
Chapter 1PATHS IN GRAPHS1.1 INTRODUCTION TO GRAPH THEORYA graph G(V;E) is a structure which consists of a set of vertices V = fv1; v2; : : :g and a set ofedges E = fe1; e2; : : :g; each edge e is incident to the elements of an unordered pair of verticesfu; vg which are not necessarily distinct.Unless otherwise stated, both V and E are assumed to be �nite. In this case we say that Gis �nite.For example, consider the graph represented in Figure 1.1. Here V = fv1; v2; v3; v4; v5g,E = fe1; e2; e3; e4; e5g. The edge e2 is incident to v1 and v2, which are called its endpoints. Theedges e4 and e5 have the same endpoints and therefore are called parallel edges. Both endpointsof the edge e1 are the same; such an edge is called a self-loop.
Figure 1.1The degree of a vertex v, d(v), is the number of times v is used as an endpoint of the edges.Clearly, a self-loop uses its endpoint twice. Thus, in our example d(v4) = 1, d(v2) = 3 andd(v1) = 4. Also, a vertex v whose degree is zero is called isolated; in our example v3 is isolatedsince d(v3) = 0.Lemma 1.1 The number of vertices of odd degree in a �nite graph is even.Proof: Let jV j and jEj be the number of vertices and edges, respectively. Then,jV jXi=1 d(vi) = 2 � jEj;1



2 CHAPTER 1. PATHS IN GRAPHSsince each edge contributes two to the left hand side; one to the degree of each of its twoendpoints, if they are di�erent, and two to the degree of its endpoint if it is a self-loop. Itfollows that the number of odd degrees must be even. Q.E.D.The notation u e| v means that the edge e has u and v as endpoints. In this case we alsosay that e connects vertices u and v, and that u and v are adjacent.A path is a sequence of edges e1; e2; : : : such that:(1) ei and ei+1 have a common endpoint;(2) if ei is not a self-loop and is not the �rst or last edge then it shares one of its endpointswith ei�1 and the other with ei+1.The exception speci�ed in (2) is necessary to avoid the following situation: Consider thegraph represented in Figure 1.2.
Figure 1.2We do not like to call the sequence e1; e2; e3 a path, and it is not, since the only vertex,b, which is shared by e1 and e2 is also the only vertex shared by e2 and e3. But we have noobjection to calling e1; e4; e3 a path. Also, the sequence e1; e2; e2; e3 is a path since e1 and e2share b, e2 and e2 share d, e2 and e3 share b. It is convenient to describe a path as follows: v0 e1|v1 e2| v2 � � �vl�1 el| vl. Here the path is e1; e2; : : : ; el and the endpoints shared are transparent;v0 is called the start and vl is called the end vertex. The length of the path is l.A circuit is a path whose start and end vertices are the same.A path is called simple if no vertex appears on it more than once. A circuit is called simpleif no vertex, other than the start-end vertex, appears more than once, and the start-end vertexdoes not appear elsewhere in the circuit; however, u e| v e| u is not considered a simple circuit.If for every two vertices u and v there exists a path whose start vertex is u and whose endvertex is v then the graph is called connected.A digraph (or directed graph) is de�ned similarly to a graph except that the pair of endpointsof an edge is now ordered; the �rst endpoint is called the start-vertex of the edge and the second(which may be the same) is called its end-vertex. The edge (u e! v) e is said to be directed fromu to v. Edges with the same start vertex and the same end vertex are called parallel, and ifu 6= v, u e1! v and v e2! u then e1 and e2 are antiparallel. An edge u! u is called a self-loop.The outdegree, dout(v), of a vertex v is the number of edges which have v as their start-vertex;indegree, din(v), is de�ned similarly. Clearly, for every graphjV jXi=1 din(vi) = jV jXi=1 dout(vi):



1.2. COMPUTER REPRESENTATION OF GRAPHS 3A directed path is a sequence of edges e1; e2; : : : such that the end vertex of ei�1 is the startvertex of ei. A directed path is a directed circuit if the start vertex of the path is the same as itsend vertex. The notion of a directed path or circuit being simple is de�ned similarly to that inthe undirected case. A digraph is said to be strongly connected if for every vertex u and everyvertex v there is a directed path from u to v; namely, its start-vertex is u and its end-vertex is v.1.2 COMPUTER REPRESENTATION OF GRAPHSIn order to understand the time and space complexities of graph algorithms one needs to knowhow graphs are represented in the computer memory. In this section two of the most commonmethods of graph representation are brie
y described.Graphs and digraphs which have no parallel edges are called simple. In cases of simplegraphs, the speci�cation of the two endpoints is su�cient to specify the edge; in cases of digraphthe speci�cation of the start-vertex and end-vertex is su�cient. Thus, we can represent a graphor digraph of n vertices by an n � n matrix C, where Cij = 1 if there is an edge connectingvertex vi to vj and Cij = 0, if not. Clearly, in the case of graphs Cij = 1 implies Cji = 1; or inother words, C is symmetric. But in the case of digraphs, any n � n matrix of zeros and onesis possible. This matrix is called the adjacency matrix.Given the adjacency matrix of a graph, one can compute d(vi) by counting the number ofones in the i-th row, except that a one on the main diagonal contributes two to the count. Fora digraph, the number of ones in the i row is equal to dout(vi) and the number of ones in the icolumn is equal to din(vi).The adjacency matrix is not an e�cient representation of the graph in case the graph issparse; namely, the number of edges is signi�cantly smaller than n2. In these cases the followingrepresentation, which also allows parallel edges, is preferred.For each of the vertices, the edges incident to it are listed. This incidence list may simplybe an array or may be a linked list. We may need a table which tells us the location of the listfor each vertex and a table which tells us for each edge its two endpoints (or start-vertex andend-vertex, in case of a digraph).We can now trace a path starting from a vertex, by taking the �rst edge on its incidence list,look up its other endpoint in the edge table, �nding the incidence list of this new vertex etc.This saves the time of scanning the row of the matrix, looking for a one. However, the saving isreal only if n is large and the graph is sparse, for instead of using one bit per edge, we now useedge names and auxiliary pointers necessary in our data structure. Clearly, the space requiredis O(jEj+ jV j), i.e., bounded by a constant times jEj+ jV j. Here we assume that the basic wordlength of our computer is large enough to encode all edges and vertices. If this assumption isfalse then the space required is O((jEj+ jV j) log(jEj+ jV j))�.In practice, most graphs are sparse. Namely, the ratio (jEj + jV j)=jV j2 tends to zero asthe size of the graphs increases. Therefore, we shall prefer the use of incidence lists to that ofadjacency matrices.The reader can �nd more about data structures and their uses in graph theoretic algorithmsin references [1] and [2].�The base of the log is unimportant (clearly greater than one), since this estimate is only up to a constantmultiplier.



4 CHAPTER 1. PATHS IN GRAPHS1.3 EULER GRAPHSAn Euler path of a �nite undirected graph G(V;E) is a path e1; e2; : : : ; el such that every edgeappears on it exactly once; thus, l = jEj. An undirected graph which has an Euler path is calledan Euler graph.Theorem 1.1 A �nite (undirected) connected graph is an Euler graph if and only if exactly twovertices are of odd degree or all vertices are of even degree. In the latter case, every Euler pathof the graph is a circuit, and in the former case, none is.As an immediate conclusion of Theorem 1.1 we observe that none of the graphs in Figure 1.3is an Euler graph, because both have four vertices of odd degree. The graph shown in Fig-ure 1.3(a) is the famous K�onigsberg bridge problem solved by Euler in 1736. The graph shownin Figure 1.3(b) is a common misleading puzzle of the type \draw without lifting your pen fromthe paper".
Figure 1.3Proof: It is clear that if a graph has an Euler path which is not a circuit, then the start vertexand the end vertex of the path are of odd degree, while all the other vertices are of even degree.Also, if a graph has an Euler circuit, then all vertices are of even degree.Assume now that G is a �nite graph with exactly two vertices of odd degree, a and b. Weshall described now an algorithm for �nding an Euler path from a to b. Starting from a wechoose any edge adjacent to it (an edge of which a is an endpoint) and trace it (go to its otherendpoint). Upon entering a vertex we search for an unused incident edge. If the vertex is neithera nor b, each time we pass through it we use up two of its incident edges. The degree of thevertex is even. Thus, the number of unused incident edges after leaving it is even. (Here again,a self-loop is counted twice.) Therefore, upon entering it there is at least one unused incidentedge to leave by. Also, by a similar argument, whenever we reenter a we have an unused edgeto leave by. It follows that the only place this process can stop is in b. So far we have founda path which starts in a, ends in b, and the number of unused edges incident to any vertex iseven. Since the graph is connected, there must be at least one unused edge which is incident toone of the vertices on the existing path from a to b. Starting a trail from this vertex on unusededges, the only vertex in which this process can end (because no continuation can be found)is the vertex in which it started. Thus, we have found a circuit of edges which were not usedbefore, and in which each edge is used at most once: it starts and ends in a vertex visited in the



1.3. EULER GRAPHS 5previous path. It is easy to change our path from a to b to include this detour. We continue toadd such detours to our path as long as not all edges are in it.The case of all vertices of even degrees is similar. The only di�erence is that we start theinitial tour at any vertex, and this tour must stop at the same vertex. This initial circuit isamended as before, until all edges are included. Q.E.D.In the case of digraphs, a directed Euler path is a directed path in which every edge appearsexactly once. A directed Euler circuit is de�ned similarly. Also a digraph is called Euler if it hasa directed Euler path (or circuit).The underlying (undirected) graph of a digraph is the graph resulting from the digraph ifthe direction of the edges is ignored. Thus, the underlying graph of the digraph shown inFigure 1.4(a) is shown in Figure 1.4(b). Figure 1.4Theorem 1.2 A �nite digraph is an Euler digraph if any only if its underlying graph is con-nected and one of the following two conditions holds:1. There is one vertex a such that dout(a) = din(a)+1 and another vertex b such that dout(b)+1 = din(b), while for all other vertices v, dout(v) = din(v).2. For all vertices v, dout(v) = din(v).If 1 holds then every directed Euler path starts in a and ends in b. If 2 holds then everydirected Euler path is a directed Euler circuit.The proof of the theorem is along the same lines as the proof of Theorem 1.1, and will notbe repeated here.Let us make now a few comments about the complexity of the algorithm for �nding an Eulerpath, as described in the proof of Theorem 1.1. Our purpose is to show that the time complexityof the algorithm is 0(jEj); namely, there exists a constant K such that the time it takes to �ndan Euler path is bounded by K � jEj.In the implementation, we use the following data structures:1. Incidence lists which describe the graph.2. A doubly-linked list of edges P describing the path. Initially this list is empty.3. A vertex table, specifying for each vertex v the following data:(a) A mark which tells whether v appears already on the path. Initially all vertices aremarked \unvisited".(b) A pointer N(v), to the next edge on the incidence list, which is the �rst not to havebeen traced from v before. Initially N(v) points to the �rst edge on v's incidence list.(c) A pointer E(v) to an edge on the path which has been traced from v. Initially E(v)is \unde�ned".



6 CHAPTER 1. PATHS IN GRAPHS4. An edge table which speci�ed for each edge its two endpoints and whether it has beenused. Initially, all edges are marked \unused".5. A list L of vertices all of which have been visited. Each vertex enters this list at mostonce.First let us describe a subroutine TRACE(d; P ), where d is a vertex and P is a doubly linkedlist, initially empty, for storage of a traced path. The tracing starts in d and ends when thepath, stored in P , cannot be extended.TRACE(d; P ):(1) v  d(2) If v is \unvisited", put it in L and mark it \visited".(3) If N(v) is \used" but is not last on v's incidence list then have N(v) point to the nextedge and repeat (3).(4) If N(v) is \used" and it is the last edge on v's incidence list then stop.(5) e N(v)(6) Add e to the end of P .(7) If E(v) is \unde�ned" then E(v) is made to point to the occurrence of e in P .(8) Mark e \used".(9) Use the edge table to �nd the other endpoint u of e.(10) v  u and go to (2).The algorithm is now as follows:(1) d a(2) TRACE(d; P ). [Comment: The subroutine �nds a path from a to b.](3) If L is empty, stop.(4) Let u be in L. Remove u from L.(5) Start a new doubly linked list of edges, P 0, which is initially empty. [Comment: P 0 is tocontain the detour from u.](6) TRACE(u; P 0)(7) Incorporate P 0 into P at E(u). [Comment: This joins the path and the detour into one,possibly longer path. (The detour may be empty.) Since the edge E(u) starts from u, thedetour is incorporated in a correct place.](8) Go to (3).It is not hard to see that both the time and space complexity of this algorithm is O(jEj).



1.4. DE BRUIJN SEQUENCES 71.4 DE BRUIJN SEQUENCESLet � = f0; 1; : : : ; � � 1g be an alphabet of � letters. Clearly there are �n di�erent words oflength n over �. A de Bruijn sequence� is a (circular) sequence a0a1 � � �aL�1 over � such thatfor every word w of length n over � there exists a unique i such thataiai+1 � � �ai+n�1 = w;where the computation of the indices is modulo L. Clearly if the sequence satis�es this condition,then L = �n. The most important case is that of � = 2. Binary de Bruijn sequences are ofgreat importance in coding theory and are implemented by shift registers. (See Golomb's book[3] on the subject.) The interested reader can �nd more information on de Bruijn sequencesin references [4] and [5]. The only problem we shall discuss here is the existence of de Bruijnsequences for every � � 2 and every n.Let us describe a digraph G�;n(V;E) which has the following structure:1. V is the set of all �n�1 words of length n � 1 over �.2. E is the set of all �n words of length n over �.3. The edge b1b2 � � � bn starts at vertex b1b2 � � � bn�1 and ends at vertex b2b3 � � � bn.The graphs G2;3, G2;4, and G3;2 are shown in Figures 1.5, 1.6 and 1.7 respectively.
Figure 1.5These graphs are sometimes called de Bruijn diagrams, or Good's diagrams, or shift registerstate diagrams. The structure of the graphs is such that the word w2 can follow the word w1in a de Bruijn sequence only if the edge w2 starts at the vertex in which w1 ends. Also it isclear that if we �nd a directed Euler circuit (a directed circuit which uses each of the graph'sedges exactly once) of G�;n, then we also have a de Bruijn sequence. For example, consider thedirected Euler circuit of G2;3 (Figure 1.5) consisting of the following sequence of edges:000; 001; 011; 111; 110; 101; 010; 100:�Sometimes they are called maximum-length shift register sequences.



8 CHAPTER 1. PATHS IN GRAPHS
Figure 1.6The implied de Bruijn sequence, 00011101, follows by reading the �rst letter of each word inthe circuit. Thus, the question of existence of de Bruijn sequences is equivalent to that of theexistence of directed Euler circuits in the corresponding de Bruijn diagram.Theorem 1.3 For every positive integers � and n, G�;n has a directed Euler circuit.Proof: We wish to use Theorem 1.2 to prove our theorem. First we have to show that theunderlying undirected graph is connected. In fact, we shall show that G�;n is strongly con-nected. Let b1b2 � � � bn�1 and c1c2 � � � cn�1 be any two vertices; the directed path b1b2 � � �bn�1c1,b2b3 � � �bn�1c1c2, � � �, bn�1c1c2 � � �cn�1 leads from the �rst to the second. Next, we have to showthat dout(v) = din(v) for each vertex v. The vertex b1b2 � � �bn�1 is entered by edges cb1b2 � � � bn�1,where c can be chosen in � ways, and is the start vertex of edges b1b2 � � � bn�1c, where again ccan be chosen in � ways.
Figure 1.7



1.5. SHORTEST-PATH ALGORITHMS 9Q.E.D.Corollary 1.1 For every positive integers � and n there exists a de Bruijn sequence:1.5 SHORTEST-PATH ALGORITHMSIn general the shortest-path problems are concerned with �nding shortest paths between vertices.Many interesting problems arise, and the variety depends on the type of graph in our applicationand the exact question we want to answer. Some of the characteristics which may help in de�ningthe exact problem are as follows:1. The graph is �nite or in�nite.2. The graph is undirected or directed.3. The edges are all of length 1, or all lengths are non-negative, or negative lengths areallowed.4. We may be interested in shortest paths from a given vertex to another, or from a givenvertex to all the other vertices, or from each vertex to all the other vertices.5. We may be interested in �nding just one path, or all paths, or counting the number ofshortest paths.Clearly, this section will deal only with very few of all the possible problems. An attempt ismade to describe the most important techniques.First let us consider the case of a �nite graph G in which two vertices s and t are speci�ed.Our task is to �nd a path from s to t, if there are any, which uses the least number of edges.Clearly this is the case of the �nite, undirected graph, with all length of edges being equal to 1,and where all we want is one path from a given vertex to another. In fact, the digraph case isjust as easy and can be similarly solved.The algorithm to be used here was suggested by Moore [6] and by now is widely used. It iswell known as the Breadth First Search (BFS) technique.At �rst no vertices of the graph are considered labeled.1. Label vertex s with 0.2. i 03. Find all unlabeled vertices adjacent to at least one vertex labeled i. If none are found,stop.4. Label all the vertices found in (3) with i+ 1.5. If vertex t is labeled, stop.6. i i+ 1 and go to (3).Clearly we can remove step 5 from the algorithm, and the algorithm is still valid for �nitegraphs. However, step 5 saves the work which would be wasted after t is labeled, and it permitsthe use of the algorithm on in�nite graphs whose vertices are of �nite degree and in which thereis a (�nite) path between s and t.Let the distance between u and v be the least number of edges in a path connecting u andv, if such a path exists, and 1 if none exists.



