
On the Impact of Cryptography on Complexity Theory∗

Oded Goldreich

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded.goldreich@weizmann.ac.il

May 5, 2019

Abstract

We trace three major directions of research in complexity theory to their origins in the foun-
dations of cryptography. Specifically, we refer to the theory of pseudorandomness (including the
various incarnations of this concept), to the study of various forms of probabilistic proof system
(including interactive proofs, zero-knowledge proofs, and probabilistically checkable proofs), and
to the finer study of reductions (including random self-reducibility, worst-case to average-case
reductions, average-case preserving reductions, and black-box reductions).

Contents

1 The story 1

1.1 Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Probabilistic proof systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Finer study of reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Pseudorandomness: A wide computational perspective 6

2.1 The general paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Three fundamental aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Some instantiations of the general paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 General-Purpose Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 The Archetypical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 The Intellectual Contents of Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . 14

3 Probabilistic Proof Systems: A bird’s eye view 15

3.1 Interactive Proof Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Zero-Knowledge Proof Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Probabilistically Checkable Proof systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Doubly-efficient interactive proof systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

References 18

∗To appear as Chapter 18 in an ACM book celebrating the work of Goldwasser and Micali.



1 The story

In this essay we discuss the impact that research in the foundations of cryptography has had
on developments in complexity theory. In particular, we trace three major research directions in
complexity theory to their origins in the foundations of cryptography. These directions are:

1. the theory of pseudorandomness, including the various incarnations of this concept;

2. the study of various forms of probabilistic proof system, including interactive proofs, zero-
knowledge proofs, and probabilistically checkable proofs;

3. the finer study of reductions, including random self-reducibility, worst-case to average-case
reductions, average-case preserving reductions, and black-box reductions.

In the following subsections, we shall tell the story of how these complexity theoretic studies have
emerged from the study of the foundations of cryptography.

In contrast, in Sections 2 and 3, we shall further discuss two of these three (complexity theoretic)
endeavors while ignoring their cryptographic origins. In Section 2, we offer a wide perspective on
the notion pseudorandom generators, viewing it as general paradigm that includes the general-
purpose pseudorandom generator studied in cryptography as a specific (archetypical) incarnation.
In Section 3, we shall offer a bird’s eye view on the aforementioned types of probabilistic proof
systems.

1.1 Pseudorandomness

The notion of a pseudorandom generator has first emerged in practice, where such candidate gen-
erators were used for various sampling tasks. In that context, it was natural to require that the
sequences produced by these generators pass various statistical tests (as reviewed at great length
by Knuth [38]). Given the ad hoc nature of the choice of the statistical tests, such an approach
fails to yield a robust notion of pseudorandom generators. The inadequacy of this approach is most
striking in the cryptographic setting, where the adversary is likely to launch attacks that are not
captured by natural statistical tests.

The potential applications of “cryptographically secure” pseudorandom generators in cryptog-
raphy (e.g., for the construction of a (private-key) stream cipher), led Blum and Micali to propose
such a notion and a candidate construction of it [10]. By their definition, a pseudorandom generator
is an efficient deterministic algorithm that stretches a short random seed into a long sequence that
is unpredictable by any feasible observer; that is, no feasible algorithm can predict the next bit in
the sequence, when given the previous bits, with success probability that is non-negligibly higher
than half (which is obtained by just tossing a coin). We stress that, under this definition, the
potential predictor may be stronger than the generator (as long as it is feasible); this reflects the
default cryptographic principle by which the adversary may be more powerful than the honest user
(i.e., may be willing to invest more resources than are required for proper use of the system that it
attacks).

Having other applications in mind, Yao observed that the unpredictability requirement is equiv-
alent to requiring that the output of the generator be computationally indistinguishable from a truly
random sequence [56], where the notion of computational indistinguishability is exactly the one put
forward by Goldwasser and Micali [28]. Recall that Goldwasser and Micali suggested this notion as
a pivot of their definition of secure encryptions, while arguing that indistinguishable distributions

1



are equivalent for all practical purposes. Specifically, by their definition, an encryption scheme
is secure if the encryptions of any two messages (of the same length) are computationally indis-
tinguishable. Again, the cryptographic origin of this definition mandates that, in the context of
pseudorandom generators, the potential distinguisher may be stronger than the generator.

The foregoing notion of a pseudorandom generator implies that any efficient randomized algo-

rithm maintains its performance when its internal coin tosses are substituted by a sequence gen-

erated by a pseudorandom generator. The fact that these pseudorandom generators can be used
in all efficient applications, including applications that are run for more time than the generator
itself, identifies them as general purpose constructs, and hence we call them general-purpose pseu-

dorandom generators. We mention that such pseudorandom generators exist if and only if one-way
functions exist [32].

General-purpose pseudorandom generators are actually the archetypical incarnation of a gen-
eral paradigm. In general, pseudorandom generators are efficient deterministic procedures that
stretch short random seeds into longer “pseudorandom” sequences. Thus, a generic formulation of
pseudorandom generators consists of specifying three fundamental aspects – the stretch measure

of the generators; the class of distinguishers that the generators are supposed to fool (i.e., the
algorithms with respect to which the computational indistinguishability requirement should hold);
and the resources that the generators are allowed to use (i.e., their own computational complexity).
Other incarnations of this general paradigm are telegraphically reviewed next.

One notable example is provided by pseudorandom generators that suffice for the derandom-
ization of randomized complexity classes such as BPP , which is the application envisioned by
Yao [56]. In such applications, after replacing the original random-tape by the output of a gen-
erator, one considers a deterministic algorithm that scans all possible seeds of the generator (and
invokes the generator on each possible seed). Hence, as observed by Nisan and Wigderson [46], in
such applications, one may allow the generator to run in time that is exponential in its seed length,
which is typically much larger than the running time of the distinguishers that one needs to fool.
We call such pseudorandom generators canonical derandomizers, and note that they can be con-
structed under seemingly weaker intractability assumption than those required for the construction
of general-purpose pseudorandom generators [46, 36].

Another famous incarnation of the notion of pseudorandom generators consists of generators
that fool bounded-space machines. Such generators can be constructed without relying on any in-
tractability assumption, and their seed length and space complexity is only moderately higher than
the space complexity of the algorithms that they fool [44, 47]. Other incarnations of the paradigm
refer to passing very restricted tests such as local tests (yielding limited independence generators) or
linear tests (yielding small bias generators). We call such pseudorandom generators special purpose,
and note that such generators of exponential stretch can be constructed unconditionally (see [20,
Sec. 8.5]).

To summarize: The theory of pseudorandomness provides a fresh view at the question of ran-

domness, which has puzzled thinkers for ages. This theory postulates that a distribution is random
(or rather pseudorandom) if it cannot be told apart from the uniform distribution by any efficient
procedure. The paradigm, originally associating efficient procedures with polynomial-time algo-
rithms, has been applied also with respect to a variety of limited classes of such distinguishing
procedures. Thus, (pseudo)randomness is not an inherent property of an object, but is rather sub-
jective to the observer. At the extreme, this approach says that the question of whether the world
is deterministic or allows for some free choice (which may be viewed as sources of randomness)

2



is irrelevant. What matters is how the world looks to us and to various computationally bounded

devices. That is, if some phenomenon looks random, then we may just treat it as if it were random.
Hence, the theory of pseudorandomness is pivoted at the notion of computational indistin-

guishability, which in turn was put forward by Goldwasser and Micali, in the context of defining
secure encryption schemes [28]. The archetypical incarnation of this theory, yielding the notion of
general-purpose pseudorandom generator, was derived from the cryptographic setting considered by
Blum and Micali [10], but other incarnations were proposed as well. The latter were either directly
or indirectly inspired by the archetypical case.

In Section 2 we provide a wide perspective on the theory of pseudorandomness, but refrain from
reproducing definitions and results that appear in [19, Sec. 3]. Our focus in Section 2 will be on
aspects that are not covered in [19, Sec. 3]. A more detailed treatment of the subject can be found
in [20, Chap. 8].

