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On the NP-Completeness of Certain Network
Testing Problems

_S. Even, O. Goldreich, S. Moran, and P. Tong*
Department of Computer Science, Technion, Haifa, Israel

Let G(V, E) be an undirected graph which describes the structure of a communication
network. During the maintenance period every line must be tested in each of the two
possible directions. A line is tested by assigning one of its endpoints to be a transmit-
ter, the other to be a receiver, and sending a message from the transmitter to the re-
ceiver through the line. We define several different models for communication net-
works, all subject to the two following axioms: a vertex cannot act as a transmitter
and as a receiver simultaneously and a vertex cannot receive through two lines simul-
taneously. In each of the models, two problems arise: What is the maximum number
of lines one can test simultaneously? and What is the minimum number of phases
necessary for testing the entire network?, where, by “phase” we mean a period in
which some tests are conducted simultaneously. We show that in most models, in-
cluding the “natural” model of radio communication, both problems are NP-hard.
In some models the problems can be solved by reducing them to either a maximum
matching problem or an edge coloring problem for which polynomial algorithms are

known. One model remains for which the complexity of the minimization problem is
unknown.

. INTRODUCTION

Let G(V, E) be an undirected graph which describes the structure of a communica-
tion network. During the maintenance period every line must be tested in each of the

“two directions. A line is tested by assigning one of its endpoints to be a transmitter,

the other to be a receiver, and sending a text message from the transmitter to the re-
ceiver through the line.

The first set of problems we shall examine are of the type What is the maximum
number of lines one can test simultaneously? Different problems arise when the
ground rules are changed. Let us call the set of tests which are performed simulta-
neously a phase.

The second set of problems we shall examine are of the type What is the minimum
number of phases necessary for testing all the lines in both directions? Again, the
problems differ by the ground rules to be assumed.

*University of California, Berkeley, California.

NETWORKS, Val. 14 (1984} 1-24
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We shall always assume that a vertex can be either a transmitter or a receiver during
one phase, but not both. Also, a vertex can receive through one line only, during a
certain phase.

However, we may or may not assume that a transmitter can transmi
line, during a certain phase, and different problems arise accordingly.

We may or may not assume that G is bipartite.

In certain applications interference is not allowed; i.e., if #; transmits to 7y and ¢,
transmits to r, and ¢, #1,, then there is no line connecting 7y and £, in the graph.
This is 2 natural assumption in certain wireless communication networks. The assump-
tion “interference allowed” or “interference not allowed” changes the problem.

Finally, we shall also examine the problems in which certain vertices are allowed to
be transmitters only, if used at all in the test, or receivers only. This is a special sub-

case of the bipartite case; ie., G=(T, R, E ), where T is the set of potential transmit-
ters, R is the set of potential receivers, and E is the set of edges, where E CTXR.
In order to be able to name the problem succinctly, we shall use the following

notation:

t only on one

MAX, if the problem is to maximize the number of lines tested in one phase.
MIN, if the problem is to minimize the number of phases.

G, for general graphs.

BG, for bipartite graphs.

MT, if a transmitter may transmit to any number of receivers
ST, if a transmitter may transmit to one receiver only during a phase.
1A, if interference is allowed.

INA, if interference is not allowed.

PA, if vertices are preassigned as potential receivers or transmitters.

NPA, if vertices are not preassigned.

during a phase.

A problem is now defined by a quintuple. For example, (MAX, G, MT, IA, NPA) is
the problem of maximizing the number of lines to be tested in one phase, of a general
graph, if a vertex can transmit to any number of neighbors, interference is allowed,
and there is no preassignment. Also, we shall refer to a problem by number. For
example, the problem above is No. 1 since the corresponding quintupleis (0,0, 0,0, 1).

The most natural problems, which were suggested to us by “network people” are
Nos. 17, 19, and 7. We shall prove that these problems, and many others, are NP-hard
(see ref. 1,2, or 3 for discussions of NP-completeness and NP-hardness).

Out of the possible 32 problems, 8 are of no interest. These are Nos. 0, 2,4, 6, 16,
18, 20, and 22. These eight problems are all about general graphs, when the vertices
are preassigned as potential receivers or transmitters. The lines between two vertices
assigned to be transmitters are of no interest; they can not be tested and no inter-
ference can occur by them. Thus they can be deleted altogether. The same observa-
tion follows for lines between two receivers. Thus, the problems are actually stated
for bipartite graphs and correspond to problems Nos. 8,10, 12, 14, 24, 26, 28, 30.
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Our state of knowledge is summarized in the following table:

