Foundations and Trends® in
Theoretical Computer Science

Vol. 5, No. 2 (2009) 73-205 n‘w

(© 2010 D. Ron
DOI: 10.1561/0400000029 the essence of knowledge

Algorithmic and Analysis Techniques in
Property Testing

By Dana Ron
Contents
1 Introduction 75
1.1 Settings in Which Property Testing is Beneficial 76
1.2 A Brief Overview 78
1.3 Property Testing and “Classical” Approximation 80
1.4 Property Testing and Learning 81
1.5 Organization of this Survey 82
1.6 Related Surveys 83
2 Preliminaries 84
2.1 Basic Definitions and Notations 84
2.2 Testing Graph Properties 86
3 The Self-correcting Approach 89
3.1 Linearity 90
3.2 Low-Degree Polynomials 96
3.3 Implications of Self-correction 99
4 The Enforce-and-Test Approach 109
4.1 Testing Whether a Graph is a Biclique 109
4.2 Testing Bipartiteness in the Dense-Graphs Model 111

4.3 Other Applications of the Enforce-and-Test Approach 119

5 Testing by Implicit Learning

5.1
5.2

A Building Block: Testing Juntas
The Algorithm for Testing by Implicit Learning

6 The Regularity Lemma

6.1
6.2
6.3

Background
Statement of the Lemma
Testing Triangle-Freeness

7 Local-Search Algorithms

7.1
7.2
7.3
7.4
7.5

Connectivity

k-Edge Connectivity

k-Vertex Connectivity.
Minor-Closed Properties

Other Local-Search Algorithms

8 Random Walks Algorithms

8.1 Testing Bipartiteness in Bounded-Degree Graphs

8.2

Testing Expansion

9 Lower Bounds

9.1

9.2 A Lower Bound for Testing Bipartiteness of Constant

A Lower Bound for Testing Triangle-Freeness

Degree Graphs

10 Other Results

10.1 Testing Monotonicity
10.2 Testing in the General-Graphs Model
10.3 Testing Membership in Regular Languages and

Other Languages

121

122
129

135

135
136
137

141

142
146
150
150
152

154

154
159

161

161

166

170

170
178

180

11 Extensions, Generalizations, and
Related Problems

11.1 Distribution-Free Testing

11.2 Testing in the Orientation Model

11.3 Tolerant Testing and Distance Approximation

11.4 Testing and Estimating Properties of Distributions

Acknowledgments

References

183

183
184
186
187

196

197

Foundations and Trends® in
Theoretical Computer Science

Vol. 5, No. 2 (2009) 73-205 n‘w

© 2010 D. Ron
DOI: 10.1561/0400000029 the essence of knowledge

Algorithmic and Analysis Techniques in
Property Testing

Dana Ron*

School of EE, Tel-Aviv University, Ramat Aviv, 10027, Israel,
danar@eng.tau.ac.il

Abstract

Property testing algorithms are “ultra’-efficient algorithms that decide
whether a given object (e.g., a graph) has a certain property (e.g.,
bipartiteness), or is significantly different from any object that has the
property. To this end property testing algorithms are given the ability
to perform (local) queries to the input, though the decision they need to
make usually concerns properties with a global nature. In the last two
decades, property testing algorithms have been designed for many types
of objects and properties, amongst them, graph properties, algebraic
properties, geometric properties, and more.

In this monograph we survey results in property testing, where our
emphasis is on common analysis and algorithmic techniques. Among
the techniques surveyed are the following:

® The self-correcting approach, which was mainly applied in
the study of property testing of algebraic properties;

*This work was supported by the Israel Science Foundation (grant number 246/08).

The enforce-and-test approach, which was applied quite
extensively in the analysis of algorithms for testing graph
properties (in the dense-graphs model), as well as in other
contexts;

Szemerédi’s Regularity Lemma, which plays a very important
role in the analysis of algorithms for testing graph properties
(in the dense-graphs model);

The approach of Testing by implicit learning, which implies
efficient testability of membership in many functions classes;
and

Algorithmic techniques for testing properties of sparse
graphs, which include local search and random walks.

