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Abstract

Pseudodeterministic algorithms are probabilistic algorithms that solve search problems but
do so by always providing the same (“canonical”) solution to a given instance, except with
small probability. While the complexity theoretic implications of pseudodeterministic algorithms
were explored in the past, we suggest to conduct this exploration within the framework of the
recently defined class of PPT-search problems. Specifically, we use this framework in order to
re-formulate some known observations as well as present some new results.

In particular, as observed in the past, the difference between general probabilistic polynomial-
time algorithms and pseudodeterministic ones is reflected in the difference between promise-BPP
and BPP. We make this connection stronger by showing that every PPT-search problem has
a pseudodeterministic polynomial-time algorithm if and only if every decisional problem in
promise-BPP can be extended to a problem in BPP.

Our main focus is on the class of PPT-search problems with unary instances (a.k.a explicit
construction problems). In particular, we prove the following results.

� Pseudodeterministic polynomial-time algorithms exist for all unary PPT-search problems
if and only if there exist functions that are computable in probabilistic exponential-time
but are hard to learn in significantly smaller exponential time.

The underlying technique is used in order to identify the pseudodeterministic construction
of a pseudorandom-set as “universal” for the class of unary PPT-search problems.

� The existence of pseudodeterministic polynomial-time algorithms for all unary PPT-search
problems implies that every unary problem in promise-BPP can be extended to a (unary)
problem in BPP. As a corollary, we obtain an alternative proof for a result of Lu, Oliveira,
and Santhanam (STOC21), asserting that such algorithms imply a BPtime hierarchy.

� The existence of pseudodeterministic polynomial-time algorithms for a subclass of the
unary PPT-search problems (wherein solutions can be verified deterministically) implies
results akin to a BPtime hierarchy. For example, it implies that RTime(p) is not contained
in BPtime(q), for any polynomial p and a related polynomial q.

We discuss the gap between the former hypotheses and the result provided by Chen, Lu, Oliveira,
Ren, and Santhanam (FOCS23).



Contents

1 Introduction 1
1.1 On pseudodeterministic algorithm for all PPT-search problems . . . . . . . . . . . . 1
1.2 On pseudodeterministic algorithm for all unary PPT-search problems . . . . . . . . 1
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 3
2.1 Standard definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 PPT-search problems, the first definition . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 PPT-search problems, the second definition . . . . . . . . . . . . . . . . . . . . . . . 6

3 Pseudodeterministic algorithms for PPT-search problems 7
3.1 An equivalence concerning a specific problem . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The general equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 An equivalence for a special case of non-PPT-search . . . . . . . . . . . . . . . . . . 11

4 Pseudodeterministic algorithms for unary PPT-search problems 13
4.1 A connection to hardness of learning with queries . . . . . . . . . . . . . . . . . . . . 13
4.2 A connection to the generation of pseudorandom sets . . . . . . . . . . . . . . . . . . 19
4.3 Implications to BPP-extensions of prBPP and BPTime hierarchies . . . . . . . . . . 22
4.4 On unary PPT-search problems with deterministic verification . . . . . . . . . . . . 23
4.5 On the gaps between the algorithm of [5] and the foregoing hypotheses . . . . . . . . 26

Acknowledgments 27

References 27

Appendix: An alternative proof of the second part of Theorem 4.2 30

1



1 Introduction

Loosely speaking, pseudodeterministic algorithms, introduced and initially studied by Gal and
Goldwasser [9], are probabilistic algorithms that solve search problems but do so by almost always
providing the same (“canonical”) solution to each given instance. This paper explores the com-
plexity theoretic implications of the existence of pseudodeterministic algorithms for certain search
problems.

Our focus is on search problems that can be solved by probabilistic polynomial-time (PPT)
algorithms and for which the quality of potential solutions can be evaluated in PPT. Two definitions
of this class, hereafter called the class of PPT-search problems, were presented by us in [14, 26], and
the results of this paper hold for both. (These two definitions are reviewed in Sections 2.2 and 2.3.)

We note that the complexity theoretic implications of pseudodeterministic algorithms were
explored in the past (see, for example, [13, 8, 23]). Our main conceptual contribution consists of
the suggestion to conduct this exploration within the framework of PPT-search problems. Indeed,
we use this framework in order to re-formulate some known observations as well as present some
new results.

1.1 On pseudodeterministic algorithm for all PPT-search problems

We first consider the possible existence of pseudodeterministic polynomial-time algorithms for all
PPT-search problems. Our main result in this context (Theorem 3.5) asserts that the following
two conditions are equivalent:

1. Every PPT-search problem can be solved in pseudodeterministic polynomial-time.

2. Every problem in promise-BPP can be extended to a problem (i.e., set) in BPP.

We recall that Dixon, Pavan, and Vinodchandran [8] proved that the second statement is equivalent
to the existence of a polynomial-time pseudodeterministic algorithm for estimating the acceptance
probability of a given circuit, denoted APEP (standing for acceptance probability estimation prob-
lem).1 Since APEP is a PPT-search problem, it follows that the first statement implies the second
statement. Proving the opposite direction (i.e., that the second statement implies the first) amounts
to showing that APEP is actually complete for PPT-search. Actually, we observe that every PPT-
search problem is reducible (in deterministic polynomial-time) to promise-BPP, and use the fact
that every promise-BPP problem is reducible (in deterministic polynomial-time) to estimating the
acceptance probability of a circuit (APEP).

Hence, the crucial step in being able to go beyond the aforementioned result of Dixon et al. [8] is
using the actual definitions of PPT-search problems, and showing that solving PPT-search problems
is reducible in deterministic polynomial-time to promise-BPP (as was done by us in [14, 26]).

1.2 On pseudodeterministic algorithm for all unary PPT-search problems

Our main focus is on PPT-search problems in which the instances are unary (i.e., the search
algorithm is given 1n as input, and outputs an n-bit solution); these problems are often referred

1The search problem APEP is closely related to the decisional promise problem CAPP (wherein circuits with high
acceptance should be accepted, and circuits with low acceptance probability should be rejected).
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to as “explicit construction” problems.2 We show a few implications of the possible existence of
pseudodeterministic polynomial-time algorithms for unary PPT-search problems.

Hardness of learning. Loosely speaking, we say that a Boolean function (on bit strings) is hard
to learn if, for some constant ϵ > 0, no algorithm that runs in time 2ϵ·n and makes queries to the
function (on n-bit inputs) can produce a circuit that computes the function on a 0.99-fraction of
the n-bit inputs.

We show that the existence of pseudodeterministic polynomial-time algorithms for all unary
PPT-search problems is equivalent to the existence of functions that are computable in probabilistic
exponential-time but are hard to learn (see Theorem 4.2). In one direction, we use the observation
that pseudodeterminism enables converting a probabilistic argument into an explicit construction,
provided that the probabilistic argument asserting the existence of an object can be cast as a
unary PPT-search problem. In the opposite direction, we use the observation that we can get a
pseudodeterministic algorithm for a PPT-search problem by scanning all the possible outputs of
an adequate pseudorandom generator (which may not suffice for full derandomization of the PPT-
search solver) and take the first sequence that makes the original PPT algorithm produce a valid
solution. The proof of this result relies on technical ideas that appeared in several recent works,
such as [6, Sec. 2.1], [21, 22], and [2, Sec. 5.2.2].

The technique underlying the latter result is used to show that a pseudodeterministic polynomial-
time construction of a pseudorandom-set, which is itself a unary PPT-search problem, implies pseu-
dodeterministic polynomial-time algorithms for all unary PPT-search problems (see Theorem 4.5).
We stress that the aforementioned pseudorandom-sets withstand (uniform) quadratic-time algo-
rithms rather than non-uniform quadratic-size circuits (as constructed in [19] based on string non-
uniform assumptions). We comment that a deterministic polynomial-time construction (of the
same type) of a pseudorandom-set implies deterministic polynomial-time algorithms for all unary
PPT-search problems; this fact is implicit in the proof of Theorem 4.5. We also mention that con-
structions of “targeted pseudorandom-sets” have analogous ramifications for solving all (binary)
PPT-search problems (see last paragraph of Section 4.2).

BPP-extendability of unary promise-BPP and a BPtime hierarchy. We show that the
existence of pseudodeterministic polynomial-time algorithms for all unary PPT-search problems
implies that every unary problem in promise-BPP can be extended to a (unary) problem in BPP
(see Theorem 4.6). As a corollary (see Theorem 4.7), we obtain an alternative proof for a result of
Lu, Oliveira, and Santhanam [23] that implies that the existence of pseudodeterministic polynomial-
time algorithms for all unary PPT-search problems implies a BPtime hierarchy.

Moreover, we show that even the existence of pseudodeterministic polynomial-time algorithms
for all unary PPT-search problems that have a deterministic (rather than probabilistic) solution-
verification procedure will have implications of similar flavour. In particular, the foregoing hypoth-
esis implies a separation of RTime(t) from BPTime(poly(t)); see Theorem 4.9.

The gaps between the required algorithms and what is already known. We recall that,
in a recent breakthrough, Chen, Lu, Oliveira, Ren, and Santhanam [5] present polynomial-time

2Actually, PPT-search problems with unary instances are only a subset of general explicit construction problems,
since the definition of PPT-search (also) postulates that valid solutions must be efficiently verifiable, or that the
quality of solutions is efficiently measurable; see Section 2 for precise details.
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algorithms that pseudodeterministic solve a broad subclass of unary PPT-search problems on in-
finitely many input lengths. Specifically, in these problems, valid solutions are postulated to be
verifiable in deterministic (rather than probabilistic) polynomial-time.

Indeed, this class of problems matches the aforementioned one (i.e., the one in the hypothesis
that implies a separation of RTime(t) from BPTime(poly(t))), but the algorithm of [5] is pseu-
dodeterministic only on infinitely many input lengths (rather than on all but finitely many input
lengths). This issue is further discussed in Section 4.5, where we also explain why the feeling that
the algorithm of [5] works also for probabilistic verification of solutions is mistaken.

1.3 Related work

As mentioned above, the notion of PPT-search problems is pivotal to this work. Such definitions
were provided by us in [14, 26] along with a (deterministic polynomial-time) reduction of solving
PPT-search problems to promise-BPP. The foregoing reduction follows a reduction in [11] that
was shown for a less appealing class of search problems (which also contains APEP).

In contrast, the work of Dixon, Pavan, and Vinodchandran [8] is pivoted at the Acceptance
Probability Estimation Problem (APEP). As stated above, they proved that APEP can be solved
by a pseudodeterministic polynomial-time algorithm if any only of every problem in promise-BPP
can be extended to a problem in BPP.

Lu, Oliveira, and Santhanam [23] also explored the consequences of pseudodeterministic algo-
rithms for search problems solvable in PPT, and in particular for unary search problems solvable
in PPT. They proved that a pseudodeterministic polynomial-time algorithm for a specific unary
search problem, which happens to be a PPT-search problem, would imply a BPtime hierarchy.
Specifically, their unary search problem calls for finding a string of logarithmic length that has
relatively high randomized time-bounded Kolmogorov complexity. (We mention that [23] contains
many other results, including a relation between a BPtime hierarchy and an average-case notion of
pseudodeterminism.)

1.4 Organization

We start with a preliminaries section (Section 2), which contains the two aforementioned definitions
of PPT-search problems. Next, in Section 3 we consider general PPT-search problems, whereas in
Section 4 we consider unary PPT-search problems. The preamble of each of these section detailed
its contents and internal organization.

We stress that all the results in the paper hold regardless of whether one defines solving PPT-
search problem as in [14, Def. 2.4] and [26, Sec. 3] or as in [26, Sec. 2]. Indeed, we will show proofs
that hold for both definitions.

2 Preliminaries

Section 2.1 presents definitions that are standard in the area, whereas Sections 2.2 and 2.3 review
two definitions of PPT-search problems that were recently suggested in [14, 26].
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2.1 Standard definitions

For the sake of good order, we recall the standard definitions of search problems, pseudodetermin-
istic algorithms, and promise (decisional) BPP-problems.

Search problems. Search problems are typically represented by binary relations. For such a

relation R ⊆ {0, 1}∗×{0, 1}∗, the set of solutions for the instance x is denoted R(x)
def
= {y : (x, y) ∈

R}, and the set of instances having a solution is denoted SR
def
= {x : R(x) ̸= ∅}. The search problem

associated with R is stated as “given x, find an element of R(x)” (or determine that no such solution
exists). The candid search problem of R refers to inputs in SR only (see [10, Def. 2.30]).

Following [11, Def. 3.1] (and [14, Def. 2.1]), we say that a search problem R is a simple PPT-
search problem if the following two conditions hold: (1) the search problem associated with R
can be solved by a probabilistic polynomial-time (PPT) algorithm, and (2) the problem of deciding
membership in R is in BPP. (In Sections 2.2 and 2.3, we consider two extensions of this definition.)

Pseudodeterministic algorithms. In contrast to general probabilistic algorithms that solve
a search problem (i.e., F solves R if Pr[F (x) ∈ R(x)] ≥ 2/3), a pseudodeterministic algorithm
is required to output the same (“canonical”) solution with probability at least 2/3; that is, F is
a pseudodeterministic algorithm solving the search problem of R if for every x ∈ SR there exists
vx ∈ R(x) such that Pr[F (x) = vx] ≥ 2/3. The study of pseudodeterministic algorithms was
initiated by Gal and Goldwasser [9], who also proved the following:

Theorem 2.1 (pseudodeterministic algorithms vs reductions to BPP): For any relation R ⊆
{0, 1}∗, the search problem represented by R can be solved by a polynomial-time pseudodeterministic
algorithm if and only if solving R is reducible in deterministic polynomial-time to BPP.