MT ST
1A INA 1A INA
PA NPA PA NPA PA NPA PA NPA
0 1 2 3" 4 5 6 7
G NPH NPH POLY NPH
Sec. III Sec. III Sec. II Sec. V
MAX 8 9 10 1 12 13 14 15
BG POLY NPH NPH " NPH POLY POLY NPH NPH
(trivial)
Sec.III  Sec.UI Sec. III Sec. Il Sec.II Sec.II Sec. V Sec. V
r 16 17 18 19 20 21 22 23
G NPH NPH ? NPH
between
J 2d & 2d+2
MIN Sec. IV Sec. IV Sec. II Sec. VI
24 25 26 27 28 29 30 31
BG POLY NPH NPH NPH POLY POLY NPH NPH
(trivial)

. Sec.1IV  Sec. IV Sec.IV Sec.IV  Sec. Il Sec.II Sec. VI Sec. VI

Some of the results have been achieved independently by L. J. Stockmeyer and V.V,
Vazirani [9].

Il. PROBLEMS EQUIVALENT TO MATCHING OR
EDGE COLORING PROBLEMS

Let us consider problems 5,12,13,21,28,and 29. In these problems a transmitter
can transmit to only one receiver and interference is allowed. Thus, the set of lines
tested in one phase is nothing but a matching. Hence, problem 13 is equivalent to
the maximum matching problem in bipartite graphs, which can be solved in poly-
nomial time [4]. In fact, the preassignment of vertices does not change this observa-
tion at all. Thus, problem 12 is in fact the same as 13.

Problem 5 is just the maximum matching problem in general graphs, which is also
polynomial [5].

Problems 29 and 28 are equivalent to the problem of minimum edge coloring in bi-
partite graphs; in case of problem 29 edges should be duplicated. The number of
colors necessary and sufficient to color the edges of a bipartite graph is equal to the
maximum degree of the vertices [6].

Problem 21 is equivalent to the following. Given a graph G, first duplicate the edges;
Le., for each edge in the graph add another one parallel to it. Then look for the mini-
mum number of colors necessary to color the edges in the resulting graph. Clearly,
if d is the maximum degree of the vertices of G, then 24 colors are necessary. By
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But we do not know if the deter-
ial. We conjecture that the
dges duplicated)

d + 2 colors are sufficient.
mber of colors is polynom
1 graphs (not having, necessarily, the e
NPH [8].

Vizing’s theorem [7], 2
mination of the minimum nu
problem is NPH, since for genera
the problem has recently been shown t0 be

1l. MAXIMIZATION PROBLEMS OF MT TYPE

demonstration that problem 10 (MAX, BG, MT, INA, PA) is

Let us start with a
xact cover) to problem 10. 3XC is de-

NPH. The proof is by reduction of 3XC (3 ¢
fined as follows [1,2,3]:
,Sm } such that for every 1<i<m,|5;1=3.

Input: A family of sets {84,582, --
,m} such that

Question: ls there a subset Tof{1,2,...

3

i€l i

@ U si=U S

(i) if i,jE€I then S;NS;=p?

t; also assume that

Let us denote the rhs. of (i) by U, and call it the universal se

U={u13.u2;' . ')u3n}'

3XC is known to be NPC (NP-complete) [1,2, o1 3].
Our aim is to display a polynomial reduction of 3XC to problem 10, thus proving

that it is NPH.
Define the BG(X, Y, E) as follows:

x={1,2,....m}, Y={1,2,....3n} E={x—yluy, €Sx}.

Preassign the elements of X to be transmitters and the elements of Y to be receivers.
Recall that we want to maximize the number of lines tested in one phase, where each
transmitter can transmit to many (adjacent) receivers and interference is not allowed.
We claim that the answer to the 3XC problem is positive if and only if the maximum
number of lines that can be tested in BG(X,Y,E)is 3n.

First, assume that / yields a solution of the 3XC instance. Let the set of active trans-
mitters be equal to [ and let each active transmitter transmit to all its 3 adjacent
receivers. Clearly, 3n lines are tested, and since the cover is exact, by condition (i),

no interference occurs.

Now assume that 3n lines can be teste
transmit on all 3 lines incident to it, since if
rference will occur.

d. If r € X is an active transmitter then it must
¢t —r is not tested then r cannot be an

active receiver at all, or inte Thus, the set of active transmitters
defines an exact cover.
This concludes our proof that problem 10 is NPH.
Next, let us show that problem 11 is NPH too. Now, there isno preassignment, but
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we can still show a reduction of 3XC to problem 11. In fact, we shall show a reduc-
tion of 3XC to the following NP version of problem 11:

Input: A bipartite graph (X, Y, E ) and an integer N.
Question: Can one test simultaneously N lines of the graph, assuming MT, INA,
and NPA? .

