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Summary

This memo presents a variant of the known tester of Bipartiteness in the bounded-degree graph
model, which is presented in Section 9.4.1 of my book on Property Testing (hereafter referred
to as the book). The purpose of this variation is to show that, when the graph is rapid mixing,
Bipartiteness can be tested in O(

√
k) time, rather than in Õ(

√
k) time.

Much of the following text is reproduced from Section 9.4.1 of the book, and the essence of the
improvement is in capitalizing on half of the vertices that appear on each (2ℓ-step long) random
walk rather than using only the last vertex in each of the m walks. This is reflected in the proof
of Claim 3.2, where we consider ℓ2 · (m2 −m) collision events (rather than the ·(m2 −m) events
considered in the book).

The tester

This memo refers to testing Bipartiteness in the bounded-degree graph model. It shows that, for
constant ǫ > 0, Bipartiteness can be tested in O(

√
k) time, provided that the graph is rapid mixing

(in a natural sense that is slightly stronger than that used in the book).

Algorithm 1 (testing Bipartiteness (the rapid mixing case)): On input d, k, ǫ and oracle access
to an incidence function of an k-vertex graph, G = ([k], E), of degree bound d, proceed as follows

1. Pick an arbitrary vertex s in [k].

2. (Try to find an odd-length cycle through vertex s):

(a) Perform m
def
= O(

√
k/ǫ/ log k) random walks starting from s, each of length 2ℓ, where

ℓ
def
= O(log k).

(b) Let R0 (respectively, R1) denote the set of vertices reached from s in an even (re-
spectively, odd) number of steps in any of these walks. That is, for every such walk
(s = v0, v1, ..., v2ℓ), place v0, v2, ..., v2ℓ in R0 and place v1, v3, ..., v2ℓ−1 in R1.

(c) If R0 ∩R1 is not empty, then reject. Otherwise, accept.
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Algorithm 1 is a degenerate version of the bipartite tester presented in the book (i.e., Algo-
rithm 9.20). Specifically, we perform only one iteration of the main loop (rather than O(1/ǫ)
iterations), start it at an arbitrary vertex (rather than at a random one), and, most importantly, we
take O(

√
k/ǫ/ log k) random walks of length O(log k) (rather than Õ(

√
k) random walks of length

poly(ǫ−1 log k)). Hence, the time (and query) complexity of Algorithm 1 is m · ℓ · log d = O(
√

k/ǫ),
where the log d factor is due to determining the degree of each vertex encountered in the random
walk (before selecting a neighbor at random) and it can be avoided when taking a lazy random
walk (as performed in the analysis anyhow).

The analysis

As in the book, we actually consider lazy random walks rather than genuine random walks. Recall
that a lazy random walk (as in Definition 2) traverses each of the incident edges with probability
1/2d, and stays in the current vertex otherwise.

The rapid mixing feature that we assume here is natural but somewhat stronger than the one
used in the book. It asserts that for every vertex v ∈ [k] and number of steps t ∈ [2ℓ], a lazy
random walk of length t starting at s reaches v with probability at most 1

k + exp(−Ω(t)), which
implies the original rapid mixing condition for ℓ = O(log k).1

Definition 2 (the rapid mixing feature): Let (v1, ..., vt)←RWt(v0) be an t-step lazy random walk
(on G = ([k], E)) starting at v0; that is, for every {u, v} ∈ E and every i ∈ [t], it holds that

Pr(v1,...,vt)←RWt(v0)[vi = v|vi−1 = u] =
1

2d
(1)

Pr(v1,...,vt)←RWt(v0)[vi = u|vi−1 = u] = 1− dG(u)

2d
(2)

where dG(u) denotes the degree of u in G. Then, the graph G is said to be rapidly mixing if, for
every t ∈ N and v0, v ∈ [k], it holds that

Pr(v1,...,vt)←RWt[v0][vt = v] <
1

k
+ exp(−Ω(t)). (3)

Note that if the graph is an expander, then it is rapidly mixing.

Lemma 3 (analysis of Algorithm 1): Suppose that m · ℓ = Ω(
√

k/ǫ) and m = Ω(1/ǫ). If the graph
G is rapidly mixing and ǫ-far from Bipartite, then Algorithm 1 rejects with probability at least 2/3.

