
On Constant-Depth Canonical Boolean Circuits

for Computing Multilinear Functions

Oded Goldreich∗ Avishay Tal†

December 31, 2017

Abstract

We consider new complexity measures for the model of multilinear circuits with general
multilinear gates introduced by Goldreich and Wigderson (ECCC, 2013). These complexity
measures are related to the size of canonical constant-depth Boolean circuits, which extend the
definition of canonical depth-three Boolean circuits. We obtain matching lower and upper bound
on the size of canonical constant-depth Boolean circuits for almost all multilinear functions, and
non-trivial lower bounds on the size of such circuits for some explicit multilinear functions.
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1 Introduction

Goldreich and Wigderson [2] put forward a model of depth-three canonical circuits, with the un-
derlying long-term goal of leading to better lower bounds for general depth-three Boolean circuits
computing explicit multi-linear functions. Canonical circuits are restricted type of Boolean depth-
three circuits, and their study is supposed to be a warm-up and/or a sanity check for the establishing
of lower bound on the size of general depth-three Boolean circuits that compute explicit multi-linear
functions.

The canonical circuits defined in [2] are depth-three Boolean circuits that are obtained by a
two-stage process: First, one constructs arithmetic circuits that use arbitrary multilinear gates of
parameterized arity, and next one converts these multilinear circuits to Boolean circuits. As shown
in [2], the size of the resulting depth-three Boolean circuits is exponential in the maximum between
the arity and the number of gates in the arithmetic circuit.

Hence, a natural complexity measure of such arithmetic circuits arises, and the immediate
challenge posed by [2] is to present explicit t-linear functions on t·n variables that require complexity
significantly greater than (tn)1/2. Note that a lower bound of m = ω(

√
tn) on the complexity of

such a function f yields a lower bound of exp(m) on the size of depth-three canonical circuits
computing f , whereas the best bound known on the size of a general depth-three Boolean circuit
computing an explicit function over {0, 1}n is exp(

√
n). Hence, in the context of the complexity

measures of [2], a lower bound of ω(
√

tn) is considered nontrivial.
In this context, a first nontrivial lower bound on an explicit function was obtained by Goldre-

ich and Tal [3]. They exhibit explicit three-linear and four-linear functions having complexities
Ω(n0.6) and Ω̃(n2/3), respectfully. Although there is still much to be understood about the fore-
going model, which corresponds to depth-three canonical (Boolean) circuits, we dare take another
speculative step and put forward a notion of constant-depth canonical (Boolean) circuits along with
a corresponding model of arithmetic circuits. In particular:

• We define more permissive complexity measures than those defined in [2] and show a partial
correspondence between them and a notion of constant-depth canonical circuit.

• Extending the results of [2], we obtain matching lower and upper bound on the complexity of
almost all multi-linear functions. Specifically, for most t-linear functions, the size of canonical
circuits of depth d is exp(Θ(tn)t/(t+d−2)).1

• Extending the results of [2] and using the results of [3], we obtain a lower bound on the size
of depth-four canonical circuits that compute an explicit trilinear function. The resulting
lower bound of exp(Ω̃(n3/8)) should be compared to exp(Ω(n1/3)), which is the best bound
known on the size of a general depth-four Boolean circuit computing an explicit function over
{0, 1}n.

Our conceptual exposition (i.e., Sections 2 and 3) builds quite heavily on [2]. Familiarity with [2]
may be useful also in the other sections. In contrast, the results of [3] are used as a black-box, and
so familiarity with that paper is not needed here.

Organization. In Section 2 we recall the model of multi-linear circuits with general multi-linear
gates, and present two complexity measures that refer to these circuits. These measures refine

1Note that in the rest of the paper, the depth of the canonical circuits is denoted d + 1, whereas d corresponds to
the depth of general multi-linear circuits.
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and generalize the complexity measures introduced in [2], and offer a relation to canonical Boolean
circuits of arbitrary constant-depth (rather than depth three), which is presented in Section 3.

In Section 4 we present matching lower and upper bounds on the foregoing complexity measures
for almost all multilinear functions. These mark the lower bounds we should aim at for explicit
functions. While we do not obtain these bounds, we do obtain non-trivial lower bounds in Sec-
tions 5–7. Specifically, in Section 5 we present bounds for an explicit trilinear function, and in
Section 6 we present larger bounds for an explicit 4-linear function. In Section 7 we show that
non-trivial lower bounds for one depth translate to non-trivial lower bounds for larger depths.

2 Definitions

The basic definitions of multilinear circuits are as in [2, 3]. The complexity measures, to be denoted
Cd and C

(d−1), will generalize the measures C2 and C defined in [2] for the case of d = 2 (where d+1
is the desired the depth of the canonical Boolean circuit). Recall that in [3], the corresponding
complexity measures are called AN2-complexity and AN-complexity, where AN stands for Arity
and Number of gates.

