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Abstract

We show that every set in P is strongly testable under a suitable encoding. By “strongly
testable” we mean having a (proximity oblivious) tester that makes a constant number of queries
and rejects with probability that is proportional to the distance of the tested object from the
property. By a “suitable encoding” we mean one that is polynomial-time computable and
invertible. This result stands in contrast to the known fact that some sets in P are extremely
hard to test, providing another demonstration of the crucial role of representation in the context
of property testing.

The testing result is proved by showing that any set in P has a strong canonical PCP,
where canonical means that (for yes-instances) there exists a single proof that is accepted with
probability 1 by the system, whereas all other potential proofs are rejected with probability
proportional to their distance from this proof. In fact, we show that UP equals the class of
sets having strong canonical PCPs (of logarithmic randomness), whereas the class of sets having
strong canonical PCPs with polynomial proof length equals “unambiguous-MA”. Actually, for
the testing result, we use a PCP-of-Proximity version of the foregoing notion and an analogous
positive result (i.e., strong canonical PCPPs of logarithmic randomness for any set in UP).
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1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g., a
recent textbook [11]). Loosely speaking, property testing typically refers to super-fast probabilistic
algorithms for deciding whether a given object has a predetermined property or is far from any
object having this property. Such algorithms, called testers, obtain local views of the object by
performing queries; that is, the tested object is modeled as a function and the testers get oracle
access to this function (and thus may be expected to work in time that is sub-linear in the size of
the object).

It is well known that property testing is very sensitive to the representation of the tested objects,
far more so than standard studies in complexity theory. For example, while the adjacency matrix
and the incident lists representations are equivalent as far as complexity classes such as P are
concerned, in the case of property testing there is a significant difference between the adjacency

matrix model (a.k.a. the dense graph model [12]) and the incidence graph model (a.k.a. the bounded-

degree graph model [16]).
In this paper we provide another demonstration of the crucial role of representation in the

context of property testing. Specifically, in contrast to the known fact that some sets in P are
extremely hard to test (see, e.g., [14, Theorem 7]), we show that, under a suitable polynomial-time

computable (and invertible) encoding, all sets in P are extremely easy to test, where by “extremely
easy to test” we mean having a Proximity Oblivious Tester (POT).

1.1 Our main result: a POT for an encoding of any set in P

The standard definition of a property tester refers to randomized oracle machines that are given two
parameters as explicit inputs along with oracle access to some string (or function). The two param-
eters are the size parameter, representing the size of the tested object, and a proximity parameter,
denoted ǫ, which determines which objects are considered far from the property1 (according to a
fixed metric, typically the relative Hamming distance). Specifically, on input parameters n and
ǫ, the test is required to distinguish (with constant probability) n-bit long strings that have the
property from n-bit long strings that are ǫ-far from the property, where x ∈ {0, 1}n is ǫ-far from

S if for every x′ ∈ S ∩ {0, 1}n it holds that δ(x, x′)
def
= |{i ∈ [n] : xi 6= x′i}|/n is greater than ǫ.

(Otherwise, we say that x is ǫ-close to S.)
The query complexity of testers is stated as a function of the two explicit parameters, n and ǫ.

Two extreme cases are the case of query complexity n, which can be obtained for any property, and
the case that the query complexity depends only on the proximity parameter, which is sometimes
considered the yardstick for “easy testability” (see, e.g., [1, 2]). Typically, the query complexity
is Ω(1/ǫ), and so testers of such complexity are extremely efficient. An even more restricted case
refers to one in which the tester operates by repeating some constant-query check for O(1/ǫ) times,
where the celebrated linearity tester of Blum, Luby, and Rubinfeld [7] is an archetypical case. The
effect of a single repetition of the constant-query check is captured by the notion of a proximity

oblivious tester [17].
A Proximity Oblivious Tester (POT) does not obtain a proximity parameter as input, but rather

the probability gap with which it distinguishes inputs that have the property from ones that lack the

1As usual in the area, we associate the notion of having a property with the notion of being in the (set of objects
that have the) property.
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property is allowed to be a function of the distance of the tested input from the property (defined
in Eq. (1)). Further restricting ourselves to the case of one-sided error testers, we require that the
POT always accepts inputs that have the property and rejects objects that lack the property with
probability that increases with the distance of the object from the property.2 For sake of clarity,
we recall that the distance of x from S, denoted δS(x), is defined as follows

δS(x)
def
= min

x′∈{0,1}|x|∩S
{δ(x, x′)}, (1)

where δS(x) = 1 if {0, 1}|x| ∩ S = ∅.

Definition 1.1 (Proximity Oblivious Testers):3 Let ̺: (0, 1] → (0, 1] be monotonically non-decreasing.4

A proximity oblivious tester (POT) with detection probability function ̺ for S is a probabilistic ora-

cle machine, denoted T , that makes a constant number of queries and satisfies the following two

conditions.

1. T always accepts inputs in S: For every n ∈ N and every w ∈ S ∩ {0, 1}n, it holds that

Pr[Tw(n)=1] = 1.

2. T rejects inputs that are not in S with probability that increases as a function of their distance
from S: For every n ∈ N and every w ∈ {0, 1}n \ S, it holds that Pr[Tw(n)=0] ≥ ̺(δS(w)).

The case that ̺ is linear is of special interest; in this case the rejection probability is proportional
to the distance of the input from the set S.

Our main result asserts the existence of a POT for some encoding of any set in P. Starting with
some natural representation of a set S ⊆ {0, 1}∗, we consider a representation obtained by applying
an invertible encoding E: {0, 1}∗ → {0, 1}∗ (i.e., we require that E is one-to-one). Furthermore,
we consider the natural case in which this encoding is polynomial-time computable and invertible.
For example, we may consider an encoding such as E(x1 · · · xn) = x1x1 · · · xnxn or encodings that
map graphs in the adjacency matrix representation to the incidence list representation.

Theorem 1.2 (a POT for a suitable encoding of any set in P): For any S ∈ P there ex-

ist polynomial-time encoding and decoding algorithms E and D = E−1 such that the set S′ def
=

{E(x) : x ∈ S} has a proximity oblivious tester of linear detection probability. Furthermore,

|E(x)| = |E(1|x|)| for every x, the encoding E has constant relative distance, and the POT runs in

polylogarithmic time and has logarithmic randomness complexity.

Recall that POTs were defined as having constant query complexity, and note that the added
conditions regarding E (i.e., being “length regular” and having constant relative distance) only
make the result potentially more appealing. We mention that the existence of a polynomial-time

2A two-sided error version was also studied (see [18]), but the one-sided error version that we consider here is
much better known.

3Unlike in [17], which considered POTs of arbitrary query complexity, here we mandate that a POT has constant
query complexity. This choice is justified by the fact that our result establishes the existence of such POTs. Ditto
regarding our choice to consider one-sided error only.

4The postulate that ̺ is monotonically non-decreasing means that any input that is ǫ-far from S is rejected with

probability at least ̺(ǫ); that is, if δS(f) ≥ ǫ (and not only if δS(f) = ǫ), then f is rejected with probability at least
̺(ǫ). This postulate is natural (and it can be enforced in general by redefining ̺(ǫ)← infδ≥ǫ{̺(δ)}).
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tester (of arbitrary query complexity) for {E(x) : x ∈ S}, where E is polynomial-time computable,
implies that S ∈ BPP (and S ∈ P follows if the tester has logarithmic randomness complexity).5

1.2 The way to our main result: strong canonical PCPPs

Theorem 1.2 is proved by using an encoding that maps the input x to a pair of the form (C(x)t(|x|),Π(x)),
where C is an error-correcting code, Π(x) is a PCP proof that C(x) ∈ {C(z) : z ∈ S}, and
t(|x|) ≈ |Π(x)|/|C(x)| (so that the two parts of the pair have approximately the same length). This
idea, which can be traced back to [19], works only when the PCP system is of a certain type, as
discussed next.

First, we need a PCP of Proximity (a.k.a. assignment tester), rather than a PCP. The difference
is that a PCP of Proximity does not get an explicit (main) input, but rather oracle access to both the
main input and the alleged proof. Indeed, PCPs of Proximity can be viewed as a “property testing”
variant of PCPs (or “PCP-aided variants” of property testers). Second, valid assertions in these
PCPs of Proximity must have unique valid proofs, otherwise the mapping x 7→ Π(x) is not even
well-defined. Furthermore, the PCP of Proximity should reject (with constant probability) not only
inputs (that encode) strings far from S, but also proof-parts that are far from the corresponding
(unique) valid proof. Last, to get a POT rather than a tester that works only for constant values
of the proximity parameter (i.e., constant ǫ > 0), also inputs and alleged proofs that are close to
being valid should be rejected with probability that is related to their distance from a valid object.
A PCP of Proximity that satisfies all of these conditions is called strongly canonical.6

The foregoing aspects were dealt with in [19], but only for the special case of S = {0, 1}∗, where
the issue was to test that the input-part is a valid codeword (with respect to code C). Using a linear
code C, this was reduced to the special case in which the set (for which the PCP of Proximity is
designed) is a linear space, but even this case was not handled in full generality in [19]. Subsequent
work [20, 13, 21] culminated in providing strongly canonical PCPs of Proximity for any linear space,
but left open the problem of providing strongly canonical PCPs of Proximity for any set in P, let
alone UP .