1.2 Probabilistic proof systems

The glory attributed to the creativity involved in finding proofs makes us forget that it is the less
glorified procedure of verification that gives proofs their value. Philosophically speaking, proofs are
secondary to the verification procedure; whereas technically speaking, proof systems are defined in
terms of their verification procedures.

The notion of a verification procedure presupposes the notion of computation1, and furthermore
the notion of efficient computation. This implicit dependency is made explicit in the definition of
NP-proof systems (giving rise to the class NP), where efficient computation is associated with
deterministic polynomial-time algorithms. However, we can gain a lot if we are willing to take a
somewhat non-traditional step and allow probabilistic verification procedures. In particular:

• Randomized and interactive verification procedures, giving rise to interactive proof systems,
seem much more powerful than their deterministic counterparts (see Section 3.1).

• Such randomized procedures allow the introduction of zero-knowledge proofs, which are of
great conceptual and practical interest (see Section 3.2).

• NP-proofs can be efficiently transformed into a (redundant) form (called a probabilistically

checkable proof) that offers a trade-off between the number of bit-locations examined in the
NP-proof and the confidence in its validity (see Section 3.3).

In all these types of probabilistic proof systems, explicit bounds are imposed on the computational
resources of the verification procedure, which in turn is personified by the notion of a verifier.
Furthermore, in all these proof systems, the verifier is allowed to toss coins and rule by statistical
evidence. Thus, all these proof systems carry a probability of error; yet, this probability is explicitly

bounded and, furthermore, can be reduced by successive application of the proof system.
Like in the case of pseudorandom generators, the story of probabilistic proof systems originates

in cryptography. It begins with Goldwasser, Micali and Rackoff who sought a general setting for
their novel notion of zero-knowledge [29], which was aimed to capture cryptographic protocols that
preserve the secrecy of the inputs of their users. The choice fell on proof systems – as capturing
a fundamental activity that takes place in a cryptographic protocol. Motivated by the desire to

1This may explain the historical fact that notions of computation were first rigorously formulated in the context
of logic.

3



formulate the most general type of “proofs” that may be used within cryptographic protocols, they
introduced the notion of an interactive proof system [29]. Although the main thrust of their paper
is the introduction of a special type of interactive proofs (i.e., ones that are zero-knowledge), the
possibility that interactive proof systems may be more powerful from NP-proof system has been
pointed out in [29].

Independently of [29]2, Babai suggested a different formulation of interactive proofs, which he
called Arthur-Merlin Games [4]. Syntactically, Arthur-Merlin Games are a restricted form of inter-
active proof systems, yet it was subsequently shown that these restricted systems are as powerful
as the general ones [30]. Babai’s motivation was to place a group-theoretic problem, previously
placed in NP under some group-theoretic assumptions, “as close to NP as possible” without using
any assumptions. Interestingly, Babai underestimated the expressive power of interactive proof
systems, conjecturing that the class of sets possessing such proof systems (even with an unbounded
number of message-exchange rounds) is “very close” to NP .

The first evidence of the surprising power of interactive proofs was given by Goldreich, Micali,
and Wigderson, who presented an interactive proof system for Graph Non-Isomorphism [24], a
set not known to be in NP . More importantly, their paper has demonstrated the generality and
wide applicability of zero-knowledge proofs. Assuming the existence of one-way function, it was
shown how to construct zero-knowledge interactive proofs for any set in NP . This result has had
a dramatic impact on the design of cryptographic protocols (cf., [25]). In addition, this result has
called attention to the then-new notion of interactive proof systems (since zero-knowledge NP-proofs
could exist only in a trivial sense [26]).

A generalization of interactive proofs to multi-prover interactive proofs was suggested by Ben-
Or, Goldwasser, Kilian and Wigderson [8]. Again, the main motivation came from zero-knowledge
aspects; specifically, introducing multi-prover zero-knowledge proofs for NP without relying on
intractability assumptions. Yet, the complexity theoretic prospects of the new class, denoted MIP,
have not been ignored. A more appealing, to our taste, formulation of the class MIP has been
presented in [16]. The latter formulation exactly coincides with the formulation now known as
probabilistically checkable proofs (i.e., PCP).

The cryptographic lens was responsible for yet another development regarding interactive proof
system. Motivated by the desire to construct schemes for delgating computation in a relaiable
manner, Goldwasser, Kalai, and Rothblum [27] introduced the notion of doubly-efficient interactive
proof systems. In such proof systems, originally termed “interactive proofs for muggles” (where
“muggles” are non-magicians in the Harry Potter lingo), the prover should be relatively efficient and
the verifier should be super-efficient. Specifically, in the context of delegation schemes, the prover
should run in time that is polynomially related to the complexity of the delegated computation,
whereas the verifier should be much faster than the latter complexity.

Hence, each of the aforementioned four types of probabilistic proof systems was originally pro-
posed in order to address some cryptographic concern. More generally, these works (esp., the first
one [29]) introduced the idea that a proof system may be probabilistic, and that the resulting
probabilistic proof systems yield very meaningful notions that have many practical benefits. We
also mention that the cryptographic lens motivated the definition of computationally sound proof
systems (a.k.a. argument systems) [12].3

2Although both [29] and [4] appeared in the same conference (i.e., 17th STOC, 1985), early versions of [29] have
existed in 1982, and were rejected three times from major conferences (i.e., FOCS83, STOC84, and FOCS84).

3Furthermore, a cryptographic primitive (i.e., collision resistant hash functions) was combined with PCP systems

4



In Section 3 we provide a very brief introduction to the aforementioned types of probabilistic
proof systems. A detailed treatment of the basic definitions and results can be found in [20,
Chap. 9], whereas a primer on doubly-efficient interactive proof systems appeared as [21].

1.3 Finer study of reductions

The notions of random self-reducibility, worst-case to average-case reductions, average-case pre-
serving reductions, and black-box reductions emerged naturally from the study of the foundations
of cryptography. In this subsection, we briefly trace their emergence.

Random self-reducibility. Although random self-reducibility was used as an algorithmic tool
in the design of “index calculus” algorithms [1, 42, 48] for solving the Discrete Logarithm Problem,
its first emergence as a tool for establishing hardness occured in the work of Goldwasser and
Micali [28]: Specifically, they identified random self-reducibility as the King’s road to establishing
worst-case to average-case reductions, and this road was taken by many subsequent works, most
notably by [6]. Loosely speaking, if solving a problem on any instance x can be reduced to solving
the same problem on m random |x|-bit long instances, which need not be independently distributed,
then the worst-case hardness of the problem implies that it is hard to solve on at least an 1/3m
fraction of the domain.4

Worst-case to average-case reductions. Goldwasser and Micali [28] introduced the aforemen-
tioned reduction in order to base the security of their proposed encryption scheme on a seemingly
reliable (worst-case) intractability assumption. Their encryption scheme consists of encrypting a
bit σ by a random element of ZN having a Jacobi symbol 1 and quadratic character σ, where N
is the product of two primes that are each congruent to 3 mod 4. Recall that under their robust
definition of security, which was introduced in [28], security was interpreted as the indistinguishably
of an encryption of 0 from an encryption of 1. Hence, proving security of their scheme required
showing that it is infeasible to distinguish a quadratic residue mod M from a quadratic non-residue
of Jacobi symbol 1 mod M . Indeed, Goldwasser and Micali showed that if the Quadratic Resid-
uosity problem was hard on the worst-case, then the foregoing distinguishing task is infeasible.
This was shown by reducing the Quadratic Residuosity problem to the distinguishing task, which
is equivalent to predicting the quadratic character of random numbers that have Jacobi symbol 1;
that is, by showing a worst-case to average-case reduction.

