graph nature”) condition holds: If (v, S, f) is a solution
for graph G, then (v, {π(u) : u ∈ S}, f ◦ π−1) is a solution for the graph that results from G by
applying the vertex relabeling π. A natural question about such labeled graph problems is whether
they have pseudodeterministic algorithms of complexity that is smaller than that of deterministic
algorithms.

5 Safely finding canonical solutions

An even stronger notion than finding canonical solutions is finding such solutions without ever
outputting an alternative solution (but rather allowing a small probability of having no output).

15

Definition 5.1 (safely finding canonical solutions): Let R, R(x) and SR be as in Definition 2.1.
A (possibly probabilistic) algorithm A safely finds canonical solutions with respect to R if there exists
a function s : {0, 1}∗ → {0, 1}∗ such that the following conditions hold:

1. As in Definition 2.1, for every x ∈ SR it holds that s(x) ∈ R(x), whereas s(x) = λ for every
x ∈ {0, 1}∗ \ SR.

2. For every x ∈ {0, 1}∗, it holds that Pr[A(x)=s(x)] ≥ 2/3 and A(x) ∈ {s(x),⊥} always holds.

Definition 5.1, which is implicit in Gat’s thesis [4], is robust in the sense that replacing the threshold
2/3 by either 1/poly(|x|) or 1−exp(−poly(|x|)) yields the same class (via standard error reduction).
Indeed, this class of search problems is reminiscent of the class ZPP of decision problems recognized
with zero-error probability. In fact:

Theorem 5.2 (Theorem 2.2, adapted): A relation R has a probabilistic polynomial-time algorithm
that safely finds canonical solutions w.r.t it if and only if finding solutions w.r.t R is P-reducible to
some set in ZPP.

(The proof of Theorem 5.2 mimics the proof of Theorem 2.2.) Thus, the difference between finding
canonical solutions and safely finding canonical solutions is reflected in the difference between BPP
and ZPP. This fact becomes even more evident when considering the set associated with any
canonical solution function s : {0, 1}∗ → {0, 1}∗ for R. Specifically, let Ss = {(x, i, b) : s(x)i = b},
where s(x)i denotes the ith bit of s(x). The actual contents of the proofs of Theorems 2.2 and 5.2
is captured by the following proposition.

Proposition 5.3 A relation R has a probabilistic polynomial-time algorithm that finds (resp.,
safely finds) canonical solutions w.r.t it if and only if there exists a canonical solution function
s : {0, 1}∗ → {0, 1}∗ for R such that the corresponding set Ss is in BPP (resp., in ZPP).

Indeed, R has a deterministic polynomial-time algorithm that (safely) finds (canonical) solutions
w.r.t it if and only if Ss is in P.

Proof: The first direction (from Ss to finding s-canonical solutions) is proved by using the standard
P-reduction of computing s to deciding Ss; that is, on input x, for all i ≤ poly(|x|) and b ∈
{0, 1}, make the query (x, i, b) and constract s(x) accordingly.14 In particular, when using a ZPP
algorithm for Ss and obtaining a failure notification, the search algorithm outputs ⊥. For the
opposite direction (i.e., from finding s-canonical solutions to Ss), recall that deciding Ss is P-
reducible to computing s, which is turn is done by an algorithm that finds s-canonical solutions
w.r.t R. Likewise, when using a safe finder, a failure notification makes the decider issue a similar
notification.

References

[1] Laszlo Babai and Eugene M. Luks. Canonical Labeling of Graphs. In 15th STOC, pages
171–183, 1983.

[2] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar, Sampling Algorithms: Lower Bounds
and Applications. In 33rd STOC, pages 266–275, 2001.

14As in the proof of Theorem 2.2, the oracle Ss is implemented by a BPP (resp., ZPP) algorithm of sufficiently low
error probability.

16

[3] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theor. Comput. Sci., Vol. 288(1), pages 21–43, 2002.

[4] Eran Gat. On the canonization of probabilistic algorithms. M.Sc. Thesis, Weizmann
Institute of Science, 2009.

[5] Eran Gat and Shafi Goldwasser. Probabilistic Search Algorithms and their Cryptographic
Applications. ECCC TR11-136, 2011.

[6] Oded Goldreich. Foundations of Cryptography – Basic Tools. Cambridge University Press,
2001.

[7] Oded Goldreich. In a World of P=BPP. ECCC TR10-135, 2010.

[8] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, pages 653–750, July 1998. Extended
abstract in 37th FOCS, 1996.

[9] Oded Goldreich, Michael Krivelevich, Ilan Newman, and Eyal Rozenberg. Hierarchy The-
orems for Property Testing. Computational Complexity, Vol. 21 (1), pages 129–192, 2012.

[10] Oded Goldreich and Dana Ron. Property Testing in Bounded Degree Graphs. Algorith-
mica, Vol. 32 (2), pages 302–343, 2002. Extended abstract in 29th STOC, 1997.

[11] Oded Goldreich and Dana Ron. A Sublinear Bipartitness Tester for Bounded Degree
Graphs. Combinatorica, Vol. 19 (3), pages 335–373, 1999.

[12] Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties.
Random Structures and Algorithms, Vol. 23 (1), pages 23–57, August 2003.

[13] Russell Impagliazzo and Avi Wigderson. Randomness vs. Time: De-Randomization under
a Uniform Assumption. In 39th FOCS, pages 734–743, 1998.

[14] Hendrik Lenstra and Bart de Smit. Standard Models for Finite Fields. Lec-
ture in Foundations of Computational Mathematics, 2008. Slides avialable from
http://www.damtp.cam.ac.uk/user/na/FoCM/FoCM08/Talks/Lenstra.pdf

[15] Noam Nisan. CREW PRAMs and and decision trees. SIAM Journal on Computing,
Vol. 20(6), pages 999–1007, 1991. Extended abstract in 21st STOC, 1989.

[16] Michael Saks and Avi Wigderson. Probabilistic Boolean decision trees and the complexity
of evaluation game trees. In proceedings of 27th FOCS, pages 29–38, 1986.

[17] Marc Snir. Lower Bounds on Probabilistic Linear Decision Trees. Theor. Comput. Sci.,
Vol. 38, pages 69–82, 1985.

17