In this paper, we show that every set in UP has a strong canonical PCP of Proximity. Further-
more, we provide a polynomial-time transformation of NP-witnesses (with respect to the original
NP-witness relation of the set) to valid proofs (for the resulting PCP of Proximity).

We seize the opportunity to study the simpler case of strong canonical PCPs. Loosely speaking,
a strong canonical PCP for a set S is a PCP system in which each x ∈ S has a unique valid proof Π(x)
that is accepted with probability 1, whereas each other alleged proof is rejected with probability
that is related to its distance from Π(x). We show that:

1. Every set in UP has a strong canonical PCP of logarithmic randomness, and only sets in UP
have such a PCP (see Theorem 3.1).

2. Similarly, the class of sets having (sufficiently)7 strong canonical PCPs with polynomial proof

length equals “unambiguous-MA” (see Theorem 3.2).

5The decision procedure maps x to E(x) and invokes the tester with proximity parameter 1/2|E(x)|. In case E
has relative distance δ, invoking the tester with proximity parameter δ/2 will do.

6See Definition 2.2, which requires that the rejection probability of the oracle pair (x, π) be related to the maximum,
over all x′ ∈ {0, 1}|x| ∩ S, of δ(x, x′) and δ(π, Π(x′)).

7Here we require that any alleged proof is rejected with probability that is polynomially related to its distance
from Π(x) (i.e., ̺(δ) = poly(δ)).
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All our constructions are obtained in two steps. First, we show that sets in the relevant class
have PCP systems in which each string in the set has a unique valid proof (that is accepted with
probability 1). Specifically, we show that the only proofs that are accepted with probability 1 by
these PCP systems are the images of the standard transformation of NP-witnesses to PCP-oracles.
Next, we observe that these PCP systems can be made strongly canonical by a suitable padding of
the proofs. Specifically, the padding is determined such that the ratio of the length of the original
proof over the length of the padded proof equals the lower bound on the rejection probability of
invalid proofs (under the original PCP). Indeed, this simple observation reduces the construction
of strong canonical PCPs to the construction of PCPs that have unique valid proofs.

Focusing on the construction of PCPs that have unique valid proofs (for sets in UP), we note
that the original PCP construction of Arora et al. [4, 3] will not do. Still, it is possible that this
construction can be modified and augmented so that it has unique valid proofs (or even becomes a
strong canonical PCP). Such an augmentation was indeed performed by Goldreich and Sudan [19],
alas only for the special case of linear spaces, and the route taken there was quite tedious. Hence, we
preferred to work with the gap amplification construction of Dinur [8], which is more transparent.
Starting with a trivial weak-PCP that has unique valid proofs, we observe that the gap amplification
operation is a parsimonious reduction, and so we are done.

1.3 Organization

In Section 2 we recall the definitions of strong canonical PCPs and PCPPs, starting with the basic
PCP model. In Section 3 we characterize the classes of sets having strong canonical PCPs of certain
types (see Theorems 3.1 and 3.2), and obtain analogous PCPP systems (see Theorem 3.3). The
latter PCPP systems will be used in Section 4 towards establishing Theorem 1.2. We conclude by
spelling out some directions for further research (see Section 5).

2 Definitions of strong canonical PCPs and PCPPs

In this section, we recall the definitions of strong canonical PCPs and PCPPs. Essentially, we
follow the definitional approach presented in [19, Sec. 5.3] (while correcting an error in one of the
actual definitions [19, Def. 5.7]).

2.1 Preliminaries: The PCP model

We start by recalling the basic definition of Probabilistically Checkable Proofs (PCPs): These are
randomized verification procedures that are given an explicit input and oracle access to an alleged
proof π, and are aimed to verify the membership of the (main) input in a predetermined set by
making few (random) queries to the proof (see, e.g., [10, Sec. 9.3]). Specifically, for a predetermined
set S ⊆ {0, 1}∗, on input x and oracle access to an alleged proof π, a PCP verifier V reads x, makes
a constant number of random queries to the proof π, and satisfies the following conditions.

Completeness: If x ∈ S, then there exists a valid proof π such that V always accepts x when
given oracle access to π; that is, Pr[V π(x)=1] = 1.
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Soundness: If x 6∈ S, then for every string π, with probability at least 1/2 the verifier V rejects
x when given oracle access to π; that is, Pr[V π(x)=0] ≥ 1/2.8

Indeed, a string π that makes V always accept x (i.e., that satisfies Pr[V π(x)=1] = 1) is called a
valid proof for x; the soundness condition implies that valid proofs exist only for members of S, and
the completeness condition asserts that each member of S has a valid proof. We stress that it is
not necessarily the case that the valid proofs are unique; that is, the same x ∈ S may have several
valid proofs (with respect to a fixed verifier).

Weak-PCPs. We shall also refer to the notion of a weak-PCP, which is defined as above with the
crucial exception that its soundness condition is extremely weak. Specifically, this weak soundness
condition only requires that for every x 6∈ S and π, with positive probability, the verifier rejects x
when given oracle access to π (i.e., Pr[V π(x) = 0] > 0). Indeed, an oracle machine that on input
a 3CNF and oracle access to a truth assignment to its variables checks the values assigned to the
variables of a uniformly selected clause constitutes such a trivial weak-PCP. (Recall that Dinur’s
construction [8], which we shall use, gradually transforms such a weak-PCP into a full fledged
PCP.)

2.2 Strong canonical PCPs

We focus on the special case of PCP verifiers, for a set S, with respect to which each x ∈ S
has a unique valid proof, and call such verifiers canonical. Furthermore, we are interested in the
case that invalid proofs are not merely rejected with positive probability, but are rather rejected
with probability that is related to their distance from the (unique) valid proof. We shall call such
verifiers strongly canonical, and quantify their strength by a function ̺ that relates their rejection
probability to the latter distance. Details follow.

We denote the empty string by λ. For two strings w,w′ ∈ {0, 1}m, we let δ(w,w′) denote the
relative Hamming distance between w and w′; that is, δ(w,w′) = |{i ∈ [m] : wi 6= w′

i}|/m. For sake
of convenience, we define δ(w,w′) = 1 if w and w′ have different lengths (e.g., the distance between
a non-empty string and the empty string, denoted λ, is 1).

Definition 2.1 (strong canonical PCPs): For a set S ⊆ {0, 1}∗, a monotonically non-decreasing

function ̺: [0, 1] → [0, 1] such that ̺(α) = 0 if and only if α = 0, and an oracle machine V , we say

that V is a ̺-strong canonical PCP for S if V makes a constant number of queries to the oracle and

there exist functions ℓ: N → N and Π: {0, 1}∗ → {0, 1}∗ such that the following conditions hold.

• Canonical Completeness: For every x ∈ S, it holds that Π(x) ∈ {0, 1}ℓ(|x|), and the verifier

always accepts x when given oracle access to Π(x); that is, Pr[V Π(x)(x)=1] = 1.

• Strong Canonical Soundness: For every x ∈ {0, 1}∗ and π ∈ {0, 1}∗, the verifier rejects x when

given access to the oracle π with probability at least ̺(δ(π,Π(x))), where Π(x)
def
= λ if x 6∈ S

(and in this case δ(π,Π(x)) = 1); that is, Pr[V π(x)=0] ≥ ̺(δ(π,Π(x))).

The function ̺ is called V ’s detection probability function, and ℓ is called its proof complexity. We

say that V is a strong canonical PCP for S if, for some ̺ as above, V is a ̺-strong canonical PCP

for S.

8Actually, the constant 1/2 can be replaced by any other constant in (0, 1).
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Indeed, the foregoing conditions assert that Π(x) is the unique valid proof for x ∈ S, and that
the verifier is strongly canonical with strength ̺. Note that strong canonical soundness implies
(standard) soundness by the convention that ̺(δ(π,Π(x))) = ̺(1) = Ω(1) for x 6∈ S. More generally,
recall that δ(π,Π(x)) = 1 if |π| 6= |Π(x)|. The case that ̺ is linear is of special interest; in this case
invalid proofs are rejected with probability that is proportional to their distance from the valid
proof.

2.3 Adaptation to the model of PCP of Proximity

Probabilistically checkable proofs of proximity (PCPs of Proximity, abbreviated PCPPs and a.k.a.
assignment testers) are proof systems in which the verifier has oracle access to both its main input
and an alleged proof, and is required to decide whether the main input is in some predetermined
set or is far from any string that is in this set (cf. [5, 9]). We call such a PCPP system strong if it
rejects every no-instance with probability that is related to the distance of the instance from the
predetermined set. For simplicity, when we say a PCPP system, we mean a strong one.