Starting with an instance {S,, S,, ... ~Sm } of the 3XC, the reduction is defined as
follows:

X={x1>x2‘a~->xm+q}) q=n+l;
Y={yo.%1.,...,73.},
E={x;—yol1<i<m +q} U {x;—y;lu; €83,

N=q+3n+(m_n)=3n+m+1.

We have to show that there exists an exact cover if and only if the NP version of
problem 11 has a positive answer.

First assume 7 specifies an exact cover. Assign y, to be a transmitter and Xp1s - -,
Xma+q to be receivers. This produces q line tests. Also let x; be a transmitter if i € 1,
and 1, y5,...,y3, be receivers. This produces 37 line tests. Finally, let x;, 1 <
I<mand i€/, be a receiver (from y,). Since | I|=n, this produces m ~ n line tests.
Thus, N line tests are achieved.

Next, assume N line tests are achievable in (X, Y, E ). Observe that y, must be a
transmitter, or the number of tests is at most 3n+m (<N). Thus, we may assume
that x,,.,, ..., ¥ms+q are all receivers, yielding ¢ line tests, and at least 3n + (m - n)
more receivers must be found among {x,, . .. s XmPYU{yi,...,v3,}. Let the num-
ber of receivers among {x,, . . ., Xm}ber. Clearly,r=>m- n.

Denote by  the number of transmitters among {x;,...,x,,}. Clearly,t+r <m.
Since each such transmitter can transmit to at most 3 vertices among {y,,..., Yant
the number of receivers in {x,, ... X POy, ysn )} is <m-r+31. Thus,
t 2 n, implying that r <m - ¢ < m~n. We conclude that r = - n,t=n,and y,,

- »Y3n are receivers.

Now define 7 to be the set of indices which correspond to elements of e, oox}
which are transmitters. By the above [7]=n, and I defines an exact cover of .

This concludes the proof that problem 11 is NPH. It immediately implies the NP-
hardness of problem 3, since problem 11 is a subproblem of it.

Note that the reduction used to prove the NP-completeness of the NP version of
problem 11 is insensitive to whether we assume IA or INA. Thus problems 9 and 1 are
NPH too.

It is interesting to note that Stockmeyer and Vazirani [9] prove the NP-hardness of
problem 1 by a trivial reduction from the Dominating Set problem (see [2] or [3]).
In fact problem 1 is equivalent to the Dominating Set problem; minimizing the domi-
nating set (transmitters) maximizes the dominated set (receivers). Thus, our proof
that problem 9 is NP-hard implies the NP-completeness of the Dominating Set prob-
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lem for bipartite graphs. The authors are not aware of any published proof of this
fact.

Problem 8 is trivial. Every assigned receiver can receive from any of its adjacent
assigned transmitters, and the maximum is immediately achieved.

IV. MINIMIZATION PROBLEMS OF MT TYPE

Problem 24 (MIN, BG, MT, 1A, PA) is trivial; the highest degree of a vertex which is
assigned to be a receiver is the number of phases which is necessary and also sufficient.

Consider now problem 17 (MIN, G, MT, IA, NPA). The corresponding decision
problem can be stated as follows: ,

Given a graph G(V, E) and an integer NV, determine whether all its edges can be
tested in both directions within NV phases, when a vertex can transmit to several ver-
tices during a certain phase, interference is allowed and there is no preassignment. Let

us call this problem P, .

Theorem 1. P, is NP-complete.

Proof. Clearly P, ENP. To complete the proof we show that 4C «P;. (A =B
means that there is a polynomial-time reduction of problem A to problem Bj; see ref.
2 or 3).

The k-colorability (kC) problem was shown to be NP-complete by Stockmeyer (see
[2] or [3]) for every k > 3. It consists of a graph G(V, E). One is required to de-
termine whether there exists a vertex coloring function f: V — {i}f.;l such that
f(v) = f(u) implies v + u in G (i.e., there is no edge between vertices v and u).

Define a coordinator to be a subgraph which consists of 6 vertices denoted ¢y, €2,
..., ce and the following edge set (see Fig. 1):

{ei—cina1 <i<3}U {c;—¢l1 <i<j<3}.

Let us show that a coordinator can be tested (i.e., all its edges can be tested in both
directions) within 4 phases in a unique way up to the order of the phases.

We show first that a coordinator can be tested in 4 phases by specifying a way in
which this could be done, to which we later refer as the standard schedule (see Fig. 1).
For i < 4, transmit in phase number i from ¢; to all its neighbors (denote this type T;
phase). In phase number 4 transmit from c; to ¢;_3 forall 4 <i < 6 (denote this type
R phase).

To show that this is the only way in which the coordinator can be tested in 4 phases,
observe that any vertex of degree 3 should transmit to all its neighbors during one
phase and thus exclude any other testing in the coordinator during that phase.