Multi-linear functions. For fixed t, n ∈ N, we consider t-linear functions of the form F :
({0, 1}n)t → {0, 1}, where F is linear in each of the t blocks of variables (which contain n variables
each). Such a function F is associated with a t-dimensional array, called a tensor, T ⊆ [n]t such
that

F (x(1), x(2), ..., x(t)) =
∑

(i1,i2,...,it)∈T

x
(1)
i1

x
(2)
i2

· · · x(t)
it

(1)

where here x(j) = (x
(j)
1 , ..., x

(j)
n ) ∈ {0, 1}n for every j ∈ [t].

Multi-linear circuits with general gates. These are multilinear circuits with arbitrary mul-
tilinear gates, of bounded arity (where this bound will serve as a complexity measure). The multi-
linear requirement mandates that if two gates have directed paths to them from the same block of
inputs, then the results of these two gates are not multiplied together by any other gate.

Complexity measures. The main complexity measures are the arity of the general multilinear
gates and the number of such gates, where we say that a multilinear circuit C has arity m if m
equals the maximum arity of a general gate in C. For a multilinear function F , we denote by Cd(F )
the minimum arity of a multilinear circuit of depth d that computes F , where the depth of a circuit
is the distance between the input variable and the output gate (e.g., a circuit consisting of a top
gate that computes the sum of multilinear gates that are fed by variables only has depth 2).

Note that the number of gates in a circuit of depth two and arity m is m + 1, since the last
layer in the circuit contains only variables. Hence, C2(·) matches the notion of AN2-complexity as
defined in [2, 3] (up to a slackness of one unit). In general, the number of gates in a circuit of depth
d and arity m is at most

∑d−1
i=0 mi < (m + 1)d−1, because there are at most mi gates at distance

i ≤ d− 1 from the output gate. (Note that gates in a depth d circuit are at distance at most d− 1
from the output gate, whereas only variables may be at distance d from the output gate.)

Letting C
(e)(F ) denote the smallest m such that F can be computed by a circuit of arity at

most m that has at most (m + 1)e gates, we have C
(d−1)(F ) ≤ Cd(F ). Note that AN-complexity as

defined in [2, 3] equals C(1)(·) (again, up to a slackness of one unit).
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3 Obtaining Boolean circuits

A direct implementation of the general multilinear gates in a multilinear circuits of depth d yields
a Boolean circuit of depth d + 1 and size exp(O(Cd(·)). Specifically, we replace each general gate of
arity m by a CNF (resp., a DNF) of size 2m, where we use CNFs (resp., DNFs) in all even (resp.,
odd) levels. This allows to combine neighboring levels in the resulting depth 2d Boolean circuit,
yielding a circuit of depth d + 1. (This generalizes the D-canonical circuits of [2, Cons. 2.6].)

Given a multilinear circuit C of arity m and at most (m + 1)e gates, we can obtain a Boolean
circuit of depth e + 2 and size exp(O(m)) in the special case that C can be decomposed into sub-
circuits of depth e by omitting the edges that go out of at most m gates.2 Specifically, we use a DNF
of size Õ(2m) such that each of the 2m conjunctions verifies a possible outcome of the computation
of the m resulting sub-circuits, which in turn can be computed by exp(O(m))-size Boolean circuits
of depth e + 1 (with a conjunction gate at the top). (This generalizes the ND-canonical circuits
of [2, Cons. 2.8].)

More generally, we may call a circuit with N gates m-decomposable if omitting the outgoing
edges of at most m of its gates yields sub-circuits that are each m-decomposable and have at most
N/m gates. Then, the computation of any a m-decomposable multilinear circuit C that has arity m
and at most (m+1)e gates can be emulated by a Boolean circuit of depth e+2 and size exp(O(m))
as follows. The construction proceeds by induction on e ≥ 1, where the case of e = 1 corresponds
to [2, Cons. 2.8].

• For e > 1, suppose that C can be decomposed by omitting the outgoing edges of the gates
G1, ..., Gm such that each Gi is the output gate of a sub-circuit that contains at most (m+1)e−1

gates. Then, by the induction hypothesis, each of the corresponding sub-circuits (as well as
the sub-circuit rooted at the original output gate G0) can be computed by a Boolean circuit
of depth e + 1 and size exp(O(m)).

• Consider a DNF that verifies the assertion there exists α ∈ {0, 1}m such that the outputs of

(G0, G1, ..., Gm) equal 1α, where these m+1 outputs correspond to computations that use the
values of the original variables and use αi as the value that replaces the outcome of Gi that
is fed to any other gate. Then, combining this exp(m)-sized DNF with the aforementioned
circuits of depth e + 1, we obtain the desired circuit.

Note that this leaves open the general case (where we are given a multilinear circuit of arity m that
has at most (m + 1)e gates, but this circuit is not necessarily m-decomposable). Fortunately, the
lower bounds (shown in the next sections) hold also for the general case. Still, we wonder what is
the “right” notion of general AN-complexity for depth d. It is not inconceivable that a measure that
requires decomposition is right, since it matches the natural application of the “Valiant method” [8].

4 Guiding Bounds

Analogously to [2], we have tight bounds on the complexities of almost all multilinear functions.