We warn that the foregoing complexity measures are not purely worst-case or average-case,
since they refer to a fixed parameter, which in the foregoing cases in the composite moduli N .
In contrast, subsequent complexity theoretic studies of worst-case to average-case reductions do
refer to such pure notions (see, e.g., [11]). In any case, we stress that it was realized from the
very beginning of the study of the foundations of cryptography (i.e., from [28])5 that cryptographic
applications have to be secure in an average-case sense, and so basing their security of a worst-case
intractability assumption (such as P 6= NP) requires a worst-case to average-case reduction.

to yield argument systems with extremely efficient verification procedures [37].
4The counter-positive asserts that an efficient algorithm that solves the problem correctly on on at least a 1−(1/3m)

fraction of the domain, yields an efficient algorithm that solve the problem correctly on each instance with probability
at least 2/3.

5Some researchers realized this point before [28]. For example, in the late 1970s, Shimon Even realized that
NP-hardness of the problem of breaking an encryption scheme does not guarantee its security.

5



Average-case preserving reductions. Relations between different cryptographic primitives are
typically proved by reductions that preserve average-case hardness. This thread was also pioneered
by Goldwasser and Micali, who showed that a (secure) bit-encryption scheme implies a (secure)
full-fledged encryption scheme [28]. Shortly after, Blum and Micali showed that the average-case
hardness of DLP implies a “hard-core predicate” (of the modular exponentiation function), which
in turn implies a pseudorandom generator [10]. (The argument was generalized by Yao [56].)
All these results are proved by a reduction that preserves average-case hardness in an adequate
sense. Specifically, the reductions transform a violation of the average-case hardness of the claimed
primitive to the violation of the average-case hardness of the given primitive.

A related (“point-wise”) notion of preserving average-case hardness is pivotal to Levin’s theory
of average-case complexity, which was suggested a couple of years later [39].6

Yao’s result by which weakly one-way functions imply (strong) one-way functions [56] (see
exposition in [20, Sec. 7.1.2]) heralded a line of research known as “hardness amplification” (see,
e.g., [34]), which is too rich to review here. Still, the “take home message” is that it all started in
cryptography.

Black-box reductions. All traditional reductions used in complexity theory (e.g., for establish-
ing NP-hardness) are black-box.7 In fact, the definition of a Cook-reduction refers to an abstract
oracle that provides answers to queries regarding the target problem (see, e.g., [20, Sec. 2.2]), and
the notion of a Karp-reduction is a special case. Although some early expositions of the notion of
NP-completeness entertained the possibility that a set S ∈ NP may be “NP-complete” if it holds

that S ∈ P implies NP = P, the standard notion of NP-completeness calls for a reduction. Yet,
the possibility of showing hardness without presenting a (black-box) reduction re-emerged in the
study of the foundations of cryptography.

It began with the work of Impagliazzo and Rudich [35], who essentially showed that the security
of a public-key encryption scheme cannot be reduced to the existence of one-way permutations via
a black-box reduction. This result was taken as indication to the impossibility of constructing
public-key encryption schemes based on one-way functions. Similarly, the fact that protocols of a
certain type cannot be demonstrated to be zero-knowledge using a black-box simulator [23], was
taken as indication to the non-existence of such zero-knowledge protocols. The latter belief was
refuted by Barak [7] a decade later, and the interpretation of the host of black-box separation
results that followed [35] is a controversial topic. For a careful examination of the relevant issues,
the interested reader is directed to [51].

We mention that a natural notion in the context of zero-knowledge is one of a universal sim-
ulator, which obtains the code of the verifier (which is simulates) as an auxiliary input. Such a
simulator (used by Barak [7] and subsequent works in cryptography) corresponds to the notion of
a “white box” reduction, which is often considered in complexity theory (e.g., in the context of de-
randomization; see [33], which explicitly discusses the distinction between black-box and white-box
reductions as well as the possibility of non-constructive proofs (of implications)).

2 Pseudorandomness: A wide computational perspective

Indistinguishable things are identical.8

6The interested reader may prefer the expositions provided in [17] and [20, Sec. 10.2.1].
7Indeed, this follows the notion of Turing-reduction used in computability theory (see, e.g., [20, Sec. 1.2.3.6]).

6



G.W. Leibniz (1646–1714)

The second half of this century has witnessed the development of three theories of randomness, a
notion which has been puzzling thinkers for ages. The first theory (cf., [13]), initiated by Shannon,
is rooted in probability theory and is focused at distributions that are not perfectly random (i.e., are
not uniform over a set of strings of adequate length). Shannon’s Information Theory characterizes
perfect randomness as the extreme case in which the information contents is maximized (i.e.,
the strings contain no redundancy at all). Thus, perfect randomness is associated with a unique
distribution: the uniform one. In particular, by definition, one cannot (deterministically) generate
such perfect random strings from shorter random seeds.

The second theory (cf., [40]), initiated by Solomonov, Kolmogorov, and Chaitin, is rooted in
computability theory and specifically in the notion of a universal language (equiv., universal ma-
chine or computing device). It measures the complexity of objects in terms of the shortest program
(for a fixed universal machine) that generates the object. Like Shannon’s theory, Kolmogorov
Complexity is quantitative and perfect random objects appear as an extreme case. However, in
this approach one may say that a single object, rather than a distribution over objects, is perfectly
random. Still, Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov Complexity is
uncomputable), and – by definition – one cannot (deterministically) generate strings of high Kol-
mogorov Complexity from short random seeds.

The third theory, initiated by Blum, Goldwasser, Micali, and Yao [28, 10, 56], is rooted in the
notion of efficient computation and is the focus of this section. This approach is explicitly aimed
at providing a notion of randomness that allows for an efficient generation of random strings from
shorter random seeds. The heart of this approach is the suggestion to view objects as equal if
they cannot be told apart by any efficient procedure. Consequently, a distribution that cannot be
efficiently distinguished from the uniform distribution will be considered as being random (or rather
called pseudorandom). Thus, randomness is not an “inherent” property of objects (or distributions)
but is rather relative to an observer (and its computational abilities). To demonstrate this approach,
let us consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In each of them,
Alice flips an unbiased coin and Bob is asked to guess its outcome before the coin hits
the floor. The alternative ways differ by the knowledge Bob has before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips the coin. Clearly,
in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin is spinning in
the air. Although the outcome is determined in principle by the motion of the coin,
Bob does not have accurate information on the motion and thus we believe that also in
this case Bob wins with probability 1/2.

The third alternative is similar to the second, except that Bob has at his disposal
sophisticated equipment capable of providing accurate information on the coin’s motion
as well as on the environment effecting the outcome. However, Bob cannot process this
information in time to improve his guess.

8This is Leibniz’s Principle of Identity of Indiscernibles. Leibniz admits that counterexamples to this principle
are conceivable but will not occur in real life because God is much too benevolent.

7



In the fourth alternative, Bob’s recording equipment is directly connected to a powerful

computer programmed to solve the motion equations and output a prediction. It is
conceivable that in such a case Bob can substantially improve his guess of the outcome
of the coin.

We conclude that the randomness of an event is relative to the information and computing re-
sources at our disposal. Thus, a natural concept of pseudorandomness arises: a distribution is
pseudorandom if no efficient procedure can distinguish it from the uniform distribution, where
efficient procedures are associated with (probabilistic) polynomial-time algorithms. This notion
of pseudorandomness is indeed the most fundamental one, yet weaker notions of pseudorandom-
ness arise as well – they refer to indistinguishability by weaker procedures such as space-bounded
algorithms, constant-depth circuits, etc.9

2.1 The general paradigm

The foregoing discussion has focused at one aspect of the pseudorandomness question – the re-
sources or type of the observer (or potential distinguisher). Another important aspect is whether
such pseudorandom sequences can be generated from much shorter ones, and at what cost (or
complexity). A natural approach requires the generation process to be efficient, and furthermore to
be fixed before the specific observer is determined. Coupled with the aforementioned strong notion
of pseudorandomness, this yields the archetypical notion of pseudorandom generators – those oper-
ating in (fixed) polynomial-time and producing sequences that are indistinguishable from uniform
ones by any polynomial-time observer. In particular, this means that the distinguisher is allowed
more resources than the generator. Such (general-purpose) pseudorandom generators (discussed in
Section 2.2) allow to decrease the randomness complexity of any efficient application, and are thus
of great relevance to randomized algorithms and cryptography. The term general-purpose is meant
to emphasize the fact that the same generator is good for all efficient applications, including those
that consume more resources than the generator itself.