In the reduction 4C « P,, the given graph G(V, E) will be reduced to G'(V', E').
The latter graph is constructed from subgraphs representing the vertices and edges
of G.

Assume the degree of v, in G, is d. Define the subgraph G,(V,, E,), which repre-
sents v as a cascade of d coordinators denoted Cy, C;, ..., Cyand a set of d - 1 aux-
iliary edges denoted {z; —b; |1 <i<d- 1}, linked as follows: For every 1 <i<d,
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FIG. 2.

sponding P, instance can be tested within 4 phases. Let {i}?:1 be the set of colors
and f: ¥V~ {i}{., acoloring function that satisfies f(v) = f) = v +uin G. G'(V',E")
can be tested within 4 phases in the following way.

Testing the edges of a G, is done by applying type R phase of the standard sched-
ule to all the coordinators of G, in phase f(v) and applying T; in phase ((f(v) +i- 1)
mod 4) + 1. The auxiliary edges of G, are tested from the ¢; in phase f(v) and from
the b; in the phase in which T is applied.

Specifying the way in which the edges of a G, are tested requires a case study which
depends on f(v) and f(u) where v, u are the endvertices of e. With no loss of general-
ity, it is sufficient to check the case of f(v)~ f(u) =1 or 2 mod 4. The implementa-
tion of both cases is shown in Fig. 4, in which without loss of generality we assume
that f(v) = 1.

To conclude, we show that if the P, instance can be tested within 4 phases then the
source 4C instance can be colored by 4 colors.

Shared vertices

.3. G.(V,, E,)links G,(V,, E,) and G, (V,, E,).
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FIG. 4. Case study(the labeling of a vertex determines the phase in which it transmits).

Assume that there is a way in which G'(V', E') can be tested within 4 phases; we
refer to it as the test schedule. We claim that with regard to the test schedule the fol-
lowing holds: for every v € V all the links of G, transmit once and in the same phase.
[Note that all the links are of degree 3 in G'(V', E') and therefore transmit in one
phase only. Owing to the structure of G,, the statement follows.]

Define the color of a vertex v€ V, f(v), as the number of the phase in which the
links of G,, act as transmitters.

Let us show that the coloring defined above satisfies the condition that for every
v,u € Vif v £uin G then f(v) # f(u).

Assume, on the contrary, that f(u)=f(v) = 7. Consider the first coordinator of G,.
The assumption implies that type R phase is applied to it during phase 7, and for sim-
ilar reasons the same must hold for the second coordinator. This is a contradiction
since it implies that the shared edge is tested in both directions simultaneously.

Thus we have proven that there is a 4 coloring of the source 4C instance. n

We turn now to problem 25 (MIN, BG, MT, IA, NPA). Let P, denote the problem
of deciding whether a given bipartite graph can be tested in 4 phases. We show that
P, «P,.

Every edge v <u of the P, instance is replaced by a simulation component which
consists of vertices 55, 55, ...,5¢ and edges v —s$, u —s%, s¥ —s5, 55 —s5, 5§ —s5,
5§ —s5,55 —s, 5§ —s¢ (see Fig. 5).

It is easy to see that testing the component in 4 phases requires that if s§ transmits
to v in a certain phase then u transmits to s5 in the same phase. Notice that the graph
constructed by the reduction is indeed bipartite. Thus problem 25 is NP-hard.
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FIG. 5. Edge simulation component.

Notice that in the reduction used in the proof of Theorem 1, the graph defined has
the property that the degrees of the vertices are either 1 or 3; thus the restricted Py,
for graphs with degrees 1 or 3 only, is also NP-complete. Furthermore, if one starts
with a restricted P; instance, and applies the reduction to P, as above, the resulting
graph still has only vertices of degree 1 or 3. Thus the restricted P, is also NP-
complete.

In the testing schedule of restricted P, instances in 4 phases, every vertex is a trans-
mitter only once, and during the phase in which it is a transmitter it tests all its inci-
dent edges outward. Thus interference never occurs. This proves that problem 27
(MIN, BG, MT, INA, NPA) is also NP-hard. Clearly, problem 19 (MIN, G, MT, INA,
NPA) is NP-hard too.

The NP-completeness of the k-phase decision problem version of problem 17 (k> 4)
is proved in a manner similar to that of Theorem 1; instead of using a triangle-based
coordinator, use a (k - 1)-clique-based coordinator. As to the NP-completeness of the
k-phase decision problem version of problem 25, use in the reduction the simulation
component shown in Fig. 6 instead of the one shown in Fig. 5.

Now; the graphs produced by the reductions to the k-phase versions of these prob-
lems have vertices of degree 1 or k- 1. Thus the NP-completeness of the k-phase
versions of problems 27 and 19 follows similarly.