Promise problems and promise-BPP (i.e., prBPP). The (decisional) promise problem Π =
(Πyes,Πno) consists of distinguishing between instances in Πyes and instances in Πno, whereas
Πyes ∪Πno is called the promise.3 Standard (i.e., pure) decision problems correspond to the special
case in which the promise contains all bit strings (i.e., Πyes ∪Πno = {0, 1}∗). The promise problem
Π′ = (Π′

yes,Π
′
no) is an extension of the promise problem Π = (Πyes,Πno) if Π′

yes ⊇ Πyes and
Π′
no ⊇ Πno.
The class promise-BPP (i.e., prBPP) contains decisional promise problems that can be solved

in probabilistic polynomial-time; that is, the problem Π = (Πyes,Πno) is in promise-BPP if there
exists a probabilistic polynomial-time algorithm A such that Pr[A(x) = 1] ≥ 2/3 if x ∈ Πyes and
Pr[A(x)=0] ≥ 2/3 if x ∈ Πno. We stress that for x ̸∈ Πyes ∪Πno, there is no condition on A(x).

The hierarchy theorem for prBPTime. Although a prBPTime hierarchy is considered a folk-
lore result, it was recently indicated by He [18] that the commonly believed proof, via direct
diagonalization, is flawed.4 Fortunately, He [18] also provided an alternative proof, which uses

3For a general discussion of promise problems, both of the decisional and search types, see [10, Sec. 2.4.1].
4The flawed argument proceeds by considering an efficient enumeration of probabilistic machines. We let 1n ∈ Πyes

(resp., 1n ∈ Πno) if, on input 1n, with probability at least 2/3, the nth machine, denoted Mn, halts within t(n) steps

with output 0 (resp., with output 1). Indeed, (Πyes,Πno) is in prBPTime(Õ(t)), but the impression that it is not
in prBPTime(t) is not supported. The point is that, in general, Mn may decide a promise problem (rather than
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delayed diagonalization, and establishes the following results (where a unary promise problem is
one in which the promise is a unary set).

Theorem 2.2 (a prBPTime hierarchy): For every time constructible function t :N→N such that
t(n) ≥ n there exists a unary promise problem in prBPTime(Õ(t)) \ prBPTime(t).

2.2 PPT-search problems, the first definition

In this section we present a definition of PPT-search problems that was recently suggested in [14,
Def. 2.4] and in [26, Sec 3]. In the latter work, the resulting class was called “PPT-optimization”,
whereas the name “PPT-search” was used for another class that will be presented in Section 2.3.

(Throughout the current paper, whenever we mention PPT-search, we will be clear about which
definition we are referring to. Fortunately, this distinction will not be crucial, since all of our results
apply equally to both classes.)

Here we extend the foregoing definition of simple PPT-search problems (cf., [11, Def. 3.1]
and [14, Def. 2.1]) by replacing the dichotomy between valid and invalid solution (i.e., strings in
R(x) versus strings not in R(x)) with a quantitative view of the quality of possible solutions.5 We
do so by considering quality functions of the form q : {0, 1}∗ × {0, 1}∗ → [0, 1] and defining solving
the instance x as finding y of almost maximal quality (i.e., q(x, y) ≈ maxz{q(x, z)}), where the
function q is easy to approximate. Actually, for greater flexibility, we consider quality functions of
the form q : P × {0, 1}∗ → [0, 1], where P ⊆ {0, 1}∗ is a promise on the instances. (We stress that
this promise on instances (only) is fundamentally different from the promise on instance-solution
pairs, which underlies the definition presented in Section 2.3).6

Definition 2.3 (PPT-search problem (following [14, Def. 2.4] as modified in [14, Sec. 4.3] (equiv.,
PPT-optimization problem [26, Def 5])): For any P ⊆ {0, 1}∗, the function q : P ×{0, 1}∗ → [0, 1]
constitutes a PPT-search problem (called PPT-optimization in [26]) if the following two conditions
hold.

1. A relaxed solving condition: There exists a PPT algorithm F such that, for every x ∈ P and

t ∈ N, it holds that Pr[q(x, F (x, 1t)) ≥ q′(x)− (1/t)] ≥ 2/3, where q′(x)
def
= maxy{q(x, y)}.

2. Efficient approximation of q: There exists a PPT algorithm Q such that, for every x ∈ P ,
y ∈ {0, 1}∗ and t ∈ N , it holds that Pr[|Q(x, y, 1t)− q(x, y)| ≤ 1/t] ≥ 2/3.

We say that a probabilistic process, M , solves the search problem q if M satisfies the first condition;
that is, Pr[q(x,M(x, 1t)) ≥ q′(x)− (1/t)] ≥ 2/3 for every x ∈ P and t ∈ N.

membership in a set) and that 1n may violate that promise (equiv., Mn machine may accept 1n with probability that
is larger than 1/3 but smaller than 2/3).

5The first author considers this quantitative perspective as more natural than the trichotomy that underlies
Definition 2.5.

6As noted in [14, Sec. 2.1], this promise on the instances falls within the framework of [10, Def. 2.29], and its
conceptual meaning is clear (i.e., we totally discard instances that violate the promise and do not care what the
algorithm does with them). In contrast, allowing (as in Definition 2.5) a promise on the set of instance-solution
pairs leads to a tri-partition of the set of possible solutions into valid, invalid, and in-between solutions. This relaxes
the distinguishing task, which only refers to valid and invalid solutions, but raises the question of how to treat the
in-between solutions in the solving task. In Definition 2.5 in-between solutions are not allowed in an algorithm that
witnesses membership of the search problem in the class, but are allowed in the more relaxed definition of solving.
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Note that Definition 2.3 allows for error reduction. Furthermore, simple PPT-search problems
(cf. [11, Def. 3.1] and [14, Def. 2.1]) can be cast as a special case of Definition 2.3 by considering

q(x, y)
def
= 1 if (x, y) ∈ R and q(x, y)

def
= 0 otherwise.

We shall use the following result, which is proved in [14, 26] by relying on the ideas that underlie
the proof of [11, Thm. 3.5].

Theorem 2.4 (solving PPT-search problems is deterministically reducible to prBPP): Let q :
P × {0, 1}∗ → [0, 1] be a PPT-search problem as in Definition 2.3. Then, solving q is reducible in
deterministic polynomial-time to a promise problem in prBPP; that is, there exists Π ∈ prBPP
and a deterministic polynomial-time oracle machine M such that q(x,MΠ(x, 1t)) ≥ q′(x) − (1/t)
for every x ∈ P and t ∈ N.

2.3 PPT-search problems, the second definition

Another definition for PPT-search problems was suggested in [26]. Jumping ahead, the class of
problems outlined next is computationally equivalent to the class from Definition 2.3, in the sense
that every problem from the class in Definition 2.3 is reducible in deterministic polynomial-time to
a problem from the class outlined next, and vice versa (see [26, Sec 3.2]).

Our goal again is to extend the definition of simple search problems. Following [11], instead of
formulating search problems as sets of instance-solution pairs R ⊆ {0, 1}∗ × {0, 1}∗, we formulate
search problems as promise problems of pairs, and relax the verifiability condition so that it only
applies to pairs in the promise. Specifically, a search problem is now specified by two sets of pairs
R = (Ryes, Rno) where Ryes, Rno ⊆ {0, 1}∗ × {0, 1}∗ and Ryes ∩Rno = ∅.

The point is to impose a relaxed verifiability condition that only requires R to be efficiently
decidable; that is, instead of requiring an efficient verification algorithm that computes a total func-
tion, we only require the algorithm to compute a partial function, allowing it to behave arbitrarily
on instance-solution pairs outside the promise. For every x ∈ {0, 1}∗, this yields a tripartition of
the possible solutions, into good solutions in Ryes(x) that must be accepted, and bad solutions in
Rno(x) that must be rejected, and solutions that are outside the promise Ryes(x)∪Rno(x) on which
the verification algorithm may behave arbitrarily.7

The non-trivial part in the definition is the notion of solving a search problem. For a problem
R to be a PPT-search problem (i.e., to belong to this class of search problems), we require a
PPT algorithm that gets input x and outputs a solution in Ryes(x), whp. Now, recall that we
are interested in the complexity of solving PPT-search problems (e.g., whether we can solve them
deterministically), but what does it mean to solve R? The naive notion, which requires an algorithm
that gets x and outputs a solution in Ryes(x), actually fails: some PPT-search problems cannot be
solved deterministically in this manner (see [26, Apdx A], in which some other alternative definitions
are also critiqued). Thus, we define the notion of solving a PPT-search problem in a more relaxed
way, allowing the solving algorithm to output a solution outside the promise.

Definition 2.5 (PPT-search problem [26, Sec 2]): We say that R = (Ryes, Rno) is a PPT-search
problem if the following two conditions hold:

1. There is a PPT algorithm V that distinguishes between pairs in Ryes and pairs in Rno; that
is, for every (x, y) ∈ Ryes it holds that Pr[V (x, y) = 1] ≥ 2/3, whereas for every (x, y) ∈ Rno

it holds that Pr[V (x, y) = 0] ≥ 2/3,

7Here we use the standard notation Ryes(x) = {y : (x, y) ∈ Ryes} and Rno(x) = {y : (x, y) ∈ Rno}.
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2. There is a PPT algorithm F that, when given x such that Ryes(x) ̸= ∅, satisfies Pr[F (x) ∈
Ryes(x)] ≥ 2/3.

We say that an algorithm solves the search problem R if, when given input x such that Ryes(x) ̸= ∅,
it outputs a string that is not in Rno(x). In particular, we say that a probabilistic process M solves
the search problem R if Pr[M(x) /∈ Rno(x)] ≥ 2/3 for any x such that Ryes(x) ̸= ∅.

One may think of solutions outside the promise (i.e., y /∈ Ryes(x) ∪Rno(x)) as being adequate and
admissible, although not as good as solutions in Ryes(x).

8 It turns out that, like Definition 2.3, the
class of PPT-search problems along with the notion of solving that is captured by Definition 2.5
has a useful structure: it has a complete problem and a time hierarchy, it is reducible to prBPP,
and it supports error-reduction (see [26, Sec 2.3]).

The first author finds this hybrid of [14, Def. 2.2] and [14, Def. 2.3] somewhat unnatural: The
notion of solving that is implicit in the definition of the class is different from the notion of solving
that is defined explicitly later.

Theorem 2.6 (relating Definition 2.5 to Definition 2.3):

1. For any problem R as in Definition 2.5 there is a problem q as in Definition 2.3 such that
solving R reduces in deterministic polynomial-time to solving q.

2. For any problem q as in Definition 2.3 there is a problem R as in Definition 2.5 such that
solving q reduces in deterministic polynomial-time to solving R.

Throughout the paper, for completeness, we will include proofs that refer to PPT-search as in
Definition 2.3 as well as to PPT-search as in Definition 2.5. Indeed, an alternative approach would
be to prove our results only for one definition, and then rely on Theorem 2.6.

3 Pseudodeterministic algorithms for PPT-search problems

As observed in [13, Sec. 4], the difference between general probabilistic polynomial-time algorithms
and pseudodeterministic ones is reflected in the difference between promise-BPP and BPP, in
the sense that a simple PPT-search problem is solvable in PPT (resp., in pseudodeterministic
polynomial-time) if and only if it is reducible in deterministic polynomial-time to promise-BPP
(resp., to BPP).

The results in this section make the foregoing connection stronger by formalizing it in the
context of PPT-search problems as defined in Section 2. We start (in Section 3.1) by presenting
the result of Dixon et al. [8] in terms of solving a specific PPT-search problem (i.e., APEP is viewed
as a PPT-search problem and it is shown to have a pseudordeterministic algorithm if and only if
every problem in prBPP can be extended to BPP). This result is used as a basis for presenting
(in Section 3.2) the main result of this section, which asserts that every PPT-search problem has
a pseudordeterministic algorithm if and only if every problem in prBPP can be extended to BPP.
We conclude this section by stepping outside the scope of PPT-search problems (see Section 3.3).

8Indeed, this yields a quality function analogous to the one in Definition 2.3 that has only three possible values.
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3.1 An equivalence concerning a specific problem

We begin by recalling the result of Dixon, Pavan, and Vinodchandran [8] that asserts that the
problem of estimating the acceptance probability of a given circuit, hereafter denoted APEP, can be
solved by pseudodeterministic polynomial-time algorithm if and only if every problem in promise-
BPP has an extension in BPP. Here we present two expositions of their result: The first in terms
of Definition 2.3, and the second in terms of Definition 2.5.

Presentation in terms of Definition 2.3. The following definition formalizes APEP in terms
of Definition 2.3, whereas the result that follows establishes the foregoing equivalence (of [8]) in
these terms.

Definition 3.1 (the Acceptance Probability Estimation Problem in terms of Definition 2.3 (APE2.3)):
Let APE2.3 be a PPT-search problem that captures the problem of estimating the acceptance proba-

bility of a given Boolean circuit; that is, letting ap(C)
def
= Prx[C(x)=1], we consider the problem of

solving the PPT-search problem q such that q(C, v)
def
= 1− |ap(C)− v|.

Note that q(C, v) = 1 if and only if v = ap(C) (and that q(C, v) = 0 if and only if {v, ap(C)} =
{0, 1}). Hence, solving the search problem q corresponds to approximating ap (i.e., finding v such
that v ≈ ap(C), when given a circuit C). Thus, APE2.3 (or rather q) is indeed a PPT-search problem,
because estimating Pr[C(x)=1] up to an additive deviation of 1/t (and error probability 1/3) can
be done by evaluating C on O(t2) random inputs.

