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Abstract

We provide an overview of the doubly-efficient interactive proof systems of Reingold, Roth-
blum, and Rothblum (STOC, 2016). Recall that by their result, any set that is decidable in
polynomial-time by an algorithm of space complexity s(n) ≤ n0.499, has a constant-round in-
teractive proof system in which the prover runs polynomial time and the verifier runs in time
Õ(n).
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1 A brief introduction

Loosely speaking, doubly-efficient interactive proof systems are interactive proof systems in which
the prescribed prover runs in polynomial-time, whereas the prescribed verifier runs in almost-linear-
time.1 We stress that the soundness condition of these systems is information theoretic; that is, it
refers to all possible cheating strategies (and not only to feasible ones (as in argument systems)).

The notion of a doubly-efficient interactive proof systems was first defined by Goldwasser,
Kalai, and Rothblum [7], who presented such systems for sets having log-space uniform circuits
of polynomial size and d(n) = nO(1) depth. This result is actually incomparable to a recent
result of Reingold, Rothblum, and Rothblum [10] that provides a (constant-round) doubly-efficient
interactive proof systems for sets that are decidable in simultaneous polynomial time and s(n) =
nO(1) space. Our focus is on this later result, which asserts the following –

Theorem 1 (doubly-efficient interactive proof systems for SC): Suppose that S is decidable by an
algorithm that runs in polynomial time and has space complexity s. Then, for any constant δ > 0,
the set S has an interactive proof system with exp(Õ(1/δ)) rounds in which the prescribed prover
strategy runs in polynomial-time while the verifier runs in (Õ(n) + poly(s(n)) · nδ)-time.

Actually, the unspecified polynomial in [10] is almost quadratic (priv. comm. with the authors
of [10], May 2017). The proof of Theorem 1 spans 70 pages in [10], and in this note we merely
attempt to present an overview of it.

2 High level structure

Theorem 1 is proved by considering the instantaneous configurations of a space bounded algorithm.
The interactive proof system will refer to claims of the form on input x, machine M moves from
configuration γ to configuration γ′ in t steps. The initial claim refers to the case that γ ∈ {0, 1}s(|x|)
and γ′ ∈ {0, 1}s(|x|) are the initial and accepting configurations of M , respectively, and that t ≤
poly(|x|).

The core of the proof of Theorem 1 is reducing the construction of an interactive proof system
for a claim regarding t-step computations (of a space-bounded machine) to the construction of an
interactive proof system for a claim regarding t/k-step computations (of such a machine), where k
is a parameter (e.g., k = nδ or so). This is done by having the prover send γ1, ..., γk−1 ∈ {0, 1}s and
prove that, for every i ∈ [k], on input x, machine M moves from configuration γi−1 to configuration
γi in t/k steps, where γ0 = γ and γk = γ′.

Hence, we have reduced proving a single claim regarding a t-long computation of M to k
claims regarding t/k-long computations of M . But have we gained anything? This depends on
whether we can perform k verifications (regarding t/k-long computations) at a cost that is lower
than performing each of these verifications separately. In other words, we seek a batch verification
procedure in which verifying k claims is cheaper than verifying each of the claims separately.

To see that batch verification is not a pipe dream, consider the task of proving k claims that
are each in PSPACE . That is, for a fixed set S ∈ PSPACE , given x1, ..., xk ∈ {0, 1}n, we wish to
prove (∀i ∈ [k]) xi∈S. Then, the complexity of verifying the latter claim by employing the proof

1Such proof systems were called interactive proofs for muggles [7] and interactive proofs for delegating computa-
tion [10]. Here, we interpret the term “almost linear (in n)” as having the form n1+o(1).
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system of [9, 11] is only moderately larger than the complexity of verifying membership in S using
this generic construction. Specifically, suppose that S has space complexity s(n), and recall that
verification via the generic system of [9, 11] takes time that is proportional to s(n)4. Then, the
time complexity of batch verification k claims (each of length n) is proportional to (s(n) + log k)4,
which is only moderately larger than s(n)4.