Analogously to the case of PCPs, we consider strong canonical PCPs of Proximity9 (henceforth
scPCPs of Proximity), which are PCPs of Proximity in which every statement has a unique valid
proof such that a statement–proof pair is rejected with probability that is related to its distance
from a true statement and its corresponding unique valid proof. The actual definition builds on
Definition 2.1, while adapting it to the proofs of proximity model.

Definition 2.2 (strong canonical PCPs of Proximity): For a set S, a function ̺ as in Defini-

tion 2.1, and an oracle machine V that accesses two oracles, we say that V is a ̺-strong canonical
PCP of Proximity for S if V makes a constant number of queries to each of its oracles and there

exist functions ℓ: N → N and Π: {0, 1}∗ → {0, 1}∗ such that the following conditions hold.

• Canonical Completeness: For every x ∈ S, it holds that Π(x) ∈ {0, 1}ℓ(|x|) and the verifier

always accepts the pair of oracles (x,Π(x)); that is, Pr[V x,Π(x)(1|x|)=1] = 1.

• Strong Canonical Soundness: For every x ∈ {0, 1}∗ and π ∈ {0, 1}∗, the verifier rejects the

pair of oracles (x, π) with probability at least ̺(δΠ(x, π)), where10

δΠ(x, π)
def
= min

x′∈{0,1}|x|

{

max(δ(x, x′), δ(π,Π(x′)))
}

; (2)

that is, Pr[V x,π(1|x|)=0] ≥ ̺(δΠ(x, π)).

The function ̺ is called V ’s detection probability function, and ℓ is called its proof complexity. We

say that V is a strong canonical PCPP for S if, for some ̺ as above, V is a ̺-strong canonical PCPP

for S.

We stress that the rejection probability depends on the distance of the oracle-pair (x, π) from a
valid pair consisting of x′ ∈ S∩{0, 1}|x| and the corresponding valid proof Π(x′), where the distance
between pairs is defined as the maximum of the distance between the corresponding elements.11

9Alternatively, we use the term strongly canonical.
10Recall that Π(x′)

def
= λ if x′ 6∈ S, and in this case δ(π,Π(x′)) = 1.

11That is, we effectively define δ(〈x, y〉, 〈x′, y′〉) as max(δ(x, x′), δ(y, y′)). Taking the sum of the latter distances
(or their average) would have been as good, since α+β

2
≤ max(α, β) ≤ α + β.
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This represents the fact that we wish to reject with probability that not only depends on the
distance of the input x to a string x′ ∈ S, but also depends on the distance of the alleged proof π
to the corresponding valid proof Π(x′). Indeed, proximity oblivious testers (POTs) can be viewed
as strong canonical PCPs of Proximity with proof complexity zero.

3 On the existence of strong canonical PCPs and PCPPs

Our first result is a characterization of the class of sets having strong canonical PCPs of logarithmic

randomness. It turns out that this class equals UP. Recall that the class UP is defined as the
subset of NP in which each yes-instance has a unique valid proof; that is, S ∈ UP if there exists a
polynomially-bounded relation R that is recognizable in polynomial-time such that for every x ∈ S
there exists a unique w ∈ R(x) = {y : (x, y)∈R} whereas R(x) = ∅ if x 6∈ S.

Theorem 3.1 (UP and strong canonical PCPs): The set S has a strong canonical PCP of logarith-

mic randomness if and only if S ∈ UP. Furthermore, the resulting PCP is ̺-strong for ̺(α) = α/4
and there exists a polynomial-time transformation of NP-witnesses for S ∈ UP to valid proofs for

the resulting PCP.

Proof: The necessary condition is quite straightforward: Let V be a strong canonical PCP of
logarithmic randomness for S, and assume for simplicity that its proof complexity is polynomial.
Now, define R = {(x, π) : Pr[V π(x)=1] = 1}, and observe that membership in R can be decided in
polynomial-time by trying all possible random choices of V . Hence, S = {x : R(x) 6=∅} is in NP ,
and the hypothesis that the valid proofs (with respect to V ) are unique implies that S ∈ UP . In the
general case (i.e., when the proof length may be super-polynomial), one may consider the “effective
proofs” (i.e., the values of π at locations that are read by V on some random choices). That is, in
this case, we define R = {(x, (I(x), πI(x))) : Pr[V π(x)=1] = 1}, where I(x) is the set of locations
that are in the “effective proof” (i.e., locations that V (x) probes with positive probability).

Note that the foregoing argument holds also for very weak PCP systems, provided that they have
logarithmic randomness complexity and unique valid proofs. That is, we only used the hypothesis

that for every x ∈ S, there exists a unique π such that px(π)
def
= Pr[V π(x)=1] = 1, and capitalized

on the fact that it is feasible to compute px(π) exactly.
Turning to the opposite direction, we show that each S ∈ UP has a strong canonical PCP of

logarithmic randomness by presenting such a PCP for USAT and recalling that each set in UP is
reducible to USAT via a parsimonious reduction (see, e.g., [10, Ex 2.29]). Recall that USAT is the
promise problem in which yes-instances are 3CNF formulas with a unique satisfying assignment
and no-instances are formulas with no satisfying assignments. (Actually, we need to define PCPs
for promise problems and state, as well as prove, Proposition 3.1.1 in this more general setting, but
we avoid doing so while commenting that the extension is straightforward.)12

The key observation is that it suffices to show a PCP for S in which each x ∈ S has a unique
valid proof. This is the case because such PCPs can be transformed into strong canonical ones, as
stated next.

Proposition 3.1.1 (deriving strong canonical PCPs from PCPs with unique valid proofs): Let V
be a PCP system of logarithmic randomness complexity for S, and suppose that for every x ∈ S

12Specifically, the canonical soundness condition has to be satisfied only for inputs that satisfy the promise, whereas
the canonical completeness condition is stated for the yes-instances only.
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there exists a unique π such that Pr[V π(x)=1] = 1. Then, there exist a strong canonical PCP of

logarithmic randomness for S and a polynomial-time transformation of valid proof with respect to

V to valid proofs for the resulting PCP. Furthermore, the resulting PCP is ̺-strong for ̺(α) = α/4
and its proof complexity is 2r · ℓ, where r and ℓ are the randomness and proof complexity of V .

Proof: Again, we may assume, without loss of generality, that V has polynomial proof complexity,
since we can efficiently determine all relevant locations (i.e., those queried under any choice of
randomness) without making any queries.

Letting Π be the function mapping instances to their canonical proofs, as in Definition 2.1, we
define Π′(x) = 1(2r(|x|)−1)·ℓ(|x|)Π(x) ∈ {0, 1}2r(|x|)·ℓ(|x|) if Π(x) 6= λ and Π′(x) = λ otherwise. Note
that, for every x ∈ S and π ∈ {0, 1}ℓ(|x|), it holds that

δ(1(2r(|x|)−1)·ℓ(|x|)π,Π′(x)) ≤ 2−r(|x|),

which means that invalid proofs for x ∈ S are extremely close to valid proofs, and so it suffices to
reject them with tiny probability. This suggests the following verifier, which on input x ∈ {0, 1}n

and access to oracle π′ ∈ {0, 1}2r(n) ·ℓ(n), selects uniformly at random one of the following two tests
and performs it.

1. The verifier selects at random i ∈ [(2r(n) − 1) · ℓ(n)], and accepts if and only if the ith bit of
π′ equals 1.

2. The verifier invokes V on input x, while providing it with oracle access to the ℓ(n)-bit long
suffix of π′, and outputs the verdict of V .

Turning to the analysis, we first note that if x 6∈ S, then (by virtue of V ) the resulting verifier
rejects x with probability at least 1

2 ·
1
2 , regardless of the identity of the oracle π′. Hence, from this

point on we assume x ∈ S, and let Π(x) denote the unique valid proof with respect to V .

Now, let π′ ≡ (w, π) ∈ {0, 1}2r(n) ·ℓ(n) such that |π| = ℓ(n). Observe that, on input x and access
to π′, the new verifier rejects with probability that is lower-bounded by (half) the fraction of 0’s in
w, since with probability 1/2 this verifier test whether the (2r(n)−1) ·ℓ(n)-bit long prefix equals the

all-1 string. Next, recall that, for any π ∈ {0, 1}ℓ(n), it holds that π′′ = 1(2r(n)−1)·ℓ(n)π is 2−r(|x|)-

close to Π′(x) = 1(2r(n)−1)·ℓ(n)Π(x), since δ(π,Π(x)) ≤ 1. Hence, rejecting π′′ with probability at
least 1

2 · 2
−r(n) suffices when π 6= Π(x). It follows that a generic π′ ≡ (w, π) 6= Π′(x) 6= λ is rejected

with probability

1

2
· δ(w, 1(2r(n)−1)·ℓ(n)) +

1

2
· 2−r(n) ≥

1

2
· δ(w, 1(2r(n)−1)·ℓ(n)) +

1

2
· 2−r(n) · δ(π,Π(x))

≥
1

2
· δ(π′, π′′) +

1

2
· δ(π′′,Π′(x)),

where the second inequality uses δ(w, 1(2r(n)−1)·ℓ(n)) ≥ δ(wπ, 1(2r(n)−1)·ℓ(n)π) = δ(π′, π′′) and

δ(π,Π(x)) = 2r(|x|) · δ(1(2r(n)−1)·ℓ(n)π, 1(2r(n)−1)·ℓ(n)Π(x))

= 2r(|x|) · δ(π′′,Π′(x)).