10 CHAPTER 1. PATHS IN GRAPHSTheorem 1.4 The BFS algorithm computes the distance of each vertex from s, if t is not closer.Proof: Let us denote the label of a vertex v, assigned by the BFS algorithm, by �(v).First we show that if a vertex is labeled �(v) = k, then there is a path of length k from sto v. Such a path can be traced as follows: There must be a vertex vk�1 adjacent to v = vk,labeled k � 1, and similarly, there must be a vertex vk�i�1 adjacent to vk�i labeled k � i � 1for i = 0; 1; : : : ; k � 1. Clearly v0 = s, since s is the only vertex labeled 0. Thus, v0 | v1 |� � �vk�1 | vk is a path of length k from s to v.Now, let us prove by induction on l that if v is of distance l from s and if t is not closer tos, then �(v) = l.After Step 1, �(s) = 0, and indeed the distance from s to s is zero.Assume now that the statement holds for shorter distances, let us show that it must holdfor l too. Let s | v1 | v2 | � � �vl�1 | v be a shortest path from s to v. Clearly, s | v1 |v2 | � � �vl�2 | vl�1 is a shortest path from s to vl�1. If t is not closer to s than v then clearlyit is not closer than vl�1 either. By the inductive hypothesis �(vl�1) = l� 1. When i = l � 1, vreceives the label l. It could not have been labeled before since if it were then its label is lessthan l, and there is a shorter path from s to v, in contradiction to l's de�nition. Q.E.D.It is clear that each edge is traced at most twice, in this algorithm; once from each of itsendpoints. That is, for each i the vertices labeled i are scanned for their incident edges in step 3.Thus, if we use the incidence lists data structures the algorithm will be of time complexity O(jEj).The directed case is even simpler because each edge is traced at most once.A path from s to t can be traced by moving now from t to s, as described in the proof ofTheorem 1.4. If we leave for each vertex the name of the edge used for labeling it, the tracingis even easier.Let us now consider the case of a �nite digraph, whose edges are assigned with non-negativelengths; thus, each edge e is assigned a length l(e) � 0. Also, there are two vertices s and t andwe want to �nd a shortest directed path from s to t, where the length of a path is the sum ofthe lengths of its edges.The following algorithm is due to Dijkstra [7]:1. �(s) 0 and for all v 6= s, �(v) 1.2. T  V .3. Let u be a vertex in T for which �(u) is minimum.4. If u = t, stop.5. For every edge u e! v, if v 2 T and �(v) > �(u) + l(e) then �(v) �(u) + l(e).6. T  T � fug and go to step 3.Let us denote the distance of vertex v from s by �(v). We want to show that upon termination�(t) = �(t); that is, if �(t) is �nite than it is equal to �(t) and if �(t) is in�nite then there is nopath from s to t in the digraph.Lemma 1.2 In Dijkstra's algorithm, if �(v) is �nite then there is a path from s to v whoselength is �(v).



1.5. SHORTEST-PATH ALGORITHMS 11Proof: Let u be the vertex which gave v its present label �(v); namely, �(u)+l(e) = �(v), whereu e! v. After this assignment took place, u did not change its label, since in the following step(step 6) u was removed from the set T (of temporarily assigned vertices) and its label remained�xed from there on. Next, �nd the vertex which gave u its �nal label �(u), and repeating thisbackward search, we trace a path from s to v whose length is exactly �(v). The backward search�nds each time a vertex which has left T earlier, and therefore no vertex on this path can berepeated; it can only terminate in s which has been assigned its label in step 1. Q.E.D.Lemma 1.3 In Dijkstra's algorithm, when a vertex is chosen (in Step 3), its label �(u) satis�es�(u) = �(u).Proof: By induction on the order in which vertices leave the set T . The �rst one to leave is s,and indeed �(s) = �(s) = 0.Assume now that the statement holds for all vertices which left T before u.If �(u) =1, let u0 be the �rst vertex whose label �(u0) is in�nite when it is chosen. Clearly,for every v in T , at this point, �(v) =1, and for all vertices v0 2 V �T , �(v0) is �nite. Therefore,there is no edge with a start-vertex in V � T and end-vertex in T . It follows that there is nopath from s (which is in V � T ) to u (which is in T ).If �(u) is �nite, then by Lemma 1.2, �(u) is the length of some path from s to u. Thus,�(u) � �(u). We have to show that �(u) > �(u) is impossible. Let a shortest path from s to ube s = v0 e1! v1 e2! � � �vk�1 ek! vk = u. Thus, for every i = 0; 1; : : : ; k�(vi) = iXj=1 l(ej):Let vi be the right most vertex on this path to leave T before u. By the inductive hypothesis�(vi) = �(vi) = iXj=1 l(ej):If vi+1 6= u, then �(vi+1) � �(vi) + l(ei+1) after vi has left T . Since labels can only decrease ifthey change at all, when u is chosen �(vi+1) still satis�es this inequality. We have:�(vi+1) � �(vi) + l(ei+1) = �(vi) + l(ei+1) = �(vi+1) � �(u);and if �(u) < �(u), u should not have been chosen. In case vi+1 = u, the same argument showsdirectly that �(u) � �(u). Q.E.D.It is an immediate corollary of Lemma 1.3 that �(t) = �(t) upon termination.Let us now consider the complexity of Dijkstra's algorithm. In step 3, the minimum labelof the elements of T has to be found. Clearly this can be done in jT j � 1 comparisons. At �rstT = V ; it decreases by one each time and the search is repeated jV j times. Thus, the total timespent on step 3 is O(jV j2). Step 5 can use each edge exactly once. Thus it uses, at most, O(jEj)time. Since it makes no sense to have parallel edges (for all but the shortest can be dropped) orself-loops, jEj � jV j � (jV j � 1). Thus, the whole algorithm is of O(jV j2) complexity.Clearly, for sparse graphs the BFS algorithm is better; unfortunately it does not work if notall edge lengths are equal.



12 CHAPTER 1. PATHS IN GRAPHSDijkstra's algorithm is applicable to undirected graphs too. Simply represent each edge ofthe graph by two anti-parallel directed edges with the same length. Also, it can be used onin�nite graphs, if outgoing degrees are �nite and there is a �nite directed path from s to t.However, this algorithm is not applicable if l(e) may be negative; Lemma 1.2 still holds, butLemma 1.3 does not.Next, an algorithm for �nding the distance of all the vertices of a �nite digraph from a givenvertex s, is described. It allows negative edge lengths, but does not allow a directed circuitwhose length (sum of the lengths of its edges) is negative. The algorithm is due to Ford [8, 9]:1. �(s) 0 and for every v 6= s, �(v) 1.2. As long as there is an edge u e! v such that �(v) > �(u)+ l(e) replace �(v) by �(u)+ l(e).For our purposes 1 is not greater than 1 + k, even if k is negative.It is not even obvious that the algorithm will terminate; indeed, it will not if there is adirected circuit accessible from s (namely, there is a directed path from s to one of the verticeson the circuit) whose length is negative. By going around this circuit the labels will be decreasedand the process can be repeated inde�nitely.Lemma 1.4 In the Ford algorithm, if �(v) is �nite then there is a directed path from s to vwhose length is �(v).Proof: As in the proof of the similar previous statements, this is proved by displaying a pathfrom s to v, and its construction is backwards, from v to s. First we �nd the vertex u whichgave v its present label �(v). The value of �(u) may have decreased since, but we shall refer toits value �0(u) at the time that it gave v its label. Thus, �(v) = �0(u) + l(e), where u e! v. Wecontinue from u to the vertex which gave it the value �0(u) etc., each time referring to an earliertime in the running of the algorithm. Therefore, this process must end, and the only place itcan end is in s. Q.E.D.The lemma above is even true if there are negative length directed circuits. But if there areno such circuits, the path traced in the proof cannot return to a vertex visited earlier. For ifit does, then by going around the directed circuit, a vertex improved its own label; this impliesthat the sum of the edge lengths of the circuit is negative. Therefore we have:Lemma 1.5 In the Ford algorithm, if the digraph has no directed circuits of negative length andif �(v) is �nite then there is a simple directed path from s to v whose length is �(v).Since each value, �(v), corresponds to at least one simple path from s to v, and since thenumber of simple directed paths in a �nite digraph is �nite, the number of values possible for�(v) is �nite. Thus, the Ford algorithm must terminate.Lemma 1.6 For a digraph with no negative directed circuit, upon termination of the Ford al-gorithm, �(v) = �(v) for every vertex v.Proof: By Lemma 1.5, �(v) � �(v). If �(v) > �(v), let s = v0 e1! v1 e2! � � �vk�1 ek! vk = v be ashortest path from s to v. Clearly, for every i = 0; 1; : : : ; k�(vi) = iXj=1 l(ej):



1.5. SHORTEST-PATH ALGORITHMS 13Let vi be the �rst vertex on this path for which �(vi) > �(vi). Since �(vi�1) = �(vi�1), the edgevi�1 ei! vi can be used to lower �(vi) to �(vi�1) + l(ei), (which is equal to �(vi)). Thus, thealgorithm should not have terminated. Q.E.D.We can use a simple device to bound the number of operation to O(jEj � jV j). Order theedges: e1; e2; : : : ; ejEj. Now, perform step 2 by �rst checking e1, then e2, etc., and improvinglabels accordingly. After the �rst such sweep, go through additional sweeps, until an entiresweep produces no improvement. If the digraph contains no negative directed circuits then theprocess will terminate. Furthermore, if a shortest path from s to v consists of k edges, then bythe end of the kth sweep v will have its �nal label; this is easily proved by induction on k. Sincek is bounded by jV j, the whole algorithm takes at most O(jEj � jV j) steps. Moreover, if by thejV jth sweep any improvement of a label takes place then the digraph must contain a negativecircuit. Thus, we can use the Ford algorithm to detect the existance of a negative circuit, if allvertices are accessible from s. If the existence of a negative circuit is indicated, we can �nd oneby starting a backward search from a vertex whose label is improved in the jV jth sweep. Tothis end we need for each vertex v a pointer to the vertex u which gave v its last label. This iseasily achieved by a simple addition to step 2.The Ford algorithm cannot be used on undirected graphs because any negative edge has thee�ect of a negative circuit; one can go on it back and forth decreasing labels inde�nitely. Allthree algorithms can be used to �nd the distances of all vertices from a given vertex s; the BFSand Dijkstra's algorithm have to be changed: instead of stoping when t is labeled or taken out ofT , stop when all accessible vertices are labeled or when T is empty. The bounds on the numberof operations remain O(jEj), 0(jV j2) and O(jEj � jV j) respectively for the BFS, Dijkstra and theFord algorithm. If this is repeated from all vertices, in order to �nd the distance from everyvertex to all the others, the respective complexities are O(jEj � jV j), O(jV j3) and O(jEj � jV j2).Next, let us describe an algorithm which solves the case with negative lengths in time O(jV j3).Let G(V;E) be a �nite digraph with V = f1; 2; : : : ; ng. The length of edge e is denoted byl(e), as before, and it may be negative. De�ne�0(i; j) = ( l(e) if i e! j;1 if there is no edge from i to j.Let �k(i; j) be the length of a shortest path from i to j among all paths which may pass throughvertices 1; 2; : : : ; k but do not pass through vertices k + 1; k+ 2; : : : ; n.Floyd's algorithm [10] is as follows:1. k 12. For every 1 � i; j � n compute�k(i; j) Minf�k�1(i; j); �k�1(i; k) + �k�1(k; j)g:3. If k = n, stop. If not, increment k and go to step 2.The algorithm clearly yields the right answer; namely, �n(i; j) is the distance from i to j.The answer is only meaningful if there are no negative circuits in G. The existence of negativecircuits is easily detected by �k(i; i) < 0. Each application of step 2 requires n2 operations, andstep 2 is repeated n times. Thus, the algorithm is of complexity O(n3).For the case of �nite graphs with non-negative edge lengths, both the repeated Dijkstraalgorithm and Floyd's take O(jV j3). Additional information on the shortest path problem canbe found in Problems 1.9 and 1.10 and references [11] and [12].



14 CHAPTER 1. PATHS IN GRAPHSPROBLEMS1.1 Prove that if a connected (undirected) �nite graph has exactly 2k vertices of odd degreethen the set of edges can be partitioned into k paths such that every edge is used exactlyonce. Is the condition of connectivity necessary or can it be replaced by a weaker condition?A Hamilton path (circuit) is a simple path (circuit) on which every vertex of the graphappears exactly once.1.2 Prove that the following graph has no Hamilton path or circuit.
1.3 Prove that in every completely connected directed graph (a graph in which every twovertices are connected by exactly one directed edge in one of the two possible directions)there is always a directed Hamilton path. (Hint: Prove by induction on the number ofvertices.)1.4 Prove that a directed Hamilton circuit of G�;n corresponds to a directed Euler circuit ofG�;n�1. Is it true that G�;n always has a direct Hamilton circuit?1.5 In the following assume that G(V;E) is a �nite undirected graph, with no parallel edgesand no self-loops.(a) Describe an algorithm which attempts to �nd a Hamilton circuit in G by workingwith a partial simple path. If the path cannot be extended in either direction thentry to close it into a simple circuit by the edge between its endpoints, if it exists, orby a switch, as suggested by the diagram, where edges a and b are added and c isdeleted. Once a circuit is formed, look for an edge from one of its vertices to a newvertex, and open the circuit to a now longer path, etc.(b) Prove that if for every two vertices u and v, d(u)+d(v) � n, where n = jV j, then thealgorithm will never fail to produce a Hamilton circuit.(c) Deduce Dirac's theorem [13]: If for every vertex v, d(v) � n=2, then G has a Hamiltoncircuit.



PROBLEMS 151.6 Describe an algorithm for �nding the number of shortest paths from s to t after the BFSalgorithm has been performed.1.7 Repeat the above, after the Dijkstra algorithm has been performed. Assume l(e) > 0 forevery edge e. Why is this asumption necessary?1.8 Prove that a connected undirected graph G is orientable (by giving each edge some direc-tion) into a strongly connected digraph if and only if each edge of G is in some simplecircuit in G. (A path u e| v e| u is not considered a simple circuit.)1.9 The transitive closure of a digraph G(V;E) is a digraph G0(V;E) such that there is anedge u! v in G0 if and only if there is a (non-empty) directed path from u to v in G. Forthe BFS, Dijkstra and Floyd's algorithms, explain how they can be used to construct G0for a given G, and compare the complexities of the resulting algorithms.1.10 The following algorithm, due to Dantzig [14], �nds all distances in a �nite digraph, likeFloyd's algorithm. Let �k(i; j) be the distance from i to j, where 1 � i; j � k and novertices higher than k are used on the path. Let �k(i; i) = 0 for all i and k. Also, let l(i; j)be l(e) if i e! j, and 1 if no such edge exists.(1) �1(1; 1) Minf0; l(1; 1)g.(2) k 2(3) For 1 � i < k do�k(i; k) Min1�j<kf�k�1(i; j) + l(j; k)g�k(k; i) Min1�j<kfl(k; j)+ �k�1(j; i)g(4) For 1 � i; j < k do�k(i; j) Minf�k�1(i; j); �k(i; k) + �k(k; j)g(5) If k = n, stop, If not, increment k and go to step 3.Show that Dantzig's algorithm is valid. How are negative circuits detected? What is thetime complexity of this algorithm?REFERENCES[1] Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental Algorithms,Addison-Wesley, 1968.[2] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of ComputerAlgorithms, Addison-Wesley, 1974.[3] Golomb, S. W., Shift Register Sequences, Holden-Day, 1967.[4] Berge, C., The Theory of Graphs and Its Applications, Wiley, 1962, Chapter 17.[5] Hall, M., Jr., Combinatorial Theory, Blaisdell, 1967, Chapter 9.[6] Moore, E. F., \The Shortest Path Through a Maze", Proc. Iternat. Symp. Switching Th.,1957, Part II, Harvard Univ. Press, 1959, pp. 285-292.