Theorem 4.1 (upper bound): For every d, t ∈ N, every t-linear function F satisfies Cd(F ) =
O(tn)t/(t+d−1). Hence, C(d−1)(F ) = O(tn)t/(t+d−1).

2Actually, these out-going edges are omitted only from the sub-circuits from which they previously went out of.
They are maintained as incoming edges in the sub-circuits that previously had them as such, but are fed by an
auxiliary variable rather than by the output of the corresponding sub-circuit. (The DNF mentioned next refers to
these auxiliary variables.)
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This generalizes [2, Thm. 3.1], which was stated for d = 2.

Proof Sketch: Let m = t · nt/(t+d−1) ≈ (tn)t/(t+d−1). Consider a partition of [n]t into cubes
of side-length m/t, and gates that compute the corresponding multilinear functions. We have

(n/(m/t))t = (tn/m)t such gates, each of arity m. By our setting (tn/m)t ≈ (m
t+d−1

t
−1)t = md−1,

and so the sum of the md−1 values of the aforementioned gates can be computed by a multilinear
circuit of depth d−1 and arity m. Combining this circuit with the aforementioned gates, we obtain
the desired circuit.

Theorem 4.2 (lower bound): For every d, t ∈ N, almost all t-linear functions F satisfy C
(d−1)(F ) =

Ω(tn)t/(t+d−1). Hence, Cd(F ) = Ω(tn)t/(t+d−1).

This generalizes [2, Thm. 4.1], which was stated for d = 2.

Proof Sketch: Letting e = d − 1, we upper-bound the number of general multilinear circuits of
arity m and size (m + 1)e. Ignoring the gates’ functionalities, we note that the number of relevant
DAGs is at most

(
2m ·

(
tn + (m + 1)e

m

))(m+1)e

< (((tn + 1)e)m)(m+1)e

= exp((m + 1)e+1 log(tn + 1)e),

where the inequality uses tn + (m + 1)e < (tn + 1)e. But (for t ≥ 2 and m ≫ t log n) this is
dominated by the number of possible gates’ functionalities, which is

(
2(m/t)t

)(m+1)e

= exp(mt+e/tt),

since each gate corresponds to a tensor of volume at most (m/t)t. The claim holds since mt+e/tt ≪
nt, provided that m ≪ (tn)t/(t+e).

5 Lower Bounds on Explicit functions

Using the rigidity results of [3], one can obtain non-trivial lower on the C3 and C
(2) complexities of

explicit trilinear functions, where by non-trivial we mean bounds significantly higher than Ω(n1/3)
(which is easily obtained for parity). This relies on connections between the C3 and C

(2) complexities
of bilinear functions and the rigidity of the corresponding matrices, which adapt ideas of [2]. We
recall the relevant definition.

Definition 5.1 (matrix rigidity [7]): A matrix A (over a field F) has rigidity s for rank r if every

matrix of rank at most r (over F) differs from A on more than s entries.

We shall consider bilinear functions in the variables x = (x1, ..., xn) and y = (y1, ..., yn), and
trilinear functions in the variables x, y and z = (z1, ..., z2n−1).

5.1 The case of C3

Lemma 5.2 (rigidity and C3): Let F be a bilinear function and suppose that the corresponding

matrix has rigidity m5 for rank m. Then, C3(F ) > m.
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Proof: Suppose that C3(F ) ≤ m, and consider a depth-three (general multi-linear) circuit C of
arity m that computes F . Then, C has the form

C(x, y) = G(L1(x), ..., Lm1 , L
′
1(y), ..., L′

m2
(y), Q1(x, y), ...Qm3(x, y)),

where G is a quadratic gate, m1 + m2 + m3 ≤ m, the Li(x)’s and L′
j(y)’s are linear functions

computable by depth-two circuits and the Qi(x, y)’s are bilinear functions that are computed by
depth-two circuits. Hence, for some P ⊆ [m1] × [m2] it holds that

C(x, y) =
∑

(i,j)∈P

Li(x)L′
j(y) +

∑

i∈[m3]

Qi(x, y),

and each Qi has the form

Qi(x, y) =
∑

(j,k)∈Pi

Li,j(x)L′
i,k(y) +

∑

j∈[t′′i ]

Qi,j(x, y),

where Pi ⊆ [ti] × [t′i] and t′′i ≤ m − (ti + t′i), and the Li,j(x)’s and L′
i,k(y)’s are linear functions

computable by depth-one circuits and the Qi,j(x, y)’s are bilinear functions that are computed by
depth-one circuits. Hence, the Li,j(x)’s and L′

i,k(y)’s are linear gates and the Qi,j(x, y)’s are bilinear
gates (each taking m variables). Consider the matrix that corresponds to the function computed by
Qi. It is the sum of |Pi| ≤ ti ·t′i matrices of rank one, each being an outer product of two vectors that
each has at most m one-entries, and t′′i matrices each having at most m2 one-entries. Hence, the
matrix that corresponds to

∑
i∈[m3] Qi has sparsity at most

∑
i∈[m3](tit

′
i ·m2 + t′′i ·m2) ≤ m5, since

m3 ≤ m and ti+t′i+t′′i ≤ m. On the other hand, the matrix that corresponds to
∑

(i,j)∈P Li(x)L′
j(y)

has rank min(m1,m2) < m. It follows that the matrix that corresponds to F does not have rigidity
m5 for rank m.