The following result provides a batch verification procedure (or rather an interactive proof for
batch verification) for any set that has an interactive proof system of a certain type, where the
nature of this type will remain unspecified momentarily.2 We shall denote the length of a single
instance by n, and the number of instances by k(n). For a set S and k : N→ N, we let

Sk = ∪n∈N{(x1, ..., xk(n)) ∈ {0, 1}k(n)·n : (∀i∈ [k(n)])xi∈S}. (1)

Theorem 2 (batch verification for certain interactive proof systems): For c : N → N and a
constant ` ∈ N, suppose that S has an `-round interactive proof system of a particular type T
with total communication c, poly-logarithmic verification time, and polynomial-time prover strategy.
Then, for every constant α > 0 and k : N → N, the set Sk has an O(`/α)-round interactive proof
system of type T with total communication Õ(kα · c + k), poly-logarithmic verification time, and
polynomial-time prover strategy.

Using Theorem 2, the construction of the proof system asserted in Theorem 1 can be recursively
presented as follows.

Construction 3 (recursive description of the interactive proof system): Let n, s, t, k ∈ N, where
s = s(n) and k < t, and fixed M and x ∈ {0, 1}n. To prove that on input x, machine M moves in
t steps from configuration γ0 ∈ {0, 1}s to configuration γk ∈ {0, 1}s, the parties proceed as follows.

1. The prover sends γ1, ..., γk−1 ∈ {0, 1}s such that, for every i ∈ [k], it holds that on input x,
machine M moves in t/k steps from configuration γi−1 to configuration γi.

In order to support the hypothesis made in the next step, each γi is sent using an error
correcting code. In addition, we also assume that x is presented by such a code.

2. The parties invoke an interactive proof system in order to verify the foregoing claim regarding
the γi’s, where the ith claim refers to moving from γi−1 to γi (in t/k steps on input x).3 This
interactive proof system is obtained by applying Theorem 2 to the interactive proof system
that refers to t/k step computation, where the latter is obatined by a recursive call. Recall
that Theorem 2 requires that the latter system be of type T .

Hence, at the bottom of the recursion we have communication complexity poly(s), at its jth

level (from the bottom) we have communication complexity O(kjα ·poly(s)+k(j−1)α+1), where
α is the constant in Theorem 2 and the recusion has logk t levels. Using k(logk t)·α = tα, at the
top level of the recursion, this yields communication complexity O(tα · (poly(s) + k)), whereas
verification time is poly-logarithmic, proving time is polynomial, and the number of rounds is
O(1/α)logk t.

2Readers who are too curious to wait may note that the said type is restricted to public coin systems that are
“unambiguous” (akin to the notion of unique solutions in NP-proof systems) and support local checking of the prover
messages (akin to PCPs (or rather PCPPs)).

3Hence, the input to the ith claim is xi = (x, γi−1, γi).
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In order to support the use of the derived system in subsequent recursive calls, we will show that
the derived system is indeed of type T .

Theorem 1 follows by combining Construction 3 with Theorem 2, while setting α = δ/O(1) and
k = nδ. (Actually, Construction 3 is invoked after letting the verifier encode x as well as the initial
and accepting configurations under an error correcting code.)

In light of Construction 3, we focus on the proof of Theorem 2. We start with the simple case
in which the set has an NP-proof system, which holds at the very bottom of the recursion but not
at higher levels.

3 Warm-up: Batch verification for NP

We start by introducing two of the restrictions that make up the foregoing type T of proof systems.
The first restriction asserts that a convincing prover strategy is essentially unique; that is, if the
prover wishes to convince the verifier of the fact that x ∈ S, then it has no choice but to follow a
unique strategy. In the case of NP-proof systems, this means that the NP-witness is unique; that
is, S ∈ UP.

The second restriction is that verification can be performed in poly-logarithmic time provided
that the input is presented in encoded form, under a suitable error correcting code. This condition
is satisfied by a variety of PCPP systems, starting from the ones based on Reed-Muller encoding
(cf., [2, 5], as interpreted by [3, 4]). Readers that are unfamiliar with PCPPs (i.e., PCPs of
Proximity), may consider standard PCP systems and verification in almost linear time. Actually,
for simplicity we shall just do that, while focusing on the communication complexity of the derived
interactive proof system for batch verifieraction.