16 CHAPTER 1. PATHS IN GRAPHS[7] Dijkstra, E. W., \A Note on Two Problems in Connection with Graphs", Numerische Math.,Vol. 1, 1959, pp. 269-271.[8] Ford, L. R., Jr., \Network Flow Theory", The Rand Corp., P-923, August, 1956.[9] Ford, L. R., Jr. and Fulkerson, D. R., Flows in Networks, Princeton Univ. Press, 1962,Chap. III, Sec. 5.[10] Floyd, R. W., \Algorithm 97: Shortest Path", Comm. ACM, Vol. 5, 1962, p. 345.[11] Dreyfus, S. E., \An Appraisal of Some Shortest-Path Algorithms", Operations Research,Vol. 17, 1969, pp. 395-412.[12] Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart andWinston, 1976, Chapter 3.[13] Dirac, G. A., \Connectivity Theorems for Graphs", Quart. L Math., Ser. (2), Vol. 3, 1952,pp. 171-174.[14] Dantzig, G. B., \All Shortest Routes in a Graph", Oper. Res. House, Stanford Univ. Tech.Rep. 66-3, November 1966.



Chapter 2TREES2.1 TREE DEFINITIONSLet G(V;E) be an (undirected), �nite or in�nite graph. We say that G is circuit-free if thereare no simple circuits in G. G is called a tree if it is connected and circuit-free.Theorem 2.1 The following four conditions are equivalent:(a) G is a tree.(b) G is circuit-free, but if any new edge is added to G, a circuit is formed.(c) G contains no self-loops and for every two vertices there is a unique simple path connectingthem.(d) G is connected, but if any edge is deleted from G, the connectivity of G is interrupted.Proof: We shall prove that conditions (a) ) (b) ) (c) ) (d) ) (a).(a) ) (b): We assume that G is connected and circuit-free. Let e be a new edge, that ise 62 E; the two endpoints of e, a and b, are elements of V . If a = b, then e forms a self-loop andtherefore a circuit exists. If a 6= b, there is a path in G (without e) between a and b; if we adde, this path with e forms a circuit.(b) ) (c): We assume that G is circuit-free and that no edge can be added to G withoutcreating a circuit. Let a and b be any two vertices of G. If there is no path between them, thenwe can add an edge between a and b without creating a circuit. Thus, G must be connected.Moreover, if there are two simple paths, P and P 0, between a and b, then there is a circuit in G.To see this, assume that P = e1; e2; : : : ; el and P 0 = e01; e02; : : : ; e0m. Since both paths are simple,one cannot be the beginning of the other. Let i be the �rst index for which ei 6= e0i, and let vbe the �rst vertex on ei; ei+1; : : : ; el which is also on e0i; e0i+1; : : : ; e0m. The two disjoint subpathsbetween the branching o� vertex and v form a simple circuit in G.(c) ) (d): We assume the existence of a unique simple path between every pair of verticesof G. This implies that G is connected. Assume now that we delete an edge e from G. SinceG has no self-loops, e is not a self-loop. Let a and b be e's endpoints. If there is now (after thedeletion of e) a path between a and b, then G has more than one simple path between a and b.(d) ) (a): We assume that G is connected and that no edge can be deleted without inter-rupting the connectivity. If G contains a simple circuit, any edge on this circuit can be deletedwithout interrupting the connectivity. Thus, G is circuit-free.17



18 CHAPTER 2. TREESQ.E.D.There are two more common ways to de�ne a �nite tree. These are given in the followingtheorem.Theorem 2.2 Let G(V;E) be a �nite graph and n = jV j. The following three conditions areequivalent:(a) G is a tree.(b) G is circuit-free and has n� 1 edges.(c) G is connected and has n� 1 edges.Proof: For n = 1 the theorem is trivial. Assume n � 2. We shall prove that conditions (a) )(b) ) (c) ) (a).(a) ) (b): Let us prove, by induction on n, that if G is a tree, then its number of edges isn� 1. This statement is clearly true for n = 1. Assume that it is true for all n < m, and let Gbe a tree with m vertices. Let us delete from G any edge e. By condition (d) of Theorem 2.1, Gis not connected any more, and clearly is broken into two connected components each of whichis circuit-free and therefore is a tree. By the inductive hypothesis, each component has one edgeless than the number of vertices. Thus, both have m� 2 edges. Add back e, and the number ofedges is m� 1.(b) ) (c): We assume that G is circuit-free and has n � 1 edges. Let us �rst show that Ghas at least two vertices of degree 1. Choose any edge e. An edge must exist since the numberof edges is n� 1 and n � 2. Extend the edge into a path by adding new edges to its ends if suchexist. A new edge attached at the path's end introduces a new vertex to the path or a circuit isclosed. Thus, our path remains simple. Since the graph is �nite, this extension must terminateon both sides of e, yielding two vertices of degree 1.Now, the proof that G is connected proceeds by induction on the number of vertices, n. Thestatement is obviously true for n = 2. Assume that it is true for n = m � 1, and let G be acircuit-free graph with m vertices and m � 1 edges. Eliminate from G a vertex v, of degree 1,and its incident edge. The resulting graph is still circuit-free and has m� 1 vertices and m� 2edges; thus, by the inductive hypothesis it is connected. Therefore, G is connected too.(c) ) (a): Assume that G is connected and has n � 1 edges. If G contains circuits, we caneliminate edges (without eliminating vertices) and maintain the connectivity. When this processterminates, the resulting graph is a tree, and, by (a) ) (b), has n� 1 edges. Thus, no edge canbe eliminated and G is circuit-free. Q.E.D.Let us call a vertex whose degree is 1, a leaf. A corollary of Theorem 2.2 and the statementproved in the (b) ) (c) part of its proof is the following corollary:Corollary 2.1 A �nite tree, with more than one vertex, has at least two leaves.2.2 MINIMUM SPANNING TREEA graph G0(V 0; E 0) is called a subgraph of a graph G(V;E), if V 0 � V and E0 � E. Clearly, anarbitrary choice of V 0 � V and E 0 � E may not yield a subgraph, simply because it may notbe a graph; that is, some of the endpoints of edges in E 0 may not be in V 0.



2.2. MINIMUM SPANNING TREE 19Assume G(V;E) is a �nite, connected (undirected) graph and each edge e 2 E has a knownlength l(e) > 0. Assume we want to �nd a connected subgraphG0(V;E 0) whose length,Pe2E l(e),is minimum; or, in other words, we want to remove from G a subset of edges whose total lengthis maximum, and which leaves it still connected. It is clear that such a subgraph is a tree. For G0is assumed to be connected, and since its length is minimum, none of its edges can be removedwithout destroying its connectivity. By Theorem 2.1 (see part (d)) G0 is a tree. A subgraphof G, which contains all of its vertices and is a tree is called a spanning tree of G. Thus, ourproblem is that of �nding a minimum-length spanning tree of G.There are many known algorithms for the minimum spanning tree problem, but they allhinge on the following theorem:Theorem 2.3 Let U � V and e be of minimum length among the edges with one endpoint inU and the other endpoint in V � U . There exists a minimum spanning tree T such that e is inT .Proof: Let T0 be a minimum spanning tree. If e is not in T0, add e to T0. By Theorem 2.1 (part(b)) a circuit is formed. This circuit contains e and at least one more edge u e0| v, where u 2 Uand v 2 V � U . Now, l(e) � l(e0), since e is of minimum length among the edges connectingU with V � U . We can delete e0 from T0 + e. The resulting subgraph is still connected and byTheorem 2.2 is a tree, since it has the right number of edges. Also, the length of this new tree,which contains e, is less than or equal to that of T0. Thus, it is optimal. Q.E.D.Let G(V;E) be the given graph, where V = f1; 2; : : : ; ng. We assume that there are noparallel edges, for all but the shortest can be eliminated. Thus, let l(i; j) be l(e) if there is anedge i e| j, and in�nity otherwise. The following algorithm is due to Prim [1]:(1) t 1, T  ; and U  f1g.(2) Let l(t; u) = Minv2V�Ufl(t; v)g.(3) T  T [ feg where e is the edge which corresponds to the length l(t; u).(4) U  U [ fug.(5) If U = V , stop.(6) For every v 2 V � U , l(t; v) Minfl(t; v); l(u; v)g.(7) Go to Step (2).(Clearly t = 1 throughout. We used t instead of 1 to emphasize that l(t; v) may not be theoriginal l(1; v) after Step (6) has been applied.)The algorithm follows directly the hint supplied by Theorem 2.3. The \vertex" t representsthe subset U of vertices, and for v 2 V �U l(t; v) is the length of a shortest edge from a vertexin U to v. This is a�ected by Step (6). Thus, in Step (2), a shortest edge connecting U andV � U is chosen.Although each choice of an edge is \plausible", it is still necessary to prove that in the end,T is a minimum spanning tree.Let a subgraph G0(V 0; E 0) be called an induced subgraph if E 0 contains all the edges of Ewhose endpoints are in V 0; in this case we say that G ' is induced by V 0.



20 CHAPTER 2. TREESFirst observe, that each time we reach Step (5), T is the edge set of a spanning tree ofthe subgraph induced by U . This easily proved by induction on the number of times we reachStep (5). We start with U = f1g and T = ; which is clearly a spanning tree of the subgraphinduced by f1g. After the �rst application of Steps (2), (3) and (4), we have two vertices in Uand an edge in T which connects them. Each time we apply Steps (2), (3) and (4) we add anedge from a vertex of the previous U to a new vertex. Thus the new T is connected too. Also,the number of edges is one less than the number of vertices. Thus, by Theorem 2.2 (part (c)),T is a spanning tree.Now, let us proceed by induction to prove that if the old T is a subgraph of some minimumspanning tree of G then so is the new one. The proof is similar to that of Theorem 2.3. Let T0be a minimum spanning tree of G which contains T as a subgraph, and assume e is the nextedge chosen in Step (2) to connect between a vertex of U and V �U . If e is not in T0, add it toT0 to form T0 + e. It contains a circuit in which there is one more edge, e0, connecting a vertexof U with a vertex of V �U . By Step (2), l(e) � l(e0), and if we delete e0 from T0+ e, we get anminimum spanning tree which contains both T , as a subgraph, and e, proving that the new Tis a subgraph of some minimum spanning tree. Thus, in the end T is a minimum spanning treeof G.The complexity of the algorithm is O(jV j2); Step (2) requires at most jV j � 1 comparisonsand is repeated jV j� 1 times, yielding O(jV j2). Step (6) requires one comparison for each edge;thus, the total time spent on it is O(jEj).It is possible to improve the algorithm and the interested reader is advised to read theCheriton and Tarjan paper [2]. We do not pursue this here because an understanding of advanceddata structures is necessary. The faster algorithms do not use any graph theory beyond the levelof this section.The analogous problem for digraphs, namely, that of �nding a subset of the edges E 0 whosetotal length is minimum among those for which (V;E0) is a strongly connected subgraph, ismuch harder. In fact, even the case where l(e) = 1 for all edges is hard. This will be discussedin Chapter 10.2.3 CAYLEY'S THEOREMIn a later section we shall consider the question of the number of spanning trees in a given graph.Here we consider the more restricted, and yet interesting problem, of the number of trees onecan de�ne on a given set of vertices, V = f1; 2; : : : ; ng.For n = 3, there are 3 possible trees, as shown in Figure 2.1. Clearly, for n = 2 there is onlyone tree. The reader can verify, by exhausting all the cases, that for n = 4 the number of treesis 16. The following theorem is due to Cayley [3]:Figure 2.1Theorem 2.4 The number of spanning trees for n distinct vertices is nn�2.



2.3. CAYLEY'S THEOREM 21The proof to be presented is due to Pr�ufer [4]. (For a survey of various proofs see Moon [5].)Proof: Assume V = f1; 2; : : : ; ng. Let us display a one-to-one correspondence between the setof the spanning trees and the nn�2 words of length n � 2 over the alphabet f1; 2; : : : ; ng. Thealgorithm for �nding the word which corresponds to a given tree is as follows:(1) i 1.(2) Among all leaves of the current tree let j be the least one (i.e., its name is the least integer).Eliminate j and its incident edge e from the tree. The ith letter of the word is the otherendpoint of e.(3) If i = n � 2, stop.(4) Increment i and go to step 2.For example, assume that n = 6 and the tree is as shown in Figure 2.2. On the �rst turn ofStep (2), j = 2 and the other endpoint of its incident edge is 4. Thus, 4 is the �rst letter of theword. The new tree is as shown in Figure 2.3. On the second turn, j = 3 and the second letteris 1. On the third, j = 1 and the third letter is 6. On the fourth, j = 5 and the fourth letter is4. Now i = 4 and the algorithm halts. The resulting word is 4164 (and the current tree consistsof one edge connecting 4 and 6). Figure 2.2Figure 2.3By Corollary 2.1, Step (2) can always be performed, and therefore for every tree a word oflength n � 2 is produced. It remains to be shown that no word is produced by two di�erenttrees and that every word is generated from some tree. We shall achieve both ends by showingthat the mapping has an inverse; i.e., for every word there is a unique tree which produces it.Let w = a1a2 � � �an�2 be a word over V . If T is a tree for which the algorithm produces wthen the degree of vertex k, d(k), in T , is equal to the number of times k appears in w, plus1. This follows from the observation that when each, but the last, of the edges incident to k isdeleted, k is written as a letter of w; the last edge may never be deleted, if k is one of the twovertices remaining in the tree, or if it is deleted, k is now the removed leaf, and the adjacentvertex, not k, is the written letter. Thus, if w is produced by the algorithm, for some tree, thenthe degrees of the vertices in the tree must be as stated.For example, if w = 4164 then d(1) = 2, d(2) = 1, d(3) = 1, d(4) = 3, d(5) = 1 and d(6) = 2in a tree which produced w.Given this data, apply the following algorithm:(1) i 1.



22 CHAPTER 2. TREES(2) Let j be the least vertex for which d(j) = 1. Construct an edge j | ai, d(j)  0 andd(ai) d(ai)� 1.(3) If i = n � 2, construct an edge between the two vertices whose degree is 1 and stop.(4) Increment i and go to step 2.It is easy to see that this algorithm picks the same vertex j as the original algorithm, andconstructs a tree (the proof is by induction). Also, each step of the reconstruction is forced,therefore it is the only tree which yields w, and for every word this algorithm produces a tree.In our example, for i = 1, j = 2 and since a1 = 4 we connect 2 | 4, as shown in Figure 2.4.Now, d(1) = 2, d(2) = 0, d(3) = 1, d(4) = 2, d(5) = 1 and d(6) = 2. For i = 2, j = 3 andsince a2 = 1 we connect 3 | 1, as shown in Figure 2.5. Now d(1) = 1, d(2) = 0, d(3) = 0,d(4) = 2, d(5) = 1 and d(6) = 2. For i = 3, j = 1 and since a3 = 6 we connect 1 | 6 as shownin Figure 2.6. Now, d(1) = d(2) = d(3) = 0, d(4) = 2 and d(5) = d(6) = 1. Finally, i = 4, j = 5and since a4 = 4 we connect 5 | 4, as shown in Figure 2.7. Now, d(1) = d(2) = d(3) = d(5) = 0and d(4) = d(6) = 1. By step 3, we connect 4 | 6 and stop. The resulting graph is as inFigure 2.2. Q.E.D.Figure 2.4Figure 2.5Figure 2.6Figure 2.7A similar problem, stated and solved by Lempel and Welch [6), is that of �nding the numberof ways m labeled (distinct) edges can be joined by unlabeled endpoints to form a tree. Theirproof is along the lines of Pr�ufer's proof of Cayley's theorem and is therefore constructive, inthe sense that one can use the inverse transformation to generate all the trees after the wordsare generated. However, a much simpler proof was pointed out to me by A. Pnueli and is thesubject of Problem 2.5.2.4 DIRECTED TREE DEFINITIONSA digraph G(V;E) is said to have a root r if r 2 V and every vertex v 2 V is reachable from r;i.e., there is a directed path which starts in r and ends in v.A digraph (�nite or in�nite) is called a directed tree if it has a root and its underlyingundirected graph is a tree.