Theorem 3.2 (pseudodeterministically solving APE2.3 vs extending prBPP to BPP, following [8]):
The search problem APE2.3 has a pseudodeterministic polynomial-time algorithm if and only if every
problem in promise-BPP has an extension in BPP.

Proof: Recall that APE2.3 is a search problem that captures the problem of estimating the ac-
ceptance probability of a given Boolean circuit. In particular, the generic decisional promise-
BPP problem is easily reducible to APE2.3, and so a pseudodeterministic polynomial-time algo-
rithm for APE2.3 implies that the former promise problem has an extension in BPP (see de-

tails next). On the other hand, distinguishing APEyes
def
= {(C, v, 1t) : |ap(C) − v| ≤ 1/t} from

APEno
def
= {(C, v, 1t) : |ap(C) − v| > 3/t} is a promise-BPP problem, and (as we will show later) a

BPP extension of it yields a pseudodeterministic polynomial-time algorithm for APE2.3.
To see the “pseudodeterminism to extension” direction, consider any decisional problem Π =

(Πyes,Πno) in promise-BPP, and let A be the guaranteed algorithm solving it (i.e., Pr[A(x) =
1] ≥ 2/3 if x ∈ Πyes and Pr[A(x) = 1] ≤ 1/3 if x ∈ Πno). Then, for every x, construct the
circuit Cx such that Cx(r) represents the decision of A on input x and coins r, and observe that
q′(Cx) = q(Cx, ap(Cx)) = 1, because ap(Cx) = Pr[A(x) = 1]. Recall that there exist a PPT
algorithm F that solves APE2.3 (equiv., solves q); that is, Pr[q(x, F (Cx, 1

t)) ≥ 1 − (1/t)] ≥ 2/3
(equiv., Pr[|F (Cx, 1

t)−ap(Cx)| ≤ (1/t)] ≥ 2/3). Fixing t = 7, and using the (“pseudodeterminism”)
hypothesis, we consider the corresponding pseudodeterministic polynomial-time algorithm F ′, and
infer that, for every x ∈ {0, 1}∗, there exists a unique value px such that Pr[F ′(Cx) = px] ≥ 2/3,
whereas px ∈ [ap(Cx)± 1/7] holds. Hence, x ∈ Πyes implies px ≥ 2

3 −
1
7 > 0.5 and x ∈ Πno implies

px ≤ 1
3 + 1

7 < 0.5. The point is that px is well-defined for every x, and F ′ (probabilistically)
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computes the mapping x 7→ px. Letting S
def
= {x∈{0, 1}∗ : px> 0.5}, is follows that S ∈ BPP (by

using F ′), whereas (S, S) is an extension of Π.
To see the opposite direction (i.e., “extension to pseudodeterminism”), consider the aforemen-

tioned decisional promise problem (APEyes, APEno), and recall that it is in promise-BPP. Using
the (“extension”) hypothesis, this decisional problem has an extension in BPP, and we consider
a probabilistic polynomial-time algorithm A that solves this an extension. Thus, for every cir-
cuit C, every v ∈ [0, 1] and t ∈ N, it holds that Pr[A(C, v, 1t) = 1] is either at least 2/3 or
at most 1/3. Furthermore, it holds that Pr[A(C, v, 1t) = 1] ≥ 2/3 if |v − ap(C)| ≤ 1/t and
Pr[A(C, v, 1t) = 1] ≤ 1/3 if |v − ap(C)| > 3/t. By invoking A for t times and taking the average
value, we obtain an algorithm A′ such that, with probability at least 1− exp(−Ω(t)), it holds that
A′(C, v, 1t) = Pr[A(C, v, 1t)=1]±1/9. Hence, with probability at least 1−exp(−Ω(t)), it holds that
A′(C, v, 1t) ≥ 5/9 if |v− ap(C)| ≤ 1/t and A′(C, v, 1t) ≤ 4/9 if |v− ap(C)| > 3/t. Now, consider an
algorithm that, on input a circuit C and 1t, invokes A′(C, v, 13t) for each v ∈ {(i−0.5)/3t : i ∈ [3t]},
and outputs the smallest value v such that A′(C, v, 13t) > 1/2.9 Then, with probability greater
than 1 − 3t · exp(−Ω(t)), this output (i.e., v) is uniquely defined and is within an additive term
of 3/3t away from ap(C). Hence, we obtained a PPT pseudodeterministic algorithm for solving
APE2.3.

Presentation in terms of Definition 2.5. The following definition formalizes APEP in terms
of Definition 2.5, whereas the result that follows establishes the foregoing equivalence (of [8]) in
these terms. (The following definition appeared in [26], where it was also proved that this problem
is complete for the class of PPT-search problems.)

Definition 3.3 (the Acceptance Probability Estimation Problem in terms of Definition 2.5 (APE2.5)):
Let APE2.5 = (APE2.5yes, APE

2.5
no ) be the search problem in which inputs are pairs (C, 1t) such that

C : {0, 1}n → {0, 1} is a Boolean circuit and t ∈ N, and solutions are real values v such that v ∈
APE2.5yes(C, 1

t) if and only if |ap(C)−v| ≤ 1/t, and v ∈ APE2.5no (C, 1
t) if and only if |ap(C)−v| ≥ 2/t,

where ap(C) = Prx∈{0,1}n [C(x) = 1].

Theorem 3.4 (pseudodeterministically solving APE2.5 vs extending prBPP to BPP, following [8]):
The problem APE2.5 can be solved in pseudodeterministic polynomial-time if and only if every problem
in prBPP has an extension in BPP.

Proof: Assume that every problem in prBPP has an extension in BPP. Since APE2.5 is a PPT-
search problem (see [26, Prop. 2]), it is reducible to prBPP in deterministic polynomial-time
(see [26, Thm 3]), and hence to BPP. By Theorem 2.1, APE2.5 can be solved by a polynomial-time
pseudodeterministic algorithm.10

For the other direction, assume that APE2.5 can be solved in pseudodeterministic polynomial-
time, and let Π = (Πyes,Πno) be a problem in prBPP. Observe that Π is reducible to APE2.5,

9In general, with very high probability, there may be a constant number of v’s that satisfy A′(C, v, 13t) > 1/2,
and |v− ap(C)| ≤ 1/t holds for each of them. Selecting the smallest of these is an arbitrary deterministic choice, and
any other deterministic choice would do.

10Specifically, to invoke Theorem 2.1 we define R = {(x, v) : v /∈ Πno(x)}, where Πno(x) is the set of invalid solutions
for x = (C, 1t) in APE2.5 (i.e., v ∈ Πno(C, 1

t) if |ap(C)− v| ≥ 2/t). The reduction to BPP finds solutions that are not
in Πno(x), and hence in R. By Theorem 2.1, there is a pseudodeterministic algorithm that finds solutions in R, hence
not in Πno(x).
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by mapping an input x to (Cx, 1
20).11 Since APE2.5 is solvable pseudodeterministically, there is a

PPT algorithm A that on input (Cx, 1
20) outputs, with probability at least 2/3, a canonical value

v(Cx) such that |v(Cx) − ap(Cx)| ≤ 1/10. Consider a probabilistic algorithm A′ that accepts x
(i.e., outputs 1) if and only if the output of A(Cx, 1

10) is larger than 1/2. Then, for every input x,
there exists a bit b(x) such that Pr[A′(x) = b(x)] ≥ 2/3 and b(x) = 1 (resp., b(x) = 0) if x ∈ Πyes

(resp., x ∈ Πno). Thus, A
′ defines a BPP extension of Π.

3.2 The general equivalence

We now prove the equivalence outlined in Section 1.1. The gist of the proof is that the problem of
estimating the acceptance probability of a given circuit is complete for PPT-search. Alternatively,
the claim follows by recalling that (i) every PPT-search problem is reducible (in deterministic
polynomial-time) to promise-BPP (see Sections 2.2 and 2.3), and that (ii) search problems that are
reducible (in deterministic polynomial-time) to BPP have a polynomial-time pseudodeterministic
algorithm [9].

Theorem 3.5 (the main equivalence): The following three statements are equivalent.

1. Every problem in promise-BPP can be extended to a problem in BPP.

2. There exists a polynomial-time pseudodeterministic algorithm for estimating the acceptance
probability of a given circuit (equiv., solving either the search problem APE2.3 or APE2.5, in the
adequate sense).

3. Every PPT-search problem can be solved by a polynomial-time pseudodeterministic algorithm,
regardless if we use Definition 2.3 or Definition 2.5.

Proof: By Theorems 3.2 and 3.4, the first two statements are equivalent. We present two al-
ternative proofs showing the equivalence of these two statements to the third. Actually, since the
second statement follows immediately from the third, it suffices to show that one of the first two
statements implies the third.

In the first alternative we show that the second statement implies the third. This demonstration
is based on the fact that every PPT-search problem is reducible in deterministic polynomial-time to
the problem of estimating the acceptance probability of a given circuit. (Specifically, for PPT-search
as in Definition 2.3, combine the reduction of Theorem 2.4 with the straightforward reduction of
prBPP to APE2.3; whereas for PPT-search as in Definition 2.5 apply [26, Thm. 3].)

In the second alternative we show that the first statement implies the third. Here we recall
that every PPT-search problem is reducible to prBPP in deterministic polynomial-time (either
using Theorem 2.4 or using [26, Thm. 3]). Using the first statement, it follows that every PPT-
search problem is reducible to BPP in deterministic polynomial-time. We are done by applying
Theorem 2.1, which asserts that search problems that are reducible in deterministic polynomial-
time to BPP can be solved by a polynomial-time pseudodeterministic algorithm.12

11See the proof of Theorem 3.2.
12Specifically, when using Definition 2.5, invoking Theorem 2.1 requires defining a relation R that consists of all

valid solutions (as in the proof of Theorem 3.4).
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3.3 An equivalence for a special case of non-PPT-search

While most of this paper refers to PPT-search problems, in this subsection we consider search
problems that are solvable by PPT algorithms but do not necessarily have efficiently recognizable
instance-solution pairs. We ask when can such search problems be solvable by polynomial-time
pseudodeterministic algorithms.

An obvious negative example is provided by the search problem that consists of finding strings
of high Kolmogorov complexity; that is, the search problem that corresponds to the binary relation
RK = {(x, y) : |y| = |x| & K(y) ≥ |x|/2}, where K(y) is the Kolmogorov complexity of y. Indeed,
the search problem of RK can be solved by a linear-time algorithm that, on input x, generates a
random |x|-bit string; but RK cannot be solved by a pseudodeterministic algorithm, regardless of
its running-time.

Seeking a meaningful positive example, we confine ourselves to search problems that are not
evidently solvable by deterministic polynomial-time algorithms. The best evidence for such non-
evidence is provided by an equivalence the existence of polynomial-time pseudodeterministic al-
gorithms for all PPT-search problems (equiv., extendability of prBPP to BPP). Such a result is
provided next, indicating that the efficient verification (of instance-solution pairs) postulate can
be replaced by syntactic postulate; specifically, an extremely strong upper bound on the length of
possible solutions.

Theorem 3.6 (on search problems with single-bit solutions): The following two statements are
equivalent

1. Every total search problem R with single-bit solutions (i.e., |R(x)| ≥ 1 and R(x) ⊆ {0, 1}
for every x) that can be solved by a PPT algorithm can also be solved by a polynomial-time
pseudodeterministic algorithm.

2. Every decisional promise problem in promise-BPP has an extension in BPP.

A more appealing formulation of the syntactic condition in Statement 1 refers to search problem
R such that there exists an easy to compute set of at most two possible solutions for R; that is,
there exists a polynomial-time computable function F : {0, 1}∗ →

({0,1}∗
2

)
such that R(x) ⊆ F (x)

for every x. Interestingly, the foregoing result cannot be extended beyond two possible solutions
(see Proposition 3.7).

Proof: Intuitively, we show that search problems as in the hypothesis of Statement 1 (i.e., total
search problems with single-bit solutions that can be solved in probabilistic polynomial-time) are
closely related to decisional problems in promise-BPP. Furthermore, polynomial-time pseudodeter-
ministic algorithms for the former correspond to sets in BPP that extend the latter.

We first show that Statement 2 implies Statement 1. Intuitively, we show that search problems
as in the hypothesis of Statement 1 can be cast as decisional problems in promise-BPP. Let A be
a probabilistic polynomial-time algorithm that solves a total search problem R ⊆ {0, 1}∗ × {0, 1}.
Define Π = (Πyes,Πno) such that

Πyes
def
= {x∈{0, 1}∗ : Pr[A(x)=1] ≥ 2/3},

Πno
def
= {x∈{0, 1}∗ : Pr[A(x)=0] ≥ 2/3}.
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Note that A actually solves the decisional promise problem Π, and that for every x ∈ {0, 1}∗ \
(Πyes ∪Πno) it holds that R(x) = {0, 1}, because if R(x) = {b} then Pr[A(x)=b] ≥ 2/3 must hold
(whereas R(x) ̸= ∅ by the hypothesis). By Statement 2, the promise problem Π has an extension
(S, S) that is in BPP; that is, there exists a probabilistic polynomial-time algorithm A′ such that
Pr[A′(x) = 1] ≥ 2/3 if x ∈ S and Pr[A′(x) = 0] ≥ 2/3 otherwise. It follows that A′ constitutes a
polynomial-time pseudodeterministic algorithm that solves the search problem R.