Using δ(π′, π′′) + δ(π′′,Π′(x)) ≥ δ(π′,Π′(x)), it follows that, on input x and access to π′, the new
verifier rejects with probability at least δ(π′,Π′(x))/2, which means that it constitutes a strong
canonical PCP for S. Indeed, the PCP is ̺-strong for ̺(α) = α/4.13

13The factor of 1/4 is due to the case that x 6∈ S, which is rejected with probability at least 1/4.
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In light of Proposition 3.1.1, it suffices to show a PCP of logarithmic randomness and unique
valid proofs for USAT. This PCP is constructed by merely following the construction of Dinur [8],
while noting that her gap amplification transformation is a parsimonious reduction.

Proposition 3.1.2 (PCPs with unique valid proofs for USAT): There exists a PCP system of

logarithmic randomness for USAT such that for every satisfiable formula there exists a unique valid

proof with respect to this system. Furthermore, there exists a polynomial-time transformation of

satisfying assignments for the input formula to valid proofs for the resulting PCP.

Proof: Let ψ be an m-clause 3CNF formula over n variables, promised to have at most one satisfying
assignment. Let V0 be the trivial weak-PCP system with soundness 1/m, in which the oracle is
allegedly the unique satisfying assignment of ψ, and the verifier checks that this assignment satisfies
a random clause of ψ. By construction, V0 has unique valid proofs. Applying the gap amplification
transformation of Dinur [8] to V0, we obtain a PCP system V of logarithmic randomness for USAT.

As stated above, the crucial point is showing that the aforementioned transformation is a
parsimonious reduction. The argument is detailed in Appendix A; it consists of showing that gap
amplification is a one-to-one transformation, and that the only valid proofs with respect to the
resulting proof system are those in the range of the transformation. These facts are demonstrated
by closely inspecting each of the four steps in the gap amplification procedure: degree reduction,
“expanderization”, powering, and alphabet reduction. We show that each of these steps satisfies
the two aforementioned properties, where in the analysis of the alphabet reduction step we assume
that it is performed by composition with a PCPP that has unique valid proofs. Such a PCPP is
immediately implied by the Hadamard code (alternatively, by the long code); see details at the end
of Appendix A.4.

Combining Proposition 3.1.1 and 3.1.2, the theorem follows.

A detour: A variant of Theorem 3.1. Our next result is a characterization of the class of
sets having strong canonical PCPs of polynomial proof length. It turns out that this class equals
“unambiguous-MA” (denoted UMA, and defined next). Recall that the class MA consists of
all sets having a non-interactive probabilistic proof system; that is, S ∈ MA if there exists a
polynomially-bounded relation R that is recognizable in coRP such that S = {x : ∃w (x,w) ∈ R}.14

We define UMA as the subset of MA in which the non-interactive proof system has unique valid
proofs; that is, S ∈ UMA if there exists a polynomially-bounded relation R that is recognizable
in coRP such that for every x ∈ S there exists a unique w ∈ R(x) = {y : (x, y) ∈ R}, whereas
R(x) = ∅ if x 6∈ S. (Note that in this case |R(x)| ≤ 1 for every x.)

Theorem 3.2 (UMA and strong canonical PCPs): The set S has a poly-strong canonical PCP

of polynomial proof complexity if and only if S ∈ UMA.

We stress that, unlike in Theorem 3.1, here we do not know whether a ̺-strong canonical PCP
with arbitrary ̺ for S implies that S ∈ UMA. The point is that invalid proofs of length ℓ are only
guaranteed to be rejected with probability at least ̺(1/ℓ), which may be negligible. On the other
hand, the existence of poly-strong canonical PCP (of polynomial-length) for S, implies S ∈ UMA,

14This perfect completeness version ofMA equals the non-perfect one in which R is only required to be recognizable
in BPP (see [10, Exer. 6.12 (2)]).
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which in turn is shown to imply that S has a ̺-strong canonical PCP (of polynomial-length) with
a linear ̺ (i.e., ̺(α) = Ω(α)).

Proof: We follow the outline of the proof of Theorem 3.1, while introducing several relevant
modifications. For example, in the proof of the necessary condition we can no longer assume
that the PCP has logarithmic randomness; instead we directly use the hypothesis that the PCP
has polynomial proof complexity, and derive a verification procedure that places the set in UMA
(rather than in UP). Furthermore, using the hypothesis that the PCP is poly-strong, we infer that
invalid proofs are rejected with noticable probability (i.e., probability at least ̺(1/ℓ) = poly(1/ℓ).
This fact allows for the rejection of invalid proofs by invoking the PCP verifier polynomially many
times. Specifically, let V be a ̺-strong canonical PCP of proof complexity ℓ = poly for S, and
define R = {(x, π) : Pr[V π(x) = 1] = 1}. Then, R ∈ coRP , by letting the decision procedure
emulate O(1/̺(1/ℓ(|x|))) = poly(|x|) executions of V π(x), and accept if and only if all executions
accepted. Hence, S = {x : R(x) 6= ∅} is in MA, and the hypothesis that the valid proofs (with
respect to V ) are unique implies that S ∈ UMA.

Turning to the opposite direction, we show that each S ∈ UMA has a poly-strong canonical
PCP of polynomial proof length, by using a randomized reduction of S to USAT (or rather to a
promise problem in the corresponding class UP). Let R be the binary relation guaranteed by the
definition of UMA, and suppose, without loss of generality, that R ⊆ ∪n∈N({0, 1}n × {0, 1}p(n))
for some polynomial p. Let p′ be a polynomial that upper bounds the randomness complexity of
the decision procedure for R, and let D′ denote the residual decision predicate of that procedure;
that is, D′

r(x,w) denotes the verdict on input (x,w) when using randomness r ∈ {0, 1}p′(n+p(n)).
Recall that for (x,w) 6∈ R, it holds that Prr[D

′
r(x,w) = 1] ≤ 1/2, and it follows that, for every x

and w 6∈ R(x) = {y : (x, y)∈R},

Prr1,...,rm∈{0,1}p′(n+p(n)) [∀i ∈ [m] D′
ri

(x,w)=1] ≤ 2−m.

Note that if we pick m = p(n) + 2 , then an application of a union bound implies that, for every
x ∈ {0, 1}n, it holds

Prr1,...,rm∈{0,1}p′(n+p(n)) [∃w 6∈R(x)∀i∈ [m] D′
ri

(x,w)=1] ≤ 1/4.

Now, consider the randomized mapping of x ∈ {0, 1}n to (x, r1, ..., rm), denoted Ψ, where m =
p(n) + 2 and the ri’s are selected uniformly and independently in {0, 1}p′(n+p(n)). Recall that
|R(x)| ≤ 1 for any x. Now, let P (standing for promise) denote the set of tuples (x, r1, ..., rm) for
which ∀i ∈ [m] D′

ri
(x,w)=1 holds only for w ∈ R(x), and S′ denote the set of tuples (x, r1, ..., rm)

with x ∈ S. Then, it holds that Pr[Ψ(x) ∈ P ] ≥ 3/4 and Pr[Ψ(x) ∈ S′⇔x ∈ S] = 1 for each
x, where Ψ(x) is as defined above.15 Letting R′(x, r1, ..., rm) = R(x), observe that for every
(x, r1, ...., rm) ∈ P it holds that w ∈ R′(x, r1, ...., rm) if and only if ∀i ∈ [m] D′

ri
(x,w)=1. Hence,

the promise problem (P ∩S′, P \S′) is in the class of promise problems associated with UP , and we
can apply the PCP of Theorem 3.1 to it. Furthermore, recall that the function Π′ (which generates
the canonical proof) used to construct the strong canonical PCP system in Theorem 3.1 denoted
V ′, assigns to the input (x, r1, ..., rm) ∈ P ∩ S′ the unique proof 1tw such that R(x) = {w}, where
t is polynomial in |(x, r1, ..., rm)|. Combining Ψ with V ′ yields a PCP system for S that, on input
x and oracle access to π, invokes V ′ on input Ψ(x) and provides V ′ with oracle access to π. The
corresponding verifier, denoted V , has the following features:

15That is, Ψ(x) is uniformly distributed over {(x, r1, ..., rm(|x|)) : ∀i ∈ [m(|x|)] ri ∈ {0, 1}p
′(|x|+p(|x|))} and m(n) =

p(n) + 2.
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• It (i.e., V ) has polynomial proof complexity.