2.4. DIRECTED TREE DEFINITIONS 23Theorem 2.5 Assume G is a digraph. The following �ve conditions are equivalent:(a) G is a directed tree.(b) G has a root from which there is a unique directed path to every vertex.(c) G has a root r for which din(r) = 0 and for every other vertex v, din(v) = 1.(d) G has a root and the deletion of any edge (but no vertices) interrupts this condition.(e) The underlying undirected graph of G is connected and G has one vertex r for whichdin(r) = 0, while for every other vertex v, din(v) = 1.Proof: We prove that (a) ) (b) ) (c) ) (d) ) (e) ) (a).(a) ) (b): We assume that G has a root, say r, and its underlying undirected graph G0 isa tree. Thus, by Theorem 2.1, part (c), there is a unique simple path from r to every vertex inG0; also, G0 is circuit-free. Thus, a directed path from r to a vertex v, in G, must be simple andunique.(b) ) (c): Here we assume that G has a root, say r, and a unique directed path from it toevery vertex v. First, let us show that din(r) = 0. Assume there is an edge u e! r. There is adirected path from r to u, and it can be continued, via e, back r. Thus, in addition to the emptypath from r to itself (containing no edges), there is one more, in contradiction of the assumptionof the path uniqueness. Now, we have to show that if v 6= r then din(v) = 1. Clearly, din(v) > 0for it must be reachable from r. If din(v) > 1, then there are at least two edges, say v1 e1! v andv2 e2! v. Since there is a directed path P1 from r to v1, and a directed path P2 from r to v2 byadding e1 to P1 and e2 to P2 we get two di�erent paths from r to v. (This proof is valid even ifv1 = v2.)(c) ) (d): This proof is trivial, for the deletion on any edge u e! v will make v unreachablefrom r.(d) ) (e): We assume that G has a root, say r, and the deletion of any edge interrupts thiscondition. First din(r) = 0, for any edge entering r could be deleted without interrupting thecondition that r is a root. For every other vertex v, din(v) > 0, for it is reachable from r. Ifdin(v) > 1, let v1 e1! v and v2 e2! v be two edges entering v. Let P be a simple directed path fromr to v. It cannot use both e1 and e2. The one which is not used in P can be deleted withoutinterrupting the fact that r is a root. Thus, din(v) = 1.(e)) (a): We assume that the underlying undirected graph ofG, G0, is connected, din(r) = 0and for v 6= r, din(v) = 1. First let us prove that r is a root. Let P 0 be a simple path connectingr and v in G0. This must correspond to a directed path P from r to v in G, for if any of theedges points in the wrong direction it would either imply that din(r) > 0 or that for some u,din(u) > 1. Finally, G0 must be circuit-free, for a simple circuit in G0 must correspond to asimple directed circuit in G (again using din(r) = 0 and din(v) = 1 for v 6= r), and at least oneof its vertices, u, must have din(u) > 1, since the vertices of the circuit are reachable from r.Q.E.D.In case of �nite digraphs one more useful de�nition of a directed tree is possible:Theorem 2.6 A �nite digraph G is a directed tree if and only if its underlying undirectedgraph, G0, is circuit-free, one of its vertices, r, satis�es din(r) = 0, and for all other vertices v,din(v) = 1.



24 CHAPTER 2. TREESProof: The \only if" part follows directly from the de�nition of a directed tree and Theorem 2.5,part (c).To prove the \if" part we �rst observe that the number of edges is n � 1. Thus, by Theo-rem 2.2, (b) ) (c), G0 is connected. Thus, by Theorem 2.5, (e) ) (a), G is a directed tree.Q.E.D.Let us say that a digraph is arbitrated (Berge [7] calls it quasi strongly connected) if forevery two vertices v1 and v2 there is a vertex v called an arbiter of v1 and v2, such that there aredirected paths from v to v1 and from v to v2. There are in�nite digraphs which are arbitratedbut do not have a root. For example, see the digraph of Figure 2.8. However, for �nite digraphsthe following theorem holds: Figure 2.8Theorem 2.7 If a �nite digraph is arbitrated then it has a root.Proof: Let G(V;E) be a �nite arbitrated digraph, where V = f1; 2; : : : ; ng. Let us prove, byinduction, that every set f1; 2; : : : ; mg, where m � n, has an arbiter; i.e., a vertex am such thatevery 1 � i � m is reachable from am. By de�nition, a2 exists. Assume am�1 exists. Let am,be the arbiter of am�1 and m. Since am�1 is reachable from am, and every 1 � i � m � 1 isreachable from am�1, every 1 � i � m� 1 is also reachable from am. Q.E.D.Thus, for �nite digraphs, the condition that it has a root, as in Theorem 2.5 part a, b, c andd, can be replaced by it being arbitrated.2.5 THE INFINITY LEMMAThe following is known as K�onig's In�nity Lemma [8]:Theorem 2.8 If G is an in�nite digraph, with a root r and �nite out-degrees for all its vertices,then G has an in�nite directed path, starting in r.Before we present the proof let us point out the necessity of the �niteness of the out-degreesof the vertices. For if we allow a single vertex to be of in�nite out-degree, the conclusion doesnot follow. Consider the digraph of Figure 2.9. The root is connected to vertices v11 , v21, v31, : : : ,where vk1 is the second vertex on a directed path of length k. It is clear that the tree is in�nite,and yet it has no in�nite path. Furthermore, the replacement of the condition of �nite degreesby the condition that for every k the tree has a path of length k, does not work either, as thesame example shows.Proof: First let us restrict our attention to a directed tree T which is an in�nite subgraph ofG. T 's root is r. All vertices of distance 1 away from r in G are also of distance 1 away fromr in T . In general, if a vertex v is of distance l away from r in G it is also of distance l awayfrom r in T ; all the edges entering v in G are now dropped, except one which connects a vertexof distance l� 1 to v. It is su�cient to show that in T there is an in�nite directed path from r.Clearly, since T is a subgraph of G, all its vertices are of �nite outdegrees too.
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Figure 2.9In T , r has in�nitely many descendants (vertices reachable from r). Since r is of �nite out-degree, at least one of its sons (the vertices reachable via one edge), say r1, must have in�nitelymany descendants. One of r1's sons has in�nitely many descendants, too, and so we continue toconstruct an in�nite directed path r, r1, r2, : : : . Q.E.D.In spite of the simplicity of the theorem, it is useful. For example, if we conduct a search ona directed tree of �nite degrees (where a bound on the degree may not be known) for which it isknown that it has no in�nite directed paths, then the theorem ensures us that the tree is �niteand our search will terminate.An interesting application of Theorem 2.8 was made by Wang [9]. Consider the problem oftiling the plane with square tiles, all of the same size (Wang calls the tiles \dominoes"). Thereis a �nite number of tile families. The sides of the tiles are labeled by letters of an alphabet,and all the tiles of one family have the same labels, thus are indistinguishable. Tiles may notbe rotated or re
ected, and the labels are speci�ed for their north side, south side, and so on.There is an in�nite supply of tiles of each family. The tiles may be put one next to another, thesides converging only if these two sides have the same labels. For example, if the tile familiesare as shown in Figure 2.10, then we can construct the \torus" shown in Figure 2.11. Now,by repeating this torus in�nitely many times horizontally and vertically, we can tile the wholeplane. Figure 2.10Wang proved that if it is possible to tile the upper right quadrant of the plane with a given�nite set of tile families, then it is possible to tile the whole plane. The reader should realizethat a southwest shift of the upper-right tiled quadrant cannot be used to cover the whole plane.In fact, if the number of tile families is not restricted to be �nite, one can �nd sets of familiesfor which the upper-right quadrant is tileable, while the whole plane is not.Consider the following directed tree T : The root r is connected to vertices, each representingone of the tile families, i.e., a square 1 � 1 tiled with the tile of that family. For every k, each
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Figure 2.11one of the legitimate ways of tiling a (2k+ 1)� (2k+ 1) square is represented by a vertex in T ;its father is the vertex which represents the tiling of a (2k � 1)� (2k � 1) square, identical tothe center part of the square represented by the son.Now, if the upper-right quadrant is tilable, then T has in�nitely many vertices. Sincethe number of families is �nite, the out-degree of each vertex is �nite (although, may not bebounded). By Theorem 2.8, there is an in�nite directed path in T . Such a path describes a wayto tile the whole plane.



Chapter 3DEPTH-FIRST SEARCH3.1 DFS OF UNDIRECTED GRAPHSThe Depths-First Search technique is a method of scanning a �nite undirected graph. Since thepublication of the papers of Hopcroft and Tarjan [1, 2] it is widely recognized as a powerfultechnique for solving various graph problems. However, the algorithm is not new; it was alreadyknown in the 19th century as a technique for threading mazes. For example, see Lucas' [3] reportof Tr�emaux's work. Another algorithm, which was suggested later by Tarry [4], is just as goodfor threading mazes, and in fact DFS is a special case of it; but it is the additional structure ofDFS which makes it so useful.Assume we are given a �nite connected graph G(V;E). Starting in one of the vertices wewant to \walk" along the edges, from vertex to vertex, visit all the vertices and halt. We seekan algorithm that will guarantee that we scan the whole graph, and recognize when we aredone, without wondering too long in the \maze". We allow no preplanning, as by studying theroad-map before we start our excursion; we must make our decisions, one at a time, since wediscover the structure of the graph as we scan it. Clearly, we need to leave some \markers" as wego along, to recognize the fact that we have returned to a place visited before. Let us mark thepassages, namely the connections of the edges to vertices. If the graph is presented by incidencelists then we can think of each of the two appearances of an edge in the incidence lists of its twoendpoints as its two passages. It su�ces to use two types of markers: F for the �rst passageused to enter the vertex, and E for any other passage when used to leave the vertex. No markeris ever erased or changed. As we shall prove later the following algorithm will terminate in theoriginal starting vertex s, after scanning each edge once in each direction.Tr�emaux's Algorithm:(1) v  s.(2) If there are no unmarked passages in v, go to (4).(3) Choose an unmarked passage, mark it E and traverse the edge to its other endpoint u. Ifu has any marked passages (i.e. it is not a new vertex) mark the passage, through whichu has just been entered, by E, traverse the edge back to v, and go to Step (2). If u hasno marked passages (i.e. it is a new vertex), mark the passage through which u has beenentered by F , v  u and go to Step (2).(4) If there is no passage marked F , halt. (We are back in s and the scanning of the graph iscomplete.) 27



28 CHAPTER 3. DEPTH-FIRST SEARCH(5) Use the passage marked F , traverse the edge to its other endpoint u, v  u and go toStep (2).Let us demonstrate the algorithm on the graph shown in Figure 3.1. The initial value of v,the place \where we are" or the center of activity, is s. All passages are unlabelled. We chooseone, mark it E and traverse the edge. Its other endpoint is a (u = a). None of its passages aremarked, therefore we mark the passage through which a has been entered by F , the new centerof activity is a (v = a), and we return to Step (2). Since a has two unmarked passages, assumewe choose the one leading to b. The passage is marked E and the one at b is marked F since bis new, etc. The complete excursion is shown in Figure 3.1 by the dashed line.
Figure 3.1Lemma 3.1 Tr�emaux's algorithm never allows an edge to be traversed twice in the same direc-tion.Proof: If a passage is used as an exit (entering an edge), then either it is being marked E in theprocess, and thus the edge is never traversed again in this direction, or the passage is alreadymarked F . It remains to be shown that no passage marked F is ever reused for entering theedge.Let u e| v be the �rst edge to be traversed twice in the same direction, from u to v. Thepassage of e, at u, must be labeled F . Since s has no passages marked F , u 6= s. Vertex uhas been left d(u) + 1 times; once through each of the passages marked E and twice through e.Thus, u must have been entered d(u) + 1 times and some edge w e0| u has been used twice toenter u, before e is used for the second time. A contradiction. Q.E.D.An immediate corollary of Lemma 3.1 is that the process described by Tr�emaux's algorithmwill always terminate. Clearly it can only terminate in s, since every other visited vertex has anF passage. Therefore, all we need to prove is that upon termination the whole graph has beenscanned.Lemma 3.2 Upon termination of Tr�emaux's algorithm each edge of the graph has been traversedonce in each direction.Proof: Let us state the proposition di�erently: For every vertex all its incident edges have beentraversed in both directions.



3.1. DFS OF UNDIRECTED GRAPHS 29First, consider the start vertex s. Since the algorithm has terminated, all its incident edgeshave been traversed from s outward. Thus, s has been left d(s) times, and since we end up ins, it has also been entered d(s) times. However, by Lemma 3.1 no edge is traversed more thanonce in the same direction. Therefore, all the edges incident to s have been traversed once ineach direction.Assume now that S is the set of vertices for which the statement, that each of their incidentedges has been traversed once in each direction, holds. Assume V 6= S. By the connectivityof the graph there must be edges connecting vertices of S with V � S. All these edges havebeen traversed once in each direction. Let v e| u be the �rst edge to be traversed from v 2 Sto u 2 V � S. Clearly, u's passage, corresponding to e, is marked F . Since this passage hasbeen entered, all other passages must have been marked E. Thus, each of u's incident edges hasbeen traversed outward. The search has not started in u and has not ended in u. Therefore,u has been entered d(u) times, and each of its incident edges has been traversed inward. Acontradiction, since u belongs in S. Q.E.D.The Hopcroft and Tarjan version of DFS is essentially the same as Tr�emaux's, except thatthey number the vertices from 1 to n(= jV j) in the order in which they are discovered. This isnot necessary, as we have seen, for scanning the graph, but the numbering is useful in applyingthe algorithm for more advanced tasks. Let us denote the number of vertex v by k(v). Also,instead of marking passages we shall now mark edges as \used" and instead of using the F markto indicate the edge through which we leave the vertex for the last time, let us remember foreach vertex v, other than s, the vertex f(v) from which v has been discovered. f(v) is calledthe father of v; this name will be justi�ed later. DFS is now in the following form:(1) Mark all the edges \unused". For every v 2 V , k(v) 0. Also, let i 0 and v  s.(2) i i+ 1, k(v) i.(3) If v has no unused incident edges, go to Step (5).(4) Choose an unused incident edge v e| u. Mark e \used". If k(u) 6= 0, go to Step (3).Otherwise (k(u) = 0), f(u) v, v  u and go to Step (2).(5) If k(v) = 1, halt.(6) v  f(v) and go to Step (3).Since this algorithm is just a simple variation of the previous one, our proof that the whole(connected) graph will be scanned, each edge once in each direction, still applies. Here, inStep (4), if k(u) 6= 0 then u is not a new vertex and we \return" to v and continue from there.Also, moving our center of activity from v to f(v) (Step (6)) corresponds to traversing the edgev | f(v), in this direction. Thus, the whole algorithm is of time complexity O(jEj), namely,linear in the size of the graph.After applying the DFS to a �nite and connected G(V;E) let us consider the set of edgesE 0 consisting of all the edges f(v) | v through which new vertices have been discovered. Alsodirect each such edge from f(v) to v.Lemma 3.3 The digraph (V;E 0) de�ned above is a directed tree with root s.