Although general-purpose pseudorandom generators are very appealing, there are important
reasons for considering also the opposite relation between the complexities of the generation and
distinguishing tasks; that is, allowing the pseudorandom generator to use more resources (e.g.,
time or space) than the observer it tries to fool. This alternative is natural in the context of deran-
domization (i.e., converting randomized algorithms to deterministic ones), where the crucial step
is replacing the random input of an algorithm by a pseudorandom input, which in turn can be
generated based on a much shorter random seed. In particular, when derandomizing a probabilis-
tic polynomial-time algorithm, the observer (to be fooled by the generator) is a fixed algorithm.
In this case employing a more complex generator merely means that the complexity of the de-
rived deterministic algorithm is dominated by the complexity of the generator (rather than by the
complexity of the original randomized algorithm). Needless to say, allowing the generator to use
more resources than the observer that it tries to fool makes the task of designing pseudorandom

9We mention two perspectives on pseudorandomness that are somewhat different than the one presented in this
section. Vadhan’s treatment [54] emphasizes the connections between a variety of fundamental “pseudorandom
objects” that seem very different in nature. The Pseudorandomness program of the Simons Institute (run in Jan–
May 2017) emphasizes that pseudorandomness and structure are complementing opposites. In both cases (esp., in the
second), the computational aspect is somewhat de-emphasized. The word “computational” was inserted in the title
of this section in order to re-emphasize this aspect.

8



generators potentially easier, and enables derandomization results that are not known when using
general-purpose pseudorandom generators.

We note that the goal of all types of pseudorandom generators is to allow the generation of
“sufficiently random” sequences based on much shorter random seeds; that is, such generators are
actually deterministic algorithms that stretch their input seeds into much longer pseudoramndom
sequences. Our focus is on pseudorandom generators that have significant stretch, since they
offer significant saving in the randomness complexity of various applications (and, in some cases,
eliminating randomness altogether). Saving on randomness is valuable because many applications
are severely limited in their ability to generate or obtain truly random bits. Furthermore, typically,
generating truly random bits is significantly more expensive than standard computation steps.
Thus, randomness is a computational resource that should be considered on top of time complexity
(analogously to the consideration of space complexity).

2.1.1 Three fundamental aspects

In light of the foregoing, a generic formulation of pseudorandom generators consists of specifying
three fundamental aspects – the stretch measure of the generators; the class of distinguishers that
the generators are supposed to fool (i.e., the algorithms with respect to which the computational

indistinguishability requirement should hold); and the resources that the generators are allowed to
use (i.e., their own computational complexity). Let us elaborate.

Stretch function: A necessary requirement from any notion of a pseudorandom generator is
that the generator is a deterministic algorithm that stretches short strings, called seeds, into longer
output sequences.10 Specifically, this algorithm stretches k-bit long seeds into ℓ(k)-bit long outputs,
where ℓ(k) > k. The function ℓ : N → N is called the stretch measure (or stretch function) of the
generator. In some settings (e.g., in the case of general-purpose pseudorandom generators), the
stretch measure can be amplified.

Computational Indistinguishability: A necessary requirement from any notion of a pseudo-
random generator is that the generator “fools” some non-trivial algorithms. That is, it is required
that any algorithm taken from a predetermined class of interest cannot distinguish the output pro-
duced by the generator (when the generator is fed with a uniformly chosen seed) from a uniformly
chosen sequence. Thus, we consider a class D of distinguishers (e.g., probabilistic polynomial-time
algorithms) and a class F of (threshold) functions (e.g., reciprocals of positive polynomials), and
require that the generator G satisfies the following: For any D ∈ D, any f ∈ F , and for all
sufficiently large k’s it holds that

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | < f(k) , (1)

where Un denotes the uniform distribution over {0, 1}n, and the probability is taken over Uk (resp.,
Uℓ(k)) as well as over the coin tosses of algorithm D in case it is probabilistic. The reader may think
of such a distinguisher, D, as of an observer that tries to tell whether the “tested string” is a random
output of the generator (i.e., distributed as G(Uk)) or is a truly random string (i.e., distributed

10Indeed, the seed represents the randomness that is used in the generation of the output sequences; that is, the
randomized generation process is decoupled into a deterministic algorithm and a random seed. This decoupling
facilitates the study of such processes.

9



as Uℓ(k)). The condition in Eq. (1) requires that D cannot make a meaningful decision; that is,
ignoring a negligible difference (represented by f(k)), D’s verdict is the same in both cases.11 The
archetypical choice is that D is the set of all probabilistic polynomial-time algorithms, and F is the
set of all functions that are the reciprocal of some positive polynomial.

Complexity of Generation: This aspect refers to the complexity of the generator itself, when
viewed as an algorithm. The archetypical choice is that the generator has to work in polynomial-
time (i.e., make a number of steps that is polynomial in the length of its input – the seed). Other
choices will be discussed as well. We note that placing no computational requirements on the
generator (or, alternatively, imposing very mild requirements such as upper-bounding the running-
time by a double-exponential function), yields “generators” that can fool any subexponential-size
circuit family.12

2.1.2 Some instantiations of the general paradigm

Two important instantiations of the notion of pseudorandom generators relate to polynomial-time
distinguishers.

General-purpose pseudorandom generators. This incarnation corresponds to the case that
the generator itself runs in polynomial-time and is required to withstand any probabilistic polynomial-

time distinguisher, including distinguishers that run for more time than the generator (i.e., Eq. (1)
holds for all polynomial-time D’s and F = {1/p : p ∈ POLY}). Thus, the same generator may be
used safely in any efficient application.

This notion is treated in [19, Sec. 3], and we shall further discuss it in Section 2.2. Recall that in
this case, any pseudorandom generator (of any stretch function, including the minimal ℓ(k) = k+1),
implies a pseudorandom generator of any desired (polynomial) stretch function [20, Sec. 8.2.4].

Canonical derandomizers. In contrast, pseudorandom generators intended for derandomiza-
tion may run more time than the distinguisher, which is viewed as a fixed circuit having size that is
upper-bounded by a fixed polynomial (say, the quadratic polynomial n2). Specifically, a canonical
derandomizer is an exponential-time deterministic algorithm that stretches its k-bit long random
seed to an ℓ(k)-bit long sequence that fools any quadratic (in ℓ) size circuits (i.e., Eq. (1) holds for
any circuit D of size ℓ(n)2 and F = {1/6}).

Note that a canonical derandomizer of exponential stretch implies that BPP = P. To see this,
consider an arbitrary probabilistic polynomial-time algorithm, denoted A, that decides S ∈ BPP ,
and denote is running time by p. Letting G denote the canonical derandomizer, and ℓ(k) =
exp(Ω(k)) denote its stretch, we obtain an algorithm AG that, on input x, uniformly selects s ∈
{0, 1}k , where k = O(log |x|) such that ℓ(k) = p(|x|), and invokes A on input x and randomness
G(s). By the current incarnation of Eq. (1), it follows that, for every x, we have |Pr[A(x) =
1] − Pr[AG(x) = 1]| < 1/6, since otherwise we obtain a o(ℓ(k)2)-size circuit that distinguishes

11The class of threshold functions F should be viewed as determining the class of noticeable probabilities (as a
function of k). Thus, we require certain functions (i.e., those presented at the l.h.s of Eq. (1)) to be smaller than any
noticeable function on all but finitely many integers. We call the former functions negligible. Note that a function
may be neither noticeable nor negligible (e.g., it may be smaller than any noticeable function on infinitely many
values and yet larger than some noticeable function on infinitely many other values).

12This fact can be proved via the probabilistic method; see [20, Exer. 8.1].