We now show that Statement 1 implies Statement 2. Intuitively, we show that decisional
problems in promise-BPP can be cast as search problems as in the hypothesis of Statement 1.
Given a decisional promise problem Π = (Πyes,Πno) in promise-BPP, define R such that

R(x)
def
=


{1} if x ∈ Πyes

{0} if x ∈ Πno

{0, 1} otherwise (i.e., x ̸∈ Πyes ∪Πno)

Note that the search problem R is total and can be solved by a probabilistic polynomial-time
algorithm (by invoking the algorithm that is guaranteed for the decisional promise problem Π, where
we assume that the latter algorithm always outputs a bit on any input (including when the input
violates the promise)). Then, by Statement 1, there exists a polynomial-time pseudodeterministic
algorithm A that solves the search problem R (i.e., for every x there exists b ∈ R(x) such that

Pr[A(x) = b] ≥ 2/3). Now, define S
def
= {x ∈ {0, 1}∗ : Pr[A(x) = 1] > 1/2}, and note that

(S, S) extends Π (because for x ∈ Πyes ∪ Πno it holds that Pr[A(x) = 1] ≥ 2/3 if x ∈ Πyes and
Pr[A(x)=0] ≥ 2/3 otherwise). Last, observe that S ∈ BPP (by using algorithm A itself).

Proposition 3.7 (on search problems with at most three solutions): There exists a total search
problem R ⊆ {0, 1}∗ × {1, 2, 3} that can be solved in probabilistic polynomial-time but cannot be
solved by a pseudodeterministic algorithm. Furthermore, |R(x)| = 2 for every x.

The constant 3 is an artifact of the standard definition of solving a search problem, which requires
outputting a valid solution with probability at least 2/3 (see Section 2.1); Proposition 3.7 holds also
if we replace 2/3 with any threshold in (0.5, 2/3), but replacing 2/3 with (t− 1)/t would require a
set of t values (see Footnote 14).13 Recall that error reduction is not available to us here, since we
lack a mechanism for recognizing valid solutions.

Proof: We first observe that any relation R ⊆ {0, 1}∗×{1, 2, 3} such that |R(x)| = 2 for every x can
be solved by a PPT algorithm that just selects r ∈ {1, 2, 3} uniformly at random and outputs it. We
prove the existence of such a relation R that cannot be solved by a pseudodeterministic algorithm
by a diagonalization argument. (The crucial point here is that the probability of outputting a valid
solution is |R(x)|/|{1, 2, 3}|, which equals 2/3.)14

Specifically, we consider an enumeration of probabilistic machines and associate with each ma-

chine infinitely many inputs. For each machine M and input x associated with it, we let bx
def
= y if

13On the other hand, Proposition 3.7 can be extended to assert that for every time-constructible k : N→ N \ {1, 2}
there exists a total search problem R ⊆

⋃
n∈N{0, 1}

∗ × [k(n)] such that (i) |R(x)| = k(|x|)− 1 for every x, and (ii) R
can be solved in probabilistic polynomial-time but cannot be solved by a pseudodeterministic algorithm.

14We stress that the argument relies on the fact that the threshold probability is not larger than 2/3. If the
definition of solving had required outputting a valid solution with probability at least 0.99, then we could have
modified the argument using R ⊆ {0, 1}∗ × {1, 2, .., 100} (and |R(x)| = 99 for every x). In contrast, the threshold
probability for pseudodeterministic solving is immaterial (as long as it is noticeably larger than 1/2), since error
reduction is available in this case.
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Pr[M(x)=y] ≥ 2/3, and bx
def
= ⊥ if no such y exists. Next, for simplicity, we redefine bx arbitrarily

such that bx
def
= 1 if bx ̸∈ {1, 2, 3}. Lastly, we define R(x)

def
= {1, 2, 3} \ {bx}.

Now, suppose towards the contradiction that M is a pseudodeterministic machine solving R and
let x be an input x associated withM . Then, for some cx ∈ R(x), it holds that Pr[M(x)=cx] ≥ 2/3.
But this implies that bx = cx and cx ̸∈ R(x) follows, in contradiction to the hypothesis that M
solves R.

Conclusion. Recall that in this subsection we asked which search problems that are solvable by
PPT algorithms but do not have efficiently recognizable instance-solution pairs can be solvable by
polynomial-time pseudodeterministic algorithms. Proposition 3.7 indicates that the direction taken
by Theorem 3.6 cannot be extended, but this does not rule out the possibility of other directions.

4 Pseudodeterministic algorithms for unary PPT-search problems

In this section, we consider unary PPT-search problems, in which we only care about unary instances
(i.e., of the form 1n). Formally, in both Definitions 2.3 and 2.5, we consider a promise that the
instance is unary. (Alternatively, in Definition 2.3 we may impose the additional condition that the
quality function q is identical on all instances x of the same length (i.e., q(x, y) = q(1|x|, y) for all
x, y ∈ {0, 1}∗).)

We ask what are the implications of the existence of pseudodeterministic algorithms for all
unary PPT-search problems. We show a few such implications. The first implication, presented in
Section 4.1, is that the existence of such algorithms implies the hardness of learning a set in BPE .
In fact, we show that these two conditions are equivalent; that is, we also show that the hardness of
learning a set in BPE implies the existence of pseudodeterministic algorithms for all unary PPT-
search problems. In Section 4.2 we use the techniques underlying the second direction in order to
show that a pseudodeterministic construction of a pseudorandom-set implies pseudodeterministic
algorithms for all unary PPT-search problems.

Another implication, presented in Section 4.3, is that the existence of pseudodeterministic
algorithms for all unary PPT-search problems implies that every unary problem in prBPP can be
extended to a unary set in BPP. This is analogous to one direction of Theorem 3.5, and it implies
a BPtime hierarchy (by combining it with Theorem 2.2).

In Section 4.4 we show that even a more modest hypothesis yield a time hierarchy. Specifically,
the hypothesis postulates the existence of pseudodeterministic algorithms for all unary PPT-search
problems in which solutions are deterministically (rather than probabilistically) verifiable. We
show that this hypothesis implies that a separation between RTime(p) and BPTime(poly(p)) for
any polynomial p.

In Section 4.5, we complement all these results by recalling the recent result of [5] and explaining
the gaps between this result and the hypotheses in the foregoing results.

4.1 A connection to hardness of learning with queries

We start by defining the notion of learning that we use. This notion is in line with the standard
definition of learning with membership queries (with respect to the uniform distribution), but it
deviates from the standard by considering a single Boolean function defined on the set of all bit
strings. This makes sense because we model potential learners as uniform machines, and so the
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fact that the function is fixed does not trivialize the learning task, which refers to restrictions of
this function to ℓ-bit strings (where ℓ is a varying parameter).

Definition 4.1 (learning from membership queries): For a function f : {0, 1}∗ → {0, 1} and
ℓ ∈ N, we denote the restriction of f to {0, 1}ℓ by fℓ. For a constant δ > 0, we say that a
probabilistic algorithm A learns f from membership queries with accuracy 1− δ if for infinitely many
ℓ ∈ N, on input 1ℓ and oracle access to fℓ, with probability at least 2/3, the algorithm outputs a
circuit C such that Prx∈{0,1}ℓ [C(x)=fℓ(x)] ≥ 1− δ.

Indeed, postulating that learning succeeds only on infinitely many input-lengths deviates from the
standard conventions. But, our focus is actually on the hardness of learning. Hence, saying that
A does not learn f (from membership queries with accuracy 1 − δ) means that for all but finitely
many ℓ ∈ N it holds that Prx∈{0,1}ℓ [C(x) ̸=fℓ(x)] > δ, where C is the circuit output by A (on input

1ℓ and oracle access to fℓ). Lastly, we associate the function f with the set f−1(1).

Theorem 4.2 (pseudodeterministic polynomial-time algorithms for unary PPT-search problems
versus a set in BPE that is hard to learn): The following two statement are equivalent.

1. Every unary PPT-search problem can be solved by a pseudodeterministic polynomial-time
algorithm.

2. There exist f ∈ BPE and a constant ϵ > 0 such that for every probabilistic algorithm A that
makes at most 2ϵ·ℓ steps on input 1ℓ it holds that A does not learn f from membership queries
with accuracy 0.99.

Note that Statement 2 is weaker than the hypothesis that BPE does not have relatively small
circuits (i.e., circuits of size at most 2ϵ·ℓ for ℓ-bit inputs).

Proof: We prove the claimed equivalence while referring to the notion of PPT-search problems as in
Definition 2.5. The same strategy can be employed when referring to Definition 2.3. Alternatively,
we can use the reductions asserted in Theorem 2.6 in order to derive the claimed equivalence under
Definition 2.3.

Proving that Statement 1 implies Statement 2: From pseudodeterminism to hardness of learning. The
key observation is that finding (the restriction to ℓ-bit strings of) a Boolean function that is hard

to learn (in the sense of Definition 4.1) is a unary PPT-search problem (when the input is 12
ℓ
).

Hence, a polynomial-time pseudodeterministic algorithm that solves this search problem implies
that computing such a Boolean function is in BPE . Details follow.

First, let us elaborate the foregoing idea. To show that finding a hard function is a PPT-search
problem, we notice (i) that a random function is hard (even wrt small-exponential resources), and
(ii) it is feasible to check whether a (restriction of) a function is hard. The validity of (ii) relies
on the fact that hardness is against a small number of machines (since we use a uniform model of
computation) and that the success probability of a machine can be estimated in PPT. The latter
approximation problem translates to a gap (search) problem, which explains why we use a non-
simple PPT-search problem. Now, the main observation is that a pseudodeterministic algorithm
that solves this search problem yields a single hard function rather than a distribution on hard
functions. This single function will yield a set in BPE (i.e., set of the 1-preimages of the function).
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We now turn to the actual proof. For a machine M and a Boolean function f , we denote by
sℓ(M,f) the probability, over M ’s random coins, that Mfℓ(1ℓ) is successful, where an execution of
Mfℓ(1ℓ) is called successful if it outputs a circuit C such that Prx∈{0,1}ℓ [C(x)=fℓ(x)] ≥ 0.99.

Claim 4.2.1 (finding a hard function is a PPT-search problem): Let M1,M2, .... be an efficient
enumeration of probabilistic oracle machines, modified so that on input 1ℓ they run in time at most
2ℓ/2. For n = 2ℓ, we view g : {0, 1}ℓ → {0, 1} as an n-bit string and define

Ryes(1
n) = {g ∈ {0, 1}n : ∀i ∈ [ℓ] s(Mi, g) < 1/2}

Rno(1
n) = {g ∈ {0, 1}n : ∃i ∈ [ℓ] s(Mi, g) ≥ 2/3}.

Then, R = (Ryes, Rno) is a unary PPT-search problem (according to Definition 2.5) and Ryes(1
n) ̸=

∅ for every n ∈ {2ℓ : ℓ ∈ N}.

Note that g ̸∈ Rno(1
n) means that for every i ∈ [ℓ] it holds that s(Mi, g) < 2/3, which means that

none of the relevant machines satisfies the learning requirement for length ℓ. Recall that solving a
PPT-search problem according to Definition 2.5 means that if Ryes(1

n) ̸= ∅, then the solver outputs
an element of {0, 1}n \Rno(1

n).

Proof: Deciding whether a given g is in Ryes(1
n) or in Rno(1

n) reduces to estimating the success
probability of each of the first log2 n machine (up to accuracy of 0.01). Showing that R can be
efficiently solved (and that Ryes(1

n) ̸= ∅) reduces to establishing that a random g is in Ryes(1
n),

with high probability.15 □

Combining Claim 4.2.1 with our hypothesis (i.e., Statement 1), we obtain a polynomial-time pseu-

dodeterministic algorithm A that, on input 12
ℓ
, outputs (w.v.h.p) a canonical fℓ /∈ Rno(1

2ℓ). Com-
bining the various fℓ’s, we obtain a function f : {0, 1}∗ → {0, 1} that is not learnable in the sense
of Statement 2 (i.e., the relevant algorithms do not learn f from membership queries with accu-
racy 0.99). Lastly, we note that the problem of computing f is in BPE ; specifically, on input x, we
find the truth-table of f|x|, and return the relevant bit, where finding f|x| is done in probabilistic

poly(2|x|)-time. This completes the first part of the proof (i.e., proving that Statement 1 implies
Statement 2).

Proving that Statement 2 implies Statement 1: From hardness of learning to pseudodeterminism. As
a warm-up, we shall first prove that Statement 2 implies a special case of Statement 2, which
asserts a pseudodeterministic polynomial-time algorithm for every simple unary PPT-search prob-
lem. Recall that a simple PPT-search problem refers to a single relation R and solving it means
finding an element of R(x) when given x ∈ SR. (In contrast, a general PPT-search problem (under
Definition 2.5) refers to a pair of non-intersecting relations.)

We again start with an overview. This proof follows the hardness-to-randomness paradigm, but
our starting hardness hypothesis is weaker than usual (i.e., the hard problem is in BPE rather than
in E)16 and so is our conclusion (i.e., pseudodeterministic algorithms for search problems rather

15Actually, what one shows is that any device D that makes at most 2ℓ/2 queries to a random g : {0, 1}ℓ → {0, 1}
function cannot predict the value of the function on other points. Indeed, the success probability of a randomized
device, when querying a random function, is upper-bounded by its success probability on the best choice of its coins.
We stress that the only restriction made on the device is an upper bound on the number of queries to the random
function.

16The fact that hardness refers to learning relatively small circuits rather than to their non-existence is also weaker
than the typical hardness hypothesis.
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than deterministic algorithms for them). Once we obtain an adequate pseudorandom generator,
we invoke the original PPT solver F for R on all possible outcomes of the generator (which are
used as random coins for F ), test which of these invocations yields a valid solution (using the ppt
verification algorithm for R) and output the lexicographically-first valid solution. Hence, we obtain
a pseudodeterministic solver, whose error probability is due to the negligible error probability of
the probabilistic computation of the hard function and of the probabilistic verification procedure.
(We stress that since we are dealing with simple PPT-search problem in this warm-up, we can
easily distinguish valid from invalid solution (w.v.h.p.).) Details follow.