30 CHAPTER 3. DEPTH-FIRST SEARCHProof: Clearly din(s) = 0 and din(v) = 1 for every v 6= s. To prove that s is a root considerthe sequence v = v0; v1; v2; : : : where vi+1 = f(vi) for i � 0. Clearly, this de�nes a directed pathleading into v in (V;E 0). The path must be simple, since vi+1 was discovered before vi. Thus,it can only terminate in s (which has no f(s)). Now by Theorem 2.5 (see part (c)), (V;E 0) is adirected tree with root s. Q.E.D.Clearly, if we ignore now the edge directions, (V;E 0) is a spanning tree of G. The followingvery useful lemma is due to Hopcroft and Tarjan [1, 2]:Lemma 3.4 If an edge a e| b is not a part of (V;E 0) then a is either an ancestor or a descendantof b in the directed tree (V;E0).Proof: Without loss of generality, assume that k(a) < k(b). In the DFS algorithm, the centerof activity (v in the algorithm) moves only along the edges of the tree (V;E 0). If b is not adescendant of a, and since a is discovered before b, the center of activity must �rst move froma to some ancestor of a before it moves up to b. However, we backtrack from a (v  f(a))only when all a's incident edges are used, which means that e is used and therefore b is alreadydiscovered|a contradiction. Q.E.D.Let us call all the edges of (V;E 0) tree edges and all the other edges back edges. The justi�-cation for this name is in Lemma 3.4; all the non-tree edges connect a vertex back to one of itsancestors.Consider, as an example, the graph shown in Figure 3.2. Assume we start the DFS in c(s = c) and discover d; e; f; g; b; a in this order. The resulting vertex numbers, tree edges andback edges are shown in Figure 3.3, where the tree edges are shown by solid lines and are directedfrom low to high, and the back edges are shown by dashed lines and are directed from high tolow. In both cases the direction of the edge indicates the direction in which the edge has beenscanned �rst. For tree edges this is the de�ned direction, and for back edges we can prove it asfollows: Assume u e| v is a back edge and u is an ancestor of v. The edge e could not have beenscanned �rst from u, for if v has been undiscovered at that time then e would have been a treeedge, and if v has already been discovered (after u) then the center of activity could have beenin u only if we have backtracked from v, and this means that e has already been scanned fromv. Figure 3.23.2 ALGORITHM FOR NONSEPARABLE COMPONENTSA connected graph G(V;E) is said to have a separation vertex v (sometimes also called anarticulation point) if there exist vertices a and b, a 6= v and b 6= v, such that all the paths
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Figure 3.3connecting a and b pass through v. In this case we also say that v separates a from b. A graphwhich has a seperation vertex is called separable, and one which has none is called nonseparable.Let V 0 � V . The induced subgraph G0(V 0; E 0) is called a nonseparable component if G0is nonseparable and if for every larger V 00, V 0 � V 00 � V , the induced subgraph G00(V 00; E 00)is separable. For example, in the graph shown in Figure 3.2, the subsets fa; bg, fb; c; dg andfd; e; f; gg induce the nonseparable components of the graph.If a graph G(V;E) contains no separation vertex then clearly the whole G is a nonsepa-rable component. However, if v is a separating vertex then V � fvg can be partitioned intoV1; V2; : : : ; Vk such that V1[V2 [ : : :[ Vk = V �fvg and if i 6= j then Vi \ Vj = ;; two vertices aand b are in the same Vi if and only if there is a path connecting them which does not includev. Thus, no nonseparable component can contain vertices from more than one Vi. We can nextconsider each of the subgraphs induced by Vi [ fvg and continue to partition it into smallerparts if it is separable. Eventually, we end up with nonseparable parts. This shows that notwo nonseparable components can share more than one vertex because each such vertex is aseparating vertex. Also, every simple circuit must lie entirely in one nonseparable component.Now, let us discuss how DFS can help to detect separating vertices.Let the lowpoint of v, L(v), be the least number, k(u) of a vertex u which can be reachedfrom v via a, possible empty, directed path consisting of tree edges followed by at most one backedge. Clearly L(v) � k(v), for we can use the empty path from v to itself. Also, if a nonemptypath is used then its last edge is a back edge, for a directed path of tree edges leads to verticeshigher than v. For example, in the graph of Figure 3.2 with the DFS as shown in Figure 3.3 thelowpoints are as follows: L(a) = 7, L(b) = L(c) = L(d) = 1 and L(e) = L(f) = L(g) = 2.Lemma 3.5 Let G be a graph whose vertices have been numbered by DFS. If u ! v is a treeedge, k(u) > 1 and L(v) � k(u) then u is a separating vertex of G.



32 CHAPTER 3. DEPTH-FIRST SEARCHProof: Let S be the set of vertices on the path from the root r (k(r) = 1) to u, including r butnot including u, and let T be the set of vertices on the subtree rooted at v, including v (that is,all the descendants of v, including v itself). By Lemma 3.4 there cannot be any edge connectinga vertex of T with any vertex of V � (S [fug[T ). Also, if there is any edge connecting a vertext 2 T with a vertex s 2 S then the edge t ! s is a back edge and clearly k(s) < k(u). Now,L(v) � k(s), since one can take the tree edges from v to t followed by t! s. Thus, L(v) < k(u),contradicting the hypothesis. Thus, u is separating the S vertices from the T vertices and istherefore a separating vertex. Q.E.D.Lemma 3.6 Let G(V;E) be a graph whose vertices have been numbered by DFS. If u is aseparating vertex and k(u) > 1 then there exists a tree edge u! v such that L(v) � k(u).Proof: Since u is a separating vertex, there is a partition of V � fug into V1; V2; : : : ; Vm suchthat m � 2 and if i 6= j then all paths from a vertex of Vi to a vertex of Vj, pass through u.We assume that the search does not start in u. Let us assume it starts in r and r 2 V1. Thecenter of activity of the DFS must pass through u. Let u ! v be the �rst tree edge for whichv 62 V1. Assume v 2 V2. Since there are no edges connecting vertices of V2 with V � (V2 [ fug),L(v) � k(u). Q.E.D.Lemma 3.7 Let G(V;E) be a graph whose vertices have been numbered by DFS, starting withr (k(r) = 1). The vertex r is a separating vertex if and only if there are at least two tree edgesout of r.Proof: Assume that r is a separating vertex. Let V1; V2; : : : ; Vm be a partition of V � frg suchthat m � 2 and if i 6= j then all paths from a vertex of Vi to a vertex of Vj pass through r.Therefore, no path in the tree which starts with r! v, v 2 Vi can lead to a vertex of Vj wherej 6= i. Thus, there are at least two tree edges out of r.Now, assume r ! v1 and r ! v2 are two tree edges out of r. Let T be the set of verticesin the subtree rooted at v1. By Lemma 3.4, there are no edges connecting vertices of T withvertices of V � (T [ frg). Thus, r separates T from the rest of the graph, which is not emptysince it includes at least the vertex v2. Q.E.D.Let C1; C2 : : :Cm be the nonseparable components of the connected graph G(V;E), and lets2; s2; : : : ; sp be its separating vertices. Let us de�ne the superstructure of G(V;E), ~G( ~V ; ~E) asfollows: ~V = fs1; s2; : : : ; spg [ (C1; C2; : : : ; Cmg;~E = fsi | Cj j si is a vertex of Cj in Gg:By the observations we have made in the beginning of the section, ~G( ~V ; ~E) is a tree. ByCorollary 2.1, if m > 1 then there must be at least two leaf components, each containing onlyone separating vertex, since for every separating vertex si d(si) � 2 in ~G. By Lemma 3.2, thewhole graph will be explored by the DFS.Now, assume the search starts in a vertex r which is not a separating vertex. Even if it isin one of the leaf-components, eventually we will enter another leaf-component C, say via itsseparating vertex u and the edge u e! v. By Lemma 3.6, L(v) � k(u), and if L(v) is knownwhen we backtrack from v to u, then by using Lemma 3.5, we can detect that u is a separating



3.2. ALGORITHM FOR NONSEPARABLE COMPONENTS 33vertex. Also, as far as the component C is concerned, from the time C is entered until it isentirely explored, we can think of the algorithm as running on C alone with u as the startingvertex. Thus, by Lemma 3.7, there will be only one tree edge from u into C, and all the othervertices of C are descendants of v and are therefore explored after v is discovered and before webacktrack on e. This suggests the use of a stack (pushdown store) for producing the vertices ofthe component. We store the vertices in the stack in the order that they are discovered. If onbacktracking e we discover that u is a separating vertex, we read o� all the vertices from thetop of the stack down to and including v. All these vertices, plus u (which is not removed atthis point from the stack even if it is the next on top) constitute the component. This, in e�ectremoves the leaf C from the tree ~G( ~V ; ~E), and if its adjacent vertex s (a separating vertex) hasnow d(s) = 1, then we can assume that it is removed too. The new superstructure is again atree, and the same process will repeat itself to detect and trim one leaf at a time until only onecomponent is left when the DFS terminates.If the search starts in a separating vertex r, then all but the components which contain r aredetected and produced as before, and the ones that do contain r are detected by Lemma 3.7:Each time we backtrack into r, on r ! v, if r has additional unexplored incident edges then weconclude that the vertices on the stack above and including v, plus r, constitute a component.The remaining problem is that of computing L(v) in time; i.e. its value should be known bythe time we backtrack from v.If v is a leaf of the DFS tree then L(v) is the least element in the following set: fk(u) j u =v or v ! u is a back edgeg. Let us assign L(v)  k(v) immediately when v is discovered, andas each back edge v ! u is explored, let us assignL(v) MinfL(v); k(u)g:Clearly, by the time we backtrack from v, all the back edges have been explored, and L(v)has the right value.If v is not a leaf of the DFS tree, then L(v) is the least element in the following set:fk(u) j u = v or v ! u is a back edgeg [ fL(u) j v ! u is a tree edgeg:When we backtrack from v, we have already backtracked from all its sons earlier, and there-fore already know their lowpoint. Thus, all we need to add is that when we backtrack from uto v, we assign L(v) MinfL(v); L(u)g:Let us assume that jV j > 1 and s is the vertex in which we start the search. The algorithmis now as follows:(1) Mark all the edges \unused". Empty the stack S. For every v 2 V let k(v) 0. Let i 0and v  s.(2) i i+ 1, k(v) i, L(v) i and put v on S.(3) If v has no unused incident edges go to Step (5).(4) Choose an unused incident edge v e| u. Mark e \used". If k(u) 6= 0, let L(v)  MinfL(v); k(u)g and go to Step (3). Otherwise (k(u) = 0) let f(u)  v, v  u andgo to Step (2).(5) If k(f(v)) = 1, go to Step (9).



34 CHAPTER 3. DEPTH-FIRST SEARCH(6) (f(v) 6= s). If L(v) < k(f(v)), then L(f(v)) MinfL(f(v)); L(v)g and go to Step (8).(7) (L(v) � k(f(v))) f(v) is a separating vertex. All the vertices on S down to and includingv are now removed from S; this set, withf(v), forms a nonseparable component.(8) v  f(v) and go to Step (3).(9) All vertices on S down to and including v are now removed from S; they form with s anonseparable component.(10) If s has no unused incident edges then halt.(11) Vertex s is a separating vertex. Let v  s and go to Step (4).Although this algorithm is more complicated then the scanning algorithm, its time complex-ity is still O(jEj). This follows easily from the fact that each edge is still scanned exactly oncein each direction and that the number of operations per edge is bounded by a constant.



Chapter 4ORDERED TREES4.2 POSITIONAL TREES ANDHUFFMAN'S OPTIMIZATIONPROBLEMA positional �-tree (or when � is known, a positional tree) is a directed tree with the followingproperty: Each edge out of a vertex v is associated with one of the letters of the alphabet� = f0; 1; : : : ; � � 1g; di�erent edges, out of v, are associated with di�erent letters. It followsthat the number of edges out of a vertex is at most �, but may be less; in fact, a leaf has none.We associate with each vertex v the word consisting of the sequence of letters associated withthe edges on the path from the root r to v. For example, consider the binary tree (positional2-tree) of Figure 4.1, where in each vertex the associated word is written. (� denotes the emptyword.)
Figure 4.1Clearly, the set of words associated with the leaves of a positional tree is a pre�x code. Also,every pre�x code can be described by a positional tree in this way.The level of a vertex v of a tree is the length of the directed path from the root to v; it isequal to the length of the word associated with v.Our next goal is to describe a construction of an optimum code, in a sense to be discussedshortly. It is described here as a communication problem, as it was viewed by Hu�man [11],35



36 CHAPTER 4. ORDERED TREESwho solved it. In the next section we shall describe one more application of this optimizationtechnique.Assume words over a source alphabet of n letters have to be transmitted over a channel whichcan transfer one letter of the alphabet � = f0; 1; : : : ; � � 1g at a time, and � < n. We want toconstruct a code over � with n code-words, and associate with each source letter a code-word.A word over the source alphabet is translated into a message over the code, by concatenatingthe code-words which correspond to the source letters, in the same order as they appear in thesource word. This message can now be transmitted through the channel. Clearly, the code mustbe UD.Assume further, that the source letters have given probabilities p1; p2; : : :pn of appearance,and the choice of the next letter in the source word is independent of its previous letters. If thevector of code-word lengths is (l1; l2; : : : ; ln) then the average code-word length, l, is given by�l = nXi=1 pili : (4.5)We want to �nd a code for which �l is minimum, in order to minimize the expected length of themessage.Since the code must be UD, by Theorem 4.1, the vector of code-word lengths must satisfythe characteristic sum condition. This implies, by Theorem 4.2, that a pre�x code with thesame vector of code-word lengths exists. Therefore, in seeking an optimum code, for which �l isminimum, we may restrict our search to pre�x codes. In fact, all we have to do is �nd a vectorof code-word lengths for which �l is minimum, among the vectors which satisfy the characteristicsum condition.First, let us assume that p1 � p2 � � � � � pn. This is easily achieved by sorting theprobabilities. We shall �rst demonstrate Hu�man's construction for the binary case (� = 2).Assume the probabilities are 0:6, 0:2, 0:05, 0:05, 0:03, 0:03, 0:03, 0:01. We write this list as ourtop row (see Fig. 4.2). We add the last (and therefore least) two numbers, and insert the sumin a proper place to maintain the non-increasing order. We repeat this operation until we geta vector with only two probabilities. Now, we assign each of them a word-length 1 and startworking our way back up by assigning each of the probabilities of the previous step, its lengthin the present step, if it is not one of the last two, and each of the two last probabilities of theprevious step is assigned a length larger by one than the length assigned to their sum in thepresent step.Once the vector of code-word lengths is found, a pre�x code can be assigned to it by thetechnique of the proof of Theorem 4.2. (An e�cient implementation is discussed in Problem 4.6)Alternatively the back up procedure can produce a pre�x code directly. Instead of assigning thelast two probabilities with lengths, we assign the two words of length one: 0 and 1. As we backup from a present step, in which each probability is already assigned a word, to the previousstep, the rule is as follows: All, but the last two probabilities of the previous step are assignedthe same words as in the present step. The last two probabilities are assigned c0 and c1, wherec is the word assigned to their sum in the present step.In the general case, when � � 2, we add in each step the last d probabilities of the presentvector of probabilities; if n is the number of probabilities of this vector then d is given by:1 < d � � and n � dmod(� � 1) (4.6)After the �rst step, the length of the vector, n0, satis�es n0 � 1mod(��1), and will be equalto one, mod (� � 1), from there on. The reason for this rule is that we should end up with
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Figure 4.2exactly � probabilities, each to be assigned length 1. Now, � � 1mod(� � 1), and since in eachordinary step the number of probabilities is reduced by � � 1, we want n � 1mod(� � 1). Incase this condition is not satis�ed by the given n, we correct it in the �rst step as is done byour rule. Our next goal is to prove that this indeed leads to an optimum assignment of a vectorof code-word lengths.Lemma 4.2 If C = fc1; c2; : : : ; cng is an optimum pre�x code for the probabilities p1; p2; : : : ; pnthen pi > pj implies that l(ci) � l(cj).Proof: Assume l(ci) > l(cj). Make the following switch: Assign ci to probability pj , and cj topi; all other assignments remain unchanged. Let ~l denote the average code-word length of thenew assignment, while �l denotes the previous one. By (4.5) we have�l � l = [pi � l(ci) + pj � l(cj)]� [pi � l(cj) + pj � l(ci)] = (pi � pj)(l(ci)� l(cj)) > 0contradicting the assumption that �l is minimum. Q.E.D.Lemma 4.3 There exists an optimum pre�x code for the probabilities p1 � p2 � � � � � pn suchthat the positional tree which represents it has the following properties:(1) All the internal vertices of the tree, except possibly one internal vertex v, have exactly �sons.(2) Vertex v has 1 < � � � sons, where n � �mod(� � 1).(3) Vertex v, of (1) is on the lowest level which contains internal vertices, and its sons areassigned to pn��+1; pn��+2; : : : ; pn.Proof: Let T be a positional tree which represents an optimum pre�x code. If there exists aninternal vertex u, which is not on the lowest level of T containing internal vertices and it has lessthan � sons, then we can perform the following change in T : Remove one of the leaves of T fromits lowest level and assign to the probability a new son of u. The resulting tree, and therefore,