Consider now problem 26 (MIN, BG, MT, INA, PA). We show that the problem of
deciding whether all edges having a transmitter at one endpoint and a receiver at the
other can be tested in k phases (k=>3) is NP-complete. This is done by a reduction
from kC.

Each vertex, v, of the kC instance graph G is represented by a single transmitter 7).
Fach edge, e, of G is represented by a k-star S¢ whose center is a receiver and whose &
leaves are transmitters; 2 of its leaves are called links.

If v£u in G, then T, is common with one of the links of S, while the other link of
S, is common with Ty,

Let us call the resulting graph G'. -

Clearly, if G ' can be tested in k phases, then in each k-star one and only one leafis a
transmitter in each of the k phases.

If G can be colored by k colors, then use T, as a transmitter during the phase which
corresponds to v’s color. If u £ 4 in G then the phases during which the two links of
S, have been used are different. The other leaves of S, can be used during the k- 2
remaining phases in any order. Thus the demonstration that G' can be tested in k
phases is complete.

If G' can be tested in k phases, define the color of v to be the phase during which
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V. MAXIMIZATION PROBLEMS OF ST, INA TYPE
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mit on one eg jr e ST condition forms a matching; every transmitter can trans-
ine i ! ge. only, and every receiver can receive on one edge only. Such
i, 1tn [‘:thh no interference occurs, is called TR matching. Y. Such amatch-
e - .
given a 113 i:tee tile Acflecmqn prob.lem, where the input is a bipartite graph G(7', R, E);
that |M|> A;% 1;: ! ) (lme is required tc? decide whether there is a TR-matching’M ’such’
We prove th‘at Pea.r ¥, the TR-matching must be consistent with the preassignment
Let the input o; ;;:Ig;gmplete by a polynomial reduction from 3XC '
- consist of {S,,S,,...,S . ;
IS% L ; 3, ar;ld the universal set U is defined 1by (2J = U'.’,’ '5} :"V{}Lefeufor eVef}L’l 1 }<l s
. =1 i 1, s ey .
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presented by a subgraph G4(T}, R, E,): . Each set §; is
b b 1/
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FIG. 7.

I£8; = {u;; , ui,, u;, } then define the edge set EF by
EY = {s;I—u,-l.|1 <j<3}.

The edges in E,U are called the links of G; (see Fig. 7).
G and N are now defined as follows:
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(E;VEY), N=3n+(m-n).
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-
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First we prove that, if there is an exact cover of the 3XC instance, then the corre-
sponding P; instance has a TR-matching consistent with the preassignment and of

size V.
Let C be an exact cover of the 3XC instance. Define the following TR-matching:

{sh —si, 1S, £CH U {s;I—e,-J.IS,.ec, 1<j<3)).
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Note that this is indeed a TR-matching consistent with the preassignment, and that its
size is exactly /V. ,

We conclude by proving that if there is a TR-matching consistent with the preassign-
ment and its size is IV, then there is an exact cover of the 3XC instance. ]

Assume M is such a TR-matching. Note that if M NEY # ¢ then M NE; = ¢. (If s]’.,
j =1, 2,3, transmits to u;, then s5 cannot be used as a receiver, owing to interference,
and thus none of the edges of G; can be used.) Also, there is only one receiver in G;,
and therefore at most one edge of G; can be used. Thus the only way to use 3 trans-
mitters of G; is to transmit on the 3 links.

Let / be the number of G; for which links are used, and m ~ [ be the number of G;
for which no links are used. The maximum number of edges that can be tested in 3/ +
(m-10). Since |[M|>N we get 31+ (m-1) > 3n +(m - n), and therefore /> n,
However, no two active links can be connected to the same u;. Thus the number of
edges in M is bounded by 3n + (m - I). This implies that I < n. It follows that there
are exactly n G; which use links, and each of them uses all its 3 links. This defines an
exact cover of U.

Consider now problem 15 (MAX, BG, ST, INA, NPA). Let P, be the corresponding
decision problem; i.e., given a bipartite graph G'(X, Y, E') and an integer N', deter-
mine whether it has a TR-matching M’ such that |M'| >N,

We use a reduction P; « P, in order to prove P,’s NP-completeness.

Let the input of P consist of G(T, R, E) and N. Letp =|T| + 1 and define G'(X,
Y,E")and N' as follows:

X=TU {g;|1<i<p},
<i

Y=RU {b;|1 <i<p},
E'=EVU{t—b|teT,1<i<p}U{a;—b;|1 <i<p};
N'=p+N.

Assume, first, that there is a TR-matching M of G(T, R, E) consistent with the pre-
assignment and [M|>N. Let us show that, in G, there is a TR-matching M such that
IM'{ > N'. Define M' as follows (the notation « > v means that u transmits to v):

M ={t->rlt—rinM}u {b;=a;]1 <i<p}.