Our starting point is the following version of the hardness-to-randomness paradigm. It is ob-
tained by combining the NW-generator [24] with the derandomized direct-product encoding [19]
(for a standard proof see, e.g., [6, Thm. A.6]).17

Claim 4.2.2 (a hardness to pseudorandomness result): For every ϵ > 0 there exist a constant
α ∈ (0, ϵ) and an exponential-time oracle machine G that constitutes a pseudorandom generator in
the following sense.

1. On input an O(ℓ)-bit long seed, G outputs an 2α·ℓ-bit sequence.

2. If f is hard in the sense of Statement 2 (i.e., fℓ is hard to learn with 2ϵ·ℓ queries), then no
probabilistic quadratic-time algorithm can distinguish between random output sequences of Gfℓ

and uniformly distributed strings of the same length (with gap at least 2−α·ℓ).

Moreover, the indistinguishability claim holds even if the algorithm is given an ϵ · ℓ-bit long
advice.

Furthermore, G only makes queries of length ℓ; that is, it only queries fℓ.

Now, let R ⊆ {1}∗ × {0, 1}∗ be a simple unary PPT-search problem, and let F and V denote
its solver and its solution-verification algorithm, respectively. By using error reduction, we may
assume that the error probability of both F and V is negligible (in n)18, and let p(n) be a polynomial
upper-bounding the running time of F and V in terms of n (where 1n is the input to F and (1n, ·)
is the input to V ). Let Fr denote the residual deterministic algorithm obtained when fixing the
randomness of F to r. Using these algorithms along with Gfℓ such that G is as in Claim 4.2.2 (with
α ∈ (0, ϵ)) and f is as guaranteed by Statement 2, we consider the following algorithm.

Algorithm 4.2.3 (pseudodeterministic algorithms for simple unary PPT-search problems): Let
F, V,G and f ∈ BPE be as above. Then, on input 1n, letting ℓ = O(log n) and k = O(ℓ) such that
2αℓ = p(n), proceed as follows:

1. Compute the value of f on all ℓ-bit long strings, thus obtaining the truth-table of fℓ.

This is done by employing error-reduction to the probabilistic exponential-time algorithm that
computes f . (In the analysis we may assume for simplicity that fℓ was correctly recon-
structed.)

17The “robustness to short advice” is not standard, but it can be proved by observing that in the reconstruction pro-
cedure, which underlies the standard proof-by-contradiction, we can try all possible advice and test the reconstructed
circuits that we obtain.

18Recall that µ : N → N is negligible if for every positive polynomial p and all sufficiently large n it holds that
µ(n) < 1/p(n).
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2. Invoke Gfℓ on all k-bit long seeds, and let S ← {Gfℓ(s) : s ∈ {0, 1}k}.

3. For every r ∈ S, compute yr ← Fr(1
n). Next, invoking V once on (1n and) each yr, let S

′

denote the set of solutions accepted by V ; that is, w.v.h.p., S′ = {yr :r∈S} ∩R(1n).

If S′ ̸= ∅, then output the lexicographically-first string in S′. Otherwise, output ⊥.

Each of the foregoing steps runs in exp(O(ℓ))-time, where ℓ = O(log n), and it follows that Algo-
rithm 4.2.3 runs in polynomial-time. We stress that the only probabilistic steps taken by Algo-
rithm 4.2.3 are the computation of fℓ (in Step 1) and the invocations of V , which is probabilistic,
in Step 3. Recall that fℓ is correctly computed (w.v.h.p), whereas the number of invocations of V is
polynomial in n and its error probability is negligible (in terms of n). It follows that Algorithm 4.2.3
(almost) always yields the same answer, which means that it is pseudodeterministic.

It is left to show that if R(1n) ̸= ∅, then (w.v.h.p.) S′ ̸= ∅, which means that Algorithm 4.2.3
solves the search problem R. Recall that Prr∈{0,1}p(n) [Fr(1

n)∈R(1n)] = 1− o(1), and we will show
that Prs∈{0,1}k [FGfℓ (s)(1

n) ∈R(1n)] ≥ 0.7. The latter fact is proved by observing that otherwise
we obtain a quadratic-time algorithm that distinguishes random outputs of G from uniformly
distributed strings. Specifically, for m = p(n) ≥ n, given a tested sequence r ∈ {0, 1}m, the
distinguisher consists of invoking the residual Fr on input 1n such that n ≤ m = p(n) is efficiently
determined by m, and outputting V (1n, Fr(1

n)). Note that the running time of this distinguisher
is Õ(p(n)) < m2.

The pseudodeterministic feature of Algorithm 4.2.3 relies on the fact that we are dealing with
a simple (unary) PPT-search problem. Specifically, in this case it is easy to distinguish valid so-
lutions from invalid ones. In contrast, when dealing with a general (unary) PPT-search problem
R = (Ryes, Rno), we need to take decisions also regarding in-between solutions (i.e., strings that
are neither in Ryes(1

n) nor in Rno(1
n)). Consequently, a verification algorithm V with error prob-

ability η may accept such limbo solutions with arbitrary probability that may be either slightly
below 1− η or slightly above η. Hence, using V may not yield a decisive answer about limbo solu-
tions. Instead, we run a de-randomized version of V , which allows us to decide deterministically.

An issue at hand is the complexity of the distinguishers that threaten the soundness of this de-
randomization (or rather the corresponding pseudorandom generator). Such a distinguisher applies
V to one of the solutions found by Step 2 of Algorithm 4.2.3. Our issue here is not the complexity
of V (which was dealt with above), but rather the complexity of invoking Gfℓ on k-bit strings,
which may exceed the hardness bound for f , because the complexity of G is (only) upper-bounded
by exp(O(k)) = exp(O(ℓ)) whereas fℓ is hard to learn with 2ϵℓ queries. Hence, when derandomizing
the verification of the foregoing solutions, we invoke G with (a constant times) longer seed (i.e., a
seed of length ℓ′ such that 2ϵℓ

′ ≫ exp(O(ℓ)) and yet ℓ′ = O(ℓ)).
We make a few comments before we present the actual algorithm. Firstly, here, it is not useful

to reduce the error probability of verification algorithm V to a negligible level; an error probability
of 1/3 is fine. Second, in the current context, we cannot reduce the error probability of the solver
F . Consequently, the following pseudodeterministic algorithm will solve the unary PPT-search
problem R (only) with probability 2/3 − o(1), but this is a non-issue because error reduction is
available for pseudodeterministic algorithms.

Algorithm 4.2.4 (pseudodeterministic algorithms for general unary PPT-search problems): Let
F, V,G and f ∈ BPE be as in Algorithm 4.2.3, except that here F and V refer to algorithms as
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postulated in Definition 2.5 w.r.t PPT-search problem R = (Ryes, Rno). Then, on input 1n, proceed
as follows.

� Let S be the set of m-bit long outcomes of Gfℓ as computed in Step 2 of Algorithm 4.2.3. As
in Step 3, for every r ∈ S, compute yr ← Fr(1

n).

� Letting ℓ′ = O(k) and k′ = O(ℓ′), where |S| ≤ 2k, let R ← {Gfℓ′ (s) : s ∈ {0, 1}k′}, where fℓ′

is obtained as in Step 1 of Algorithm 4.2.3.

� For every r ∈ S, include yr ∈ S in S′ if and only if |{r′∈R : Vr′(1
n, yr)=1}| > 2k

′−1, where
Vr′ denotes the residual deterministic algorithm obtained when fixing the randomness of V to
r′ (or rather the m-bit long prefix of r′).19

If S′ ̸= ∅, then output the lexicographically-first string in S′. Otherwise, output ⊥.

Again, it is readily verified that Algorithm 4.2.4 runs in polynomial-time and is pseudodeterministic,
where the only randomized step here is the constructions of fℓ and fℓ′ , which has negligible error
probability. Recall that since R is a PPT-search problem, on input 1n such that Ryes(1

n) ̸= ∅, it
holds that Prr∈{0,1}m [Fr(1

n) ∈ Ryes(1
n)] ≥ 2/3. Letting R′

yes(1
n)

def
= {y : Pr[V (1n, y)=1] ≥ 0.65},

it follows that Prr∈S [Fr(1
n)∈R′

yes(1
n)] ≥ (2/3) − o(1). (Specifically, analogously to the previous

analysis, note that otherwise the output of G is distinguishable from the uniform distribution.)20

It is left to show that in case Fr(1
n) ∈ R′

yes(1
n) for some r ∈ S, w.v.h.p., it holds that S′ ̸= ∅,

which means that Algorithm 4.2.4 solves the PPT-search problem R (in the sense of Definition 2.5,
which means that it outputs a solution that is not in Rno(1

n)). This amounts to showing that
for every r ∈ S it holds that if yr ∈ R′

yes(1
n) then Prs∈{0,1}k′ [VGfℓ′ (s)

(1n, yr) = 1] > 1/2, and if

yr ∈ Rno(1
n) then Prs∈{0,1}k′ [VGfℓ′ (s)

(1n, yr) = 1] ≤ 1/2. In other words, the claim is that every

r ∈ S such that yr ∈ (R′
yes(1

n) ∪Rno(1
n)) it holds that∣∣∣Prs∈{0,1}k′ [VGfℓ′ (s)

(1n, yr)=1]− Prr′∈{0,1}m [Vr′(1
n, yr)=1]

∣∣∣ = o(1). (1)

The latter fact is proved by observing that otherwise we obtain a quadratic-time algorithm that
distinguishes random outputs of G from uniformly distributed strings. Actually, we use a slightly
non-uniform distinguisher that utilizes an advice of length k that specifies an r ∈ S (via the
corresponding s ∈ {0, 1}k (i.e., r = Gfℓ′ (s))) such that yr ∈ (R′

yes(1
n) ∪ Rno(1

n)) violates Eq. (1).

That is, given a tested sequence ρ ∈ {0, 1}m and the advice s ∈ {0, 1}k, the distinguisher first
computes r = Gfℓ(s), then computes yr = Fr(1

n), and finally outputs Vρ(1
n, yr). Note that the

running time of this distinguisher is dominated by the running time of Gfℓ(s), which is exp(O(k)) <
2ϵℓ

′
, whereas the advice string has length k < ϵ · ℓ′. This contradicts the moreover clause of

Claim 4.2.2.

19Recall that m = p(n) denotes the running-time of V , which is used as the length of its random-tape. However,

the length of G’s output on a k′-bit long seed is 2ϵℓ
′
≫ 2ϵℓ = m. From this point on, for simplicity, we ignore this

inaccuracy.
20Given a tested sequence r ∈ {0, 1}m, the distinguisher consists of invoking the residual Fr on input 1n, obtaining

y ← Fr(1
n), estimating Pr[V (1n, y) = 1] by a few invocations of V , and outputting 1 if and only if the estimate

exceeds 0.66. Suppose that the estimation is correct up to a deviation of 0.005, with error probability µ = o(1).
Recalling that y ∈ Ryes(1

n) implies that Pr[V (1n, y) = 1] ≥ 2/3, it follows that, on a uniformly distributed r ∈
{0, 1}m, the distinguisher will output 1 with probability at least (2/3) · (1 − µ) > (2/3) − µ. On the other hand, if
Pr[FGfℓ (1n) ∈ R′

yes(1
n)] < (2/3)−3µ, then the distinguisher will output 1 on a random output of Gfℓ with probability

smaller than (2/3)− 3µ+ µ = (2/3)− 2µ.
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An alternative proof of the second part of Theorem 4.2. This comment refers to the actual
proof that Statement 2 (i.e., hardness of learning) implies Statement 1 (i.e., pseudodeterminism),
while leaving the warm-up (which is confined to simple PPT-search problems) intact. Recall that
the foregoing proof relied on the hypothesis that the pseudorandom generation is robust against
distinguishers that obtain a short non-uniform advice string, and relies on the moreover clause
of Claim 4.2.2. The alternative proof, presented in the appendix, only relies on a pseudorandom
generation that is robust against uniform distinguishers. Unfortunately, this proof is slightly more
complicated (when arguing that using pseudorandom sequences in the verification process maintains
the behavior of truly random sequences).

4.2 A connection to the generation of pseudorandom sets

We start by defining the notion of pseudorandomness that we use. Recall that the most popular
approach, which is also followed in Section 4.1, views pseudorandom generators as stretching a
short random seed into a longer “pseudorandom” sequence (cf., e.g., [10, Chap. 8]). In contrast, we
consider algorithms that generate a set of strings such that the uniform distribution over this set
is pseudorandom. (We mention that this alternative perspective is most popular when discussing
hitting-set generators (see, e.g., [1, 16]) and when studying superfast and ”free lunch” derandom-
ization (see, e.g., [7]).) The notion of pseudorandomness we use is a uniform version of the standard
notion used in the context of derandomization. Specifically, we shall use the following definition.