Hence, our starting point is a set S ∈ UP and a corresponding PCP system. Actually, we
shall assume that the PCP system uses input-oblivious queries; that is, its queries are determined
non-adaptively based solely on its internal coin tosses, and only the final decision depends on its
actually input.4 Such PCP systems are known and can be derived from any PCPP system.

Theorem 4 (batch verification for UP): For c : N → N and a constant ` ∈ N, suppose that
S ∈ UP has a PCP system that uses input-oblivious queries and proofs of length c. Then, for every
constant α > 0 and k : N→ N, the set Sk has an O(1/α)-round interactive proof system with total
communication O(kα · c+ k).

Proof Sketch: For a parameter d ≤ k to be determined (e.g., d =
√
k), consider a parity-check

function F : {0, 1}k → {0, 1}O(d log k) such that for every y ∈ {0, 1}k and v ∈ {0, 1}O(d log k) the
Hamming ball of radius d centered at y contains at most a single pre-image of v under F . (Indeed,
in the case d = 1 we can let F (y) be the XOR of the bits of y, and in the general case we can use
a Reed-Solomon code.)

Construction 4.1 (basic construction): On input (x1, ..., xk) ∈ {0, 1}k·n, the proof system proceeds
as follows.

4Hence, these PCP systems are not truly input-oblivious in the sense studied in [6].
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1. Let wi be the unique NP-witness associated with xi, and πi ∈ {0, 1}c(n) be the PCP-oracle
derived from it. (We assume that the NP-witness is easy to extract from the PCP-oracle.)5

For each j ∈ [c(n)], let πi,j denote the jth bit of πi. Then, for every j ∈ [c(n)], the prover
computes vj ← F (π1,j · · ·πk,j), and sends v1, ..., vc(n) to the verifier. Let us denote the values
actually sent by ṽ1, ..., ṽc(n).

Pictorially, the prover forms a k-by-c(n) Boolean matrix such that the ith row equals πi, and
applies the parity check function to each column. These values form a very partial commitment
of the prover to the values of the matrix; once these values are determined, each column is
pseudo-determined in the sense that a valid revealing may either equal the original column or
must differ from it on more than d corruptions.

2. The verifier generates a sequence of queries, j1, ..., jq ∈ [c(n)], for the PCP verifier, denoted V .
It sends this sequence to the prover, who responds with the values of the corresponding columns.
The verifier checks (i) whether the values of these columns match the parity-check values, and
(ii) whether V would have accepted each of the inputs when given the corresponding answers.
Specifically, suppose that the prover answered with (π̃i,ji′ )i∈[k],i′∈[q]. Then, the verifier performs
the following two checks:

(a) For every i′ ∈ [q], it checks whether F (π̃1,ji′ · · · π̃k,ji′ ) = ṽji′ .

(b) For each i ∈ [k], it checks whether V would have accepted xi when making the queries
j1, ..., jq and receiving the answers π̃i,j1 , ..., π̃i,jq .

3. The verifier selects uniformly a set R of O(k/d) rows, sends their indices to the prover, who
provides their contents. The verifier checks that (i) each of these rows equals the PCP-oracle
derived from the unique NP-witness for the corresponding input, and (ii) that the values of
these rows match the values of the columns provided in Step 2. Specifically, denoting the value
of row i as sent in this step by ri, the verifier performs the following two checks (for each
such i ∈ R):

(a) Letting w′i denote the purported NP-witness extracted from ri, the verifier checks that w′i
is a valid NP-witness for xi and that ri is the PCP-oracle derived from w′i.