It is easy to see that M’ is a TR-matching and [M'|= | M|+ p=N.

Next, we assume that there is a TR-matching M' in G' for which |M'| > N', and
show that this implies the existence of a TR-matching M in G consistent with the pre-
assignment and |M|> N.

Every edge of M'- E “consumes” one b;. Thus [M'- E|<p. It follows that
IM'NE|>N. If there are in M’ two edgest; >r; andr, > t,, where t,, ¢, € T and
71, r; €R, then none of the b; can be active, or interference will occur either through
b;—1t; or b;—t,. In this case, the number of edges tested is [M'| < |T|<p <N'.
We conclude that if |M’|> N’ then either all the active T-vertices are transmitters, or
all are receivers. In Py, if the tasks of transmitters and receivers of a TR-matching are
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exchanged then the result is also a TR-matching. We may, therefore, assume that all
the active T-vertices of M' are transmitters. Thus, one concludes that M' N E is a TR-
matching which fulfills the requirements of P5.

The NP-hardness of problem 15 implies the NP-hardness of problem 7.

VI. MINIMIZATION PROBLEMS OF ST, INA TYPE

Consider problem 31 (MIN, BG, ST, INA, NPA). Let us call the corresponding
decision problem, for 6 phases, Ps. That is, one is given a bipartite graph and it is nec-
essary to determine whether its edges can be tested in 6 phases. We shall show that
this problem is NP-complete. In Theorem Al at the Appendix we show that the corre-
sponding decision problem for k¥ < 5 phases can be solved in polynomial time.

In the sequel we shall use the notation “x -y is tested at phase i” to denote “at
phase , x transmits to y.” We shall also denote a schedule in which x transmits to y
at phase i and y transmits to x at phase j by the notation given in Fig. 8 below.

We need some definitions and lemmas before we give the reduction. Define an
“outlet” to be the subgraph shown in Fig. 9.

Lemma 1. If an outlet is tested in 6 phases such that x; -y, and x, - y, are tested
at phase 0 and y; >x; and y4 = x, are tested at phase 1 (see Fig.9), thenz >y, is
tested at phase 0 and y, -z is tested at phase 1.

Proof. Note that edges y, - y, and y, ~ y3 cannot be tested during phases 0 and 1
in either direction. Hence, y, ~ z must be tested at phases O and 1. The lemma fol-
lows since y, cannot transmit at phase O and cannot receive at phase 1. u

Let a “multiplier” be the subgraph shown in Fig. 10.

Lemma 2. If a multiplier is tested in 6 phases, then fori=1,... 4, {x; ->y,-} are
tested at the same phase and { y; > x;} are tested at the same phase.

Proof. In a 6-phase testing, nodes y,, . . .,y, must be active in every phase. Ifina
certain phase y, transmits to Y2, then y; must act as a transmitter and ¥4 must act as
a receiver, which means that y; - y, is tested at the same phase. Similarly,y, -y,
and y, — y; are tested simultaneously, as well as y, > y; and y, > y,, ¥, -y, and
Ya2>y2. It follows that if y; transmits to x,, y; must be active in testing edge
Y3~ x3. Moreover, y; must transmit to x5, otherwise interference will occur. Sim-
ilarly, if x, transmits to y,, x5 must transmit to 3. The lemma follows. =

A coordinator is a subgraph decomposed of two multipliers and one outlet, as shown
in Fig. 11. Nodes x;, x,, x5, x4 are “link nodes,” and edges x, ~ x5, X3 — x4 are
“link edges.” Node z is an “out-node” and edge y - z is an “out-edge.”

i
—>
—

3
FIG. 8.
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FIG. 12.

Lemma 4. If an edge-coordinator is tested in 6 phases, then x; >y (¥ = x;1)is not
tested at the same phase in which x; >y, (¥2 > x, ) is tested.

Proof. By Lemma 2. n

We are now ready to describe the reduction of the 6C problem to Ps. Let G(V,E)
be an input to the 6C problem. Replace each v € V of degree d by a graph G, which
consists of a cascade of d coordinators connected by their link edges (see Fig. 13).

If u - v is an edge in E, connect an out-node in G, to an out-node in G, by an edge

coordinator as shown in Fig. 14.

Lemma 5. Let G'(V', E") be the output of the reduction described above. Then, if
G’ can be tested in 6 phases, G is 6 colorable.