Corollary 5.3 (a C3 lower bound for random Toeplitz functions): Almost all bilinear functions F
that correspond to Toeplitz matrices satisfy C3(F ) = Ω̃(n0.4).

Proof: Using Lemma 5.2 it suffices to show that F has rigidity m5 for rank m = Ω̃(n0.4). This
follows from special case of [3, Thm. 1.2], which asserts that a random Toeplitz matrix has rigidity
Ω(n2/ log n) for rank

√
n.

Corollary 5.4 (a C3 lower bound for an explicit trilinear function): The trilinear function F (x, y, z) =∑
i,j∈[n] xiyjzn+i−j satisfies C3(F ) = Ω̃(n0.4).

Proof: As in [2, 3], this follows from the existence of a bilinear function F ′ that corresponds to a
Toeplitz matrix such that C3(F

′) = Ω̃(n0.4) (cf. Corollary 5.3).

5.2 The case of C(2)

Lemma 5.5 (rigidity and C
(2)): Let F be a bilinear function and suppose that the corresponding

matrix has rigidity m4 for rank m2. Then, C(2)(F ) ≥ m.

Proof: Suppose that C(2)(F ) ≤ m−1, and consider a (general multi-linear) circuit C of arity m−1
that has at most m2 gates and computes F . We call a bilinear gate mixed if it fed both by bilinear
gates and by either linear gates or variables, and call it a terminal if it is fed by linear gates and/or
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Figure 1: Eliminating mixed gates. The bilinear gates are depicted by squares, and the auxiliary
gate is filled. The triangles represent linear gates or variables.

variables only. We first get rid of mixed gates by introducing, for each mixed gate M , an auxiliary
bilinear gate that “take over” the linear gates and variables that feed M , and feeds M instead (see
Figure 1). The resulting number of terminal gates is at most m2, because each new terminal gate
(i.e., a terminal gate introduced by the foregoing process) can be charged to a non-terminal bilinear
gate in the original circuit. Hence, all the bilinear gates in C are terminal gates, and so C is the
sum of these gates, denoted Gi for i ∈ [m2]; that is,

C(x, y) =
∑

i∈[m2]

Gi(x, y),

where the each Gi is fed by m − 1 linear gates and variables. Considering the sets of linear gates
that feed into each of the Gi’s, we stress that these sets are all subsets of a set of at most m2 linear

gates, since C has at most this number of gates. That is, Gi(x, y) takes the sum of some products
of pairs of linear gates and variables; specifically, each product takes one element from Si ∪ Vi and
one element from S′

i ∪ V ′
i , where Si ⊆ [m2] (resp., S′

i ⊆ [m2]) represents the set of linear gates
in x (resp., in y) that feed Gi, and Vi ⊆ [n] (resp., V ′

i ⊆ [n]) denotes the set of x-variables (resp.,
y-variables) that feed Gi. Recall that |Si| + |S′

i| + |Vi| + |V ′
i | ≤ m − 1. Hence, Gi has the form

Gi(x, y) =
∑

j∈Si

Lj(x)M ′
i,j(y) +

∑

j∈S′
i

Mi,j(x)L′
j(y) +

∑

(j,k)∈Pi⊆Vi×V ′
i

xjyk,

where the Lj(x)’s and L′
j(y)’s are linear gates of C, and the Mi,j(x)’s and M ′

i,j(y)’s are arbitrary
linear functions (which may depend on i). Specifically, Mi,j(x) (resp., M ′

i,j(y)) is a partial sum of∑
k∈Si

Lk(x)+
∑

k∈Vi
xk (resp.,

∑
k∈S′

i
Lk(y)+

∑
k∈V ′

i
yk), where these partial sums are determined

by Gi. Hence, assuming (w.l.o.g.) that ∪i∈[m2]Si = [m′] (and ∪i∈[m2]S
′
i = [m′ + 1,m2]), we can be

expressed C as

C(x, y) =
∑

i∈[m2]




∑

j∈Si

Lj(x)M ′
i,j(y) +

∑

j∈S′
i

Mi,j(x)L′
j(y) +

∑

(j,k)∈Pi⊆Vi×V ′
i

xjyk




=
∑

j∈[m′]

Lj(x)M ′
j(y) +

∑

j∈[m′+1,m2]

Mj(x)L′
j(y) +

∑

(j,k)∈P

xjyk,

where M ′
j(x) =

∑
i∈[m2] M

′
i,j(x) (resp., Mj(y) =

∑
i∈[m2] Mi,j(y)) and P is the multi-set consisting

of ∪i∈[m2]Pi. Recalling that |Pi| ≤ |Vi| · |V ′
i | ≤ (m − 1)2, it follows that the matrix corresponding

to the function computed by C is the sum of two matrices of ranks m′ and m2 − m′, respectively,
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and a matrix of sparsity m2 · (m− 1)2. That is, this matrix does not have rigidity m4 for rank m2.