(b) For every i′ ∈ [q], it checks whether ri,ji′ = π̃i,ji′ , where ri = ri,1 · · · ri,c(n)

The basic intuition is that Step 1 leaves the prover with the option of either cheating in Step 2 on
more than d entries of one of the columns or providing the correct values for all columns. In the
first case, the prover is likely to be caught cheating in Step 3, whereas in the second case it is likely
that V will reject xi 6∈ S (when invoked in Step 2). Before presenting a more orderly analysis,
let us consider the communication complexity of the above system: In Step 1 the prover sends
O(d log k) · c(n) bits, in Step 2 it sends q · k bits, and in Step 3 it sends O(k/d) · c(n) bits. Picking
d =
√
k and q = O(1), we get total communication of Õ(k1/2) · c(n) +O(k). We comment that the

verification time is vastly dominated by Step 3a, whereas the prover’s strategy can be implemented
in polynomial-time (given the NP-witnesses).

Claim 4.2 (soundness of Construction 4.1): Construction 4.1 is an interactive proof system for Sk.

5Indeed, the NP-witness may appear as a prefix of the PCP-oracle. By the PCP-oracle derived from an NP-witness
we mean the PCP-oracle that is outlined in the description of the PCP system, while recalling that all known PCP
systems are described in this matter.
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Proof: Turning to the more orderly analysis of the soundness of Construction 4.1, we assume
without loss of generality that the values provided by the prover satisfy the conditions stated in
Steps 2a and 3b. We consider two cases when referring to the values ṽ1, ..., ṽc(n) provided by the
prover in Step 1.

The first case is that, with probability at least half, over the choice of the query-sequence
(j1, ..., jq) in Step 2, the π̃i,ji′ ’s provided by the prover satisfy |{i ∈ [k] : π̃i,ji′ 6= πi,ji′}| > d for
some i′ ∈ [q], where πi denotes the PCP-oracle derived for xi ∈ S and is defined as the all-zero
string in case xi 6∈ S. In this case, for each query-sequence (j1, ..., jq) that belongs to the majority,
with high probability, the set of rows chosen in Step 3 contains a row i such that π̃i,ji′ 6= πi,ji′ for
some i′ ∈ [q], and so π̃i does not satisfy the condition stated in Step 3a, which causes the verifier
to reject. We stress that the uniqueness of NP-witnesses implies the uniqueness of the PCP-oracles
derived from them, and so π̃i 6= πi implies that the string extracted from π̃i (so that π̃i is derived
from this string) is not a valid NP-witness for xi.

Turning to the complimentary case, where with probability at least half (over the choice of
(j1, ..., jq) made in Step 2) it holds that |{i ∈ [k] : π̃i,ji′ 6= πi,ji′}| ≤ d for every i′ ∈ [q], we let
(π′i,j)i∈[k],j∈[c(n)] denote the unique matrix such that for every j ∈ [c(n)] the string π′1,j · · ·π′k,j
is the unique string that resides in the intersection of the Hamming ball of radius d centered at
π1,j · · ·πk,j and the pre-image of ṽj under F . Hence, with probability at least half (over the choice
of (j1, ..., jq)), for each i ∈ [k], it holds that π̃i,ji′ = π′i,ji′ for every i′ ∈ [q], since π̃1,ji′ · · · π̃k,ji′ resides

in the said Hamming ball and is in the pre-image of ṽji′ under F .6 By the soundness of the PCP
verifier (which is invoked in Step 2b), it follows that xi ∈ S.

Hence, either the verifier rejects with probability at least 1/2 or all xi’s are in S.

Conclusion. By setting d =
√
k, we have established the claim of the theorem for any α > 1/2.

To establish the claim for smaller constant values of α > 0, we use recursion. Specifically, we set
d = kα, and employ Construction 4.1, except that in Step 3 we invoke Construction 4.1 on the
O(k/d) instances that correspond to the selected rows. Hence, we reduce batch verification for k
instances to batch verification for O(k/d) instances. However, the claim to be verified is not only
that xi ∈ S for each selected row i (i.e., i ∈ R), but rather that there exists an NP-witness for
xi such that the PCP-oracle derived from it match the values π̃i,j1 , ..., π̃i,jq received in Step 2 (i.e.,
π̃i,ji′ = yi,ji′ for every i′ ∈ [q], where yi,j is a variable representing the jth bit of the oracle derived
from the NP-witness for xi).