Definition 4.3 (pseudorandom sets): Let M1,M2, ... be an enumeration of Turing machines
modified to run in quadratic-time. A set S ⊆ {0, 1}∗ is called pseudorandom if, for all sufficiently

large n ∈ N, the set Sn
def
= S ∩ {0, 1}n satisfies the following condition for every i ∈ [n].∣∣∣Prs∈Sn [Mi(s)=1]− Pru∈{0,1}n [Mi(u)=1]

∣∣∣ < 1

n
(2)

While a uniform notion of pseudorandomness requires considering an unbounded number of ma-
chines, our definition “sneaks in” a bounded amount of non-uniformity; specifically, log2 n bits.
Needless to say, the fact that we used n machines and an indistinguishability gap of 1/n is an
arbitrary choice (i.e., any fixed polynomial would have had a similar utility for us). Likewise, our
use of quadratic-time rather than any fixed polynomial time is immaterial.21

Intuitively, we say that a PPT algorithm constructs a pseudorandom set if, on input 1n, with
probability at least 2/3, it outputs Sn as in Definition 4.3. Such an algorithm corresponds to
a pseudodeterministic polynomial-time algorithm that solves the following PPT-search problem
(which is phrased in terms of Definition 2.3).22

Definition 4.4 (finding a pseudorandom set as a PPT-search problem): Let M1,M2, ... be as in
Definition 4.3 and m(n) = Õ(n2). Then, consider the quality function qpr : {1}∗ × {0, 1}∗ → [0, 1]
such that

qpr(1
n, (r1, ..., rm(n)))

def
= 1−max

i∈[n]

{
max

(
1

n ,

∣∣∣Prj∈[m(n)][Mi(rj)=1]− Pru∈{0,1}n [Mi(u)=1]
∣∣∣)}

21The reason we use quadratic-time instead of linear-time is that various manipulations that we wish to apply (e.g.,
emulating the execution of a given algorithm) require almost linear-time on the most popular models of computation.

22Indeed, the following definition as well as Theorem 4.5 can be easily formulated and analyzed also in terms of
Definition 2.5.
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where the rj’s are n-bit strings.

Note that qpr(1
n, (r1, ..., rm(n))) = 1 − (1/n) if and only if the sequence (r1, ..., rm(n)) forms a

pseudorandom set.23 It can be easily verified that qpr can be approximated in PPT, and that a
uniformly distributed sequence r ∈ {0, 1}m(n)·n satisfies qpr(1

n, r) = 1− (1/n), with probability 1−
n−ω(1). Thus, qpr constitutes a unary PPT-search problem.

As stated upfront, a polynomial-time pseudodeterministic algorithm that solves the PPT-search
problem of Definition 4.4 corresponds to a PPT construction of a pseudorandom-set. We show that
such an algorithm yields polynomial-time pseudodeterministic algorithms for all unary PPT-search
problems. Intuitively, this means that the search problem formulated in Definition 4.4 is “universal”
for the class of unary PPT-search problems.

Theorem 4.5 (constructing pseudorandom-sets implies pseudodeterministic solvers for all unary
PPT-search problems): Suppose that there is a pseudodeterministic polynomial-time algorithm
that solves the problem of Definition 4.4. Then, every unary PPT-search problem can be solved by
a pseudodeterministic polynomial-time algorithm.

Proof: The proof follows the strategy of the relevant direction of the proof of Theorem 4.2, except
that here our starting point is already a pseudorandom generator (or rather a pseudorandom-set).
Hence, we proceed directly to presenting a version of Algorithm 4.2.4.

Consider an arbitrary unary PPT-search problem captured by the quality function q, and let
F and Q be the corresponding finding and quality-evaluation algorithms. Recall that F (resp., Q)
is invoked on input (1n, 1t) (resp., (1n, y, 1t)), where 1/t is the desired approximation level, and
let p(n, t) = poly(n, t) = ω(n + t) denote its randomness and time complexity. Analogously to
Algorithm 4.2.4, we let Fr (resp., Qr′) denote the residual deterministic algorithm obtained from
F (resp., Q) when fixing its randomness to r (resp., r′).

Algorithm 4.5.1 (pseudodeterministic algorithms for unary PPT-search problems captured by
q): Let F and Q be as above, and S be a pseudorandom-set that can be constructed by a pseudode-
terministic algorithm. Specifically, suppose (w.l.o.g.) that Sn is generated in time O(|Sn|2). Then,
on input (1n, 1t), proceed as follows.

1. Setting p = p(n, 3t), construct Sp = S ∩ {0, 1}p.
Specifically, the solver of the problem formulated in Definition 4.4 is invoked with deviation
parameter 1/p; hence, w.v.h.p., the solution Sp found has quality at least 1− (2/p).

2. For every r ∈ Sp, compute yr ← Fr(1
n, 13t).

3. Setting t′ = |Sp|2 and p′ = p(n, t′), construct Sp′ = S ∩ {0, 1}p′.
Specifically, the solver of the problem formulated in Definition 4.4 is invoked with deviation
parameter 1/p′; hence, w.v.h.p., the solution Sp′ found has quality at least 1− (2/p′).

23Due to the internal maximization, we have q′pr(1
n)

def
= maxr{qpr(1n, r)} = 1 − (1/n) (rather than possibly

q′pr(1
n) = 1, which could create technical difficulties). We mention that there exists a distribution Y with support of

size at most n+ 1 such that Pr[Mi(Y )=1] = Pru∈{0,1}n [Mi(u)=1] for every i ∈ [n] (see [15]), but it is unclear how

close these distributions can be to uniform over a set of size Õ(n2).
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4. For every r ∈ Sp, declare yr as a potential solution if and only if

|{r′∈Sp′ : Qr′(1
n, yr, 1

8t)>1− (1/n)− (1/2t)}| > |Sp′ |/2.

If the set of potential solutions is not empty, then output the lexicographically-first potential solution.
Otherwise, output ⊥.

It is readily verified that Algorithm 4.5.1 runs in polynomial-time and is pseudodeterministic, where
the only randomized steps in Algorithm 4.5.1 are the constructions of the sets Sp and Sp′ , which
have negligible error probability. Recall that (by error reduction) we may assume that

Prr∈{0,1}p [q(1
n, Fr(1

n, 13t)) > 1− (1/n)− (1/3t)] = 1− o(1),

whereas the pseudorandomness of the set Sp (w.r.t to a potential distinguisher that combines F
and Q) implies that

Prr∈Sn [q(1
n, Fr(1

n, 13t)) > 1− (1/n)− (1/3t)− (2/p)] = 1− o(1).

Recalling that for every y it holds that

Prr′∈{0,1}p′ [Qr′(1
n, y, 18t) = q(1n, yr)± (1/8t)] = 1− o(1/|Sp|),

we wish to show that for every r ∈ Sp it holds that

Prr′∈Sp′
[Qr′(1

n, yr, 1
8t) = q(1n, yr)± (1/7t)] = 1− o(1/|Sp|).

The proof, which relies on the pseudorandomness of the set Sp′ , is analogous to the one given at
the end of the proof of Theorem 4.2. Again, the crucial point is that p′ is determined to be large
enough so to dominate the running time of the algorithm constructing Sp, which in turn dominates
the running times of F and Q. (When using the main argument, which is slightly non-uniform, note
that Definition 4.4, just as Definition 4.3, accounts for a logarithmic amount of non-uniformity that
the main argument uses.)24 Lastly, using (1/3t) + (2/p) + (1/7t) < 1/2t and (1/t)− (1/7t) > 1/2t,
we conclude that the set of declared potential solutions is non-empty and that it contains only yr’s
that satisfy q(1n, yr) > 1− (1/n)− (1/t).

A binary version of Theorem 4.5. The proof of Theorem 4.5 can be easily extended so that it
yields pseudodeterministic polynomial-time algorithms for all PPT-search problems based on the
construction of targeted pseudorandom-sets. Loosely speaking, in analogy to targeted pseudoran-
dom generators, defined in [12] (following [11, Sec. 4.4]), here the construction is given a circuit
C : {0, 1}n → {0, 1} and outputs a set SC such that∣∣∣Prs∈SC

[C(s)=1]− Pru∈{0,1}n [C(u)=1]
∣∣∣ < 1

n

The corresponding PPT-search problem is formulated analogously to Definition 4.4. We consider
the quality function qpr : {0, 1}∗ × {0, 1}∗ → [0, 1] such that

qpr(C, (r1, ..., rm(n)))
def
= 1−max

(
1

n ,

∣∣∣Prj∈[m(n)][C(rj)=1]− Pru∈{0,1}n [C(u)=1]
∣∣∣) (3)

24The relevant algorithms as well as an index in the set Sp can be encoded in less that log2 p
′ bits. In any case,

note that we can set p′ to be an arbitrary polynomial in |Sp| = poly(p).
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where n is the input length of C and the yj ’s are n-bit strings. The analogue of Theorem 4.5 asserts
that if there is a pseudodeterministic polynomial-time algorithm that solves the search problem of
Eq. (3), then every PPT-search problem can be solved by a pseudodeterministic polynomial-time
algorithm.

4.3 Implications to BPP-extensions of prBPP and BPTime hierarchies

The key observation in this subsection is that the existence of pseudodeterministic algorithms for
all unary PPT-search problems implies that every unary problem in prBPP can be extended to a
unary set in BPP. This is a unary problem analogous of one direction of Theorem 3.5.

Theorem 4.6 (from pseudodeterminism to BPP-extensions of prBPP, the unary version): Sup-
pose that every unary PPT-search problem can be solved by a polynomial-time pseudodeterministic
algorithm. Then, every unary problem in prBPP has a unary extension in BPP.

Proof: We shall present two proofs, one per each of the two definitions of PPT-search problems
presented in Section 2. In both cases, for any decisional problem Π = (Πyes,Πno) in prBPP such
that Πyes ∪ Πno ⊆ {1}∗, we shall show that Π has an extension (S, S) such that S ∈ BPP. (We
can make S unary by redefining S ← S ∩ {1}∗.)

We first prove this conclusion when the hypothesis (i.e., the existence of polynomial-time pseu-
dodeterministic algorithm for every unary PPT-search problem) is formulated with respect to Defi-

nition 2.3. Consider a (“BPP”-type) algorithm A that solves Π, and let p(n)
def
= Pr[A(1n)=1], while

noting that p(n) ≥ 2/3 if 1n ∈ Πyes and p(n) ≤ 1/3 if 1n ∈ Πno. Now, define q : {0, 1}∗×{0, 1}∗ →
[0, 1] such that q(x, v)

def
= 1 − |p(|x|) − v|, while noting that q(x, v) ≈ 1 if and only if v ≈ p(|x|).

Let F be a PPT algorithm that solves q; that is, Pr[q(x, F (x, 1t)) ≥ 1 − (1/t)] ≥ 2/3 (equiv.,
Pr[|F (x, 1t) − p(|x|)| ≤ (1/t)] ≥ 2/3). Fixing t = 7, and using the (“pseudodeterminism”) hy-
pothesis, we consider the corresponding pseudodeterministic polynomial-time algorithm F ′, and
infer that, for every x ∈ {0, 1}∗, there exists a unique value vx such that Pr[F ′(x) = vx] ≥ 2/3,
whereas vx ∈ [p(|x|) ± 1/7] holds. Hence, x ∈ Πyes implies vx ≥ 2

3 −
1
7 > 0.5 and x ∈ Πno implies

vx ≤ 1
3 + 1

7 < 0.5. Letting S
def
= {x ∈ {0, 1}∗ : vx > 0.5}, it follows that S ∈ BPP (by using F ′),

whereas (S, S) is an extension of Π.
The proof when the hypothesis refers to PPT-search problems as in Definition 2.5 is very

similar. We define a search problem R = (Ryes, Rno) wherein instances are unary and solutions are
real values, and v ∈ Ryes(1

n) if |v−p(1n)| ≤ 1/10 and v ∈ Rno(1
n) if |v−p(1n)| > 1/6. The problem

R is in PPT-search, since we can use A both for verifying solutions and for finding solutions in
Ryes(1

n). Hence, the hypothesized pseudodeterministic algorithm F ′ finds, for every input 1n, a
value v(n) such that v(n) /∈ Rno(1

n), meaning that |v(n)−p(1n)| ≤ 1/6. The probabilistic algorithm
solving an extension of Π accepts 1n if and only if the output of F ′(1n) is larger than 1/2 (and its
analysis is identical to the one above).

Theorem 4.7 (corollary of Theorem 4.6): Suppose that every unary PPT-search problem can
be solved by a polynomial-time pseudodeterministic algorithm. Then, for every polynomial p there
exists a polynomial q such that BPTime(p) ⊂ BPTime(q).

We note that Theorem 4.7 follows from [23, Sec. 5].
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Proof: Our starting point is a hierarchy theorem for prBPP. Specifically, by Theorem 2.2, for every
polynomial p, there exists a unary decisional promise problem Π = (Πyes,Πno) in prBPTime(Õ(p))\
prBPTime(p). Applying Theorem 4.6, it follows that Π has an extension in BPP (i.e., it is in
BPTime(q) for some polynomial q that depends on Õ(p)). Since this extension cannot be in
BPTime(p), the claim follows.

4.4 On unary PPT-search problems with deterministic verification

Next, we show that even an algorithm meeting more relaxed requirements than the one hypoth-
esized in Theorem 4.7 would have new and interesting implications. Specifically, in the results
presented next, the hypothesized pseudodeterministic algorithm only needs to solve search prob-
lems in which solutions are verifiable deterministically. The main technical observation is captured
by the following statement:

Claim 4.8 (using pseudodeterminism for extending promise RTime-problems to sets): A binary
relation R ⊆ {0, 1}∗ × {0, 1}∗ is called adequate if it is recognizable in deterministic polynomial-
time and there exists a time-constructible function ℓ : N → N such that (x, y) ∈ R implies that
|y| = ℓ(|x|) ≥ |x|. For an adequate relation R, we define ΠR = (Πyes,Πno) such that Πyes = {x :
|R(x)| ≥ 2ℓ(x)−1} and Πno = {x : R(x) = ∅}.

hypothesis: Let R ⊆ {0, 1}∗ × {0, 1}∗ be an adequate relation and suppose that there exists a
(poly◦ℓ)-time pseudodeterministic algorithm A such that if x ∈ Πyes, then Pr[A(x) ∈ R(x)] ≥
2/3.

conclusion: The problem ΠR has an extension in BPTime(poly ◦ ℓ). That is, there exists a set
S ∈ BPTime(poly ◦ ℓ) such that S ⊇ {x : |R(x)| ≥ 2ℓ(|x|)−1} and S ⊆ {x : R(x) ̸= ∅}.