Corollary 5.6 (an C
(2) lower bound for random Toeplitz functions): Almost all bilinear functions

F that correspond to Toeplitz matrices satisfy C
(2)(F ) = Ω̃(n3/8).

Proof: Using Lemma 5.5 it suffices to show that F has rigidity m4 for rank m2, where m =
Ω̃(n3/8). This follows from [3, Thm. 1.2], which asserts that a random Toeplitz matrix has
rigidity Ω(n3/r2 log n) for rank r >

√
n. Specifically, using r = m2 = Ω̃(n6/8), we get rigidity

Ω(n3/r2 log n) ≥ m4, provided Ω(n3/ log n) ≥ m8.

Corollary 5.7 (an C
(2) lower bound for an explicit trilinear function): The trilinear function

F (x, y, z) =
∑

i,j∈[n] xiyjzn+i−j satisfies C
(2)(F ) = Ω̃(n3/8).

Proof: As in [2, 3] (and Corollary 5.4), this follows from the existence of a bilinear function F ′

that corresponds to Toeplitz matrices such that C3(F
′) = Ω̃(n3/8) (cf. Corollary 5.6).

6 Better Lower Bounds on other Explicit Functions

Recall that Corollaries 5.3 and 5.6 establish that almost all bilinear functions F that correspond to

Toeplitz matrices satisfy C3(F ) = Ω̃(n0.4) and C
(2)(F ) = Ω̃(n3/8). In this section we get improved

bounds for function that belong to any set of exp(−n)-biased space: Specifically, almost all bilinear
functions F whose coefficients are taken from an 2−n-biased space satisfy C3(F ) = Ω̃(n4/9) as
well as C

(2)(F ) = Ω̃(n0.4). Recall that these results yield similar lower bounds for an explicit
4-linear function [3]. (We shall consider bilinear functions in the variables x = (x1, ..., xn) and
y = (y1, ..., yn), and 4-linear functions in the variables x, y and (s′, s′′) ∈ {0, 1}O(n)+O(n).)

Preliminaries. Recall the definition of an ε-biased distribution from [6].

Definition 6.1 (small-biased distribution): A distribution X over {0, 1}N is said to be ε-biased if

for every non-empty set S ⊆ [N ], it holds that

∣∣∣Ex∼X [(−1)
P

i∈S xi ]
∣∣∣ ≤ ε .

We shall use the following property of ε-biased distributions (implicit in [6]).

Claim 6.2 [1, Lem. 1]: Let X be an ε-biased distribution over {0, 1}N . Let ℓ1, . . . , ℓt be linearly

independent linear functions on x1, . . . , xN . Then, the probability that all linear functions evaluate

to 0 on x ∼ X is at most ε + 2−t.

6.1 The case of C3

Here we use techniques that that are similar to those used in [3], but the actual argument is
different. We call the reader’s attention to an argument at the end of Step 2 of the proof, where a
union bound on too many values is avoided and the (linear equations satisfied by the) linear span
of these values is considered instead.3

3This technique was used in [3].
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Theorem 6.3 (a C3 lower bound for bilinear functions selected from a small-biased sample space):
Almost all bilinear functions F that correspond to matrices drawn from a 2−n-biased distribution

on F
n×n
2 satisfy C3(F ) ≥ Ω̃(n4/9).

Proof: Let m and r be non-negative integer parameters smaller than n, which we will set later.
Along the way, we shall assume a few inequalities on m and r, which we will eventually satisfy by
appropriately choosing m and r.

Our proof will show that the matrices associated with bilinear circuits of arity at most m and
depth 3 can be partitioned into at most Õ(2n/2) families such that, for each family of matrices,
there exists a system of r2/2 (linearly independent) linear equations in the matrix entries, that all
matrices in the family satisfy. We will finish the proof by showing that most matrices drawn from
a 2−n-biased distribution on {0, 1}n2

do not belong to any of these families, and hence cannot be
computed by a bilinear depth-3 circuits of arity at most m.

Step 1: Classifying matrices to families. We start by classifying all matrices associated with bilinear
functions F that satisfy C3(F ) ≤ m into families of matrices, each satisfying a system of r2/2 linear
equations. Consider a depth-three (general multi-linear) circuit C of arity m that computes F . As
in Lemma 5.2, a generic C has the form

C(x, y) =
∑

(i,j)∈[m]×[m]

pi,j ·




∑

ℓ∈Li

xℓ


 ·




∑

ℓ∈L′
j

yℓ


 +

∑

i∈[m]

Qi(x, y),

where P (0) = (pi,j)i,j∈[m] ∈ {0, 1}m×m, the Li’s and L′
j ’s are subsets of size at most m2 of [n], and

Qi(x, y) =
∑

(j,k)∈[m]×[m]

p
(i)
j,k ·




∑

ℓ∈Li,j

xℓ


 ·




∑

ℓ∈L′
i,k

yℓ


 +

∑

j∈[m]

Qi,j(x, y),

where P (i) = (p
(i)
j,k)j,k∈[m] ∈ {0, 1}m×m, the Li,j’s and L′

i,k’s are subsets of size at most m of [n],
and the Qi,j(x, y)’s are bilinear gates (each taking m variables).