10



Uℓ(k) from G(Uk). Finally, by trying all possible random-tapes of AG, we obtain a deterministic
polynomial-time algorithm that decides S (i.e., this algorithm accepts x if and only if the majority
of the possible random-tapes lead AG(x) to accept (i.e., iff Pr[AG(x)=1] > 1/2)).13

Note that if f is computable in exponential time but is hard to approximate (or predict), on
the average, by circuits of smaller exponential size (with advantage proportional to their size), then
G(s) = (s, f(s)) constitutes a canonical derandomizer (of minimal stretch). Interestingly, canonical
derandomizers of exponential stretch can also be obtained in this case [46], by applying f to an
exponential number of Ω(k)-bit long substrings of the k-bit long seed that have relatively small
pairwise intersections.14 For further details on canonical derandomizers, the interested reader is
referred to [20, Sec. 8.3].

We now turn to a few additional instantiations of the notion of pseudorandom generators.
These instantiations refer to more limited classes of distinguishers such as log-space machines, local
computations, and linear computations. In the known constructions for each of these cases, each
bit in the output of the generator can be computed in time that is polynomial in the seed length.

Fooling space-bounded distinguishers. Here the distinguishers are space-bounded machines
that have unidirectional access to the input they examine; actually, we may consider (non-uniform)
OBDDs of bounded width.15 The two main constructions known are at the extremes the relation
between the distinguishers’ time and space complexities (i.e., the OBDDs’ length and width), where
in both cases the generator itself has linear space complexity.

1. Using a seed of length k = O(log s)2, one can fool 2s-width OBDDs that read exp(s) many
bits (i.e., ℓ(k) = exp(

√
k)) [44].

2. Using a seed of length k = O(log s), one can fool 2s-width OBDDs that read poly(s) many
bits (i.e., ℓ(k) = poly(k)) [47].

In the first result one should think of s as being logarithmic in the length of the output sequence
(i.e., s = O(log ℓ(k))), whereas in the second result one should think of s as being a O(1)-root of the
length of the output sequence (i.e., s = ℓ(k)1/O(1)). The specific construction of the first generator
allows for derandomizing the class BPL in polylogarithmic space and polynomial time [45]. For
further details on space-bounded pseudorandom generators, the interested reader is referred to [20,
Sec. 8.4].

Fooling local distinguishers. Here we consider distinguishers that inspect a constant number,
denoted t, of bits in the sequence output by the generator, where these bit locations are not a priori

known. Random sequences that perfectly fool such distinguishers are called t-wise independent
(since each sequence of t bits in them is uniformly distributed in {0, 1}t). Constructions of t-wise
independence generators can achieve stretch ℓ(k) = 2k/t, and this result extends to sequences over
Σ = {0, 1}k/t; for details, see [20, Sec. 8.5.1].

13Recall that for every x, either Pr[A(x)=1] ≥ 2/3 or Pr[A(x)=1] ≤ 1/3.
14We mention that the construction of [46] has also been applied in other settings. One case, which predated [46],

is that of constant-depth circuits [43]. Another case is information theoretic; this case led to a breakthrough in the
study of randomness extractors [53]. In both these cases, the hard function f can be proved to exist without relying
on any intractability assumptions.

15Ordered binary decision diagrams (OBDD) are branching programs that reads bits of the input in a predetermined
order. Their width correspond to an exponential function of the space bound.

11



Fooling linear distinguishers. Here we consider distinguishers that inspect a linear combina-
tion (over GF(2)) of bits in the sequence output by the generator, where the linear combination is
not a priori known. Random sequences that fool such distinguishers with a probability gap of ǫ
are called ǫ-biased. Constructions of ǫ-biased generators can achieve stretch ℓ(k) = ǫ · exp(Ω(k));
for details, see [20, Sec. 8.5.2].

Fooling hitting tests distinguishers. Lastly, we consider distinguishers that inspect sequences
over Σ = {0, 1}b. Each such distinguisher is associated with a target set T ⊆ Σ of density at
least half, and accepts the sequence if at least one of its elements hit the set T . A generator
G : {0, 1}k → Σℓ′(k) is said to pass such a test if the probability that its output is not accepted (i.e.,
each element in G(Uk) misses T ) is at most exp(−Ω(ℓ′(k))). Such generators can be constructed
for ℓ′(k) = Ω(k − b); for details, see [20, Sec. 8.5.3].

2.2 General-Purpose Pseudorandom Generators

Randomness is playing an increasingly important role in computation: It is frequently used in the
design of sequential, parallel and distributed algorithms, and it is of course central to cryptography.
Whereas it is convenient to design such algorithms making free use of randomness, it is also desirable
to minimize the usage of randomness in real implementations. Thus, general-purpose pseudorandom
generators (as defined in [19, Sec. 3]) are a key ingredient in an “algorithmic tool-box” – they provide
an automatic compiler of programs written with free usage of randomness into programs that make
an economical use of randomness.

2.2.1 The Archetypical Application

Recall that “pseudo-random number generators” appeared with the first computers, and have been
used ever since for generating random choices (or samples) for various applications. However, typical
implementations use generators that are not pseudorandom according to our definition. Instead,
at best, these generators are shown to pass some ad-hoc statistical test (cf., [38]). We warn that
the fact that a “pseudo-random number generator” passes some statistical tests, does not mean
that it will pass a new test and that it will be good for a future (untested) application. Needless
to say, the approach of subjecting the generator to some ad-hoc tests fails to provide general
results of the form “for all practical purposes using the output of the generator is as good as using
truly unbiased coin tosses.” In contrast, the approach encompassed in the definition of general-
purpose pseudorandom generators aims at such generality, and in fact is tailored to obtain it: The
notion of computational indistinguishability, which underlines this definition, covers all possible
efficient applications and guarantees that for all of them pseudorandom sequences are as good as
truly random ones. Indeed, any efficient randomized algorithm maintains its performance when its
internal coin tosses are substituted by a sequence generated by a (general purpose) pseudorandom
generator. This substitution is spelled out next.

Construction 2.1 (typical application of pseudorandom generators): Let G be a (general purpose)
pseudorandom generator with stretch function ℓ : N→N. Let A be a probabilistic polynomial-time

algorithm, and ρ : N→N denote its randomness complexity. Denote by A(x, r) the output of A
on input x and coin tosses sequence r ∈ {0, 1}ρ(|x|). Consider the following randomized algorithm,

denoted AG:

12



On input x, set k = k(|x|) to be the smallest integer such that ℓ(k) ≥ ρ(|x|), uniformly

select s ∈ {0, 1}k, and output A(x, r), where r is the ρ(|x|)-bit long prefix of G(s).

That is, AG(x, s) = A(x,G′(s)), where |s| = k(|x|) = argmini{ℓ(i) ≥ ρ(|x|)}, and G′(s) is the

ρ(|x|)-bit long prefix of G(s).

Thus, using AG instead of A, the randomness complexity is reduced from ρ to ℓ−1◦ρ, while (as stated
in Proposition 2.2) it is infeasible to find inputs (i.e., x’s) on which the noticeable behavior of AG is
different from the one of A (and the non-existence of such inputs follows in case pseudorandomness
holds with respect to polynomial size circuits).16 For example, if ℓ(k) = k2, then the randomness
complexity is reduced from ρ to

√
ρ. We stress that the pseudorandom generator G is universal;

that is, it can be applied to reduce the randomness complexity of any probabilistic polynomial-time
algorithm A.

Proposition 2.2 Let A, ρ and G be as in Construction 2.1, and suppose that ρ : N → N is 1-1.

Then, for every pair of probabilistic polynomial-time algorithms, a finder F and a tester T , every

positive polynomial p and all sufficiently long n’s

∑

x∈{0,1}n

Pr[F (1n) = x] · ∆A,T (x) <
1

p(n)
(2)

where ∆A,T (x)
def
= |Pr[T (x,A(x,Uρ(|x|))) = 1] − Pr[T (x,AG(x,Uk(|x|))) = 1] |, and the probabilities

are taken over the Um’s as well as over the internal coin tosses of the algorithms F and T .