7 After 1/α recursive calls, we just use the straightfoward verification
that is used originally in Step 3.

4 Batch verification for unambiguous IP

The proof of Theorem 4 makes essential use of the hypothesis that each yes-instance has a unique
proof, which in the context of NP means that it has a unique NP-witness. Seeking to extend
Theorem 4 to sets that only have interactive proof systems, we seek an adequate notion of unique
proving strategies, since an interactive strategy is the interactive analogue of a written proof (i.e.,
an NP-witness). Intuitively, we want to require that, at each round, there is at most one prover

6Actually, it suffices to establish a weaker statement asserting that, for each i ∈ [k], it holds that Pr(j1,...,jq)[(∀i
′∈

[q]) π̃i,ji′ = π′i,ji′ }] ≥ 1/2.
7The corresponding NP-claim is that (xi, π̃i,j1 , ..., π̃i,jq ) ∈ S′, which holds if there exists yi = (yi,1, ..., yi,c(n)) such

that yi is the PCP-oracle derived from the NP-witness for xi ∈ S and yi,ji′ = π̃i,ji′ holds for every i′ ∈ [q].

5



message that may lead the verifier to accept. This condition must be phrased while accounting
for the fact that the verifier strategy is probabilistic and consequently the phrase “leading the
verifier to accept” should be given a probabilistic interpretation. Indeed, we require that, at each
round, there is at most one prover message that may lead the verifier to accept with probability at
least 1/2.

Definition 5 (unambiguous interactive proof systems): Let (P, V ) be an interactive proof system,
where P is a deterministic prover strategy that satisfies the (perfect) completeness condition. The
system (P, V ) is called unambiguous if for every partial communication transcript (of V with P )
that ends with a verifier message, there exists at most one prover message such that, in the residual
communication, the verifier accepts with probability at least 1/2. More formally:

Let 〈P ′, V 〉j(x) denote a random variable representing the distribution of the transcripts
of the first j messages in an interaction between P ′ and V on common input x. Then,
assuming that the verifier sends the first message, we require that for every i and every
(α1, β1, ..., αi−1, βi−1, αi, βi) in the support of 〈P, V 〉2i(x) and every P̃ , it holds that

Pr

[
(P̃ , V )(x)=1

∣∣∣∣∣ 〈P̃ , V 〉2i−1(x) = (α1, β1, ..., αi−1, βi−1, αi)

〈P̃ , V 〉2i(x) 6= (α1, β1, ...., αi−1, βi−1, αi, βi)

]
< 1/2, (2)

where (P̃ , V )(x) denotes the output of V after interacting with P̃ on input x.

That is, Eq. (2) asserts that any message other than βi leads the verifier to accept with probability
that is smaller than 1/2, whereas the message βi may lead the verifier to accept with probability 1.8

Note that in the special case of NP-proof systems, Definition 5 means that there is at most one
prover-message (which corresponds to the NP-witness) that makes the (deterministic) verifier ac-
cept. Hence, the notion of unambiguous interactive proof systems is an natural extension of the
notion of an NP-proof asystem with unique proofs (or unique NP-witnesses). We also mention
that the celebrated interactive proof systems for PSPACE (of [9, 11]) are unambiguous, since the
sum-check protocol is unambiguous.9

When seeking batch verification for interactive proof systems, we shall restrict our attention to
public-coin systems [1]. The essential feature of public-coin systems that we use is the fact that
the next message of the verifier can be selected without looking at the previous prover messages.
Furthermore, we use the fact that given the previous messages of the verifier (but not the previous
messages of the prover), one can efficiently sample the distribution of the next verifier message.
Needless to say, these features are trivially satisfied by public-coin interactive proof systems.

Lastly, we need a notion that extends the definition of PCP to the interactive context. Viewing
PCP systems as NP-proof systems that support verification based on inspecting few randomly
selected bits in the NP-witness, we consider (public-coin) interactive proofs systems in which the
final verification is based on inspecting few randomly selected bits in the sequence of prover’s
messages. That is, these proof systems consists of two stages.