This feature is inherited from the proof complexity of V ′ and the fact that |Ψ(x)| = poly(|x|).

• It satisfies canonical completeness with respect to the function Π such that Π(x) = 1tw if and
only if R(x) = {w}. Indeed, Π(x) = Π′(Ψ(x)) holds whenever Φ(x) ∈ P ∩ S′.

This is the case because Pr[Ψ(x) ∈ S′] = 1 for any x ∈ S, and 1tw = Π′(x, r1, ..., rm) and
R(x) = {w} hold for any (x, r1, ..., rm) ∈ P ∩ S′. (We also use the canonical completeness of
V ′.)

• It satisfies canonical soundness with respect to the foregoing function Π. Furthermore, invalid
proofs are rejected with probability that is proportional to their distabce from the valid proof.

This is the case because Pr[Ψ(x)∈P ] ≥ 3/4 for any x, and in that case the strong canonical
soundness of V ′ beats in. The furthermore clause follows by the fact that V ′ is a ̺′-strong
canonical PCP for ̺′(α) = α/4.

Hence, V is a (3̺′/4)-strong canonical PCP (of polynomial proof complexity) for S. Note that
(typically) V uses super-logarithmic randomness complexity.16

Strong canonical PCPs of Proximity. Next, we adapt the proof of the positive direction of
Theorem 3.1 to the PCPP model.

Theorem 3.3 (UP and strong canonical PCPPs): Every set in UP has a strong canonical PCP of

Proximity of logarithmic randomness and linear detection probability function. Furthermore, there

exists a polynomial-time transformation of NP-witnesses for membership in the set to valid proofs

for the resulting PCP.

Indeed, the positive direction of Theorem 3.1 follows from Theorem 3.3 by applying the latter to
the set S′ = {C(x) : x ∈ S}, where C is a good error correcting code. Note that the claimed PCP
system (for S) emulates the input-oracle of the PCPP system (for S′) by applying C to its own
input x, and emulating the proof-oracle of the PCPP system by using its own proof-oracle. The
canonical soundness of the PCP system (for S) follows from the canonical soundness of the PCPP
system (for S′), since in the case that x 6∈ S it holds that the relative distance of C(x) from the set
S′ is a constant.

Proof: The construction and its analysis are analogous to those in the proof of Theorem 3.1,
except that here we start with a trivial weak-PCPP for the set S ∈ UP , use (parsimonious) gap
amplification for PCPPs (see Appendix A.5), and apply a PCPP version of Proposition 3.1.1.
Details follow.

Starting with the PCPP analogue of Proposition 3.1.2, we use a similar construction except
that we apply it to a fixed 3CNF (which is generated based on the input length only). Recall that
the construction consists of two steps: First, we construct a trivial weak-PCPP with unique proofs,
and then we apply the gap amplification procedure to it (obtaining a PCPP with unique proofs).

16This is inherited from the super-logarithmic length of the proofs employed by the MA system (or, alternatively,
from its super-logarithmic randomness complexity). Note that MA systems with logarithmic proof length (resp.,
logarithmic randomness) exist only for coRP (resp., NP).
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Specifically, in the first step, we reduce the verification of the claim x ∈ S to the satisfiability
of a fixed 3CNF by an assignment that extends x, where the formula is derived by the standard
Cook–Levin reduction of S to 3SAT. The fixed formula has main variables X (which are set
by the assignment x) and auxiliary variables Y (which represent the NP-witness for x as well
as intermediate gate-values in the corresponding computation), and the question is whether this
formula is satisfiable by an assignment in which X = x. (Note that when x ∈ S there is a unique
assignment y to Y such that the assignment (X,Y ) = (x, y) satisfies the fixed formula.) The first
step is completed by observing that the forgoing formula yields a trivial weak-PCPP (with small
but noticeable soundness) that is given oracle access to the input x (i.e., x is the input-oracle) as
well as to a proof that corresponds to an assignment to the auxiliary variables. This PCPP has
unique valid proofs.

In the second step, we apply the gap amplification procedure, which treats the foregoing PCPP
execution as a 2CSP instance such that some variables of the 2CSP are identified with the bits
of the input-oracle and the other variables represent various auxiliary values. The set of variables
that represents bits of the input-oracle will remain intact throughout the entire process of gap
amplification (see Appendix A.5). Hence, when viewing the resulting 2CSP as a PCPP, the input-
oracle of the resulting PCPP equals the input-oracle of the original (trivial) PCPP. Observing (as
in the proof of Proposition 3.1.2) that the gap amplification process maintains the number of valid
proofs for each input (see Appendix A.5), we obtain a PCPP with unique proofs for S.

Next, we turn to establish a PCPP analogue of Proposition 3.1.1. This version asserts a trans-
formation of PCPPs with unique proofs to strong canonical PCPPs, and its proof is obtained
by a straightforward adaptation of the original (PCP) version.17 Using the notation of Proposi-
tion 3.1.1, the crux of the analysis is that the pair of oracles (x, π′), where x ∈ {0, 1}n (such that

S ∩ {0, 1}n 6= ∅)18 and π′ ≡ (w, π) ∈ {0, 1}(2r(n)−1)·ℓ(n)+ℓ(n), is rejected with probability at least

min
x′∈S∩{0,1}n

{max(Ω(δ(x, x′)), 0.5 · δ(w, 1(2r(n)−1)·ℓ(n)) + 0.5 · 2−r(|x|)) · δ(π,Π(x′)))}, (3)

where the foregoing lower bound of Ω(δ(x, x′)) follows from the soundness of the original PCPP

system outlined above. As shown in the proof of Proposition 3.1.1, it holds that δ(w, 1(2r(n)−1)·ℓ(n))+
2−r(|x|) ·δ(π,Π(x′)) ≥ δ(π′,Π′(x′)), which implies that Eq. (3) is lower-bounded by Ω(δΠ(x, π′).

4 The testing result

With strong canonical PCPs of Proximity (as provided by Theorem 3.3) at our disposal, it is quite
straightforward to obtain a proximity oblivious tester for a suitable encoding of any set in P. Such
an encoding incorporates copies of the target object as well as a corresponding PCPP-oracle that
attests its membership in the set. To be meaningful, this encoding should be polynomial-time
computable and invertible.19 One may also require that the encoding is “length regular” (i.e.,

17Alternatively, the current version can be derived as a special case of Proposition 5.3.
18If S ∩ {0, 1}n = ∅, then (x, π′) is rejected with probability at least Ω(1), and the claim follows (since in this case

δΠ(x, π′) = 1).
19The following examples illustrate that restricting the complexity of the encoding is essential for the meaningfulness

of Theorem 1.2. Suppose, for example, that for some m : N→ N it holds that |S ∩ {0, 1}n| = 2m(n), and consider the
length preserving bijection E that maps the elements of S∩{0, 1}n to 0n−m(n){0, 1}m(n). Then, testing {E(x) : x ∈ S}
amounts to selecting uniformly i ∈ [n −m(n)] and checking that the ith bit of the n-bit long input equals 0. More
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equal length strings have an equal encoding length) and has a constant relative distance, but this
seems less essential.

Theorem 1.2 (restated): For any S ∈ P there exist polynomial-time encoding and decoding

algorithms E and D = E−1 such that the set S′ def
= {E(x) : x ∈ S} has a proximity oblivious

tester of linear detection probability. Furthermore, |E(x)| = |E(1|x|)| for every x, the encoding

E has constant relative distance, and the POT runs in polylogarithmic time and has logarithmic

randomness complexity.

Recall that proximity oblivious testers (POTs) were defined as having constant query complexity,
and that their detection probability function represents a lower bound on their rejection probability
as a function of the distance of the tested object from the property.

Proof: Let C: {0, 1}∗ → {0, 1}∗ be an arbitrary systematic code (i.e., x is a prefix of C(x))
of relative distance, say, 1/8 such that the mapping x 7→ C(x) can be computed in polynomial

time. Consider a strong canonical PCPP for the set C(S)
def
= {C(x) : x ∈ S}, as guaranteed by

Theorem 3.3, and let Π(C(x)) denote the (unique) valid proof for C(x) ∈ C(S). The basic idea is
to combine the input and proof oracles of the PCPP into a single codeword that will be accessed
by the POT as an oracle; in order to maintain the soundness guarantee, it is important that each
part of the combined codeword will have approximately the same length. Since the proof-oracle is
typically longer, this requires repeating the input-oracle sufficiently many times.

Recalling that |Π(C(x))| = ℓ(|C(x)|) for some polynomial ℓ, we proceed to present the claimed
algorithms.

The encoding function E: On input x ∈ {0, 1}∗, we let n = |C(x)| and t = ℓ(n)/n. Then,
E(x) = C(x)tπ such that π = Π(x) if x ∈ S, and π = 1ℓ(n) otherwise.