The key quantities in the analysis are the following probabilities that refer to the parity of the length
of a path obtained from the lazy random walk by omitting the self-loops (transitions that remain
at the current vertex). Let pt,0(v) (respectively, pt,1(v)) denote the probability that a lazy random
walk of length t, starting at s, reaches v while making an even (respectively, odd) number of real
(i.e., non-self-loop) steps. That is, for every t ∈ N, σ ∈ {0, 1} and v ∈ [k],

pt,σ(v)
def
= Pr(v1,...,vt)←RWt(s)[vt =v ∧ |{i ∈ [t] : vi 6= vi−1}| ≡ σ (mod 2)] (4)

1The original rapid mixing condition is stated in Eq. (9.5). Actually, it suffices to strengthen the original rapid
mixing condition by augmenting it with the requirement that, for any v ∈ [k] and t ∈ [2ℓ], a lazy random walk of
length t starting at s reaches v with probability at most O(1/t3).
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The path-parity of the walk (v1, ..., vt) is defined as |{i ∈ [t] : vi 6= vi−1}| mod 2. (Note that pℓ,σ

coincides with pσ as defined in the book.)
By the rapid mixing assumption (for every v ∈ [k]), it holds that for every t ∈ [ℓ+1, 2ℓ] it holds

that
1

2k
< pt,0(v) + pt,1(v) <

2

k
. (5)

Letting pσ(v)
def
=

∑2ℓ
t=ℓ+1 pt,σ, we consider two cases regarding the sum

∑
v∈[k] p0(v)p1(v): If the

sum is (relatively) “small”, then we show that [k] can be 2-partitioned so that there are relatively
few edges between vertices that are placed in the same side, which implies that G is close to being
bipartite. Otherwise (i.e., when the sum is not “small”), we show that, with significant probability,
when Step 2 is started at vertex s, it is completed by rejecting G. These two cases are analyzed in
the following two (corresponding) claims.

Claim 3.1 (a small sum implies closeness to being bipartite): Suppose
∑

v∈[k] p0(v)p1(v) ≤ 0.01ℓ2·
ǫ/k. Let V1

def
= {v ∈ [k] : p0(v) < p1(v)} and V2 = [k] \ V1. Then, the number of edges with both

end-points in the same Vσ is bounded above by ǫdk/2, which implies that G is ǫ-close to being
bipartite.

Proof Sketch: Consider an edge {u, v} such that both u and v are in the same Vσ, and assume,
without loss of generality, that σ = 1. Then, by the (lower bound of the) rapid mixing hypothesis,
both p1(v) and p1(u) are greater than 1

2 · ℓ
2k (since pt,0(v) + pt,1(v) ≥ 2

k for every t ∈ [ℓ + 1, 2ℓ]).
Using observations as in the book, we infer that p0(v) > 1

3d · p1(u) (since pt,0(v) > 1
3d · pt,1(v) for

every t ∈ [ℓ + 1, 2ℓ]). Thus, the edge {u, v} contributes at least p1(u)
3d · p1(v) ≥ (ℓ/4k)2

3d to the sum
∑

w∈[k] p0(w)p1(w). It follows that we can have at most 0.01ℓ2·ǫ/k
ℓ2/(48dk2)

< ǫdk/2 such edges, and the

claim follows.

Claim 3.2 (a large sum implies high rejection probability): Suppose
∑

v∈[k] p0(v)p1(v) ≥ 0.01ℓ2 ·
ǫ/k, and that Step 2 is executed with vertex s. If m · ℓ = Ω(

√
k/ǫ) and m = Ω(1/ǫ), then, with

probability at least 2/3, the set R0 ∩R1 is not empty (and rejection follows).

Proof: Consider the probability space defined by an execution of Step 2 (with start vertex s). For
every i 6= j such that i, j ∈ [m] and every t0, t1 ∈ [ℓ+ 1, 2ℓ], we define an indicator random variable
ζ(i,t0),(j,t1) representing the event that the vertex encountered in the tth0 step of the ith walk equals

the vertex encountered in the tth1 step of the jth walk, and that the t0-step prefix of the ith walk has
an even path-parity whereas the t1-step prefix of the jth walk has an odd path-parity. Recalling the
definition of the pt,σ(v)’s, observe that Pr[ζ(i,t0),(j,t1) =1] =

∑
v∈[k] pt0,0(v)pt1,1(v). Hence,

∑

i6=j

∑

t0,t1∈[ℓ+1,2ℓ]