To be more precise, for each Qi,j, we associate two subsets S(i,j), T (i,j) ⊆ [n] corresponding to
the indices of the x and y input variables of Qi,j, respectively. We require |S(i,j)|+ |T (i,j)| ≤ m and
write Qi,j as

Qi,j(x, y) =
∑

k∈S(i,j)

∑

ℓ∈T (i,j)

ci,j,k,ℓ · xk · yℓ (2)

where ci,j,k,ℓ are coefficients in {0, 1} (defined for any k ∈ S(i,j), ℓ ∈ T (i,j)).
Hence, a concrete depth-three (general multi-linear) circuit C of arity m is specified in terms of

the foregoing generic description by specifying the sets Li, L
′
i, Li,j, L

′
i,j and S(i,j), T (i,j), hereafter

called the variable wiring (or wiring), as well as the m+1 matrices P (i)’s (for i = 0, 1, ...,m) and the
coefficients ci,j,k,ℓ’s, hereafter called the bilinear forms. Without loss of generality, we may envision
C as a formula (i.e., a tree), and the sequence of sets as its leaves. This formula has at most 5m3

leaves (i.e.,
∑

i∈[m](|Li|+ |L′
i|)+

∑
i,j∈[m](|Li,j |+ |L′

i,j |+ |S(i,j)|+ |T (i,j)|) ≤ 5m3), each labeled with
a variable from x1, . . . , xn, y1, . . . , yn.

Let r be an integer and assume (for simplicity) that r divides n. We partition the x vari-
ables into n/r buckets, and similarly we partition the y variables. Specifically, for a, b ∈ [n/r],
let Xa := {x(a−1)·r+1, x(a−1)·r+2, . . . , xi·r} be the ath bucket of the x variables, and let Yb :=

{y(b−1)·r+1, y(b−1)·r+2, . . . , yb·r} be the bth bucket of the y variables. For a fixed variable wiring,
we call a bucket-pair (Xa, Yb) typical if the following three conditions hold:
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1. At most 50 · m3 · r/n of the leaves in the formula are labeled with variables from Xa.

2. At most 50 · m3 · r/n of the leaves in the formula are labeled with variables from Yb.

3. There are at most 10 · m4 · r2/n2 quadruples (i, j, k, ℓ) such that (xk, yℓ) ∈ Xa × Yb and xk

and yℓ are inputs to Qi,j. (i.e., k ∈ S(i,j) and ℓ ∈ T (i,j)).

Observing that a random bucket-pair (Xa, Yb) satisfies each condition (individually) with probabil-
ity at least 0.9, it follows that most bucket-pairs satisfy all conditions simultaneously. Hence, for
each wiring, most bucket-pairs (Xa, Yb) are typical.

For each pair (a, b) ∈ [n/r], we consider all wirings for which (Xa, Yb) is typical. Actually, it
suffices to consider a partial wiring that specifies only the placing/wiring of variables in Xa ∪ Yb.
To specify such a partial wiring it suffices to specify which of these variables appears in which leaf
of the formula; that is, assign a variable of Xa (resp., Yb) to at most 10m3r/n of the leaves. Hence,

we have at most
(

5m3

50m3r/n

)
· (|Xa| + 1)50m3r/n < (n4)50m3r/n possibilities for wiring of variables in

Xa, and ditto for Yb. Thus, there are at most (n4)100·m
3·r/n possible wirings for all variables in

Xa ∪ Yb to the gates that read them. We shall assume

100 · m3 · r

n
≤ n

10 · log n
(3)

giving us at most (n4)n/10 log n ≤ 2n/2 possible wirings.
We partition all bilinear functions F with C3(F ) ≤ m to families according to a choice of a

bucket-pair (Xa, Yb) and a partial wiring of Xa ∪ Yb such that (Xb, Yb) is typical for this wiring.
This gives us an upper bound of (n/r)2 · 2n/2 on the number of families.

Step 2: Associating a system of linear equations with each family of matrices. We consider a fixed
family of matrices; that is, we fix a choice of a bucket-pair (Xa, Yb) and a choice of wirings of Xa∪Yb

for which the said pair is typical. We focus on the r-by-r submatrices of the matrices in the family
whose rows correspond to variables in Xa and columns correspond to variables in Yb.