The encoding can be computed in polynomial time, since the canonical proof Π(C(x)) can be
computed polynomial time because S ∈ P. (Formally, the reader may think of S as being in
UP by virtue of the witness relation R = {(x, x) : x ∈ S}, and recall that given an NP-witness
one can efficiently obtain the corresponding proof-oracle.)

The code C and the repetitions are used to create and maintain distance; that is, δ(E(x), E(x′)) ≥
0.5 · δ(C(x), C(x′)) ≥ 1/16 for every two distinct x, x′ of equal length.

The decoding function D: On input y ∈ {0, 1}∗, the algorithm outputs x if |y| = 2ℓ(n) and
y = C(x)ℓ(n)/nΠ(C(x)), and outputs a special failure symbol otherwise. Specifically, the
algorithm first determines n = ℓ−1(|y|/2), then determines k such that n = |C(1k)|, and
finally sets x as the k-bit long prefix of y (and verifies that y = C(x)ℓ(n)/nΠ(C(x)) holds).

Note that checking that the suffix of y is the canonical proof Π(C(x)) can be done in poly-
nomial time, since x is a prefix of y and Π ◦ C is polynomial-time computable.

The tester T : On input y ∈ {0, 1}2ℓ(n), the tester parses y into (w1, ..., wt, π) such that |w1| =
· · · = |wt| = n and |π| = ℓ(n). It first checks at random that the wi’s are all identical to w1,

generally, assuming that both S and S = {0, 1}∗ \S are infinite, and letting idxS(w) denote the index of w ∈ S (e.g.,
according to the standard lexicographical order), consider the bijection E such that E(x) = y if x ∈ S (resp., x ∈ S)
and idxS(x) = idxT (y) (resp., idxS(x) = idxT (y)), where T = ∪m∈N{0, 1}2m+1. Then, testing {E(x) : x ∈ S} = T
is trivial.
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by selecting a random i ∈ [t] and comparing a random position in wi and w1. Next, it invokes
the (strong canonical) PCPP verifier, providing it with access to the input-oracle w1 and the
proof-oracle π.

We first note that D(E(x)) = x for every x. Next, we show that T is a POT for the set S′ =
{E(x) : x ∈ S}. Observe, on the one hand, that for every y ∈ S′, it holds that y = E(x) =
C(x)tΠ(C(x)) for some x ∈ S, and the tester T accepts y with probability 1 (by virtue of the
perfect completeness of the PCPP verifier). On the other hand, turning to the case of y 6∈ S′ and
letting y ≡ (w1, ..., wt, π) ∈ {0, 1}t·n+ℓ(n), we consider three cases (where below, by “far” we mean
being at relative distance Ω(δS′(y))).

1. If (w1, ..., wt) is far from wt
1, then y is rejected with proportional probability by the first check

of T .

2. If (y is close to wt
1 but) w1 is far from C(S), then y is rejected with proportional probability

by the (strong canonical) PCPP verifier (which is invoked with input-oracle w1).

3. If w1 is close to C(x) ∈ C(S) but π is far from the canonical proof Π(C(x)), then y is rejected
with proportional probability by the (strong canonical) PCPP verifier (which is invoked with
input-oracle w1 and the proof-oracle π).

(Here we use the fact that if w1 is close to C(x), then it is far from C(x′) for any x′ 6= x.
Hence, minw′{max(δ(w1, w

′), δ(π,Π(w′))} equals minx′∈S{max(δ(w1, C(x′)), δ(π,Π(C(x′)))},
which equals max(1/8, δ(π,Π(C(x)))}.)

Hence, T is a POT (of linear detection probability) for S′.

5 Directions for further research

The begging question is whether a result like Theorem 1.2 can be proved when using an encoding
function of smaller stretch, where the stretch of E: {0, 1}∗ → {0, 1}∗ is the function that maps
n to |E(1n)|. Specifically, which sets S satisfy the conclusion of Theorem 1.2 with respect to an
encoding of almost linear stretch?

Recalling that our proof of Theorem 1.2 is pivoted at the existence of strong canonical PCPs of
Proximity, it is natural to ask which sets have a strong canonical PCP of Proximity of almost-linear
proof complexity. We believe that USAT has such a PCP of Proximity, and suggest establishing this
conjecture as an open problem.

Problem 5.1 (almost-linear length strong canonical PCPPs): Show that USAT has a strong canon-

ical PCP of Proximity of almost-linear proof complexity. Furthermore, show that valid proofs for

this PCPP can be constructed in polynomial-time when given the input formula and a satisfying

assignment to it.

Recall that 3SAT has a PCP of Proximity of almost-linear proof complexity: We refer to the PCPP
system of Dinur [8], which builds upon the work of Ben-Sasson and Sudan [6]. A possible route
towards resolving Problem 5.1 is to show that this PCPP is a strong canonical PCPP, or can be
transformed into such a PCPP at moderate cost (i.e., increasing the proof complexity by a poly-
logarithmic factor). We actually believe that such a transformation is needed, since we believe
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that the PCPP of [8] is almost there (i.e., it satisfies a relaxed form of being strongly canonical
(detailed below)), and that the extra step can be made by a generalization (of a PCPP version) of
Proposition 3.1.1.

In order to detail this idea, we need a refinement of Definition 2.2. In this refinement, the
rejection probability is not lower-bounded by a function of the maximum of the distances δ(x, x′)
and δ(π,Π(x)), but is rather the maximum of two (potentially) different functions applied to the
two distances. Maybe more importantly, we allow these functions to depend also on the input
length.

Definition 5.2 (Definition 2.2, refined): Let ̺I, ̺P : N × [0, 1] → [0, 1] be monotonically non-

decreasing in their second argument such that ̺I(n, α) = 0 (resp., ̺P(n, α) = 0) if and only if

α = 0. For a set S ⊆ {0, 1}∗ and an oracle machine V that accesses two oracles, we say that V is

a (̺I, ̺P)-strong canonical PCP of Proximity for S if V makes a constant number of queries to each

of its oracles and there exist functions ℓ : N → N and Π : {0, 1}∗ → {0, 1}∗ such that the following

conditions hold.

• Canonical Completeness: As in Definition 2.2.20

• Strong Canonical Soundness: For every x ∈ {0, 1}∗ and π ∈ {0, 1}ℓ(|x|), the verifier rejects the

pair of oracles (x, π) with probability at least

min
x′∈{0,1}|x|

{

max(̺I(|x|, δ(x, x
′)), ̺P(|x|, δ(π,Π(x′))))

}

. (4)

We say that V is a strong canonical PCP of Proximity for S if both ̺I and ̺P are oblivious of the

length parameter (i.e., if ̺I(n, α) = ̺I
′(α) for some ̺I

′ : [0, 1] → [0, 1], and ditto for ̺P), and say

that V is a semi-strong canonical PCP of Proximity for S if ̺I is oblivious of the length parameter.

As in Definition 2.2, ℓ is called the proof complexity of V .

Indeed, Definition 2.2 is obtained as a special case by letting ̺I(n, α) = ̺P(n, α) = ̺(α) for
̺ : [0, 1] → [0, 1]. We conjecture that the PCPP system of Dinur [8], which builds on the work
of Ben-Sasson and Sudan [6], yields a semi-strong canonical PCP of Proximity of logarithmic
randomness and almost linear proof complexity for USAT, and that the corresponding function
̺P has the form ̺P(n, α) = α/poly(log n). If this is indeed the case, then using the following
transformation, which generalizes Proposition 3.1.1, yields a strong canonical PCP of Proximity of
almost-linear proof complexity for USAT, which in turn resolves Problem 5.1.

Proposition 5.3 (deriving strong canonical PPCPs from semi-strong ones): Let V be a (̺I, ̺P)-
strong canonical PCPP system of logarithmic randomness complexity and proof complexity ℓ for S,

and suppose that ̺I(n, α) = ̺(α) ≤ α and ̺P(n, α) = ̺′
P
(n) · α for some ̺′

P
: N → (0, 1]. Then,

there exists a ̺-strong canonical PCP of logarithmic randomness and proof complexity ℓ/̺′
P

for S.

Furthermore, there exists a polynomial-time transformation of valid proofs with respect to V to valid

proofs for the resulting PCP.

20That is, for every x ∈ S, it holds that Π(x) ∈ {0, 1}ℓ(|x|) and the verifier always accepts the pair of oracles
(x, Π(x)); i.e., Pr[V x,Π(x)(1|x|)=1] = 1.
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Note that the PCPP analogue of Proposition 3.1.1 follows as a special case by observing that any
canonical PCPP system (i.e., one that has unique valid proofs) of randomness complexity r is an
(̺I, ̺P)-strong canonical PCPP, where ̺I is oblivious of the length parameter and ̺P(n, α) = 2−r(n).

