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Summary. In this note we present a proof that the variation distance up to relabeling is upper-
bounded by the “relative earth mover distance” (to be defined below). The relative earth mover
distance was introduced by Valiant and Valiant [VV11], and was extensively used in their work.
The foregoing claim was made in [VV11], but was not used there. The claim appears a special case
of [VV15, Fact 1] (i.e., the case of τ = 0). The proof we present is merely an elaboration of (this
special case of) the proof presented by Valiant and Valiant in [VV15, Apdx A].

1 Definitions

We start by introducing some definitions and notations.

Definition 1 (Histograms and relative histograms for distributions) For a distribution p :

[n] → [0, 1], the corresponding histogram, denoted hp: [0, 1] → N, such that hp(x)
def
= |{i ∈ [n] :

p(i) = x}| for each x ∈ [0, 1]. The corresponding relative histogram, denoted hR
p : [0, 1] → R, satisfies

hR
p (x) = hp(x) · x for every x ∈ [0, 1].

That is, hp(x) equals the number of elements in p that are assigned probability mass x, whereas
hR

p (x) equals the total probability mass assigned to these elements. Hence, hp(0) may be positive,

whereas hR
p (0) is always zero.

For a non-negative function h, let S(h)
def
= {x : h(x) > 0} denote the support of h. Observe that

for any distribution p : [n] → [0, 1] we have that
∑

x∈S(hp) hp(x) = n and
∑

x∈S(hR
p ) hR

p (x) = 1. Also

note that S(hR
p ) = S(hp) \ {0}.

The following definition interprets the distance between non-negative functions h and h′ as the
cost of transforming h into h′ by moving m(x, y) units from x in h to y in h′ (for every x ∈ S(h)
and y ∈ S(h′)), where the cost of moving a single unit from x to y is either |x − y| or | log(x/y)|
(depending on the distance).
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Definition 2 (Earth-Mover Distance and Relative Earth-Mover Distance) For a pair of
non-negative functions h and h′ over [0, 1] such that

∑
x∈S(h) h(x) =

∑
x∈S(h′) h′(x), the earth-mover

distance between them, denoted EMD(h, h′), is the minimum of

∑

x∈S(h)

∑

y∈S(h′)

m(x, y) · |x − y| ,

taken over all non-negative functions m:S(h) × S(h′) → R that satisfy:

• For every x ∈ S(h), it holds that
∑

y∈S(h) m(x, y) = h(x), and

• For every y ∈ S(h′), it holds that
∑

x∈S(h′) m(x, y) = h′(y).

The relative earth-mover distance between h and h′, denoted REMD(h, h′), is the minimum of

∑

x∈S(h)

∑

y∈S(h′)

m(x, y) · | log(x/y)| ,

subject to the same constraints on m as for EMD.

The term earth-mover comes from viewing the functions as piles of earth, where for each x ∈ S(h)
there is a pile of size h(x) in location x and similarly for each y ∈ S(h′) there is a pile of size h′(y)
in location y. The goal is to transform the piles defined by h so as to obtain the piles defined by h′,
with minimum “transportation cost”. Specifically, m(x, y) captures the possibly fractional number
of units transferred from pile x in h to pile y in h′. For EMD the transportation cost of a unit from
x to y is |x−y| while for REMD it is | log(x/y)|. In what follows, for a pair of distributions p and q
over [n] we shall apply EMD to the corresponding pair of histograms hp and hq, and apply REMD
to the corresponding relative histograms hR

p and hR
q .

Variation distance up to relabeling, as defined next, is a natural notion in the context of testing
properties of symmetric distributions (i.e., properties that are invariant under relabeling of the
elements of the distribution).

Definition 3 (Variation Distance up to Relabeling) For two distributions p and q over n,
the variation distance up to relabeling between p and q, denoted VDR(p, q), is the minimum over all
permutations σ over [n] of

1

2

n∑

i=1

|p(i) − q(σ(i))| .

2 Proofs

Our goal is to present a proof of the following result.

Theorem 4 (special case of Fact 1 in [VV15]) For every two distributions p and q over [n],
it holds that

VDR(p, q) ≤ REMD(hR
p , hR

q ) .

The proof will consist of two steps (captured by lemmas):
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1. VDR(p, q) = 1
2 · EMD(hp, hq).

2. EMD(hp, hq) ≤ 2 · REMD(hR
p , hR

q ).

Actually, we start with the second step.