For every (k, ℓ) such that xk ∈ Xa and yℓ ∈ Yb, we consider how the (k, ℓ)-th entry of the
matrices in the family looks like. Note that the (k, ℓ)-th entry in the matrix corresponding to the
bilinear function equals the value of the bilinear function on the input with all zeros except for xk

and yℓ. Now, for a fixed family, since the wirings of Xa and Yb are fixed, the (k, ℓ)-th entry is a
fixed linear combination in the entries of P (i)’s (with i ∈ {0, 1, ...,m}) and the relevant coefficients
ci,j,k,ℓ, where the relevant coefficients ci,j,k,ℓ are those for which k ∈ S(i,j) and ℓ ∈ T (i,j). Thus, all
entries in the r-by-r submatrix corresponding to Xa×Yb are fixed linear combinations in the entries
of P (i)’s and the relevant coefficients ci,j,k,ℓ. There are at most (m + 1) · m2 entries in the P (i)’s,
and at most 10 · m4 · r2/n2 relevant coefficients ci,j,k,ℓ (by Property 3 of a typical bucket-pair).
Assuming that

(m + 1) · m2 + 10 · m4 · r2

n2
≤ r2

2
(4)

this means that the r2 entries of a submatrix in a generic matrix in the family are fixed linear
combinations of at most r2/2 values (i.e., the entries of P (i)’s and the relevant coefficients ci,j,k,ℓ).
Hence, these r2 entries must satisfy a fixed system of at least r2/2 independent linear equations,
since each entry is a fixed linear combination of at most r2/2 values.4

4Formally, we can write each of the r2 entries as a fixed linear combination of at most r2/2 symbolic variables.
Viewing these r2 entries as an r2-dimensional vector, we note that this vector must resided in a fixed vector space of
dimension at most r2/2 over F2, which in turn can be characterized by a fixed system of at least r2/2 independent
linear equations.
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Step 3: Showing that, whp, small-biased matrices do not belong to any of the families. To finish,
we show that a matrix drawn from a 2−n-biased distribution is unlikely to be a member in any
of these 2n/2 · (n/r)2 families of matrices. For a fixed family, we calculate the probability that
a matrix B drawn from a 2−n-biased distribution belongs to this family, and then take a union
bound over all families. To be included in a fixed family, the matrix B should satisfy at least
r2/2 specific independent linear equations. By Claim 6.2, this happens with probability at most
2−n + 2−r2/2 ≤ 2 · 2−n assuming r ≥

√
2n. We are left to pick r and m while satisfying Eq. (3),

Eq. (4), and r ≥
√

2n. The choice

r
def
=

n2/3

6 · log1/3(n)
and m

def
=

n4/9

6 · log2/9(n)
= Θ(r2/3)

satisfies all of the above, assuming n is large enough. Under this choice of parameters (and using
a union bound), the probability that the bilinear function FB associated with a matrix B, drawn
from a 2−n-biased distribution, satisfies C3(FB) ≤ m is at most (2n/2 · (n/r)2) · (2 · 2−n) ≤ 2−Ω(n).

Corollary 6.4 (a C3 lower bound for an explicit 4-linear function): There exists an explicit bi-

linear function G : {0, 1}O(n)+O(n) → {0, 1}n2
such that the 4-linear function F (x, y, s′, s′′) =∑

i,j∈[n] G(s′, s′′)i,jxiyj satisfies C3(F ) = Ω̃(n4/9).

Proof: As in [3], this follows by combining Theorem 6.3 with a construction of a small-biased gen-
erator G : {0, 1}O(n)+O(n) → {0, 1}n2

that is a bilinear function (see [5]). By Theorem 6.3, for most
settings of s = (s′, s′′), it holds that the resulting bilinear function F ′(x, y) =

∑
i,j∈[n] G(s′, s′′)i,jxiyj

satisfies C3(F
′) = Ω̃(n4/9), whereas C3(F ) ≥ C3(F

′). Observing that F is 4-linear, the claim follows.

6.2 The case of C(2)

We mention that following the proof in [3], one can get C(2)(F ) = Ω̃(n0.4) for F as in Theorem 6.3
and Corollary 6.4. We do not present the proof here, since it basically amount to reproducing large
portions of [3] (i.e.,, [3, Sec. 4] and [3, Sec. 5.1]), without any new ideas or techniques. The only
difference would have been decoupling the number of gates from the arity, and using these two
parameters rather than one. Specifically, we have

Theorem 6.5 ([3, Thm. 5.6], revised by decoupling size and arity):5 Let A be an n-by-n matrix A
whose entries are sampled from an ε-biased distribution. Then, the corresponding bilinear function

can be computed by a bilinear circuit of arity m and size s with probability at most

( n

2s

)2
·
(

2s2

≤ 12s2m/n

)4

·
(
ε + 2−s2+24s3m2/n2

)
.

In particular, using s = m2 >
√

n and ε = 2−n, we get a probability bound of exp(Õ(m5/n) −
min(n,m4 − O(m8/n2))). Hence, with high probability, the bilinear function FA associated with a
matrix A whose entries are sampled from an ε-biased distribution, satisfies C(2)(FA) = Ω̃(n0.4).