Proof: We observe that the proof of Proposition 3.1.1 can be adapted and generalized as follows.
Again, we may assume, without loss of generality, that V has polynomial proof complexity, and let
t(n) = 1/̺′

P
(n). Letting Π be as in Definition 2.2, we define Π′(x) = 1(t(n)−1)·ℓ(|x|)Π(x) if Π(x) 6= λ,

and Π′(x) = λ otherwise. Analogously to the proof of Proposition 3.1.1, we consider the following
verifier, which given oracle access to an input x ∈ {0, 1}n and an alleged proof π′ ∈ {0, 1}t(n)·ℓ(n),
selects uniformly at random one of the following two tests and performs it.

1. The verifier selects at random i ∈ [(t(n) − 1) · ℓ(n)], and accepts if and only if the ith bit of
π′ equals 1.

2. The verifier invokes V on input x and the ℓ(n)-bit long suffix of π′. That is, V ’s queries to
the input-oracle are answered by the input-oracle of the new verifier, whereas V ’s queries to
the proof-oracle are answered by accessing the suffix of the proof-oracle of the new verifier
(i.e., query i ∈ [ℓ(n)] is answered by querying the location (t(n) − 1) · ℓ(n) + i in π′).

Turning to the analysis, we first note that if S∩{0, 1}n = ∅, then (x, π′) is rejected with probability
at least δ(1) = Ω(1), and the claim follows. Hence, we may assume that S ∩ {0, 1}n 6= ∅. Letting
π′ ≡ (w, π) ∈ {0, 1}(t(n)−1)·ℓ(n)+ℓ(n) , we infer that the pair of oracles (x, π′) ∈ {0, 1}n ×{0, 1}t(n)·ℓ(n)

is rejected with probability at least

min
x′∈S∩{0,1}n

{max(̺(δ(x, x′)), 0.5 · δ(w, 1(t(n)−1)·ℓ(n)) + 0.5 · ̺′
P
(n) · δ(π,Π(x′)))}.

Observing that

δ(w, 1(t(n)−1)·ℓ(n)) + ̺′
P
(n) · δ(π,Π(x′))

≥ δ(wπ, 1t(n)−1)·ℓ(n)π) + ̺′
P
(n) · t(n) · δ(1t(n)−1)·ℓ(n)π, 1t(n)−1)·ℓ(n)Π(x′))

= δ(π′, 1t(n)−1)·ℓ(n)π) + δ(1t(n)−1)·ℓ(n)π,Π′(x′))

≥ δ(π′,Π′(x′)),

it follows that (x, π′) is rejected with probability at least

min
x′∈S∩{0,1}n

{max(̺(δ(x, x′)), 0.5 · δ(π′,Π′(x′)))}.

Using ̺(α) ≤ α, it follows that the new verifier is a 0.5̺-strong canonical PCPP of proof complexity
ℓ/̺′

P
.
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A The gap amplification reduction is parsimonious

Throughout this section we assume familiarity with [8]. Following [8] (see also [10, Sec. 9.3.2.3]),
the PCP is presented as a 2-variable CSP over a constant non-Boolean alphabet Σ, which in turn
is presented as a graph with constraints (i.e., predicates over Σ2) associated with its edges. The
gap amplification procedure in [8] consists of four steps that are repeated iteratively: (1) degree
reduction, (2) “expanderization”, (3) powering, and (4) alphabet reduction. We recall these steps
and argue that each one of them preserves the number of satisfying assignments that are accepted
with probability 1. To this end, we show that each one of the forgoing steps is a one-to-one proof
transformation such that there are no valid proofs for the resulting system except those in the range
of the transformation. Finally, we also show how to extend this argument to the setting of PCPs
of proximity.

A.1 Degree reduction

Let G = 〈(V,E),Σ, C〉 be a constraint graph with vertices V , edges E, and constraints C over
alphabet Σ. For d = O(1), a d-regular constraint graph G1 is obtained from G as follows. Denote
by degG(v) the degree of v ∈ V in G. Each vertex v ∈ V is replaced by an (d− 1)-regular expander
graph Hv with degG(v) vertices, where the edges correspond to equality constraints. Then, for
every edge (u, v) ∈ E, the expander graphs Hu and Hv are connected by one edge that inherits its
constraint from (u, v). (The alphabet remains the same.)

Let ϕ be the natural transformation that maps a satisfying assignment α:V → Σ of G into
a satisfying assignment α1:∪v∈V Hv → Σ of G1 by assigning values to each vertex of Hv in G1

according to the assignment of v in G; that is, for every v ∈ V and hv ∈ Hv, we have a1(hv) = a(v).
Clearly, ϕ is one-to-one, since it is a systematic transformation (i.e., there exists S ⊆ ∪v∈V Hv

such that ϕ(α)|S = α). To see that every satisfying assignment of G1 is in the range of ϕ, observe
that (1) the connectivity and equality constraints of each expander Hv in G1 imply that each satis-
fying assignment must assign all vertices of Hv the same value, denoted av, and (2) the constraints
on the edges connecting each monochromatic Hu and Hv assert that the corresponding values of
au and av must satisfy the constraint associated with the edge (u, v) in G.

A.2 Expanderization

Let G1 = 〈(V,E),Σ, C〉 be a O(1)-regular constraint graph. The graph G1 is transformed to an
expander with self-loops G2 as follows. The vertices and alphabet remain intact. A self-loop is
added to each vertex, and in addition, the edges of an O(1)-regular expander graph on V are added
to G2. The constraints on the edges in E remain unchanged, and the constraints on the new edges
are all trivial (i.e., are always satisfied). Since this transformation only adds edges that are always
satisfied, it trivially preserves the number of satisfying assignments.

A.3 Powering

For d = O(1), let G2 = 〈(V,E),Σ, C〉 be a d-regular expander constraint graph with self-loops. For
a parameter t = O(1), the amplified graph G3 is obtained by raising G2 to the power of t. Hence,
the vertices remains intact, and the new edges correspond to walks on G2 of length at most t.
The alphabet is extended such that the assignment to each vertex v assigns values to all vertices
that are within t/2 steps from v in G2, hereafter called the t/2-neighborhood of v (in G2). The
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constraints are defined as follows: For each new edge, corresponding to a walk of length at most
t on G2 starting at vertex u and ending at v, the new constraint requires that all vertices that
are in the t/2-neighborhood of both u and v are assigned consistently (in u and v) and that these
assignments satisfy the corresponding G2-constraints (of the edges in G2).

Let ϕ be the natural transformation that maps a satisfying assignment a2:V → Σ of G2 to
a satisfying assignment a3 : V → Σdt/2

of G3, by letting each vertex assign values to its t/2-
neighborhood according to a2 (i.e., a3(v)|u = a2(u) for every v and every u in v’s t/2-neighborhood).
The transformation ϕ is one-to-one since it is a systematic map (we obtain a2 by restricting ϕ(a2)
such that each vertex only assigns a value to itself).

It remains to prove that every satisfying assignment of G3 is in the range of ϕ. Letting a3 :
V → Σdt/2

be a satisfying assignment of G3, set a2:V → Σ to be the assignment in which each
vertex is assigned a value according to its own assignment in a3 (i.e., a2(v) = a3(v)|v), and note
that a2 satisfies G2. We show that a3 = ϕ(a2). Suppose otherwise (i.e., that there exists vertices
u, v such that u is in v’s t/2-neighborhood and a3(v)|u 6= ϕ(a2)(v)|u = a2(u)). However, since
a3(u)|u = a2(u), this violates the constraint corresponding to the edge (u, v) in G3, which mandates
that the value assigned to u by u equals the value assigned to u by v (i.e., a3(u)|u = a3(v)|u), whereas
we have a3(u)|u = a2(u) and a3(v)|u 6= a2(u).

A.4 Alphabet reduction

Let G3 = 〈(V,E),Σ, C〉 be a constraint graph, where |Σ| = O(1). Let Σ0 be an alphabet, where
|Σ0| is a universal constant. The alphabet reduction procedure generates a constraint graph G4

over alphabet Σ0 by composing G3 with a PCPP as follows.
Let C : Σ → {0, 1}ℓ be an arbitrary code with relative distance δ > 0 and ℓ = O(1). We

replace each vertex v ∈ V by a “cloud” of ℓ vertices, which we denote by [v], and consider binary
assignments to these new vertices. For every edge (u, v) ∈ E we add a cloud of ℓ′ = O(1) vertices
(where ℓ′ will be determined later), which we denote by [(u, v)], and consider assignments over Σ0

to these new vertices. We transform each constraint c ∈ C and its corresponding edge (u, v) ∈ E
as follows.