E[ζ(i,t0),(j,t1)] = m(m− 1) ·
∑

t0,t1∈[ℓ+1,2ℓ]

∑

v∈[k]

pt0,0(v)pt1,1(v)

= m(m− 1) ·
∑

v∈[k]

p0(v)p1(v)

>
600k

ℓ2 · ǫ ·
∑

v∈[k]

p0(v)p1(v)

≥ 6
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where the first inequality is due to the setting of m, and the second inequality is due to the claim’s
hypothesis. Note that Pr[|R0 ∩ R1|> 0] ≥ Pr[

∑
i6=j

∑
t0,t1∈[ℓ+1,2ℓ] ζ(i,t0),(j,t1) > 0], since whenever

the event captured by the ζ(i,t0),(j,t1) holds it is the case that the tth0 vertex of the ith walk (which

equals the tth1 vertex of the jth walk) resides in R0 ∩R1.
Intuitively, the sum of the ζ(i,t0),(j,t1)’s should be positive, with high probability, since the

expected value of the sum is large enough and the ζ(i,t0),(j,t1)’s are “sufficiently independent” (almost
all pairs of ζ(i,t0),(j,t1)’s are independent). The intuition is indeed correct, but proving it is less
straightforward than it seems, since the ζ(i,t0),(j,t1)’s are not pairwise independent. Yet, since the sum
of the covariances of the dependent ζ(i,t0),(j,t1)’s is quite small, Chebyshev’s Inequality is still very
useful. Specifically, let ζi,j =

∑
t0,t1∈[ℓ+1,2ℓ] ζ(i,t0),(j,t1), and note that E[ζi,j] =

∑
v∈[k] p0(v)p1(v),

since

E




∑

t0,t1∈[ℓ+1,2ℓ]

ζ(i,t0),(j,t1)


 =

∑

v∈[k]

∑

t0,t1∈[ℓ+1,2ℓ]

pt0,0(v)pt1,1(v)

=
∑

v∈[k]

p0(v)p1(v).

Then, letting µ
def
= E[ζi,j] =

∑
v∈[k] p0(v)p1(v), and ζi,j

def
= ζi,j − µ, we get:

Pr



∑

i6=j

ζi,j = 0


 <

V

[∑
i6=j ζi,j

]

(m(m− 1) · µ)2

=
1

m2(m− 1)2µ2
·

∑

i1 6=j1,i2 6=j2

E
[
ζi1,j1ζi2,j2

]

We partition the terms in the last sum according to the number of distinct elements such that, for
t ∈ {2, 3, 4}, we let (i1, j1, i2, j2) ∈ St ⊆ [m]4 if and only if |{i1, j1, i2, j2}| = t (and i1 6=j1 ∧ i2 6=j2).
Hence,

Pr




∑

i6=j

ζi,j = 0


 <

1

m2(m− 1)2µ2
·

∑

t∈{2,3,4}

∑

(i1,j1,i2,j2)∈St

E
[
ζi1,j1ζi2,j2

]
(6)

Now, note that if i1 = j2 (resp., i2 = j1), then E[ζi1,j1ζi2,j2] ≤ E[ζi1,j1ζi2,j2] = 0, where the equality
is due to the fact that in this case ζi1,j1 = 1 and ζi2,j2 = 1 make conflicting requirements of the path-
parity of walk number i1 = j2 (resp., i2 = j1). Hence, rather than summing over the St’s, we can
sum over the following S′t’s defined such that (i1, j1, i2, j2) ∈ S′t ⊆ St if and only if i1 6= j2 ∧ i2 6= j1.
Furthermore, the contribution of each element in S′4 = S4 to the sum is zero, since the four walks
are independent and so E[ζi1,j1ζi2,j2] = E[ζi1,j1] · E[ζi2,j2] = 0. Plugging all of this into Eq. (6), we
get

Pr



∑

i6=j

ζi,j = 0


 <

1

m2(m− 1)2µ2
·

∑

t∈{2,3}

∑

(i1,j1,i2,j2)∈S′

t

E
[
ζi1,j1ζi2,j2

]

=
1

m2(m− 1)2µ2
·




∑

i6=j

E

[
ζ
2
i,j

]
+

∑

i1,i2,i3:|{i1,i2,i3}|=3

(
E

[
ζi1,i2ζi1,i3

]
+ E

[
ζi1,i2ζi3,i2

])