38 CHAPTER 4. ORDERED TREESits corresponding pre�x code has a smaller average code-word length. A contradiction. Thus,we conclude that no such internal vertex u exists.If there are internal vertices, on the lowest level of internal vertices, which have less than �sons, choose one of them, say v. Now eliminate sons from v and attach their probabilities tonew sons of the others, so that their number of sons is �. Clearly, such a change does not changethe average length and the tree remains optimum. If before �lling in all the missing sons, v hasno more sons, we can use v as a leaf and assign to it one of the probabilities from the lowestlevel, thus creating a new tree which is better than T . A contradiction. Thus, we never run outof sons of v to be transferred to other lacking internal vertices on the same level. Also, whenthis process ends, v is the only lacking internal vertex (proving (1)) and its number of remainingsons must be greater than one, or its son can be removed and its probability attached to v. Thisproves that the number of sons of v, �, satis�es 1 < � � �.If v's � sons are removed, the new tree has n0 = n � � + 1 leaves and is full (i.e., everyinternal vertex has exactly � sons). In such a tree, the number of leaves, n0, satis�es n0 � 1,mod (� � 1). This is easily proved by induction on the number of internal vertices. Thus,n� �+ 1 � 1mod(� � 1), and therefore n � �mod(� � 1), proving (2).We have already shown that v is on the lowest level of T which contains internal verticesand number of its sons is �. By Lemma 4.2, we know that the least � probabilities are assignedto leaves of the lowest level of T . If they are not sons of v, we can exchange sons of v with sonsof other internal vertices on this level, to bring all the least probabilities to v, without changingthe average length. Q.E.D.For a given alphabet size � and probabilities p1 � p2 � : : : � pn, let ��(p1; p2; : : : ; pn) bethe set of all �-ary positional trees with n leaves, assigned with the probabilities p1; p2; : : : ; pn insuch a way that pn�d+1; pn�d+2; : : : ; pn (see (4.6)) are assigned, in this order, to the �rst d sonsof a vertex v, which has no other sons. By Lemma 4.3, ��(p1; p2; : : : ; pn contains at least oneoptimum tree. Thus, we may restrict our search for an optimum tree to ��(p1; p2; : : : ; pn).Lemma 4.4 There is a one to one correspondence between ��(p1; p2; : : : ; pn) and the set of �-ary positional trees with n� d+ 1 leaves assigned with p1; p2; : : : ; pn�d; p0 where p0 = nXi=n�d+1 pi.The average word-length �l, of the pre�x code represented by a tree T of ��(p1; p2; : : : ; pn) and theaverage code word-length �l0, of the pre�x code represented by the tree T 0, which corresponds toT , satisfy �l = �l0 + p0: (4.7)Proof: The tree T 0 which corresponds to T is achieved as follows: Let v be the father of theleaves assigned pn�d+1; pn�d+2; : : : ; pn. Remove all the sons of v and assign p0 to it.It is easy to see that two di�erent trees T1 and T2 in ��(p1; p2; : : : ; pn) will yield two di�erenttrees T 01 and T 02, and that every �-ary tree T 0 with n� d+ 1 leaves assigned p1; p2; : : : ; pn�d; p0,is the image of some T ; establishing the correspondence.Let li denote the level of the leaf assigned pi in T . Clearly ln�d+1 = ln�d+2 = : : : = ln. Thus,�l = n�dXi=1 pi � li + ln � nXi=n�d+1 pi = n�dXi=1 pi � li + ln � p0 = n�dXi=1 pi � li + (ln � 1) � p0 + p0 = �l0 + p0:Q.E.D.



4.4. CATALAN NUMBERS 39Lemma 4.4 suggests a recursive approach to �nd an optimum T . For �l to be minimum, �l0must be minimum. Thus, let us �rst �nd an optimum T 0 and then �nd T by attaching d sonsto the vertex of T 0 assigned p0; these d sons are assigned pn�d+1; pn�d+2; : : : ; pn. This is exactlywhat is done in Hu�man's procedure, thus proving its validity.It is easy to implement Hu�man's algorithm in time complexity O(n2). First we sort theprobabilities, and after each addition, the resulting probability is inserted in a proper place.Each such insertion takes at most O(n) steps, and the number of insertions is d(n��)=(�� 1)e.Thus, the whole forward process is of time complexity O(n2). The back up process is O(n) ifpointers are left in the forward process to indicate the probabilities of which it is composed.However, the time complexity can be reduced to O(n logn). One way of doing it is thefollowing: First sort the probabilities. This can be done in O(n logn) steps [14]. The sortedprobabilities are put on a queue S1 in a non-increasing order from left to right. A second queue,S2, initially empty, is used too. In the general step, we repeatedly take the least probability ofthe two (or one, if one of the queues is empty) appearing at the right hand side ends of the twoqueues, and add up d of them. The result, p0, is inserted at the left hand side end of S2. Theprocess ends when after adding d probabilities both queues are empty. This adding process andthe back up are O(n). Thus, the whole algorithm is O(n logn).The construction of an optimum pre�x code, when the cost of the letters are not equal isdiscussed in Reference 12; the case of alphabetic pre�x codes, where the words must main-tain lexicographically the order of the given probabilities, is discussed in Reference 13. Thesereferences give additional references to previous work.4.4 CATALAN NUMBERSThe set of well-formed sequences of parentheses is de�ned by the following recursive de�nition:1. The empty sequence is well formed.2. If A and B are well-formed sequences, so is AB (the concatenation of A and B).3. If A is well formed, so is (A).4. There are no other well-formed sequences.For example, (()(())) is well formed; (()))(() is not.Lemma 4.5 A sequence of (left and right) parentheses is well formed if and only if it containsan even number of parentheses, half of which are left and the other half are right, and as we readthe sequence from left to right, the number of right parentheses never exceeds the number of leftparentheses.Proof: First let us prove the \only if" part. Since the construction of every well formed sequencestarts with no parentheses (the empty sequence) and each time we add on parentheses (Step 3)there is one left and one right, it is clear that there are n left parentheses and n right parentheses.Now, assume that for every well-formed sequence of m left and m right parentheses, where m <n, it is true that as we read it from left to right the number of right parentheses never exceedsthe number of left parentheses. If the last step in the construction of our sequence was 2, thensince A is a well-formed sequence, as we read from left to right, as long as we still read A thecondition is satis�ed. When we are between A and B, the count of left and right parentheses



40 CHAPTER 4. ORDERED TREESequalizes. From there on the balance of left and right is safe since B is well formed and containsless than n parentheses. If the last step in the construction of our sequence was 3, then since Asatis�es the condition, so does (A).Now, we shall prove the \if" part, again by induction on the number of parentheses. (Here,as before, the basis of the induction is trivial.) Assume that the statement holds for all sequencesof m left and m right parentheses, if m < n, and we are given a sequence of n left and n rightparentheses which satis�es the condition. Clearly, if after reading 2m symbols of it from left toright the number of left and right parentheses is equal and if m < n, this subsequence, A, bythe inductive hypothesis is well formed. Now, the remainder of our sequence, B, must satisfythe condition, too, and again by the inductive hypothesis is well formed. Thus, by Step 2, ABis well formed. If there is no such nonempty subsequence A, which leaves a nonempty B, thenas we read from left to right the number of right parentheses, after reading one symbol andbefore reading the whole sequence, is strictly less then the number of left parentheses. Thus, ifwe delete the �rst symbol, which is a \(", and the last, which is a \)", the remainder sequence,A, still satis�es the condition, and by the inductive hypothesis is well formed. By Step 3 oursequence is well formed too. Q.E.D.We shall now show a one-to-one correspondence between the non-well-formed sequences ofn left and n right parentheses, and all sequences of n � 1 left parentheses and n + 1 rightparentheses.Let p1p2 � � �p2n be a sequence of n left and n right parentheses which is not well formed. ByLemma 4.5, there is a pre�x of it which contains more right parentheses then left. Let j be theleast integer such that the number of right parentheses exceeds the number of left parenthesesin the subsequence p1p2 � � �pj. Clearly, the number of right parentheses is then one larger thanthe number of left parentheses, or j is not the least index to satisfy the condition. Now, invertall pi's for i > j from left parentheses to right parentheses, and from right parentheses to leftparentheses. Clearly, the number of left parentheses is now n � 1, and the number of rightparentheses is now n+ 1.Conversely, given any sequence p1p2 � � �p2n of n � 1 left parentheses and n + 1 right paren-theses, let j be the �rst index such that p1p2 � � �pj contains one right parenthesis more thanleft parentheses. If we now invert all the parentheses in the section pj+1pj+2 � � �p2n from left toright and from right to left, we get a sequence of n left and n right parentheses which is notwell formed. This transformation is the inverse of the one of the previous paragraph. Thus, theone-to-one correspondence is established.The number of sequences of n � 1 left and n+ 1 right parentheses is 2nn� 1!;for we can choose the places for the left parentheses, and the remaining places will have rightparentheses. Thus, the number of well-formed sequences of length n is 2nn !�  2nn � 1! = 11+ n 2nn !: (4.9)These numbers are called Catalan numbers.An ordered tree is a directed tree such that for each internal vertex there is a de�ned orderof its sons. Clearly, every positional tree is ordered, but the converse does not hold: In the case



4.4. CATALAN NUMBERS 41of ordered trees there are no predetermined \potential" sons; only the order of the sons counts,not their position, and there is no limit on the number of sons.An ordered forest is a sequence of ordered trees. We usually draw a forest with all the rootson one horizontal line. The sons of a vertex are drawn from left to right in their given order.For example, the forest shown in Fig. 4.6 consists of three ordered trees whose roots are A, B,and C.
Figure 4.6There is a natural correspondence between well-formed sequences of n pairs of parenthesesand ordered forests of n vertices. Let us label each leaf with the sequence (). Every vertexwhose sons are labeled w1; w2; : : : ; ws is labeled with the concatenation (w1w2 � � �ws); clearly,the order of the labels is in the order of the sons. Finally, once the roots are labeled x1; x2; : : : ; xrthe sequence which corresponds to the forest is the concatenation x1x2 � � �xn. For example, thesequence which corresponds to the forest of Fig. 4.6 is ((()())())(()()())((()())). The inversetransformation clearly exists and thus the one-to-one correspondence is established. Therefore,the number of ordered forests of n vertices is given by (4.9).We shall now describe a one-to-one correspondence between ordered forests and positionalbinary trees. The leftmost root of the forest is the root of the binary tree. The leftmost sonof the vertex in the forest is the left son of the vertex in the binary tree. The next brother onthe right, or, in the case of a root, the next root on the right is the right son in the binary tree.For example, see Fig. 4.7, where an ordered forest and its corresponding binary tree are drawn.Again, it is clear that this is a one-to-one correspondence and therefore the number of positionalbinary trees with n vertices is given by (4.9).There is yet another combinatorial enumeration which is directly related to these.A stack is a storage device which can be described as follows. Suppose that n cars travel ona narrow one-way street where no passing is possible. This leads into a narrow two-way streeton which the cars can park or back up to enter another narrow one-way street (see Fig. 4.8).Our problem is to �nd how may permutations of the cars can be realized from input to outputif we assume that the cars enter in the natural order.The order of operations in the stack is fully described by the sequence of drive-in and drive-out operations. There is no need to specify which car drives in, for it must be the �rst one onthe leading-in present queue; also, the only one which can drive out is the top one in the stack.If we denote a drive-in operation by \(", and a drive-out operation by \)", the whole procedure
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Figure 4.7
Figure 4.8is described by a well-formed sequence of n pairs of parentheses.The sequence must be well-formed, by Lemma 4.5, since the number of drive-out operationscan never exceed the number of drive-in operations. Also, every well-formed sequence of npairs of parentheses de�nes a realizable sequence of operations, since again by Lemma 4.5, adrive-out is never instructed when the stack is empty. Also, di�erent sequences yield di�erentpermutations. Thus, the number of permutations on n cars realizable by a stack is given by(4.9).Let us now consider the problem of �nding the number of full binary trees. Denote thenumber of leaves of a binary tree T by L(T ), and the number of internal vertices by I(T ). It iseasy to prove, by induction on the number of leaves, that L(T ) = I(T )+ 1. Also, if all leaves ofT are removed, the resulting tree of I(T ) vertices is a positional binary tree T 0. Clearly, di�erentT -s will yield di�erent T 0-s, and one can reconstruct T from T 0 by attaching two leaves to eachleaf of T 0, and one leaf (son) to each vertex which in T 0 has only one son. Thus, the numberof full-binary trees of n vertices is equal to the number of positional binary trees of (n � 1)=2



4.4. CATALAN NUMBERS 43vertices. By (4.9) this number is 2n + 1 n� 1n�12 !
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Chapter 5MAXIMUM FLOW IN ANETWORK5.1 THE FORD AND FULKERSON ALGORITHMA network consists of the following data:(1) A �nite digraph G(V;E) with no self-loops and no parallel edges.�(2) Two vertices s and t are speci�ed; s is called the source and t, the sink.y(3) Each edge e 2 E is assigned a non-negative number c(e) called the capacity of e.A 
ow function f is an assignment of a real number f(e) to each edge e, such that thefollowing two conditions hold:(C1) For every edge e 2 E, 0 � f(e) � c(e).(C2) Let �(v) and �(v) be the sets of edges incoming to vertex v and outgoing from v, respec-tively. For every v 2 V � fs; tg0 = Xe2�(v) f(e)� Xe2�(v) f(e): (5.1)The total 
ow F of f is de�ned byF = Xe2�(t) f(e)� Xe2�(t) f(e): (5.2)Namely, F is the net sum of 
ow into the sink. Our problem is to �nd an f for which the total
ow is maximum.�The exclusion of self-loops and parallel edges is not essential. It will shortly become evident that no generalityis lost; the 
ow in a self-loop gains nothing, and a set of parallel edges can be replaced by one whose capacity isthe sum of their capacities. This condition ensures that jEj � jV j � (jV j � 1).yThe choice of s or t is completely arbitrary. There is no requirement that s is a graphical source; i.e. has noincoming edges, or that t is a graphical sink; i.e. has no outgoing edges. The edges entering s or leaving t areactually redundant and have no e�ect on our problem, but we allow them since the choice of s and t may vary,while we leave the other data unchanged. 45



46 CHAPTER 5. MAXIMUM FLOW IN A NETWORKLet S be a subset of vertices such that s 2 S and t 62 S. �S is the complement of S, i.e.�S = V � S. Let (S; �S) be the set of edges of G whose start-vertex is in S and end-vertex is in�S. The set ( �S;S) is de�ned similarly. The set of edges connecting vertices of S with �S (in bothdirections) is called the cut de�ned by S.By de�nition, the total 
ow F is measured at the sink. Our purpose is to show that F canbe measured at any cut.Lemma 5.1 For every S F = Xe2(S; �S) f(e)� Xe2( �S;S) f(e): (5.3)Proof: Let us sum up equation (5.2) with all the equations (5.1) for v 2 �S �ftg. The resultingequation has F on the left hand side. In order to see what happens on the right hand side,consider an edge x e! y. If both x and y belong to S then f(e) does not appear on the r.h.s.at all, in agreement with (5.3). If both x and y belong to �S then f(e) appears on the r.h.s.once positively, in the equation for y, and once negatively, in the equation for x. Thus, in thesummation it is canceled out, again in agreement with (5.3). If x 2 S and y 2 �S then f(e)appears on the r.h.s. of the equation for y, positively, and in no other equation we use, andindeed e 2 (S; �S), and again we have agreement with (5.3). Finally, if x 2 �S and y 2 S, f(e)appears negatively on the r.h.s. of the equation for x, and again this agrees with (5.3) sincee 2 ( �S;S). Q.E.D.Let us denote by c(S) the capacity of the cut determined by S which is de�ned as follows:c(S) = Xe2(S; �S) c(e): (5.4)Lemma 5.2 For every 
ow function f , with total 
ow F , and every S,F � c(S): (5.5)Proof: By Lemma 5.1 F = Xe2(S; �S) f(e)� Xe2( �S;S) f(e):By C1, 0 � f(e) � c(e) for every e 2 E. Thus,F � Xe2(S; �S) f(e)� 0 = c(S): Q.E.D.A very important corollary of Lemma 5.2, which allows us to detect that a given total 
owF is maximum, and a given cut, de�ned by S, is minimum is the following:Corollary 5.1 If F and S satisfy (5.5) by equality then F is maximum and the cut de�ned byS is of minimum capacity.Ford and Fulkerson [1] suggested the use of augmenting paths to change a given 
ow functionin order to increase the total 
ow. An augmenting path is a simple path from s to t, which is notnecessarily directed, but it can be used to advance 
ow from s to t. If on this path, e points in