5Indeed, in [3, Thm. 5.6], s = m.
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7 Depth Reductions

In this section, we show connections between Cd(·) for different depths d. First, we show a simple
connection between Ckd(·) and Cd(·) for any k ∈ N. As a special case, we get C2k(F ) ≥ C2(F )1/k.
Next, we show a less clean connection between C2k+1(F ) and C2(F ). We note that establishing
connections between C

(e)(·) for different values of e remains open.

Lemma 7.1 (depth reduction – simple case): For any multilinear function F and d, k ∈ N, it

holds that

Cd(F ) ≤ Ckd(F )k.

As a special case, we get Cd(F ) ≥ C2(F )2/d for every even depth d. Hence, any non-trivial lower

bound for depth 2 implies a non-trivial lower bound for every even depth d, where a non-trivial lower

bound for depth d refers to any lower bound of the form Cd(F ) = ω((tn)1/d) (for a t-linear function
F ). This terminology is justified by the fact that a lower bound of the form Cd(F ) = Ω((tn)1/d) holds
trivially for any t-linear function F that depends on all its tn input variables (because otherwise
the multilinear circuit cannot even read all the input bits).

Proof Sketch: Starting with any multilinear circuit for F having depth kd and arity m = Ckd(F ),
collapse every k consecutive layers into one layer, resulting in a t-linear circuit of depth d and arity
mk. Hence, Cd(F ) ≤ Ckd(F )k.

Since we have non-trivial lower bounds for depth 2, we get from Lemma 7.1 non-trivial lower
bounds on Cd(F ) for any even d (see the discussion after Lemma 7.2 for specific details). We
would like to get a similar result for odd depths, but the straightforward approach gives Cd(F ) ≥
Cd+1(F ) ≥ C2(F )2/(d+1) for every odd d. While this implies non-trivial lower bounds on Cd(F ) for
all sufficiently large odd d, it currently yields trivial bounds for small d (e.g., d = 3). Specifically,
the best lower bound known on an explicit function F asserts C2(F ) = Ω̃(n2/3), which implies only
the trivial bound of C3(F ) = Ω̃(n1/3).

Lemma 7.2 (depth reduction – odd depths to depth 2): Let k ∈ N. Then, for any t-linear function

F , it holds that

C2(F ) ≤ O(C2k+1(F )k+(t/(t+1))).

It seems that the ideas underlying the following proof may work to reduce depth d to depth d′ < d
in general (i.e., when d′ may not divide d). However, due to the lack of applications for such a
general reduction, we decided to focus on the case d′ = 2.

Proof Sketch: The main idea is to first split the middle layer into two layers of smaller arity
using [2, Thm. 3.1], and then collapse the top k + 1 (resp., the bottom k + 1) layers into one layer.
Specifically, using [2, Thm. 3.1] (alternatively Theorem 4.1), split each gate in layer k + 1 to an
equivalent sub-circuit with two layers and arity O(m)t/(t+1). After the split, the circuit has 2k + 2
layers, where the first k layers have gates of arity at most m, the next two layers have gates of
arity at most O(m)t/(t+1), and the last k layers have of gates with arity at most m. Collapsing
the first k + 1 layers and the last k + 1 layers, results in a multilinear circuit of depth 2 and arity
O(mk+(t/(t+1))) computing F . Thus, C2(F ) = O(Cd(F )k+(t/(t+1))) as required.

Corollaries. We use the lower bound from [3, Thm. 1.5], which asserts that the bilinear function
associated with a random Toeplitz matrix has C2(F ) = Ω̃(n2/3), with high probability (over the
random choices of the 2n− 1 values along the diagonals). Using Lemma 7.1, we get the non-trivial
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lower bound Cd(F ) = Ω̃(n4/(3d)) for even depths d. For odd depths d = 2k + 1, we use Lemma 7.2
to get the non-trivial lower bound

Cd(F ) = Ω̃

(
n

2/3
k+(t/(t+1))

)
= Ω̃

(
n4/(3d+1)

)
,

where the second equality uses the fact that t = 2 and d = 2k + 1. As in [2, 3] (and Corollary 5.4),
these lower bounds for random Toeplitz matrices imply a similar lower bound for an explicit tri-

linear function.

Corollary 7.3 (a Cd lower bound for an explicit trilinear function): The trilinear function F (x, y, z) =∑
i,j∈[n] xiyjzn+i−j satisfies Cd(F ) = Ω̃(n4/(3d)) for even d and Cd(F ) = Ω̃(n4/(3d+1)) for odd d.

In particular, we get C3(F ) = Ω̃(n0.4), just as in Corollary 5.4. In light of the above, it may seem
that Section 5.1 is redundant. However, on top of serving as a warmup for Sections 5.2 and 6.1, the
contents Section 5.1 is not exhausted by Corollary 5.4, since it offers a structural result for matrices
associated with low-complexity depth-3 bilinear circuits (i.e., Lemma 5.2). Furthermore, the proof
in Section 5.1 relies on a rigidity lower bound of [3, Thm. 1.2], whereas Corollary 7.3 relies on a
larger lower bound on “structured rigidity” provided by [3, Thm. 1.5] via a more complex proof.
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