8In particular, if x is a yes-instance (i.e., Pr[〈P, V 〉(x)=1] = 1), then the last message in 〈P, V 〉2i(x) is uniquely
determined by the first 2i− 1 messages.

9At the beginning of each round, when one variable in the sum is stripped, there is a unique low-degree univariate
polynomial that describes the residual function. If the prover sends any other polynomial, then it will be caught with
high probability, no matter how it plays in the subsequent rounds.
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1. In the interaction stage, the verifier generates messages obliviously of the prover’s prior mes-
sages, which are merely recorded for future use.

2. In the final verfication stage, which takes place after the entire interaction is completed, the
verifier decides based on inspecting few of the bits sent by the prover (and possiblly based on
its own coin tosses and input). Equivalently, the verifier final decision is based on all messages
sent by the verifier and few probes made into the record of the prover’s messages.

A proof system that satisfies the foregoing condition is called a probabilistically checkable interactive
proof (PCIP). Note that the combination of the unambiguity condition and the probabilistically
checkable condition is problematic; actually, a PCIP cannot be unambiguous (in the strict sense of
Definition 5), since changing a single bit in a message is unlikely to be detected. Still, a natural
relaxation of the unambiguity condition is applicable to PCIP: Rather than requiring that the suc-
cessful proving strategy is unique, we require that all successful prover strategies generate messages
that are close to one another (in Hamming distance). This notion is indeed akin to the definition
of PCPP (see [3, 4]), where the soundness condition holds only with respect to inputs that are far
from the predetermined set.

Observe that unambiguous public-coin interactive proof systems can be transformed into ones
that satisfy the PCIP condition, by having the prover encode its messages under an error correcting
code, and letting the verifier run a PCPP to verify that the original verifier would have accepted
the original messages. That is, the new verifier checks that all messages of the new verifier are valid
codewords, and that they encode messages that would have convinced the original verifier.

Having such a PCIP at our disposal, we employ the ideas that underlie Construction 4.1 to
each round of interaction in the PCIP. Thus, the emulation of a typical round of interaction (of the
PCIP) looks as follows, when referring to the input (x1, ..., xk).

Construction 5.1 (emulation of a single round):

1. Let βi be the (unique) message that the original prover would have sent in the current round
regarding the input xi (when given the history of communication regarding this input).10

For each j ∈ [c(n)], let βi,j denote the jth bit of βi. Then, for every j ∈ [c(n)], the prover
computes vj ← F (β1,j · · ·βk,j), and sends v1, ..., vc(n) to the verifier. Recall that F : {0, 1}k →
{0, 1}O(d log k), where d is the commitment parameter.

(Indeed, note the analogy to Step 1 in Construction 4.1.)

We shall refer to the foregoing k messages as to the matrix of the current round.

2. The verifier answers with a single random message, which will be used in all k copies of the
PCIP emulation.

(Using the same verifier message in all k copies may increase the soundness error by a factor
of k, but actually the same may happen when k independently selected messages are used.
In any case, before employing the construction, we should reduce the soundness error of the
original PCIP so to compensate for this loss.)

Note that verification steps analogous to Steps 2 and 3 of Construction 4.1 are not performed at
this point, but rather after all rounds of interaction of the PCIP are completed. Once this happens,

10That is, we consider k executions of the PCIP, where the ith execution refers to the input xi.
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the following verification steps take place, where ` = O(1) denotes the number of rounds in the
PCIP.

Construction 5.2 (final verification):

1. The verifier generate a sequence of queries, j1, ..., jq ∈ [c(n)], for the PCIP verifier, denoted
V . Note that V may ask different queries to the messages of the different ` rounds, but for
sake of simplicity (and at the cost of increasing q by a factor of `), we assume that it asks the
same queries in each round.

As in Step 2 of Construction 4.1, the verifier sends j1, ..., jq to the prover, who responds with
the values of the corresponding columns. Note that the prover sends q columns per each of
the ` matrices.