Lemma 5 For every two distributions p and q over [n],

EMD(hp, hq) ≤ 2 · REMD(hR
p , hR

q ) .

The following proof shows how to construct, for every transportation function m′ used for the
relative histograms (hR

p and hR
q ) a corresponding transportation function m for the corresponding

histograms (hp and hq) such that the EMD cost of m is at most twice the REMD cost of m′.

Proof: It will be convenient to consider two distributions, p̃ and q̃ that are slight variations of p
and q, respectively. They are both defined over [2n], where p̃(i) = p(i) and q̃(i) = q(i) for every
i ∈ [n], and p̃(i) = q̃(i) = 0 for every i ∈ [2n] \ [n]. Since hR

ep = hR
p and hR

eq = hR
q , we have that

REMD(hR
ep , hR

eq ) = REMD(hR
p , hR

q ). As for hep and heq, they agree with hp and hq, respectively,
everywhere except on 0, where hep(0) = hp(0) + n and heq(0) = hq(0) + n, so EMD(hep, heq) =
EMD(hp, hq) as well. Therefore, it suffices to show that EMD(hep, heq) ≤ 2 · REMD(hR

ep , hR
eq ) .

Let m′ be a function over S(hR
ep )×S(hR

eq ) that satisfies the constraints stated in Definition 2 for

the pair of histograms hR
ep and hR

eq . We next show that there exists a non-negative function m over
S(hep)× S(heq) that satisfies the constraints stated in Definition 2 for the pair of histograms hep and
heq, and also satisfies

∑

x∈S(hep)

∑

y∈S(heq)

m(x, y) · |x − y| ≤ 2 ·
∑

x∈S(hR
ep
)

∑

y∈S(hR
eq
)

m′(x, y) · | log(x/y)| . (1)

Note that the range of m′ is [0, 1], since it is defined over relative histograms, while m is not
upper bounded by 1. However, the constraints on the two functions are related since for every
x ∈ S(hR

ep ) = S(hep)\{0} it is required that
∑

y∈S(hR
eq
) m′(x, y)/x = hep(x) =

∑
y∈S(heq) m(x, y) and for

every y ∈ S(hR
eq ) = S(heq) \ {0} it is required that

∑
x∈S(hR

ep
) m′(x, y)/y = heq(y) =

∑
x∈S(heq) m(x, y).

(Indeed, m is also subjected to constraints on x = 0 and y = 0, whereas m′ is not.)
We now define the function m. For each x ∈ S(hR

ep ), initialize m(x, 0) to 0 and similarly for

each y ∈ S(heq), initialize m(0, y) to 0. For every pair (x, y) ∈ S(hR
ep ) × S(hR

eq ), if m′(x, y) = 0, then
m(x, y) = 0, and otherwise we do the following.

• If x > y, let m(x, y) be set to m′(x, y)/x and increase m(0, y) by mx(0, y)
def
= m′(x, y)/y −

m′(x, y)/x > 0. Observe that m(x, y) · (x− y) = m′(x, y) · (1− y/x) = mx(0, y) · y. Therefore,
the contribution to the left-hand-side of Equation (1) is

m(x, y) · (x − y) + mx(0, y) · (y − 0) = 2m′(x, y) · (1 − y/x) < 2m′(x, y) · log(x/y) ,

where the last inequality is due to the fact that f(z) = log z + (1/z) − 1 > ln z + (1/z) − 1 is
positive for all z > 1.
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• If x < y, let m(x, y) be set to m′(x, y)/y and increase m(x, 0) by my(x, 0)
def
= m′(x, y)/x −

m′(x, y)/y > 0. Similarly to the previous case, m(x, y) · (y − x) = my(x, 0) · x, and the
contribution to the left-hand-side of Equation (1) is

m(x, y) · (y − x) + my(x, 0) · (x − 0) = 2m′(x, y) · (1 − x/y) < 2m′(x, y) · log(y/x) .

• If x = y, let m(x, y) = m′(x, y)/x (= m′(x, y)/y). In this case both m(x, y) · |x − y| = 0 and
m′(x, y) · | log(x/y)| = 0.

Finally, we set m(0, 0) = hep(0) −
∑

y∈S(hR
eq
) m(0, y). To see that m(0, 0) ≥ 0, note that since

hep(0) ≥ n while
∑

y∈S(hR
eq
)

m(0, y) =
∑

y∈S(hR
eq
)

∑

x∈S(hR
ep
)∩(y,1]

mx(0, y) =
∑

y∈S(hR
eq
)

∑

x∈S(hR
ep
)∩(y,1]

m′(x, y)/y ≤ n.