Algorithm F represents a potential attempt to find an input x on which the output of AG is
distinguishable from the output of A. This “attempt” may be benign as in the case that a user
employs algorithm AG on inputs that are generated by some probabilistic polynomial-time appli-
cation. However, the attempt may also be adversarial as in the case that a user employs algorithm
AG on inputs that are provided by a potentially malicious party. The potential tester, denoted T ,
represents the potential use of the output of algorithm AG, and captures the requirement that this
output be as good as a corresponding output produced by A. Thus, T is given x as well as the

corresponding output produced either by AG(x)
def
= A(x,G′(Uk(|x|))) or by A(x) = A(x,Uρ(|x|)), and

it is required that T cannot tell the difference. In the case that A is a probabilistic polynomial-time
decision procedure, this means that it is infeasible to find an x on which AG decides incorrectly (i.e.,
differently than A). In the case that A is a search procedure for some NP-relation, it is infeasible
to find an x on which AG outputs a wrong solution. For details, see [20, Sec. 8.2.1].

Conclusion. Although Proposition 2.2 refers to standard probabilistic polynomial-time algo-
rithms, a similar construction and analysis applied to any efficient randomized process (i.e., any
efficient multi-party computation). Any such process preserves its behavior when replacing its per-
fect source of randomness (postulated in its analysis) by a pseudorandom sequence (which may be
used in the implementation). Thus, given a pseudorandom generator with a large stretch function,
one can significantly reduce the randomness complexity of any efficient application.

16That is, the (non-uniform) existential conclusion follows from a non-uniform hypothesis regarding G (i.e., that
G(Uk) is indistinguishable from Uℓ(k) by any poly(k)-size circuit).

13



2.2.2 Pseudorandom Functions

Pseudorandom generators allow to efficiently generate long pseudorandom sequences from short
random seeds (e.g., using k random bits, we can efficiently generate a pseudorandom bit-sequence
of length k2). Pseudorandom functions (defined below) are even more powerful: they allow efficient
direct access to a huge pseudorandom sequence (which is infeasible to scan bit-by-bit). For example,
based on k random bits, we define a sequence of length 2k such that we can efficiently retrieve any
desired bit in this sequence while the retrieved bits look random. In other words, pseudorandom
functions can replace truly random functions in any efficient application (e.g., most notably in
Cryptography). That is, pseudorandom functions are indistinguishable from random functions by
any efficient procedure that may obtain the function values at arguments of its choice.

Definition 2.3 (pseudorandom functions [22]). A pseudorandom function (ensemble), with length

parameters ℓD, ℓR : N→N (e.g., ℓD(k) = k and ℓR(k) = 1), is a collection of functions {Fk}k∈N,

where

Fk
def
= {fs :{0, 1}ℓD(k)→{0, 1}ℓR(k)}s∈{0,1}k ,

satisfying

(efficient evaluation) There exists an efficient (deterministic) algorithm that when given a seed, s,
and an ℓD(|s|)-bit argument, x, returns the ℓR(|s|)-bit long value fs(x).

(Thus, the seed s is an “effective description” of the function fs.)

(pseudorandomness) For every probabilistic polynomial-time oracle machine M , every positive poly-

nomial p, and all sufficiently large k

∣

∣

∣

Prs∼Uk
[Mfs(1k) = 1] − Prρ∼Rk

[Mρ(1k) = 1]
∣

∣

∣

<
1

p(k)
,

where Rk denotes the uniform distribution over all functions mapping {0, 1}ℓD(k) to {0, 1}ℓR(k),

and Mf (x) denotes the computation of M on input x when M ’s queries are answered by the

function f .

Although pseudorandom functions seem stronger than pseudorandom generators, the former can
be constructed using the latter (see [19, Sec. 3.3]).

We mention two (“non cryptographic”) applications of pseudorandom functions to the theory
of computation. The first, which originates in Valiant’s seminal work on PAC learning [55], is the
observation that pseudorandom functions yield concept classes that are infeasible to learn (since
a learning algorithm for a concept class consisting of pseudorandom functions would distinguish
pseudorandom functions from truly random functions, which cannot be learned at all). The second
application is the pivotal role of pseudorandom functions in the “natural proofs” framework of [49].

2.2.3 The Intellectual Contents of Pseudorandom Generators

We shortly discuss some intellectual aspects of general-purpose pseudorandom generators. Actually,
the first two aspects apply to all incarnations of the notion of a pseudorandom generator.

14



Behavioristic versus ontological. Our definition of pseudorandom generators is based on the
notion of computational indistinguishability. The behavioristic nature of the latter notion is best
demonstrated by confronting it with the Kolmogorov-Chaitin approach to randomness. Loosely
speaking, a string is Kolmogorov-random if its length roughly equals the length of the shortest
program producing it. This shortest program may be considered the “true explanation” to the
phenomenon described by the string. A Kolmogorov-random string is thus a string that does
not have a substantially simpler (i.e., shorter) explanation than itself. Considering the simplest
explanation of a phenomenon may be viewed as an ontological approach. In contrast, considering
the effect of phenomena (on an observer), as underlying the definition of pseudorandomness, is
a behavioristic approach. Furthermore, there exist probability distributions that are not uniform
(and are not even statistically close to a uniform distribution), but nevertheless are indistinguishable
from a uniform distribution by any efficient procedure. Thus, distributions that are ontologically
very different are considered equivalent by the behavioristic point of view taken in the definition of
pseudorandomness.

A relativistic view of randomness. Pseudorandomness is defined in terms of its observer: In
the archetypical case of the general-purpose incarnation, a pseudorandom distribution is one that
cannot be told apart from a uniform distribution by any efficient (i.e., polynomial-time) observer.
However, the output of such pseudorandom generators can be distinguished from uniform sequences
by an exponential-time machine (which is not at our disposal), which just tries all possible seeds (and
rules that the sequence is random if and only if it is not in the image of the generator). Furthermore,
the mere variety of different incarnations of the notion of computational indistinguishability testifies
that pseudorandomness depends on the abilities of the observer. Hence, pseudorandomness is a
relative notion.

Randomness and computational difficulty. In the archetypical case of the general-purpose
incarnation (and also in the case of canonical derandomizers), pseudorandomness and computa-
tional difficulty play dual roles: The definition of pseudorandomness is pivoted at a difficult com-
putational task (i.e., the task of distinguishing pseudorandom sequences from truly random ones).
Furthermore, the known constructions of pseudorandom generators rely on conjectures regarding
computational difficulty (e.g., the existence of one-way functions in the archetypical case), and this
is inevitable: The existence of such pseudorandom generators implies some known intractability
conjectures (e.g., the existence of one-way functions).

Randomness and Predictability. The connection between pseudorandomness and unpredictabil-
ity (by efficient procedures) plays an important role in the analysis of several constructions of pseu-
dorandom generators (see [20, Sec. 8.2.5.2] and well as [20, Sec. 8.3.2.2]). We wish to highlight the
intuitive appeal of this connection.

3 Probabilistic Proof Systems: A bird’s eye view

A proof is whatever convinces me.

Shimon Even (1935–2004)

15



The glory attributed to the creativity involved in finding proofs makes us forget that it is the less
glorified process of verification that defines proof systems. The notion of a verification procedure
presupposes the notion of computation, and furthermore the notion of efficient computation (be-
cause verification, unlike coming up with proofs, is supposed to be easy). Associating the set of
valid assertions with a set of objects that have some property, we view a proof system for a set
S (e.g., of satisfiable formulae) as a game between an all-powerful prover and an efficient verifier:
Both receive an input x, and the prover attempts to convince the verifier that x ∈ S. We seek
proof systems that are complete and sound, where completeness means that the prover succeeds
for every x ∈ S, and soundness means that any prover fails for every x 6∈ S.