For each of these ` matrices, the verifier checks (i) whether the values of these columns match
the parity-check values for the relevant matrix (as provided in Step 1 of Construction 5.1)
and (ii) whether V would have accepted each of the k inputs when given the corresponding
answers (as well as its own messages as sent in Step 2 of Construction 5.1). Note that the first
condition refers to individual matrices, whereas the second condition refers to the sequence of
` matrices.

Specifically, let ṽ
(r)
1 , ..., ṽ

(r)
c(n) denote the parity check values sent in round r, and suppose that

the prover’s current answers are (π̃
(r)
i,ji′

)r∈[`],i∈[k],i′∈[q], where (π̃
(r)
i,j )i∈[k] is claimed to be the jth

column of the matrix of round r. Then, the verifier performs the following two checks:

(a) For every r ∈ [`] and i′ ∈ [q], it checks whether F (π̃
(r)
1,ji′
· · · π̃(r)k,ji′ ) = ṽ

(r)
ji′

.

(b) For each i ∈ [k], it checks whether V would have accepted xi when making the queries

j1, ..., jq and receiving the answers π̃
(1)
i,j1
, ..., π̃

(1)
i,jq
, ..., π̃

(`)
i,j1
, ..., π̃

(`)
i,jq

and when its own mes-

sages in the ith copy are as recorded in the execution of Construction 5.1.

(Indeed, the current step is analogous to Step 2 of Construction 4.1, and the next step is
analogous to Step 3 in that construction.)

2. The verifier selects uniformly a set of k′ = O(k/d) rows, and the prover is required to prove
that these rows contain values (in the ` matrices) that (i) correspond to the unambiguous
transcript that makes the PCIP verifier accept, and (ii) match the values of the columns
provided in Step 1 of Construction 5.1.

Unlike in Construction 4.1, the unambiguity condition cannot be verified by merely inspecting
the transcripts of the relevant rows (in all ` matrices), because this condition refers to possible
random interactions that extend all possible prefices of the transcript, where the crucial point
is that in such random interactions the future messages of the verifier are not known. Letting
(α1, β1, ..., α`, β`) denote a transcript that corresponds to a revealed row (in the ` matrices),
we need to verify a condition analogous to Eq. (2), for each i ∈ [`]. This is done by invoking
the original PCIP for ` times, such that in the ith invocation we continue the execution at the
end of the ith round as if the first 2i messages were (α1, β1, ..., αi, βi). Note that in the ith

invocation (which refers to an i-round long prefix), ` − i rounds of (additional) interaction
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are performed, followed by the final verification step of the original PCIP. All these k′ · `
interactive processes are run in parallel.11

Combining Constructions 5.1 and 5.2, we obtain a PCIP of O(`) rounds of query complexity poly(q)·
k, with communication complexity O(c(n) · d log k) + poly(q) · k+ k

d · c(n)), where first term is due
to Construction 5.1 , the other terms (as well as the query complexity) are due Construction 5.2.12

Now, recalling that we wish to obtain communication complexity c(n) ·kα, for any α > 0, as well as
low query complexity, we face a problem since the first goal forces using d = kα (just as in the proof
of Theorem 4). The solution is to replace the sending of the k′ rows in Step 2 of Construction 5.2
by having the prover employ the entire construction recursively so to allow for the verification of
the corresponding conditions. We stress that this recursion is more complex than in the proof
of Theorem 4, since we need to verify an unambiguity claim regarding a PCIP whose (constant)
number of rounds varies throughout the recursive calls.

Another problem that we face is that the resulting query complexity is poly(q) ·k, whereas The-
orem 2 asserts polylogarithmic query complexity. The solution is to use a query reduction step; that
is, after deriving a PCIP of O(`) rounds of query complexity poly(q) · k and communication com-
plexity O(c(n) · kα) + poly(q) · k, we reduce the query complexity to q = poly(log n). Indeed, query
reduction is a standard PCP technique, but one should verify that it preserves the unambiguity
condition.

Conclusion: Deriving Theorem 2. The foregoing outline completes our high-level description
of the proof of Theorem 2, and it implicitly specifies the type T of interactive proof systems to
which this theorem refers. To spell it out, type T consists of public-coin unambiguous PCIPs (of
proximity).
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