5.1. THE FORD AND FULKERSON ALGORITHM 47the direction from s to t, then in order to be able to push 
ow through it, f(e) must be less thanc(e). If e points in the opposite direction, then in order to be able to push through it additional
ow from s to t, we must be able to cancel some of its 
ow. Therefore, f(e) > 0 must hold.In attempt to �nd an augmenting path for a given 
ow, a labeling procedure is used. Welabel s. Then, every vertex v, for which we can �nd an augmenting path from s to v, is labeled.If t is labeled then an augmenting path has been found. This path is used to increase the total
ow, and the procedure is repeated.A forward labeling of vertex v by the edge u e! v is applicable if(1) u is labeled and v is not;(2) c(e) > f(e).The label that v gets is 0e0. If e is used for forward labeling we de�ne �(e) = c(e)� f(e).A backward labeling of vertex v by the edge u e v is applicable if(1) u is labeled and v is not;(2) f(e) > 0.The label that v gets is 0e0. In this case we de�ne �(e) = f(e).The Ford and Fulkerson algorithm is as follows:(1) Assign some legal initial 
ow f to the edges; an assignment f(e) = 0 to every edge e willdo.(2) Mark s \labeled" and all other vertices \unlabeled".(3) Search for a vertex v which can be labeled by either a forward or backward labeling. Ifnone exists, halt; the present 
ow is maximum. If such a vertex v exists, label it 0e0, wheree is the edge through which the labeling is possible. If v = t, go to Step (4); otherwise,repeat Step (3).(4) Starting from t and by the use of the labels, backtrack the path through which the labelingreached t from s. Let this path be s = v0 e1| v1 e2| v2 e3| � � � | vl�1 el| vl = t. (Thedirections of the edges are not shown, since each may be in either direction.) Let � =Min1�i�l�(ei). If ei is forward, i.e. vi�1 ei! vi, then f(ei) f(ei) + �. If ei is backward,i.e. vi�1 ei vi, then f(ei) f(ei)��.(5) Go to Step (2)(Note that if the initial 
ow on the edges entering s is zero, it will never change. This is alsotrue for the edges leaving t.)As an example, consider the network shown in Fig. 5.1. Next to each edge e we write c(e); f(e)in this order. We assume a zero initial 
ow everywhere. A �rst wave of label propagation mightbe as follows: s is labeled; e2 used to label c; e6 used to label d; e4 used to label a; e3 used tolabel b; and �nally, e7 used to label t. The path is s e2! c e6! d e4! a e3! b e7! t. � = 4, and thenew 
ow is shown in Fig. 5.2.The next augmenting path may bes e1! a e3! b e5! c e6! d e8! t:Now, � = 3 and the 
ow is as in Fig. 5.3.
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Figure 5.1
Figure 5.2The next augmenting path may be s e1! a e3! b e7! t. Now, � = 3 and the new 
ow is as inFig. 5.4. Now, the labeling can proceed as follows: s is labeled; e1 is used to label a; e3 usedto label b; (so far we have not used backward labeling, but this next step is forced) e4 is usedto label d; e8 is used to label t. The path we backtrack is s e1! a e4 d e8! t. Now, �(e1) = 9,�(e4) = 4 and �(e8) = 7. Thus, � = 4. The new 
ow is shown in Fig. 5.5. The next wave oflabel propagation is as follows: s is labeled, e1 is used to label a, e3 used to label b. No morelabeling is possible and the algorithm halts.It is easy to see that the 
ow produced by the algorithm remains legal throughout. Thede�nition of �(e) and � guarantees that forward edges will not be over
owed, i.e., f(e) � c(e),and that backward edges will not be under
owed, i.e., f(e) � 0. Also, since � is pushed froms to t on a path, the incoming 
ow will remain equal to the outgoing 
ow in every vertexv 2 V � fs; tg.Assuming the algorithm halts, the last labeling process has not reached t. Let S be the setof vertices labeled in the last wave. (In our example S = fs; a; bg,) If an edge x e! y belongs
Figure 5.3
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Figure 5.4
Figure 5.5to (S; �S) then it must be saturated, i.e., f(e) = c(e), or a forward labeling could use it. Also,if e belongs to ( �S;S) then it follows that f(e) = 0, or a backward labeling could use it. ByLemma 5.1 we have F = Xe2(S; �S) f(e)� Xe2( �S ;S) f(e) = Xe2(S; �S) c(e) = c(S):Now, by Corollary 5.1, F is a maximum total 
ow and S de�nes a minimum cut. In ourexample, (S; �S) = fe2; e5; e7g, ( �S;S) = fe4g and the value of F is 14.The question of whether the algorithm will always halt remains to be discussed. Note �rsta very important property of the Ford and Fulkerson algorithm: If the initial 
ow is integral,for example, zero everywhere, and if all the capacities are integers, then the algorithm neverintroduces fractions. The algorithm adds and subtracts, but it never divides. Also, if t is labeled,the augmenting path is used to increase the total 
ow by at least one unit, Since there is anupper bound on the total 
ow (any cut), the process must terminate.Ford and Fulkerson showed that their algorithm may fail, if the capacities are allowed to beirrational numbers. Their counterexample (Reference 1, p. 21) displays an in�nite sequence of
ow augmentations. The 
ow converges (in in�nitely many steps) to a value which is one fourthof the maximum total 
ow. We shall not bring their example here; it is fairly complex and asthe reader will shortly discover, it is not as important any more.One could have argued that for all practical purposes, we may assume that the algorithm issure to halt. This follows from the fact that our computations are usually through a �xed radix(decimal, binary, and so on) number representation with a bound on the number of digits used;in other words, all �gures are multiples of a �xed quantum and the termination proof workshere as it does for integers. However, a simple example shows the weakness of this argument.Consider the network shown in Fig. 5.6. Assume thatM is a very large integer. If the algorithmstarts with f(e) = 0 for all e, and alternatively uses s | a | b | t and s | b | a | t as



50 CHAPTER 5. MAXIMUM FLOW IN A NETWORKaugmenting paths, it will take 2M augmentations before F = 2M is achieved.
Figure 5.6Edmonds and Karp [2] were �rst to overcome this problem. They showed that if one usesbreadth-�rst search (BFS) in the labeling algorithm and always uses a shortest augmentingpath, the algorithm will terminate in O(jV j3jEj) steps, regardless of the capacities. (Here, ofcourse, we assume that our computer can handle, in one step, any real number.) In the nextsection we shall present the more advanced work of Dinic [3]; his algorithm has time complexityO(jV j2jEj). Karzanov [4] and Cherkassky [5] have reduced it to O(jV j3) and O(jV j2jEj1=2),respectively. These algorithms are fairly complex and will not be described. A recent algorithmof Malhotra, Pramodh Kumar and Maheshwari [6] has the same time complexity as Karzanov'sand is much simpler; it will be described in the next section.The existence of these algorithms assures that, if one proceeds according to a proper strategyin the labeling procedure, the algorithm is guaranteed to halt. When it does, the total 
ow ismaximum, and the cut indicated is minimum, thus providing the max-
ow min-cut theorem:Theorem 5.1 Every network has a maximum total 
ow which is equal to the capacity of a cutfor which the capacity is minimum.5.2 THE DINIC ALGORITHMAs in the Ford and Fulkerson algorithm, the Dinic algorithm starts with some legal 
ow functionf and improves it. When no improvement is possible the algorithm halts, and the total 
ow ismaximum.If presently an edge u e| v has 
ow f(e) then we say that e is useful from u to v if one ofthe following two conditions holds:(1) u e! v and f(e) < c(e).(2) u e v and f(e) > 0.The layered network of G(V;E) with a 
ow f is de�ned by the following algorithm:(1) V0 fsg, i 0.(2) Construct T  fv j v 62 Vj for j � i and there is a useful edge from a vertex of Vi to vg.(3) If T is empty, the present total 
ow F is maximum, halt.(4) If T contains t then l i+ 1, Vl  ftg and halt.



5.2. THE DINIC ALGORITHM 51(5) Let Vi+1  T , increment i and return to Step (2).For every 1 � i � l, let Ei be the set of edges useful from a vertex of Vi�1 to a vertex of Vi.The sets Vi are called layers.The construction of the layered network investigates each edge at most twice; once in eachdirection. Thus, the time complexity of this algorithm is O(jEj).Lemma 5.3 If the construction of the layered network terminates in Step (3), then the presenttotal 
ow, F , is indeed maximum.Proof: The proof here is very similar to the one in the Ford and Fulkerson algorithm: Let Sbe the union of V0; V1; : : : ; Vi. Every edge u e! v in (S; �S) is saturated, i.e. f(e) = c(e), or elsee is useful from u to v and T is not empty. Also, every edge u e v is ( �S;S) has f(e) = 0, oragain e is useful from u to v, etc. Thus, by Lemma 5.1,F = Xe2(S; �S) f(e)� Xe2( �S;S) f(e) = Xe2(S; �S) c(e)� 0 = c(S):By Corollary 5.1, F is maximum. Q.E.D.For every edge e in Ej let ~c(e) be de�ned as follows:(i) If u 2 Vj�1, v 2 Vj and u e! v then ~c(e) = c(e)� f(e).(ii) If u 2 Vj�1, v 2 Vj and u e v then ~c(e) = f(e).We now consider all edges of Ej to be directed from Vj�1 to Vj, even if in G(V;E) they mayhave the opposite direction (in case (ii)). Also, the initial 
ow in the new network is ~f (e) = 0everywhere. We seek a maximal 
ow ~f in the layered network; by a maximal 
ow ~f we meanthat ~f satis�es the condition that for every path s e1| v1 e2| v2 | � � �vl�1 el| t, where vj 2 Vjand ej 2 Ej, there is at least one edge ej such that ~f(ej) = ~c(ej). Clearly, a maximal 
ow isnot necessarily maximum as the example of Figure 5.7 shows: If for all edges ~c = 1 and we pushone unit 
ow from s to t via a and d then the resulting 
ow is maximal in spite of the fact thatthe total 
ow is 1 while a total 
ow of 2 is possible.
Figure 5.7Later we shall describe how one can �nd a maximal 
ow function ~f e�ciently. For now,let us assume that such a 
ow function has been found and its total value is ~F . The 
ow f inG(V;E) is changed into f 0 as follows:



52 CHAPTER 5. MAXIMUM FLOW IN A NETWORK(i) If u e! v, u 2 Vj�1 and v 2 Vj then f 0(e) = f(e) + ~f(e).(ii) If u e v, u 2 Vj�1 and v 2 Vj then f 0(e) = f(e)� ~f(e).It is easy to see that the new 
ow f 0 satis�es both C1 (due to the choice of ~c) and C2(because it is the superposition of two 
ows which satisfy C2). Clearly F 0 = F + ~F > F .Let us call the part of the algorithm which starts with f , �nds its layered network, �nds amaximal 
ow ~f in it and improves the 
ow in the original network to become f 0 | a phase. Wewant to show that the number of phases is bounded by jV j. For this purpose we shall prove thatthe length of the layered network increases from phase to phase; by length is meant the index ofthe last layer, which we called l in Step (4) of the layered network algorithm. Thus, lk denotesthe length of the layered network of the kth phase.Lemma 5.4 If the (k + 1)st phase is not the last then lk+1 > lk.Proof: There is a path of length lk+1 in the (k + 1)st layered network which starts with s andends with t: s e1| v1 e2| � � �vlk+1�1 elk+1| t:First, let us assume that all the vertices of the path appear in the k-th layered network.Let Vj be the jth layer of the kth layered network. We claim that if va 2 Vb then a � b. Thisis proved by induction on a. For a = 0, (v0 = s) the claim is obviously true. Now, assumeva+1 2 Vc. If c � b + 1 the inductive step is trivial. But if c > b + 1 then the edge ea+1 hasnot been used in the kth phase since it is not even in the kth layered network, in which onlyedges between adjacent layers appear. If ea+1 has not been used and is useful from va to va+1in the beginning of phase k + 1, then it was useful from va to va+1 in the beginning of phase k.Thus, va+1 cannot belong to Vc (by the algorithm). Now, in particular, t = vlk+1 and t 2 Vlk .Therefore, lk+1 � lk. Also, equality cannot hold, because in this case the whole path is in thekth layered network, and if all its edges are still useful in the beginning of phase k + 1 then the~f of phase k was not maximal.If not all the vertices of the path appear in the kth layered network then let va ea+1| va+1 bethe �rst edge such that for some b va 2 Vb but va+1 is not in the kth layered network. Thus,ea+1 was not used in phase k. Since it is useful in the beginning of phase k+1, it was also usefulin the beginning of phase k. The only possible reason for va+1 not to belong to Vb+1 is thatb + 1 = lk. By the argument of the previous paragraph a � b. Thus a + 1 � lk, and thereforelk+1 > lk. Q.E.D.Corollary 5.2 The number of phases is less than or equal to jV j � 1.Proof: Since l � jV j � 1, Lemma 5.4 implies the corollary. Q.E.D.The remaining task is to describe an e�cient algorithm to construct a maximal 
ow in alayered network.First, let us show Dinic's method.We assume that ~N is a layered network, and for every edge e in ~N ~c(e) > 0.(1) For every e in ~N , mark e \unblocked" and let ~f(e) 0.(2) v  s and empty the stack S.



5.3. NETWORKS WITH UPPER AND LOWER BOUNDS 53(3) If there is no unblocked edge v | u, with u in the next layer, then (v is a dead-end and)perform the following operations:(3.1) If s = v, halt; the present ~f is maximal.(3.2) Delete the top-most edge u e| v from S.(3.3) Mark e \blocked" and let v  u.(3.4) Repeat Step (3).(4) Choose an unblocked edge v e| u, with u in the next layer. Put e in S and let v  u. Ifv 6= t then go to Step (3).(5) The edges on S form an augmenting path: s e1| v1 e2| v2 e3| � � �vl�1 el| t. Perform thefollowing operations:(5.1) � Min1�i�l(~c(ei)� ~f(ei)).(5.2) For every 1 � i � l, ~f(ei) ~f(ei) + � and if ~f (ei) = ~c(ei) then mark ei \blocked".(5.3) Go to Step (2).It is easy to see that an edge is declared \blocked" only if no additional augmenting path(of length l) can use it. Thus, when the algorithm halts (in Step (3.1)) the resulting 
ow ~f ismaximal in ~N . Also, the number of edges scanned, in between two declarations of edge blocking,is at most l, and l � jV j�1. Since the number of edges in ~N is at most jEj and since no blockededge becomes unblocked, the number of edge scannings is bounded by jV j � jEj. Thus, thealgorithm for �nding a maximal 
ow in ~N is O(jV j � jEj), yielding abound O(jV j2jEj) for thewhole algorithm.5.3 NETWORKS WITH UPPER AND LOWER BOUNDSIn the previous sections we have assumed that the 
ow in the edges is bounded from abovebut the lower bound on all the edges is zero. The signi�cance of this assumption is that theassignment of f(e) = 0, for every edge e, de�nes a legal 
ow, and the algorithm for improvingthe 
ow can be started without any di�culty.In this section, in addition to the upper bound, c(e), on the 
ow through e, we assume thatthe 
ow is also bounded from below by b(e). Thus, f must satisfyb(e) � f(e) � c(e) (5.6)in every edge e. Condition C2 remains unchanged.Thus, our problem of �nding a maximum 
ow is divided into two. First, we want to checkwhether the given network has legal 
ows, and if the answer is positive, we want to �nd one.Second, we want to increase the 
ow and �nd a maximum 
ow.A simple example of a network which has no legal 
ow is shown in Figure 5.8. Here next toeach edge e we write b(e); c(e). Figure 5.8