We stress that saying that A is pseudodeterministic means that for every x there exists a string cx
such that Pr[A(x)= cx] ≥ 2/3. We shall actually use this condition for instances that violate the
promise of Π (i.e., instances x such that 0 < |R(x)| < 2ℓ(|x|)−1).

Proof: We consider a decision procedure D that on input x, invokes the pseudodeterministic
algorithm A on x, obtaining y ← A(x), and outputs 1 if and only if (x, y) ∈ R. Then, the following
three facts hold for every x ∈ {0, 1}∗.

Fact 1: If |R(x)| ≥ 2ℓ(|x|)−1, then Pr[D(x)=1] ≥ 2/3.

This holds because in this case Pr[A(x) ∈ R(x)] ≥ 2/3.

Fact 2: If R(x) = ∅, then Pr[D(x)=0] = 1.

This holds because in this case Pr[A(x) ∈ R(x)] = 0.

Fact 3: Either Pr[D(x)=1] ≥ 2/3 or Pr[D(x)=0] ≥ 2/3.

This holds because A is pseudodeterministic; that is, Pr[A(x)=cx] ≥ 2/3 for cx that depends
on x only. Furthermore, letting χ(x) = 1 if cx ∈ R(x) and χ(x) = 0 otherwise, it holds that
Pr[D(x)=χ(x)] ≥ Pr[A(x)=cx].

Consider the set S
def
= {x : Pr[D(x)= 1] ≥ 2/3}, and note that S ∈ BPP (by Fact 3). The claim

follows by observing that Facts 1 and 2 imply that S is sandwiched between the sets {x : |R(x)| ≥
2ℓ(|x|)−1} and {x : R(x) ̸= ∅}.
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Implications for Rtime. Applying Claim 4.8 to the witness relation of a unary promise problem
in prRP, we obtain a unary set in BPP that extends the original promise problem. In particular,
we obtain the following result.

Theorem 4.9 (an RTime vs BPTime separation): Suppose that for every adequate unary relation
R ⊆ {(1n, y) : y ∈ {0, 1}ℓ(n)} there exists a (poly ◦ ℓ)-time pseudodeterministic algorithm A such
that if R(1n) ≥ 2ℓ(n)−1, then Pr[A(1n) ∈ R(1n)] ≥ 2/3. Then, for every constant k ∈ N there exists
K > k such that BPTime(nK) is not contained in RTime(nk).

The conclusion of Theorem 4.9 implies that either RTime(nK) ̸= BPTime(nK) or RTime(nK) is not
contained in RTime(nk). More generally, for every K ′ ≥ K, either RTime(nK′

) does not contain
BPTime(nK) or RTime(nK′

) is not contained in RTime(nk).
We note that the search problems solved in the hypothesis of Theorem 4.9 can be cast as

unary PPT-search problems as in Definition 2.5, by considering R = (Ryes, Rno) such that Ryes =
{(1n, y) ∈ R : |R(x)| ≥ 2ℓ(n)−1} and Rno equals the complement of R (i.e., (1n, y) ∈ Rno iff
(1n, y) ̸∈ R). The key point is that such problems are a subclass of unary PPT-search problems,
since we require that R will be recognizable in deterministic polynomial time.

Proof: Using the delayed diagonalization, which underlies the proof of Theorem 2.2, for ev-
ery constant k ∈ N, there exists a unary promise problem Π = (Πyes,Πno) in prRTime(nk+1) \
co-prRTime(nk). Letting m = nk+1, there exists a unary relation R that is recognizable in almost-
linear (deterministic) time such that

1. For every 1n ∈ Πyes, it holds that |{r∈{0, 1}m : (1n, r)∈R}| ≥ 2m−1.

2. For every 1n ∈ Πno and every r ∈ {0, 1}m, it holds that (1n, r) ̸∈R.

3. For every x ∈ {0, 1}∗ \ {1}∗ and every r ∈ {0, 1}m, it holds that (x, r) ̸∈R.

Applying Claim 4.8 to R ⊆ {1}∗ × {0, 1}∗, we obtain a unary set S ∈ BPP that extends Π; that
is, S is sandwiched between Πyes and {1}∗ \ Πno. One the other hand, since S extends Π, it must
hold that S ̸∈ co-RTime(nk). Using {1}∗ \ S, the theorem follows.

Implications for BPtime. Recall that the hypothesis that prRP ⊆ prDTime(T ) implies that
BPP ⊆ DTime(T (poly(T ))). Using the hypothesis of Claim 4.8, we improve the conclusion to
BPP ⊆ DTime(poly(T )). We note that the stronger conclusion is known under the hypothesis
that hitting sets can be constructed in time T (which implies prRP ⊆ prDTime(T )).

Theorem 4.10 (a BPTime hierarchy): Suppose that prRTime(n2) ⊆ prDTime(T ).25 Then,
under the hypothesis of Theorem 4.9, for every constant k ∈ N there exists K > k such that
BPTime(poly(T (nK))) is not contained in BPTime(nk).

25Recall that prRTime(n2) ⊆ prDTime(T ) implies that for every nice function f(n) ≥ n it holds that
prRTime(f(n)2) ⊆ prDTime(T (n2)); in particular, when T (n) = poly(n) it implies RP = P. The reason we use
quadratic-time (i.e., n2) instead of linear-time (i.e., O(n)) is that various manipulations that we wish to apply (e.g.,
emulating the execution of a given algorithm) require almost linear-time on the most popular models of computation.
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Proof: Using Theorem 2.2, for every constant k ∈ N, there exists a unary promise problem
Π = (Πyes,Πno) in prBPTime(nk+1) \ prBPTime(nk). Recall that several of the standard proofs
establishing BPP ⊆ PH (e.g., [25, 20, 17]), when applied to Π, imply the existence of a polynomial
m = m(n) > n and a (deterministic) polynomial-time recognizable relation R such that

1. For every 1n ∈ Πyes, it holds that

Prr∈{0,1}m [∀s∈{0, 1}m (1n, rs) ∈ R] ≥ 1/2.

2. For every 1n ∈ Πno and every r ∈ {0, 1}m, it holds that

Prs∈{0,1}m [(1
n, rs) ∈ R] ≤ 1/2.

Let Π′ = (Π′
yes,Π

′
no) be such that

Π′
yes

def
=

{
(1n, r) : ∀s∈{0, 1}m(n) (1n, rs) ∈ R

}
Π′
no

def
=

{
(1n, r) : Prs∈{0,1}m(n) [(1n, rs) ∈ R] ≤ 1/2

}
where in both cases r ∈ {0, 1}m(n). (Indeed, if 1n ∈ Πyes (resp., 1n ∈ Πno), then Prr∈{0,1}m [(1

n, r)∈
Π′
yes] ≥ 1/2 (resp., (1n, r)∈Π′

no for every r ∈ {0, 1}m).) Then, Π′ is in promise-coRP. Furthermore,
without loss of generality, the corresponding algorithm runs in quadratic time. Using the hypothesis
that prRTime(q) ⊆ prDTime(T ), where q is a quadratic function and T > q, we infer that Π′ is in
prDTime(T ). Let us denote the corresponding decision procedure by D.

Now, let R′ def
= {(1n, r) : D(1n, r) = 1}. Noting that D(1n, r) = 1 for every (1n, r) ∈ Π′

yes

and D(1n, r) = 0 for every (1n, r) ∈ Π′
no, it follows that R′ is sandwiched between Π′

yes and
({1}∗ × {0, 1}∗) \Π′

no. We now consider a padded version of R′; specifically,

R′′ def= {(1n, rp) : (1n, r)∈R′ & p∈{0, 1}T (n+m)−(n+m)}.

Then, R′′ is recognizable in almost-linear (deterministic) time, and

1. For every 1n ∈ Πyes, it holds that |R′′(1n)| ≥ 2T (n+m)−n−1, whereas R′′(1n) ⊆ {0, 1}T (n+m)−n.

(This holds because in this case Prr∈{0,1}m [(1
n, r)∈Π′

yes] ≥ 1/2.)

2. For every 1n ∈ Πno, it holds that R
′′(1n) = ∅.

(This holds because in this case (1n, r)∈Π′
no for every r ∈ {0, 1}m.)

Applying Claim 4.8 to R′′ we obtain a unary set S ∈ BPTime(poly(T (m(n)2)))) such that S is
sandwiched between {1n : |R′′(1n)| ≥ 2T (n+m(n))−n−1} and {1n : R′′(1n) ̸= ∅}, which implies that
S is sandwiched between Πyes and {1}∗ \Πno. One the other hand, since S extends Π, it must hold
that S ̸∈ BPTime(nk). The theorem follows.
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4.5 On the gaps between the algorithm of [5] and the foregoing hypotheses

Recently, Chen, Lu, Oliveira, Ren, and Santhanam [5] proved the following result, which asserts a
polynomial-time pseudodeterministic algorithm for a subclass of unary PPT-search problems:

Theorem 4.11 (infinitely-often polynomial-time pseudodeterministic explicit constructions): Let
R ⊆ {1}∗ × {0, 1}∗ be a search problem such that

1. |R(1n) ∩ {0, 1}n| ≥ 2n/poly(n) for every n ∈ N.

2. There is a deterministic polynomial-time algorithm V that decides membership in R.

Then, there exists probabilistic polynomial-time algorithm F and a sequence {yn ∈ R(1n)}n∈N such
that the following two conditions hold:

1. For every n ∈ N it holds that Pr[F (1n) ∈ {yn,⊥}] ≥ 1 − 2−n, where ⊥̸∈ {0, 1}∗ is a special
symbol.

2. For infinitely many n ∈ N it holds that Pr[F (1n) = yn] ≥ 1− 2−n.

Recall that search problems as in Theorem 4.11 can be cast as PPT-search problems (see discussion
after Theorem 4.9).

The subclass of unary PPT-search problems for which the algorithm of Theorem 4.11 works is
indeed broad, but there are gaps between Theorem 4.11 and an ideal result. In particular, there
are gaps between the algorithm in Theorem 4.11 and the required hypotheses for Theorems 4.2–4.7
and 4.9–4.10. We stress that pointing out these gaps is intended to highlight them as interesting
open problems, whose resolution would imply the consequences spelled out in the aforementioned
theorems.

First, the algorithm in Theorem 4.11 requires that valid solutions be recognized in deterministic
polynomial-time, rather allowing a probabilistic algorithm (as required in Definitions 2.3 and 2.5).
We warn that a superficial impression that Chen et al. [5]’s proof of Theorem 4.11 can be easily
extended to the probabilistic case is unsound (see discussion below). While this falls short of the
hypothesis of Theorems 4.2–4.7 (i.e., an algorithm that solves all unary PPT-search problems), it
is not an issue in Theorems 4.9–4.10 (since their hypotheses also refer to deterministic polynomial-
time verification of valid solutions).

Second, the algorithm in Theorem 4.11 finds solutions only for infinitely many input lengths.
This shortcoming is actually less severe than it might seem: When the input lengths on which the
algorithm finds solutions are easily recognizable (as is, essentially, the case in [5] – see Remark 4.12),
such an algorithm may still suffice for Theorems 4.9 and 4.10, barring the last gap.

Third, the algorithm in Theorem 4.11 is pseudodeterministic only on infinitely many input
lengths, rather than having a pseudodeterministic guarantee on all input lengths. We warn that
the fact that the algorithm in Theorem 4.11 is 2-pseudodeterministic26 on all input lengths (i.e.,
almost always outputs one of two canonical solutions) and that these two solutions are easily
distinguishable in not good enough for the hypotheses of Theorems 4.9 and 4.10.

Remark 4.12 (the second shortcoming is less severe than it might seem): We can obtain a
BPTime hierarchy from an algorithm that is pseudodeterministic on all input lengths but only

26The notion of multi-pseudodeterministic algorithms was introduced in [13].
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solves the search problem R infinitely often, provided that the infinite set S ⊆ N of input lengths on
which the algorithm solves R is efficiently recognizable. This is because such an algorithm allows
using input lengths in S for diagonalization. In fact, even more relaxed conditions suffice, such as
partitioning N into efficiently recognizable intervals and guaranteeing that in each interval there is
an input length on which the algorithm solves R. This relaxed condition is satisfied by the algorithm
in [5], and thus the crucial gap is that their algorithm may not be pseudodeterministic on input
lengths outside S.

Can the proof of Theorem 4.11 be extended to the probabilistic case? Recall that
Theorem 4.11 refers to a unary search problem R that can be decided in deterministic polynomial-
time and that we believe that the impression that the proof in [5] can be easily extended to the
probabilistic case is unsound.

On a very high level, the issue is that the algorithm A presented in [5] uses the decision
procedure DR for R in a non-black-box manner. Specifically, A uses the intermediate results
of the computation of DR, and in case DR is probabilistic these intermediate results depend also on
the coins used by DR. Hence, the output of A may vary with its coins, which are fed into DR. In
contrast, if A was using DR as a black-box, then indeed we could treat the probabilistic decisions
of DR as if they were deterministic (by employing error-reduction and accounting for the tiny error
of DR within the error probability allowed also for pseudodeterministic algorithms).27
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Appendix: An alternative proof of the second part of Theorem 4.2

Recall that we refer to the proof that a hardness result (i.e., Statement 2) implies efficient pseu-
dodeterministic algorithms for unary PPT-search problems (i.e., Statement 1), where the hardness
result is used in the construction of a specific pseudorandom generator. The analysis of these
pseudodeterministic algorithms amounts to showing that their failure implies a violation of the
pseudorandomness of the generator. In other words, violating pseudorandomness is reduced to
failure of the pseudodeterministic algorithm.