By combining the contribution of all pairs x, y as defined above, Equation (1) holds.
It remains to verify that m satisfies the constraints in Definition 2. For each x ∈ S(hep) \ {0},

∑

y∈S(heq)

m(x, y) = m(x, 0) +
∑

y∈S(heq)∩(0,x]

m(x, y) +
∑

y∈S(heq)∩(x,1]

m(x, y)

=
∑

y∈S(hR
eq
)∩(x,1]

my(x, 0) +
∑

y∈S(hR
eq
)∩(0,x]

m(x, y) +
∑

y∈S(hR
eq
)∩(x,1]

m(x, y)

=
∑

y∈S(hR
eq
)∩(x,1]

(
1

x
−

1

y

)
· m′(x, y) +

∑

y∈S(hR
eq
)∩(0,x]

m′(x, y)

x
+

∑

y∈S(hR
eq
)∩(x,1]

m′(x, y)

y

=
∑

y∈S(hR
eq
)

m′(x, y)

x
= hep(x) .

Similarly, for each y ∈ S(heq) \ {0},
∑

x∈S(hep)

m(x, y) = m(0, y) +
∑

x∈S(hep)∩(0,y]

m(x, y) +
∑

x∈S(hep)∩(y,1]

m(x, y)

=
∑

x∈S(hR
eq
)∩(y,1]

mx(0, y) +
∑

x∈S(hR
eq
)∩(0,y]

m(x, y) +
∑

x∈S(hR
eq
)∩(y,1]

m(x, y)

=
∑

x∈S(hR
eq
)∩(y,1]

(
1

y
−

1

x

)
· m′(x, y) +

∑

x∈S(hR
eq
)∩(0,y]

m′(x, y)

y
+

∑

x∈S(hR
eq
)∩(y,1]

m′(x, y)

x

=
∑

x∈S(hR
ep
)

m′(x, y)

y
= heq(y) .

We defined m(0, 0) such that
∑

y∈S(heq) m(0, y) = m(0, 0) +
∑

y∈S(hR
eq
) m(0, y) = hep(0), and

∑

x∈S(hep)

m(x, 0) =
∑

x∈S(hep)

∑

y∈eq

m(x, y) −
∑

x∈S(hep)

∑

y∈S(heq)\{0}

m(x, y) = 2n −
∑

y∈S(heq)

heq(y) = heq(0) ,

and the proof is completed.

4



Lemma 6 For every two distributions p and q over [n],

VDR(p, q) =
1

2
· EMD(hp, hq) .

Intuitively, there is a one-to-one correspondence between integer-valued transportation functions m
as in Definition 2 and the relabeling permutations σ used in Definition 3. The core of the following
proof is showing that integer-value transportation functions m obtain the minimum for EMD.

Proof: Consider a constrained version of the earth-mover distance in which we also require that
m(x, y) is an integer for every x ∈ S(hp) and y ∈ S(hq), and denote this distance measure by IEMD.
Using the definition of VDR and IEMD, one can verify that VDR(q, p) = 1

2 · IEMD(hp, hq), since
there is a correspondence between the permutation σ used in Definition 3 and the integer movement
in EMD. (The factor of 1/2 is due to the fact that the variation distance between distributions
equals half the L1-norm between them.)

It therefore remains to prove that EMD(hp, hq) = IEMD(hp, hq); that is, the function m that
obtains the minimum of the EMD objective function has integer values. To this end, we define a
specific integer-valued function m (based on a simple iterative assignment procedure), and show
that it is optimal.

Initially, m(x, y) = 0 for every x ∈ S(hp) and y ∈ S(hq). We also initialize s(x) = hp(x) for
every x ∈ S(hp), and d(y) = hq(y) for every y ∈ S(hq). (Intuitively, s(x) is the supply of x, and
d(y) is the demand of y.) Note that