Proof. Suppose G’ can be tested in 6 phases. Then by Lemma 3 for each subgraph
G, of G', all the out-nodes of the coordinators in G, transmit along their out-edges at
the same phase. Define this phase to be the color of node v. By Lemma 4, if v is con-
nected to u, the out-nodes of G, and G, do not transmit along their out-edges at the
same phase, and hence v and u are colored by different colors, which means that the

described coloring is proper. s
In order to prove that if G is 6-colorable G’ can be tested in 6 phases, we need a few

more definitions.

A standard schedule of a coordinator is one of the following 4 schedules: schedule A
is described in Fig. 15; schedule B is obtained by interchanging phases 2 and 4 in
schedule A; schedule C interchanges phases 3 and 5 in schedule A; schedule D inter-
changes phases 2 and 4, and also 3 and 5, in schedule A.

coordinator 1 coordinator 2 coordinator d

FIG. 13.
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out-node

out-node

FIG. 15. Schedule A: link nodes are marked by x and the out-node by z.

Lemma 6. Let G, be the subgraph corresponding to v described above. Then, by test-

ing each of the coordinators in G, by any one of the four standard schedules, chosen
at random, we obtain a 6-phase testing of G,,.

Proof. The only possible problem may be caused by the link nodes, which may
interfere with one another. However, this does not happen, since all of them transmit
at phases 3, 5 and receive at phases 2, 4. u

For an integer k€ {0, 1,..., 5}, let schedule (4, k) denote schedule A, where each
phase i is replaced by phase i + k (mode 6). Schedules (B, k), (C, k), and (D, k) are

defined similarly. We are now ready to prove the final lemma corresponding to the
reduction of 6C to Ps.

Lemma 7. If G is 6-colorable, then G’ can be tested in 6 phases.
Proof. Letf: v->{0,1,... ,5} be a 6-coloring of G. A 6-phase testing of G' is

defined in the following way.
Letu~-veEE, fu)=i,fv)=i+k (med 6)(0<i<5,1<k<5). Let C, and C, be
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the coordinators in G, and G, which are connected by an edge coordinator Gy, . The
schedules (X, i) for G, (Y, i +k (mod 6)) for G, (X, Y€ {A, B, C, D}), and the
schedule for the edges of G,_, are determined by the value of k, as shown in Fig. 16
for i=0. This figure shows the schedules of the edges of G, and the relevant edges
of C, and C,. The out-nodes of C,, (C,) are marked by z,, (z,)-

It is straightforward to check that the above schedules give a proper 6-phase test of
the edges of G, and the corresponding edges in G, and G,, forallu - vin E. Also,
by Lemma 6, the above schedules give a proper 6-phase testing of the edges of G, for
allu € V. The lemma follows. .

By Lemmas 5 and 7 we obtain

Theorem 2. Problem 31 (MIN, BG, ST, INA, NPA) is NP-hard.

Schedule (D,2) for Cv Schedule (A,0) for Cu

(b) k=2

FIG.16. (a)k=1,(b)2,(c)3,(d) 4, (e) 5.
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FIG. 16. (Continued)
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Proof. By the NP-completeness of Ps, which follows by Lemmas 5 and 7 and the
fact that the graph G' described in these lemmas is bipartite. n

Note. In an earlier version of this paper [10] it was shown that the decision problem
which corresponds to problem 31 for & phases is NP-complete for all even integers
k>8. In Theorem Al in the Appendix the problem is shown to bein P for k<5
phases. The question whether the decision problems for k phases remain NP-complete
for odd k greater than 5 is still open.

Finally, consider problem 30 (MIN, BG, ST, INA, PA). We shall show that the cor-
responding decision problem, P, for 4 phases, is NP-complete. In Theorem A2 in the
Appendix we shall show that the decision problem for k <3 phases can be solved in
polynomial time.

Define an “outlet” to be the subgraph in Fig. 17(a), and a “multiplier” to be the
subgraph in Fig. 17(b). Vertex x in both graphs is the “center node,” and the edges
adjacent to x are “center edges,” while the remaining edges are “peripheral edges.”
Node z in the outlet is “out-node,” and edge z - y is an “out-edge.” The vertices of
these graphs may be partitioned to “transmitters” and “receivers” in either of the two

possible ways.

Lemma 8. A multiplier or an outlet can be tested in 4 phases iff all of the peripheral
edges are tested at the same phase.

Proof. By the observation that none of the peripheral edges can be tested at the
same phase with any of the center edges. L

A “coordinator degree d” is a (binary) tree decomposed of some multiplier and d
outlets, such that each multiplier shares at least 2 of its peripheral edges with other
multipliers or outlets, and the out-nodes of the outlet are leaves in the tree. Figure
18 shows a coordinator of degree 3, decomposed of 2 multipliers and 3 outlets. Two
of the out-nodes of this coordinator are transmitters, and one is a receiver.