The reduction in the main text is slightly non-uniform, and so the aforementioned pseudodeter-
minism result relies on the fact that the hardness assumption yields pseudorandomness with respect
to slightly non-uniform PPT algorithms. The reduction presented here is totally uniform, and so
the pseudodeterminism result only uses pseudorandomness with respect to PPT algorithms (rather
than with respect to slightly non-uniform PPT algorithms). Indeed, a totally uniform reduction is
formally stronger and conceptually more pleasing than a slightly non-uniform one, but (as is often
the case) this comes at the cost of a more complicated analysis.

The algorithmic modification. We are going to use Algorithm 4.2.4 as is, but replace the
verification procedure. Instead of using a verification algorithm that has error probability 1/3, we
shall use a specific verification algorithm with negligible (in n) error probability. Denoting the
original verification algorithm by V ′, recall that Pr[V ′(1n, y) = 1] ≥ 2/3 for every y ∈ Ryes(1

n)
whereas Pr[V ′(1n, y) = 1] ≤ 1/3 for every y ∈ Rno(1

n). We shall use an algorithm, denoted V ,
that, on input (1n, y), estimates Pr[V ′(1n, y)=1] upto 0.005 with negligible (in n) error probability.
Specifically, V (1n, y) invokes V ′(1n, y) for Õ(log n) times and outputs 1 if and only if the fraction
of invocations that return 1 exceeds 0.66. Hence, letting µ(n) denote a negligible function, it holds
that

� If Pr[V ′(1n, y)=1] ≥ 2/3, then Pr[V (1n, y)=1] ≥ 1− µ(n);

� If Pr[V ′(1n, y)=1] < 0.65, then Pr[V (1n, y)=1] ≤ µ(n).

We shall use this V in Algorithm 4.2.4. In the current analysis, we redefine R′
yes such that

R′
yes(1

n)
def
= {y : Pr[V ′(1n, y)=1] ≥ 0.65}, and observe that Prr∈S [Fr(1

n)∈R′
yes(1

n)] ≥ (2/3)−o(1).
This is shown as in the main proof, except that here the (contradicting) distinguisher uses V ′ rather
than V . (That is, it computes y ← Fr(1

n), estimates Pr[V (1n, y)=1] by a few invocations of V ′,
and outputs 1 if and only if the estimate exceeds 0.66.)

The main analysis and the issue that arises. As in the main proof, it is left to show that in
case Fr(1

n) ∈ R′
yes(1

n), w.v.h.p., it holds that S′ ̸= ∅, which means that Algorithm 4.2.4 solves the

PPT-search problem R (in the sense of Definition 2.5, which means that it outputs a solution that
is not in Rno(1

n)). This amounts to showing that for every r ∈ S it holds that if yr ∈ R′
yes(1

n) then
Prs∈{0,1}k′ [VGfℓ′ (s)

(1n, yr)=1] > 1/2, and if yr ∈ Rno(1
n) then Prs∈{0,1}k′ [VGfℓ′ (s)

(1n, yr)=1] ≤ 1/2.

In other words, the claim is that every r ∈ S such that yr ∈ (R′
yes(1

n) ∪Rno(1
n)) it holds that∣∣∣Prs∈{0,1}k′ [VGfℓ′ (s)

(1n, yr)=1]− Prr′∈{0,1}m [Vr′(1
n, yr)=1]

∣∣∣ = o(1). (4)

The latter fact is proved by observing that otherwise we obtain a quadratic-time algorithm that
distinguishes random outputs of G from uniformly distributed strings. Unlike in the main text,
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where a violating r ∈ S (or rather the corresponding s) was given as advice to the distinguisher,
here we seek a totally uniform distinguisher. The natural idea is to consider a distinguisher that,
on input a tested sequence ρ ∈ {0, 1}m, selects at random s ∈ {0, 1}k, computes y ← FGfℓ (s)(1

n),
and outputs Vr′(1

n, y). This does not quite work, because “absolute distinguishability” should be
converted to “positive distinguishability” (see next). In fact, bridging this gap is the source of the
complication in the current proof, and it is towards this goal that we redefined V rather than used
V ′ as in the main proof.

Let us spell out the issue. The point is that absolute differences on different yr’s may cancel
out if we pick a random r ∈ S and proceed as above. We warn that the standard solutions that
are used in the context of distinguishers that are more complex than the generator (see [4]) cannot
be used here. Instead, we use the fact that we care only about yr ∈ (R′

yes(1
n)∪Rno(1

n)), and that

for these y’s it holds that py
def
= Prr′∈{0,1}m [Vr′(1

n, y) = 1] is very close to either 1 or 0 (i.e., py is
negligibly close to 1 if y ∈ R′

yes(1
n) and is negligibly close to 0 otherwise (i.e., when y ∈ Rno(1

n))).
Loosely speaking, after obtaining y (from FGfℓ (s)(1

n) on a random s), we estimate py and use this
estimation towards converting the absolute gap to a positive one. Details follow.

An abstraction. We first abstract the problem that we face at this point. The setting consists
of two distributions – a uniform distribution over {0, 1}m, denoted Um, and a pseudorandom dis-
tribution over m-bit strings, denoted Zm – and a potential (probabilistic) test, denoted T , which
consists of two stages, denoted T1 and T2. Specifically, on input ρ ∈ {0, 1}m, the tester obtains
y ← T1(1

m), and outputs T2(y, ρ) ∈ {0, 1}. We stress that both T1 and T2 are probabilistic, and
that T (ρ) = T2(T1(1

|ρ|), ρ).
In our application T1(1

m)← FGfℓ (s)(1
n), where n is easily determined by m and s is uniformly

selected in {0, 1}k, and T2(y, ρ) = Vρ(1
n, y); hence, in our application T2 is actually deterministic.

The distribution Zm equals Gfℓ′ (s′), where s′ is uniformly selected in {0, 1}k′ .
The hypothesis in our application implies that T = (T1, T2) cannot distinguish between Zm

and Um; specifically, |Pr[T (Zm) = 1] − Pr[T (Um) = 1]| = o(2−k) (equiv., |Pr[T2(T1(1
m), Zm) =

1] − Pr[T2(T1(1
m), Um) = 1]| = o(2−k)). Unfortunately, this does not suffice for our purposes.

Letting Pm = (R′
yes(1

n) ∪ Rno(1
n)) ∩ {FGfℓ (s)(1

n) : s∈ {0, 1}k}, we wish to prove that, for every
y ∈ Pm, it holds that |Pr[T2(y, Zm) = 1] − Pr[T2(y, Um) = 1]| = o(1). We shall essentially achieve
this goal by relying on an addition condition, which holds in our application: This condition is
that Pr[T2(y, Um) = 1] is negligibly close to either 1 or 0. (Recall that if y ∈ R′

yes(1
n) then

Pr[V (1n, y) = 1] ≈ 1, whereas if y ∈ Rno(1
n) then Pr[V (1n, y) = 1] ≈ 0.) Actually, we will need

a stronger hypothesis that asserts that also a tester of complexity related to T cannot distinguish
between Zm and Um. It will be more convenient to state the contrapositive.

Claim A.1 (the contrapositive claim): Let T = (T1, T2) and Zm be as defined above (i.e., not
necessarily as in our application), and suppose that the following conditions hold.

1. For every y ∈ Pm, it holds that Pr[T2(y, Um)=1] is either smaller than ϵ or larger than 1− ϵ.

2. There exists y ∈ Pm such that

|Pr[T2(y, Zm)=1]− Pr[T2(y, Um)=1]| ≥ δ.

Then, there exists an algorithm T ′
2 that invokes T ′

2 for Õ(1/ϵ2) times and satisfies

|Pr[T ′
2(T1(1

m), Zm)=1]− Pr[T ′
2(T1(1

m), Um)=1]| ≥ Pr[T1(1
m)=y] · δ − 4ϵ.
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In our application this means that if some element of {r ∈ S : yr ∈ (R′
yes(1

n) ∪ Rno(1
n))} vio-

lates Eq. (4) (per the foregoing Item 2 with δ = o(1)), then this contradicts the pseudorandomness
of Gfℓ′ , because Pr[T1(1

m)=yr] ≥ 2−k and ϵ = o(2−k ·δ, which implies 2−k ·δ−4ϵ > 2−k−1 ·δ > 2−αℓ′ .
(Recall that the pseudorandomness hypothesis refers to a distinguishing gap of 2−αℓ′ , whereas we
can use any δ = o(1) (in fact even δ = 0.1 suffices).)

Proof: Recall that the issue is that, for a given y, we don’t know whether or not Pr[T2(y, Zm)=
1] > Pr[T2(y, Um)=1]|. If we knew the answer, then things would have been easy: We would just
let T ′

2(y, Zm) = T2(y, Zm) if Pr[T2(y, Zm)=1] > Pr[T2(y, Um)=1]| and T ′
2(y, Zm) = 1 − T2(y, Zm)

otherwise. In this case, letting G = {y : Pr[T2(y, Zm)=1] > Pr[T2(y, Um)=1]|}, we would have

|Pr[T ′
2(T1(1

m), Zm)=1]− Pr[T ′
2(T1(1

m), Um)=1]|
=

∑
y∈G

Pr[T1(1
m)=y] · (Pr[T2(y, Zm)=1]− Pr[T2(y, Um)=1])

+
∑
y ̸∈G

Pr[T1(1
m)=y] · ((1− Pr[T2(y, Zm)=1])− (1− Pr[T2(y, Um)=1]))

=
∑
y

Pr[T1(1
m)=y] · |Pr[T2(y, Zm)=1]− Pr[T2(y, Um)=1]|

≥ min
y∈Pm

{Pr[T1(1
m)=y]} · δ.

In settings in which Zm is efficiently sampleable, we can approximately determine whether or not y ∈
G by estimating the relevant probability. Note that this estimation has to be good enough so that
the gain from the contribution of y is not cancelled by the wrong decisions regarding membership
in G. However, the real problem is that it is not guaranteed that Zm is efficiently sampleable,
Nevertheless, the fact that Um is efficiently sampleable and the guarantee that Pr[T2(y, Um)=1] is
very close to either 0 or 1 (when y ∈ Pm) will do.

The key observation is that if py
def
= Pr[T2(y, Um) = 1] is very close to either 0 or 1, then we

lose little when making a wrong decision about whether or not y is in G. Since we only aim to
gain from y ∈ Pm and each of these y’s satisfies py ̸∈ [ϵ, 1− ϵ], we can just avoid judgement in case
py ∈ [ϵ, 1− ϵ] (or approximately so). Hence, we propose the following algorithm T ′

2, which proceeds
as follows on input y (generated by T1) and (tested sequence) ρ.

1. Estimate py up to ϵ (with error probability o(ϵ)), denoting the result by p̃y.

2. If p̃y ∈ [2ϵ, 1− 2ϵ], then halt with an output that is oblivious of ρ (e.g., output 1).

3. Otherwise, if p̃y < 2ϵ, then output T2(y, Zm), and otherwise (i.e., p̃y > 1 − 2ϵ) output
1− T2(y, Zm).

In the rest of the analysis, we assume that |p̃y − py| ≤ ϵ, let qy
def
= Pr[T2(y, Zm)=1], and focus on

the case that δ > ϵ. We rely on the following observations:

� If y ∈ Pm and |qy − py| ≥ δ, then Pr[T ′
2(y, Zm) = 1] − Pr[T ′

2(y, Um) = 1] ≥ δ regardless of
whether or not qy > py, because in that case py ̸∈ [ϵ, 1 − ϵ], which implies p̃y ̸∈ [2ϵ, 1 − 2ϵ],
whereas qy > ϵ if py < ϵ and qy < 1− ϵ if py > 1− ϵ.
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� If p̃y ̸∈ [2ϵ, 1− 2ϵ], then py ̸∈ [3ϵ, 1− 3ϵ], and so Pr[T ′
2(y, Zm)=1]− Pr[T ′

2(y, Um)=1] ≥ −3ϵ,
because we get a negative contribution only if qy ∈ [0, py] when py < 3ϵ and qy ∈ [py, 1] when
py > 1− 3ϵ.

Hence, assuming that |p̃T1(1m) − pT1(1m)| ≤ ϵ and defining U
def
= {y : py ̸∈ [ϵ, 1− ϵ] & |py − qy| ≥ δ},

while noting that Pm ⊆ U , it holds that

Pr[T ′
2(T1(1

m), Zm)=1]− Pr[T ′
2(T1(1

m), Um)=1]

=
∑
y∈U

Pr[T1(1
m)=y] ·

(
Pr[T ′

2(y, Zm)=1]− Pr[T ′
2(y, Um)=1]

)
+

∑
y ̸∈U

Pr[T1(1
m)=y] ·

(
Pr[T ′

2(y, Zm)=1]− Pr[T ′
2(y, Um)=1]

)
≥ min

y∈Pm

Pr[T1(1
m)=y] · δ − 3ϵ,

since y ̸∈ U makes a (possibly negative) contribution to the sum only if py ̸∈ [3ϵ, 1 − 3ϵ] (and its
contribution is lower-bounded by −3ϵ). Accounting for the probability of an estimation error, the
claim follows.
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