When taking the most natural choice of the efficiency requirement, namely restricting the verifier
to be a deterministic polynomial-time machine, we get the definition of the class NP (rephrased as
a proof system): a set S is in NP if and only if membership in S can be verified by a deterministic

polynomial-time machine when given an alleged proof of polynomial length (i.e., polynomial in |x|).
Relaxing the efficiency requirement, we let the verifier be a probabilistic polynomial-time ma-

chine. Furthermore, we allowing it to “rule by statistical evidence” and hence to err (with low
probability, which is explicitly bounded, and can be reduced via repetitions). This relaxation is not
suggested as a substitute to the notion of a mathematical proof, but rather as a practical solution
to the problem of verifying mundane assertions (like the fact that on input x, the program P halts
with output P (x)). As we shall see below, this relaxation turns out to yield enormous advances in
computer science.

3.1 Interactive Proof Systems

When the verifier is deterministic, we can always assume that the prover simply sends it a single
message (the purported “proof”), and based on this message the verifier decides whether to accept
or reject the common input x as a member of the target set S. (More extensive interaction does
not help here, since the verifier’s steps are predictable by the prover.)

When the verifier is probabilistic, interaction may add power. We thus consider a (randomized)
interaction between the parties. Such an interaction which may be viewed as an “interrogation”
of the teacher (prover) by a persistent student (verifier), who asks the teacher “tough” questions
in order to be convinced of the correctness of the claim. Interestingly, it turns out that asking
“tough” questions is not (significantly) better than asking random questions (even if one cares of
the number of rounds [30]). In any case, since the verifier ought to be efficient (i.e., run in time
polynomial in |x|), this interaction is bounded to have at most polynomially many rounds. The
class IP (for Interactive Proofs) contains all sets S for which there is a verifier that accepts every
x ∈ S with probability 1 (after interacting with an adequate prover), but rejects any x 6∈ S with
probability at least 1/2 (no matter what strategy is employed by the prover).

Clearly, NP ⊆ IP: To prove that x is in an NP-set S, the prover just sends an adequate
NP-witness, which the verifier can easily verify. But how can one prove that x is not in S ∈ NP?
That is, when proving that something (i.e., an NP-witness) exists, the prover merely presents it,
but how can the prover convince the verifier that something (i.e., an NP-witness) does not exist?
A major result asserts that interactive proofs exists for every set in PSPACE ⊇ coNP . In fact, we
have

Theorem 3.1 [41, 52]: IP = PSPACE .

16



Recalling that it is widely believed that NP 6= PSPACE , it follows that interactive proofs seem
more powerful than standard non-interactive and deterministic proofs (i.e., NP-proofs). In partic-
ular, since coNP ⊆ PSPACE , Theorem 3.1 implies that there are such interactive proofs for every
set in coNP , whereas some coNP-sets are believed not to have NP-proofs.

3.2 Zero-Knowledge Proof Systems

Here the thrust is not on being able to prove more assertions, but rather on having proofs with
additional properties. Randomized and interactive verification procedures as in Section 3.1 allow
the (meaningful) introduction of zero-knowledge proofs, which are proofs that yield nothing beyond
their own validity. Such proofs seem counter-intuitive and undesirable for educational purposes,
but they are very useful in cryptography.

For example, a zero-knowledge proof that a certain propositional formula is satisfiable does
not reveal a satisfying assignment to the formula nor any partial information regarding such an
assignment (e.g., whether the first variable can assume the value true). In general, whatever the
verifier can efficiently compute after interacting with a zero-knowledge prover, can be efficiently
reconstructed from the assertion itself (without interacting with anyone).

Clearly, any set in BPP has a zero-knowledge proof, in which the prover says nothing (and the
verifier decides by itself). What is surprising is that zero-knowledge proofs seem to exist also for
sets that are widely believed not to be in BPP . In particular:

Theorem 3.2 [24]: Assuming the existence of (non-uniformly hard) one-way functions, every set

in NP has a zero-knowledge proof system.

Interestingly, under the same condition any set in IP has a zero-knowledge proof system [9]. On
the other hand, for the actual use of zero-knowledge proof systems, it is crucial that the prover
strategy asserted in Theorem 3.2 can be implemented in probabilistic polynomial-time, when given
an NP-witness for the common input. Of course, this zero-knowledge strategy does not consist of
just sending the NP-witness; it rather consists of sending “commitments” to many “randomized
versions” of the NP-witness, and allowing the verifier to inspect few random location in each such
randomized witness (by decommitting to the locations selected by the verifier).

3.3 Probabilistically Checkable Proof systems

Let us return to the non-interactive mode, in which the verifier receives a (alleged) written proof.
But now we restrict its access to the proof so as to read only a small part of it (which may
be randomly selected by it). An excellent analogy is to imagine a referee trying to decide the
correctness of a long proof by sampling a few lines of the proof. It seems hopeless to detect a single
“bug” unless the entire “proof” is read; but this intuition is valid only for the “natural” way of
writing down proofs, and fails when “robust” formats of proofs are used (and one is willing to settle
for statistical evidence).

Such “robust” proof systems are called PCPs (for Probabilistically Checkable Proofs). Loosely
speaking, a pcp system for a set S consists of a probabilistic polynomial-time verifier having access
to an oracle that represents a proof in redundant form, where (as in case of NP-proofs) the length
of the proof is polynomial in the length of the input. The verifier accesses only a constant number
of the oracle bits, and accepts every x ∈ S with probability 1 (when given access to an adequate

17



oracle), but rejects any x 6∈ S with probability at least 1/2 (no matter to which oracle it is given
access).

Theorem 3.3 (The PCP Theorem [3, 2]):17 Each set in NP has a pcp system. Furthermore, there

exists a polynomial-time procedure for converting any NP-proof to the corresponding pcp-oracle.

Indeed, the proof of the PCP Theorem suggests a way of writing “robust” proofs, in which any
bug must “spread” all over.18 One important application of the PCP Theorem (and its variants)
is its connection to the complexity of combinatorial approximation. For example, using the PCP
system of [31], it follows that it is NP-complete to decide, when given a linear system of equations
over GF(2), whether the fraction of mutually satisfiable equations is greater than 99% or smaller

than 51%.

3.4 Doubly-efficient interactive proof systems

Turning back to interactive proof systems, recall that their definition does not restrict the com-
plexity of the strategy of the prescribed prover. Indeed, the constructions of [41, 52] use prover
strategies of high complexity. This fact limits the applicability of these proof systems in practice.
(Nevertheless, such proof systems may be actually applied when the prover knows something that
the verifier does not know, such as an NP-witness to an NP-claim, and when the proof system offers
an advantage such as zero-knowledge [29, 24].)

In constast, the definition of doubly-efficient interactive proof systems requires the prescribed

prover strategy to be implemented in polynomial-time and the verifier’s strategy to be implemented

in almost-linear-time. (We stress that unlike in argument systems [12], the soundness condition
holds for all possible cheating strategies (not only for feasible ones).) Restricting the prescribed
prover to run in polynomial-time implies that such systems may exist only for sets in BPP, whereas
a polynomial-time verifier can check membership in such sets by itself. However, restricting the
verifier to run in almost-linear-time implies that something can be gained by interacting with a
more powerful prover, even though the latter is restricted to polynomial-time.

The foregoing potential was first demonstrated in [27], which presents doubly-efficient proof
systems for any set that has log-space uniform circuits of small depth (e.g., log-space uniform NC).
An incomparable recent result of [50] provides such (constant-round) proof systems for any set that
can be decided in polynomial-time and small amount of space (e.g., for all sets in SC). That is,
denoting by TiSp(T, s) the class of sets that can be decided by a (randomized) algorithm that runs
in time T while using space s, we have:

Theorem 3.4 [50]: For every polynomial p and s(n) =
√

n, each set in TiSp(p, s) has a (constant
round) doubly-efficient proof system.

Recall that each set having a doubly-efficient proof system is in BPP , and note that it is also
decidable in almost-linear space.

Acknowledgments

I am grateful to Yuval Ishai for helpful comments.

17See also an alternative proof of [14].
18The analogy to error correcting codes is indeed in place, and the cross fertilization between these two areas has

been very significant.