Let Sc be the set of pairs of assignments to the vertices in the clouds [u] and [v] that are valid C-
encodings of assignments to vertices u and v that satisfy the constraint c. Consider a non-adaptive
2-query PCPP system for Sc, with respect to proximity parameter δ′ < δ, answer alphabet Σ0, and
with unique valid proofs for valid statements (i.e., for every, and only for, x ∈ Sc there exists a
unique proof πx that is accepted with probability 1). Denote this PCPP’s proof length by ℓ′, and
note that ℓ′ = O(1) since the proof refers to statements of length ℓ = O(1). The corresponding
PCPP verifier naturally induces a constraint graph over O(1) vertices (i.e., the vertices in [u], [v],
and [(u, v)]) and alphabet Σ0, whose edges and constraints we add to G4. It is easy to verify that
the Hadamard-based PCPP in [3] (with standard query reduction) is a PCPP system that satisfies
the foregoing conditions (see discussion at the end of the subsection).

We show that G3 and G4 have the same number of satisfying assignments. Let ϕ be the
natural mapping of a satisfying assignment a3 : V → Σ of G3 to a satisfying assignment a4 :
(∪v∈V [u]) ∪ (∪(u,v)∈E [(u, v)]) → Σ0 of G4, by assigning to each [v]-cloud in G4 the C-encoding of
a3(v), and to each [(u, v)]-cloud the assignment corresponding to the unique PCPP oracle that
asserts the assignment to [u] and [v] is in Sc.

By construction, and since C is one-to-one, the function ϕ is one-to-one as well. We show that
every satisfying assignment of G4 is in the range of ϕ. Let a4 : (∪v∈V [u]) ∪ (∪(u,v)∈E [(u, v)]) → Σ0
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be a satisfying assignment of G4. We show a satisfying assignment a3 : V → Σ of G3 such that
a4 = ϕ(a3).

Since the PCPP accepts only valid statements with probability 1, the assignment a4 must assign
valid C-encodings to each [v]-cloud in G4. Let a3 : V → Σ be the assignment that gives each v in
G3 the value that is encoded by [v] in G4 (i.e., a3(v) = C−1(a4([v])) for every v ∈ V , where C−1 is
well-defined because C is one-to-one and the assignment to each [v] is a valid C-encoding). Since
the PCPP have unique valid proofs (i.e., for each valid statement there exists a unique proof that
is accepted with probability 1), every [(u, v)]-cloud must be assigned with this unique PCPP proof.
Therefore a4 = ϕ(a3).

On the features of the Hadamard-based PCPP. We briefly recall the construction of the
Hadamard-based PCPP for quadratic equations over GF(2), due to Arora et al. [3]. We assume
familiarity with this construction (see, e.g., [10, Sec. 9.3.2.1] for a detailed exposition), and argue
that it has unique valid proofs for valid statements. The other required features of this PCPP (i.e.,
having a non-adaptive verifier, constant query complexity and alphabet size, perfect completeness,
and constant soundness) are well established. We remark that since we actually need a 2-query
PCPP, we will also apply a standard query reduction transformation.21

Recall that for every system of quadratic equations over n variables, the corresponding Hadamard
PCPP verifier has a hard-coded description of the system and query access to a purported satis-
fying assignment α = (α1, . . . , αn) (the statement) and to a PCPP proof-oracle that consists of
two parts: (1) Hadamard encoding of a satisfying assignment β = (β1, . . . , βn), and (2) Hadamard
encoding of the sequence of all 2-way products βiβj .

Checking that α, the assignment presented in the PCPP input-oracle, satisfies the given quadratic
system reduces to (1) checking that the proof-oracle properly encodes some string β, (2) checking
that a random linear combination of the equations is satisfied by β, and (3) checking that β equals
α. Specifically, for (1), we locally test the Hadamard encoding used in both parts of the proof-
oracle, and check their consistency (by employing self-correction on the second part). For (2), we
check that a random linear combination of the equations is satisfied by the assignment encoded in
the second part of the proof-oracle. Finally, for (3), we check that the input-oracle α is consistent
with β by sampling bits of α and using self-correction on the first

To see that this PCPP system has unique valid proofs (for valid statements), observe that
Steps (1) and (3) in the foregoing description accept with probability 1 if and only if all the
corresponding local conditions hold, where the conjunction of these local conditions mandate that
the proof-oracle encodes β = α (i.e., its first part is the Hadamard encoding of β and its second
part is the Hadamard encoding of the matrix (βiβj)i,j∈[n]).

21The standard transformation of PCPPs with query complexity q = 0(1) to PCPPs with query complexity 2
preserves the number of oracles that are accepted with probability 1. To see this, recall that this transformation
augments the PCPP oracle with each of the (q-symbol) local views of the oracle that the verifier may see (when
making the corresponding q queries), where each local view is written as a single symbol over a larger alphabet. The
new verifier reads the (large) symbol corresponding to the local view it seeks, checks that the original verifier would
have accepted it, and in addition compares this large symbol to one of the corresponding original symbols (selected
at random). Since the verifier checks the acceptability of the large symbols and their consistency with the original
symbols, only a sequence of large symbols that is consistent with the unique valid proof for the original verifier would
be accepted with probability 1.
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A.5 Gap amplification for PCPs of Proximity

We first recall how the gap amplification transformation in extended to the setting of PCPs of
proximity (closely following [8]).22 Recall that a PCPP has two oracles (an input-oracle and a
proof-oracle) and the conversion to 2-variable CSPs calls for introducing vertices for the symbols
of both oracles. Given a PCPP system, we first view it as a 2-variable CSP over a constant non-
Boolean alphabet Σ, represented as a constraint graph G = 〈(X ∪ V,E),Σ, C〉, where the vertices

in X correspond to the main input (the statement) and the vertices in V correspond to the proof

oracle.
The issue is that the standard (PCP) gap amplification does not preserve the “input vertex

set” X. To resolve this, the idea is to perform the first three steps of gap amplification that we
outlined above, and then add a copy of (the unmodified) X to the vertices of the constraint graph
that we obtain, and add a test that the assignment to X is consistent with the assignment to the
rest of the graph. Alphabet reduction is then performed essentially as before. Details follow.

We apply the degree reduction, expanderization, and powering stages to G, as before, obtaining
a constraint graph G3 over a larger (constant-size) alphabet. Recall that (by the degree reduction
step) the vertices V3 of G3 are obtained by replacing each vertex u ∈ X ∪V in G with an expander
graph Hu of degG(u) vertices in G3, and hence X ∩ V3 = ∅. Also recall that the assignments to
vertices in G3 correspond to assignments to t/2-neighborhoods in G2. Then, we transform G3 to
a new constraint graph G′

3 by adding the vertex set X and randomly selected “consistency edges”
with projection constraints between the vertices in X and V3 (i.e., such a constraint mandates that

the Σ-assignment to x ∈ X fits the Σdt/2
-assignment of any vertex v that contains x within its

t/2-neighborhood). We stress that this randomized procedure connects each vertex x ∈ X to at
least one vertex in the corresponding expander Hx of G3 (and hence of G′

3).
23

Finally, we perform alphabet reduction, essentially the same as in Appendix A.4, except for the
following issue. Recall that during the PCP alphabet reduction, each vertex v of the constraint
graph is replaced with a “cloud” of vertices whose assignment is the encoding of the assignment
to v by a binary code. However, in the setting of PCPPs, we cannot perform any modification to
the “input vertex set” X. This is resolved by noting that the alphabet size of the assignment to
vertices in X did not grow, and so we can perform alphabet reduction as before, except that instead
of replacing each x ∈ X with a cloud of vertices [x], we keep X intact and emulate each query to
a vertex in [x] by querying x, computing the encoding of the assignment to x and answering with
the relevant bit.

Note that the transformation from G3 to G′
3 is the only difference between PCP and PCPP gap

amplification that is relevant to arguing that the number of satisfying assignments is preserved. The
argument is straightforward, we present it next. Consider the natural transformation ϕ that maps
a satisfying assignment α:V3 → Σdt/2

of G3 into a satisfying assignment α′:X∪V3 → Σ∪Σdt/2
of G′

3

by assigning α′(v) = α(v) for every v ∈ V3, and α′(x) with the “x-assignment” of α to an arbitrary
vertex in Hx (i.e., α′(x) = α(v)|x for any v ∈ Hx); note that this is well-defined, since as argued
in Appendices A.1, A.2, and A.3, every satisfying assignment of G3 assigns each v ∈ V3 the same
value in all the vertices in its t/2-neighborhood (i.e., for every satisfying assignment α:V3 → Σdt/2

,
every v ∈ V3 and u,w in the t/2-neighborhood of v, it holds that α(u)|v = α(w)|v).

22As will be clarified below, the correction of [15] may be ignored here, let alone that it need not be applied at all
at the current context in which the constraint graphs are regular (with respect to the “input variables”).

23We do not present the exact procedure that generates these consistency edges (see [8, 15] for a precise description),
as the details are irrelevant to our argument.
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Clearly, ϕ is one-to-one, since it is a systematic transformation. To see that every satisfying
assignment of G′

3 is in the range of ϕ, observe that the assignment of X is forced by the assignment
to V3.
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