54 CHAPTER 5. MAXIMUM FLOW IN A NETWORKThe following method for testing whether a given network has a legal 
ow function is dueto Ford and Fulkerson [1]. In case of a positive answer, a 
ow function is found.The original network with graph G(V;E) and bounds b(e) and c(e) is modi�ed as follows:(1) The new set of vertices, �V , is de�ned by�V = f�s; �tg [ V:�s and �t are new vertices, called the auxiliary source and sink, respectively,(2) For every v 2 V construct an edge v e! �t with an upper bound (capacity)�c(e) = Xe2�(v) b(e);where �(v) is the set of edges which emanate from v in G. The lower bound is zero.(3) For every v 2 V construct an edge �s e! v with an upper bound�c(e) = Xe2�(v) b(e);where �(v) is the set of edges which enter v in G. The lower bound is zero.(4) The edges of E remain in the new graph but the bounds change: The lower bounds areall zero and the upper bound �c(e) of e 2 E is de�ned by �c(e) = c(e)� b(e).(5) Construct new edges s e! t and t e0! s with very high upper bounds �c(e) and �c(e0) (= 1)and zero lower bounds.The resulting auxiliary network has a source �s, a sink �t; s and t are regarded now as regularvertices which have to conform to the conservation rule, i.e. condition C2.Let us demonstrate this construction on the graph shown in Fig. 5.9(a). The auxiliarynetwork is shown in Fig. 5.9(b). The upper bounds �c(e) are shown next to the edges to whichthey apply.Nowwe can use the Ford and Fulkerson or the Dinic (with or without the MPM improvement)algorithms to �nd a maximum 
ow in the auxiliary network.Theorem 5.2 The original network has a legal 
ow if and only if the maximum 
ow of theauxiliary network saturates all the edges which emanate from �s.Clearly, if all the edges which emanate from �s are saturated, then so are all the edges whichenter �t This follows from the fact that each b(e), of the original graph, contributes its value tothe capacity of one edge emanating from �s and to the capacity of one edge entering �t. Thus, thesum of capacities of edges emanating from �s is equal to the sum of capacities of edges entering�t.Proof: Assume a maximum 
ow function �f of the auxiliary network saturates all the edgeswhich emanate from �s. De�ne the following 
ow function, for the original network:For every e 2 E f(e) = �f(e) + b(e): (5.7)
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Figure 5.9Since 0 � �f(e) � �c(e) = c(e)� b(e);we have b(e) � f(e) � c(e);satisfying (5.6).Now let v 2 V � fs; tg; �(v) is the set of edges which enter v in the original network and�(v) is the set of edges which emanate from v in it. Let �s �! v and v �! �t be the edges of theauxiliary network, as constructed in parts (3) and (2). Clearly,Xe2�(v) �f(e) + �f(�) = Xe2�(v) �f(e) + �f (�): (5.8)



56 CHAPTER 5. MAXIMUM FLOW IN A NETWORKBy the assumption �f (�) = �c(�) = Xe2�(v) b(e)and �f (�) = �c(�) = Xe2�(v) b(e):Thus Xe2�(v) f(e) = Xe2�(v) f(e): (5.9)This proves that C2 is satis�ed too, and f is a legal 
ow function of the original network.The steps of this proof are reversible, with minor modi�cations. If f is a legal 
ow functionof the original network, we can de�ne �f for the auxiliary network by (5.7). Since f satis�es(5.6), by subtracting b(e), we get that �f(e) satis�es C1 in e 2 E. Now, f satis�es (5.9) for everyv 2 V � fs; tg. Let �f(�) = �c(�) and �f (�) = �c(�). Now (5.8) is satis�ed and therefore conditionC2 is held while all the edges which emanate from �s are saturated. Finally, since the net 
owwhich emanates from s is equal to the net 
ow which enters t, we can make both of them satisfyC2 by 
owing through the edges of part (5) of the construction, this amount. Q.E.D.Let us demonstrate the technique for establishing whether the network has a legal 
ow, and�nding one in the case the answer is positive, on our example (Fig. 5.9). First, we apply theDinic algorithm on the auxiliary network and end up with the 
ow, as in Fig. 5.10(a). Themaximum 
ow saturates all the edges which emanate from �s, and we conclude that the originalnetwork has a legal 
ow. We use (5.7) to de�ne a legal 
ow in the original network; this is shownin Fig. 5.10(b) (next to each edge e we write b(e), c(e), f(e), in this order).Once a legal 
ow has been found, we turn to the question of optimizing it. First, let usconsider the question of maximizing the total 
ow.One can use the Ford and Fulkerson algorithm except that the backward labeling must berede�ned as follows:A backward labeling of vertex v by the edge u e v is applicable if:(1) u is labeled and v is not;(2) f(e) > b(e).The label that v gets is 0e0. In this ease we de�ne �(e) = f(e)� b(e).We start the algorithm with the known legal 
ow. With this exception, the algorithm isexactly as described in Section 5.1. The proof that when the algorithm terminates the 
ow ismaximum is similar too. We need to rede�ne the capacity of a cut determined by S as follows:c(S) = Xe2(S; �S) c(e)� Xe2( �S ;S) b(e):It is easy to prove that the statement analogous to Lemma 5.2, still holds; for every 
ow f withtotal 
ow F and every S F � c(S): (5.10)Now, the set of labeled vertices S, when the algorithm terminates satis�es (5.10) by equality.Thus, the 
ow is maximum and the indicated cut is minimum.
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Figure 5.10The Dinic algorithm can be used too. The only change needed is in the de�nition of a usefuledge, part (2): u e v and f(e) > b(e), instead of f(e) > 0. Also, in the de�nition of ~c(e),part (ii): If u 2 Vi�1; v 2 Vi and u e v then ~c(e) = f(e)� b(e).Let us demonstrate the maximizing of the 
ow on our example, by the Dinic algorithm. Thelayered network of the �rst phase for the network, with legal 
ow, of Fig. 5.10(b) is shown inFig. 5.11(a). The pair ~c(e), ~f(e) is shown next to each edge. The new 
ow of the original networkis shown in Fig. 5.11(b). The layered network of the second phase is shown in Fig. 5.11(c). Theset S = fs; yg indicates a minimum cut, and the 
ow is maximum.In certain applications, what we want is a minimum 
ow, i.e. a legal 
ow function f forwhich the total 
ow F is minimum. Clearly, a minimum 
ow from s to t is a maximum 
owfrom t to s. Thus, our techniques solve this problem too, by simply exchanging the roles of sand t. By the max-
ow min-cut theorem, the max-
ow from t to s, F (t; s) is equal to a min-cut
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Figure 5.11from t to s. Therefore, there exists a T � V , t 2 T , s 62 T such thatF (t; s) = c(T ) = Xe2(T ; �T ) c(e)� Xe2( �T ;T ) b(e):Now F (t; s) = �F (s; t), and if S = �T , thenF (s; t) = Xe2(S; �S) b(e)� Xe2( �S;S) c(e):For the min-
ow problem we de�ne the capacity of a cut determined by S, s 2 S, t 62 S byc(S) = Xe2(S; �S) b(e)� Xe2( �S;S) c(e):Clearly, every S yields a lower bound, c(S), on the 
ow F (s; t) and the min-
ow is equal to themax-cut.



Chapter 6APPLICATION OF NETWORKFLOW TECHNIQUES6.4 MAXIMUM MATCHING IN BIPARTITE GRAPHSA set of edges, M , of a graph G(V;E) with no self-loops, is called a matching if every vertex isincident to at most one edge ofM . The problem of �nding a maximum matching was �rst solvedin polynomial time by Edmonds [12]. The best known result of Even and Kariv [13] is O(jV j2:5).These algorithms are too complicated to be included here, and they do not use network 
owtechniques.An easier problem is to �nd a maximum matching in a bipartite graph, i.e., a graph in whichV = X [ Y , X \ Y = ; and each edge has one end vertex in X and one in Y . This problemis also known as the marriage problem. We shall present here its solution via network 
ow andshow that its complexity is O(jV j1=2 � jEj). This result was �rst achieved by Hopcroft and Karp[14].Let us construct a network N(G). Its digraph �G( �V ; �E) is de�ned as follows:�V = fs; tg [ V;�E = fs! x j x 2 Xg [ fy ! t j y 2 Y g [ fx! y j x | y in Gg:Let c(s! x) = c(y ! t) = 1 for every x 2 X and y 2 Y . For every edge x e! y let c(e) =1.(This in�nite capacity is de�ned in order to simplify our proof of Theorem 6.12. Actually, sincethere is only one edge entering x, with unit capacity, the 
ow in x ! y is bounded by 1.) Thesource is s and the sink is t. For example consider the bipartite graph G shown in Fig. 6.2(a).Its corresponding network is shown in Fig. 6.2(b).Theorem 6.11 The number of edges in a maximum matching of a bipartite graph G is equalto the maximum 
ow, F , in its corresponding network, N(G).Proof: Let M be a maximum matching. For each edge x ! y of M , use the directed paths ! x ! y ! t to 
ow one unit from s to t. Clearly, all these paths are vertex disjoint. Thus,F � jM j.Let f be a 
ow function of N(G) which is integral. (There is no loss of generality here, sincewe saw, in Chapter 5, that every network with integral capacities has a maximum integral 
ow.)All the directed paths connecting s and t are of the form s! x! y ! t. If such a path is usedto 
ow (one unit) from s to t then no other edge x ! y0 or x0 ! y can carry 
ow, since there59
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Figure 6.2is only one edge s! x and its capacity is one, and the same is true for y ! t. Thus, the set ofedges x! y, for which f(x! y) = 1, indicates a matching in G. Thus, jM j � F . Q.E.D.The proof indicates how the network 
ow solution can yield a maximum matching. Forour example, a maximum 
ow, found by Dinic's algorithm is shown in Fig. 6.3(a) and itscorresponding matching is shown in Fig. 6.3(b).
Figure 6.3The algorithm, of the proof, is O(jV j1=2 � jEj), by Theorem 6.3, since the network is, clearly,of type 2.Next, let us show that one can also use the max-
ow min-cut theorem to prove a theorem ofHall [15]. For every A � X , let �(A) denote the set of vertices (all in Y ) which are connected



6.5. TWO PROBLEMS ON PERT DIGRAPHS 61by an edge to a vertex of A. A matching, M , is called complete if jM j = jX j.Theorem 6.12 A bipartite graph G has a complete matching if and only if for every A � X,j�(A)j � jAj.Proof: Clearly, if G has a complete matching M , then each x has a unique \mate" in Y . Thus,for every A � X , j�(A)j � jAj.Assume now that G does not have a complete matching. Let S be the set of labeled vertices(in the Ford and Fulkerson algorithm, or Dinic's algorithm) upon termination. Clearly, themaximum total 
ow is equal to jM j, but jM j < jX j. Let A = X \ S. Since all the edges of thetype x ! y are of in�nite capacity, �(A) � S. Also, no vertex of Y � �(A) is labeled, sincethere is no edge connecting it to a labeled vertex. We have(S; �S) = (fsg;X �A) [ (�(A); ftg):Since j(S; �S)j = jM j < jX j, we get jX �Aj+ j�(A)j < jX j;which implies j�(A)j < jAj. Q.E.D.6.5 TWO PROBLEMS ON PERT DIGRAPHSA PERT� digraph is a �nite digraph G(V;E) with the following properties:(i) There is a vertex s, called the start vertex, and a vertex t(6= s), called the terminationvertex.(ii) G has no directed circuits.(iii) Every vertex v 2 V � fs; tg is on some directed path from s to t.A PERT digraph has the following interpretation. Every edge represents a process. All theprocesses which are represented by edges of �(s), can be started right away. For every vertex v,the processes represented by edges of �(v) can be started when all the processes represented byedges of �(v) are completed.Our �rst problem deals with the question of how soon can the whole project be completed;i.e., what is the shortest time, from the moment the processes represented by �(s) are started,until all the processes represented by �(t) are completed. We assume that the resources forrunning the processes are unlimited. For this problem to be well de�ned let us assume thateach e 2 E has an assigned length l(e), which speci�es the time it takes to execute the processrepresented by e. The minimum completion time can be found by the following algorithm:(1) Assign s the label 0 (�(s) 0). All other vertices are \unlabeled".(2) Find a vertex, v, such that v is unlabeled and all edges of �(v) emanate from labeledvertices. Assign �(v) Maxu e!v f�(u) + l(e)g: (6.4)�Program Evaluation and Review Technique



62 CHAPTER 6. APPLICATION OF NETWORK FLOW TECHNIQUES(3) If v = t, halt; �(t) is the minimum completion time. Otherwise, go to Step (2).In Step (2), the existence of a vertex v, such that all the edges of �(v) emanate from labeledvertices is guaranteed by Condition (ii) and (iii): If no unlabeled vertex satis�es the conditionthen for every unlabeled vertex, v, there is an incoming edge which emanates from anotherunlabeled vertex. By repeatedly tracing back these edges, one �nds a directed circuit. Thus, ifno such vertex is found then we conclude that either (ii) or (iii) does not hold.It is easy to prove, by induction on the order of labeling, that �(v) is the minimum time inwhich all processes, represented by the edges of �(v), can be completed.The time complexity of the algorithm can be kept down to O(jEj) as follows: For eachvertex, v, we keep count of its incoming edges from unlabeled vertices; this count is initially setto din(v); each time a vertex, u, gets labeled we use the list �(u) to decrease the count for all vsuch that u! v, accordingly; once the count of a vertex v reaches 0, it enters a queue of verticesto be labeled.Once the algorithm terminates, by going back from t to s, via the edge which determinedthe label of the vertex, we can trace a longest path from s to t. Such a path is called critical.�Clearly, there may be more than one critical path. If one wants to shorten the completion time,�(t), then on each critical path at least one edge length must be shortened.Next, we shall consider another problem concerning PERT digraphs, in which there is noreference to edge lengths. Assume that each of the processes, represented by the edges, uses oneprocessor for its execution. The question is: How many processors do we need in order to besure that no execution will ever be delayed because of shortage of processors? We want to avoidsuch a delay without relying on the values of l(e)'s either because they are unknown or becausethey vary from time to time.Let us solve a minimum 
ow problem in the network whose digraph is G, source s, sink t,lower bound b(e) = 1 for all e 2 E and no upper bound (i.e. c(e) =1 for all e 2 E). Condition(iii) assures the existence of a legal 
ow (see Problem 5).For example, consider the PERT digraph of Fig. 6.4. The minimum 
ow (which in this caseis unique) is shown in Figure 6.5(a), where a maximum cut is shown too.
Figure 6.4A set of edges is called concurrent if for no two edges in the set there is a directed path whichpasses through both. Now, let T be the set of vertices which are labeled in the last attempt�The whole process is sometimes called the Critical Path Method (CPM).
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Figure 6.5to �nd an augmenting path from t to s. Clearly, t 2 T and s 62 T . The set of edges ( �T ;T ) isa maximum cut; there are no edges in (T ; �T), for there is no upper bound on the 
ow in theedges, and any such edge would enable to continue the labeling of vertices. Thus, the set ( �T ;T )is concurrent.If S is a set of concurrent edges then the number of processors required is at least jSj.This can be seen by assigning the edges of S a very large length, and all the others a shortlength. Since no directed path leads from one edge of S to another, they all will be operativesimultaneously. This implies that the number of processors required is at least j( �T ;T )j.However, the 
ow can be decomposed into F directed paths from s to t, where F is theminimum total 
ow, such that every edge is on at least one such path (since f(e) � 1 forevery e 2 E). This is demonstrated for our example in Fig. 6.5(b). We can, now, assign toeach processor all the edges of one such path. Each such processor executes the processes,represented by the edges of the path in the order in which they appear on the path. If oneprocess is assigned to more than one processor, then one of them executes while the others are



64 CHAPTER 6. APPLICATION OF NETWORK FLOW TECHNIQUESidle. It follows that whenever a process which corresponds to u! v, is executable (since all theprocesses which correspond to �(u) have been executed), the processor to which this process isassigned is available for its execution. Thus, F processors are su�cient for our purpose.Since F = j( �T ;T )j, by the min-
ow max-cut theorem, the number of processors thus assignedis minimum.The complexity of this procedure is as follows. We can �nd a legal initial 
ow in timeO(jV j � jEj), by tracing for each edge a directed path from s to t via this edge, and 
ow throughit one unit. This path is found by starting form the edge, and going forward and backwardfrom it until s and t are reached. Next, we solve a maximum 
ow problem, from t to s, by thealgorithm of Dinic, using MPM, in time O(jV j3). Thus, the whole procedure is of complexityO(jV j3), if jEj � jV j2.