18



References

[1] L.M. Adleman. A subexponential algorithm for the discrete logarithm problem with applica-
tions to cryptography, In 20th FOCS, pages 55–60, 1979.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and In-
tractability of Approximation Problems. Journal of the ACM, Vol. 45, pages 501–555, 1998.
Preliminary version in 33rd FOCS, 1992.

[3] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.
Journal of the ACM, Vol. 45, pages 70–122, 1998. Preliminary version in 33rd FOCS, 1992.

[4] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium on the Theory

of Computing, pages 421–429, 1985.

[5] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarithmic
Time. In 23rd ACM Symposium on the Theory of Computing, pages 21–31, 1991.

[6] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponential Time Simulations
unless EXPTIME has Publishable Proofs. Complexity Theory, Vol. 3, pages 307–318, 1993.

[7] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd IEEE Symposium

on Foundations of Computer Science, pages 106–115, 2001.

[8] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs:
How to Remove Intractability. In 20th ACM Symposium on the Theory of Computing, pages
113–131, 1988.

[9] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali, and P. Rogaway.
Everything Provable is Probable in Zero-Knowledge. In Crypto88, Springer-Verlag Lecture
Notes in Computer Science (Vol. 403), pages 37–56, 1990

[10] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal on Computing, Vol. 13, pages 850–864, 1984. Preliminary
version in 23rd FOCS, 1982.

[11] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP problems.
SIAM Journal on Computing, Vol. 36 (4), pages 1119–1159, 2006. Extended abstract in 44th

FOCS, 2003.

[12] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. Journal

of Computer and System Science, Vol. 37, No. 2, pages 156–189, 1988. Preliminary version
by Brassard and Crépeau in 27th FOCS, 1986.

[13] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,
New-York, 1991.

[14] I. Dinur. The PCP Theorem by Gap Amplification. Journal of the ACM, Vol. 54 (3), Art. 12,
2007.

19



[15] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating Clique is almost
NP-complete. Journal of the ACM, Vol. 43, pages 268–292, 1996. Preliminary version in 32nd

FOCS, 1991.

[16] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactive protocols.
In 3rd IEEE Symposium on Structure in Complexity, pages 156–161, 1988. See errata in 5th

IEEE Symposium on Structure in Complexity, pages 318–319, 1990.

[17] O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. ECCC, TR97-058,
Dec. 1997.

[18] O. Goldreich. Secure Multi-Party Computation. Unpublished
manuscript, June 1998. Available from the author’s web-page (i.e.,
http://www.wisdom.weizmann.ac.il/∼oded/pp.html).

[19] O. Goldreich. Foundations of Cryptography – A Primer. Foundations and Trends in TCS,
Vol. 1 (1), NOW publishers, 2005.

[20] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[21] O. Goldreich. On Doubly-Efficient Interactive Proof Systems. Foundations and Trends in

Theoretical Computer Science, Volume 13, Issue 3, 2018.

[22] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal

of the ACM, Vol. 33, No. 4, pages 792–807, 1986.

[23] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM

Journal on Computing, Vol. 25, No. 1, February 1996, pages 169–192. Preliminary version in
17th ICALP, 1990.

[24] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or
All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No.
1, pages 691–729, 1991. Preliminary version in 27th FOCS, 1986.

[25] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th ACM Symposium on the Theory of

Computing, pages 218–229, 1987. See details in [18].

[26] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems.
Journal of Cryptology, Vol. 7, No. 1, pages 1–32, 1994.

[27] S. Goldwasser, Y. Kalai, and G.N. Rothblum. Delegating Computation: Interactive Proofs
for Muggles. Journal of the ACM, Vol. 62(4), Art. 27:1-27:64, 2015. Extended abstract in
40th STOC, pages 113–122, 2008.

[28] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System

Science, Vol. 28, No. 2, pages 270–299, 1984. Preliminary version in 14th STOC, 1982.

20



[29] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version in
17th STOC, 1985. Earlier versions date to 1982.

[30] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems.
Advances in Computing Research: a research annual, Vol. 5 (Randomness and Computation,
S. Micali, ed.), pages 73–90, 1989. Extended abstract in 18th STOC, 1986.

[31] J. H̊astad. Getting optimal in-approximability results. Journal of the ACM, Vol. 48, pages
798–859, 2001. Extended abstract in 29th STOC, 1997.

[32] J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any
One-way Function. SIAM Journal on Computing, Volume 28, Number 4, pages 1364–1396,
1999. Preliminary versions by Impagliazzo et al. in 21st STOC (1989) and H̊astad in 22nd

STOC (1990).

[33] R. Impagliazzo, V. Kabanets, and A. Wigderson. In Search of an Easy Witness: Exponen-
tial Time vs. Probabilistic Polynomial Time. In 16th IEEE Conference on Computational

Complexity, pages 2–12, 2001.

[34] R. Impagliazzo, R. Jaiswal, V. Kabanets, and A. Wigderson. Uniform Direct Product Theo-
rems: Simplified, Optimized, and Derandomized. SIAM Journal on Computing, Volume 39,
Number 4, pages 1637–1665, 2010.

[35] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way Permu-
tations. In 21st ACM Symposium on the Theory of Computing, pages 44–61, 1989. Also
presented in CRYPTO’88.

[36] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizing
the XOR Lemma. In 29th ACM Symposium on the Theory of Computing, pages 220–229,
1997.

[37] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th ACM Sympo-

sium on the Theory of Computing, pages 723–732, 1992.

[38] D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms).
Addison-Wesley Publishing Company, Inc., 1969 (first edition) and 1981 (second edition).

[39] L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing, Vol. 15, pages
285–286, 1986.

[40] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications.
Springer Verlag, August 1993.

[41] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems. Journal of the ACM, Vol. 39, No. 4, pages 859–868, 1992. Preliminary version in
31st FOCS, 1990.

[42] R. Merkle. Secrecy, authentication, and public key systems. Ph.D. dissertation, Department
of Electrical Engineering, Stanford University, 1979.

21



[43] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, Vol. 11 (1), pages
63–70, 1991.

[44] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,
Vol. 12 (4), pages 449–461, 1992. Preliminary version in 22nd STOC, 1990.

[45] N. Nisan. RL ⊆ SC. Computational Complexity, Vol. 4, pages 1-11, 1994. Preliminary version
in 24th STOC, 1992.

[46] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer and System

Science, Vol. 49, No. 2, pages 149–167, 1994. Preliminary version in 29th FOCS, 1988.

[47] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal of Computer and

System Science, Vol. 52 (1), pages 43–52, 1996. Preliminary version in 25th STOC, 1993.

[48] J. Pollard. Monte Carlo methods for index computations (mod p). Math. Comp., Vol 32,
pages 918–924, 1978.

[49] A.R. Razborov and S. Rudich. Natural Proofs. Journal of Computer and System Science,
Vol. 55 (1), pages 24–35, 1997. Preliminary version in 26th STOC, 1994.

[50] O. Reingold, G. Rothblum, R. Rothblum. Constant-round interactive proofs for delegating
computation. In 48th ACM Symposium on the Theory of Computing, pages 49–62, 2016.

[51] O. Reingold, L. Trevisan, and S. Vadhan. Notions of Reducibility between Cryptographic
Primitives. 1st TCC, pages 1–20, 2004.

[52] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869–877, 1992.
Preliminary version in 31st FOCS, 1990.

[53] L. Trevisan. Extractors and Pseudorandom Generators. Journal of the ACM, Vol. 48 (4),
pages 860–879, 2001. Preliminary version in 31st STOC, 1999.

[54] S. Vadhan. Pseudorandomness. Foundations and Trends in TCS, Vol. 7 (1–3), NOW pub-
lishers, 2012.

[55] L.G. Valiant. A Theory of the Learnable. Communications of the ACM, Vl. 27 (11), pages
1134–1142, 1984.

[56] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on

Foundations of Computer Science, pages 80–91, 1982.

22