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<
1

(m− 1)2µ2
· E[ζ2

1,2] +
1

(m− 1)µ2
· (E[ζ1,2ζ1,3] + E[ζ1,2ζ3,2]) (7)

where in the inequality uses E[ζi1,j1ζi2,j2] ≤ E[ζi1,j1ζi2,j2] and |{(i1, i2, i3) ∈ [m3] : |{i1, i2, i3}| =
3}| < m2 ·(m−1). The obvious upper bound on the first term (which uses E[η2

1,2] ≤ E[η1,2 ·ℓ] = ℓ·µ)
is not good enough. Hence, we upper-bound the first term of Eq. (7) by using

E[ζ2
1,2] =

∑

t0,t1,t2,t3∈[ℓ+1,2ℓ]

E[ζ(1,t0),(2,t1)ζ(1,t2),(2,t3)]

≤ 2 ·
∑

i≥0

∑

t0,t1,t3∈[ℓ+1,2ℓ]:|t1−t3|≤i

E[ζ(1,t0),(2,t1)ζ(1,t0+i),(2,t3)]

+2 ·
∑

i≥0

∑

t0,t1,t2∈[ℓ+1,2ℓ]:|t0−t2|≤i

E[ζ(1,t0),(2,t1)ζ(1,t2),(2,t1+i)]

≤ 2 ·
∑

t0,t1∈[ℓ+1,2ℓ]

E[ζ(1,t0),(2,t1)]




∑

i≥0

∑

t3∈[t1−i,t1+i]

Pr[ζ(1,t0+i),(2,t3) = 1|ζ(1,t0),(2,t1) = 1]

+
∑

i≥0

∑

t2∈[t0−i,t0+i]

Pr[ζ(1,t2),(2,t1+i) = 1|ζ(1,t0),(2,t1) = 1]




where the first inequality is justified by letting i = max(|t0−t2|, |t1−t3|). For every t0, t1 ∈ [ℓ+1, 2ℓ]
and t3, the event represented by [ζ(1,t0+i),(2,t3) = 1|ζ(1,t0),(2,t1) = 1] corresponds to a second collision

of the first walk with the second walk, when given that a first collision has occured (at the tth0 step
of the first walk). Fixing the second walk and conditioning on the first collision, by the strong
rapid mixing feature, the ti + ith step of first walk hits the relevant vertex with probability at
most O(1/(i + 1)3). The same considerations apply to the events represented by [ζ(1,t2),(2,t1+i) =
1|ζ(1,t0),(2,t1) = 1] (except that here we fix the first walk and look at a second collision that occurs

at the t1 + ith step of the second walk). Hence,

E[ζ2
1,2] ≤ 2 ·

∑

t0,t1∈[ℓ+1,2ℓ]

E[ζ(1,t0),(2,t1)] · 2
∑

i≥0

(2i + 1) ·O(1/(i + 1)3)

= O(µ) ·
∑

i≥0

(1/(i + 1)2)

= O(µ),

where the equality uses
∑

t0,t1∈[ℓ+1,2ℓ] E[ζ(1,t0),(2,t1)] = µ.
For the second term of Eq. (7), we observe that E[ζ1,2ζ1,3] = Pr[ζ1,2 =ζ1,3 =1] is upper-bounded

by Pr[ζ1,2 =1] = µ times the probability that the one of the last ℓ vertices of the third walk appears
as one of the last ℓ vertices of the first path, since ζ1,3 = 1 mandates the latter event. Using the
(upper bound of the) rapid mixing hypothesis, we upper-bound the latter probability by 2ℓ2/k, and
obtain E[ζ1,2ζ2,3] ≤ µ · 2ℓ2/k. (Ditto for E[ζ1,2ζ3,2].) Plugging all of this into Eq. (7), we get
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Pr[|R0 ∩R1| = 0] ≤ Pr




∑

i6=j

ζi,j = 0




<
O(µ)

(m− 1)2µ2
+

2

(m− 1)µ2
· 2ℓ

2µ

k

=
O(1)

(m− 1)2µ
+

4ℓ2

(m− 1)µk

<
1

3

where the last inequality uses µ ≥ 0.01ℓ2 · ǫ/k and mℓ = Ω(
√

k/ǫ) (and m = Ω(ǫ−1)), which imply
m2µ = Ω(1) and m · µk = Ω(ǫ−1 · ℓ2ǫ). The claim follows.
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