Let G(V, E) be an input to the 4C problem. We reduce it to P, in the following
way: Replace each v € V of degree d by a coordinator of degreed. Letu-v& E, and
let z,, and z,, be two out-nodes in G, (G,). WLG assume that exactly one out of z,,
and z, is a transmitter. (If this is not the case, we replace the outlet corresponding
to z, by a multiplier, and add a new outlet, adjacent to that multiplier. The out-node
of this new outlet will represent z,,.) Connect z,, and z, by an edge.

Let G'(V', E") be the output of the above reduction. Then we have

(a) (v

T R T R T R T R T R

FIG. 17. T, transmitters; R, receivers.
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Lemma 9. If G’ can be tested in 4 phases, G is 4-colorable.

Proof. By Lemma 8, for each subgraph G, of G', all the out-edges of G,, are tested
at the same phase. Let this phase denote the color of u. Ifu- v EE , then there is an
edge z,, - z, in E', where z,, is an out-node in G, and z, is an out-node in G,,. Hence
the out-nodes of G, and G, cannot be tested at the same phase, which means that u
and v do not have the same color, and hence the coloring is proper. u

Define a standard schedule of a multiplier to be the one given in Fig. 19. A k-
standard schedule, for 0 < k < 3, is obtained by replacing phase i in Fig. 19 byit+k
(mod 4) (0 <i<3).

Lemma 10. If G is 4-colorable, G’ can be tested in 4 phases.

Proof. let f: ¥~{0, 1, 2, 3} be a 4-coloring of G. A 4-phase testing of G' is
obtained as follows:

(a) For each v€E€V, test the edges of the multipliers in G, by an f(v)-standard
schedule.

(b) Foreachu - vinE, let f(v) = f(u) + k (mod 4). WLG 1 <k <2.

FIG. 19.
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The testing of the edges of the corresponding outlets and the edge z,, - z, connecting

the out-nodes is determined by the value of k, as shown in Fig. 20. It is easily checked

that this schedule properly tests the edges of G’ in 4 phases. .
By Lemmas 9 and 10 we obtain

Theorem 3. Problem 30 (MIN, BG, ST, INA, PA) is NP-hard. .

Note. By defining a multiplier to have k - 1 center edges (and & - 1 peripheral edges),
and an outlet to have k- 1 center edges and one peripheral edge, one can show, using
the techniques of Lemmas 8-10, that the k-phase decision version of problem 30 is

NP-complete for all k = 4.

APPENDIX

We show here that the decision problems that correspond to problem 31 for 5 or less
phases and the decision problems that correspond to problem 30 for 3 or less phases
can be solved in polynomial time (in fact, in linear time), and hence that Theorems 1
and 2 of Section VI give a sharp bound between NP-completeness and polynomial-
time algorithms (provided P # NP). As a by-product, we also provide a method to test
cycles in minimum number of phases.

Theorem Al. The decision problem that corresponds to problem 31 for k-phases is
solvable in polynomial time for ¥ <5.

Proof. The proof is trivial for k=2 and k=3 (a connected graph which can be
tested in less than 4 phases cannot have more than one edge).

f(u) = 0 f(v) =2

(b) k=2

FIG.20. (a)k=1,(b)k=2.
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For k=4 and k = 5, we have to consider only connected graphs which do not have
a node of degree 3, that is, paths or cycles. Every path (0-0-O- - - - -O) can be tested
in 4 phases by repeating the schedule

& S L L L
e e =
In fact, it is easily verified that this is the only possible schedule to test the edge of the
path in 4 phases (up to permutation of the phases). This also implies that a cycle can
be tested in 4 phases only if it has 4n edges for some integer n.
‘The only nontrivial part of this theorem is for k = 5. First, we give in Fig. 21 sched-
ules to test in 5 phases cycles of length 5, 7, and 10. These schedules can be extended

to tests of cycles with 5 +4k, 7 + 4k, and 10 + 4k edges by inserting 4k edges into
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these cycles at the places indicated by bold arrows in Fig. 21, where these edges are
tested in 4 phases by.the same schedule as indicated above. The only cycles which
cannot be tested in 5 phases (but are easily tested in 6) are the triangle and the hexa-
gon. We leave the verification of this fact to the reader. L

Theorem A2. The decision problem that corresponds to problem 30 for k-phases is
solvable in polynomial time for k¥ < 3.

Proof. It is left to the reader to check that

(a) A connected graph can be tested in a single phase only if it has at most one edge.

(b) A connected graph which can be tested in 2 phases (but not in one phase) is a
path of two arcs.

(c) A connected bipartite graph can be tested in 3 phases (but not in two) only if it
is a star of 3 edges 000,23 path of more than two edges, or a cycle of 6n edges.

The theorem follows from (a)-(c) above. u
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