∑
x∈S(hp) s(x) = n =

∑
y∈S(hq) d(y). In each iteration, we

consider the smallest x ∈ S(hp) for which s(x) > 0 and the smallest y ∈ S(hq) for which d(y) > 0,
set m(x, y) = min{s(x), d(y)} and reduce both s(x) and d(y) by m(x, y). Hence, all intermediate
values of m (as well as s and d) are integers. (We note that an equivalent definition of m can be
obtained by considering the mapping σ from [n] to [n] that maps the ith smallest p-value to the ith

smallest q-value.)1 By its construction, the function m satisfies the constraints of Definition 2.
To verify that the resulting function m is an optimal setting for EMD, consider any other

non-negative function ℓ over S(hp) × S(hq) that satisfies the constraints of Definition 2. Actually,
among all such functions ℓ consider only those that agree with m on the longest prefix of pairs
(x, y) according to the lexicographical order on pairs, and let (x∗, y∗) be the first pair on which ℓ
and m differ; that is, ℓ(x∗, y∗) 6= m(x∗, y∗) whereas ℓ(x, y) = m(x, y) for every (x, y) < (x∗, y∗).
Furthermore, among all such functions ℓ, select one for which |ℓ(x∗, y∗)−m(x∗, y∗)| is minimal. We
shall show that ℓ = m.

Assume towards the contradiction that ℓ 6= m, and let (x∗, y∗) be as above. We first prove
that ℓ(x∗, y∗) < m(x∗, y∗). Towards this end, we consider the supply of x∗ and the demand of
y∗ just before m(x∗, y∗) is determined; that is, s(x∗) = hp(x

∗) −
∑

y<y∗ m(x∗, y) and d(y∗) =
hq(y

∗) −
∑

x<x∗ m(x, y∗). Recalling that m(x∗, y∗) = min(s(x∗), d(y∗)), we note that if ℓ(x∗, y∗) >
m(x∗, y∗) = s(x∗), then

∑
y≤y∗ ℓ(x∗, y) =

∑
y<y∗ m(x∗, y) + ℓ(x∗, y∗) > hp(x

∗), which means that ℓ
violates a constraint of Definition 2. A similar contradiction is obtained by assuming that ℓ(x∗, y∗) >
m(x∗, y∗) = d(y∗), when in this case we get

∑
x≤x∗ ℓ(x, y∗) > hq(x

∗).
Having shown that ℓ(x∗, y∗) < m(x∗, y∗). we now derive a function ℓ′ that violates the “min-

imality” of ℓ. Specifically, ℓ(x∗, y∗) < m(x∗, y∗) (combined with ℓ(x, y) = m(x, y) for every
(x, y) < (x∗, y∗)) implies that there exists x′ > x∗ such that ℓ(x′, y∗) > m(x′, y∗) and y′ > y∗

such that ℓ(x∗, y′) > m(x∗, y′). Letting c = min(m(x, y) − ℓ(x∗, y∗), ℓ(x′, y∗), ℓ(x∗, y′)) > 0, define

1That is, letting πp and πq be permutations over [n] such that p(πp(i)) ≤ p(πp(i + 1)) and q(πq(i)) ≤ q(πq(i + 1))
for every i ∈ [n − 1], define σ(πp(i)) = πq(i) for every i ∈ [n].
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ℓ′ as equal to ℓ on all pairs except for the following four pairs that satisfy ℓ′(x∗, y∗) = ℓ(x∗, y∗) + c,
ℓ′(x′, y∗) = ℓ(x′, y∗) − c, ℓ′(x∗, y′) = ℓ(x∗, y′) − c, and ℓ′(x′, y′) = ℓ(x′, y′) + c. Then, ℓ′ preserves
the constraints of Definition 2, but ℓ′(x, y) = ℓ(x, y) = m(x, y) for every (x, y) < (x∗, y∗) and
|ℓ′(x∗, y∗)−m(x∗, y∗)| = |ℓ(x∗, y∗)−m(x∗, y∗)| − c, in contradiction to the choice of ℓ, since c > 0.

3 Comments

As noted in [VV11], there exist distributions p and q for which VDR(hp, hq) ≪ REMD(hR
p , hR

q ).
The source of this phenomenon is the unbounded cost of transportation under the REMD (i.e.,
transforming a unit of mass from x to y costs | log(x/y)|). For example, for any ǫ ∈ [0, 0.5],
consider the pair (p, q) such that p is uniform over [n] (i.e., p(i) = 1/n for every i ∈ [n]) and q is
extremely concentrated on a single point in the sense that q(n) = 1 − ǫ and q(i) = ǫ/(n − 1) for
every i ∈ [n − 1]. Then, the variation distance between p and q is n−1

n
− ǫ, but the REMD is at

least n−1
n

· log(1/ǫ).
This phenomenon is reflected in the proof of Lemma 5 at the point we used the inequality

1 − (1/z) < log z for z > 1. This inequality becomes more crude when z grows.
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