1

Introduction

Property testing algorithms are algorithms that perform a certain type
of approzimate decision. Namely, standard (exact) decision algorithms
are required to determine whether a given input is a YES instance (has
a particular property) or is a NO instance (does not have the property).
In contrast, property testing algorithms are required to determine (with
high success probability) whether the input has the property (in which
case the algorithm should accept) or is far from having the property (in
which case the algorithm should reject). In saying that the input is far
from having the property we mean that the input should be modified
in a non-negligible manner so that it obtains the property.

To be precise, the algorithm is given a distance parameter,
denoted €, and should reject inputs that are e-far from having the prop-
erty (according to a prespecified distance measure). If the input neither
has the property nor is far from having the property, then the algorithm
can either accept or reject. In other words, if the algorithm accepts, then
we know (with high confidence) that the input is close to having the
property, and if it rejects, then we know (with high confidence) that
the input does not have the property.

75

76 Introduction

Since a property testing algorithm should perform only an approx-
imate decision and not an exact one, we may expect it to be (much)
more efficient than any exact decision algorithm for the same prop-
erty. In particular, as opposed to exact decision algorithms, which are
considered efficient if they run in time that is polynomial in the size
of the input (and the best we can hope for is linear-time algorithms),
property testing algorithms may run in time that is sublinear in the
size of the input (and hence we view them as being “ultra’-efficient).
In such a case they cannot even read the entire input. Instead, they are
given query access to the input, where the form of the queries depends
on the type of input considered.

Since property testing algorithms access only a small part of the
input, they are naturally allowed to be randomized and to have a small
probability of error (failure). In some cases they have a non-zero error
probability only on inputs that are far from having the property (and
never reject inputs that have the property). In such a case, when they
reject an input, they always provide (small) evidence that the input
does not have the property.

By the foregoing discussion, when studying a specific property test-
ing problem, one should define a distance measure over inputs (which
determines what inputs should be rejected), and one should define the
queries that the algorithm is allowed. For example, when dealing with
functions and their properties (e.g., linearity), the distance measure is
usually defined to be the Hamming distance normalized by the size
of the domain, and queries are simply queries for values of the func-
tion at selected elements of the domain. In other cases, such as graph
properties, there are several different natural models for testing (see
Section 2.2 for details).

1.1 Settings in Which Property Testing is Beneficial

In addition to the intellectual interest in relating global properties to
local patterns, property testing algorithms are beneficial in numerous
situations. A number of such settings are discussed next.

1. Applications that deal with huge inputs. This is the case when
dealing with very large databases in applications related to

1.1 Settings in Which Property Testing is Beneficial

computational biology, astronomy, study of the Internet, and
more. In such cases, reading the entire input is simply infea-
sible. Hence, some form of approximate decision, based on
accessing only a small part of the input, is crucial.

. Applications in which the inputs are not huge, but the prop-
erty in question is N'P-hard. Here too some form of approxi-
mation is necessary, and property testing algorithms provide
one such form. In fact, while “classical” approximation algo-
rithms are required to run in time polynomial in the size
of the input, here we require even more of the algorithm: It
should provide an approximately good answer, but is allowed
only sublinear time. For example, there is a property test-
ing algorithm that can be used to obtain a (1 + €)-factor
approximation of the size of the maximum cut in a dense
graph, whose running time depends only on ¢, and does not
depend at all on the size of the graph. (In Section 1.3 we
further discuss the relation between the notion of approx-
imation provided by property testing and more “classical”
notions.)

. Applications in which the inputs are not huge and the corre-
sponding decision problem has a polynomial-time algorithm,
but we are interested in ultra-efficient algorithms, and do not
mind sacrificing some accuracy. For example, we may not
mind accepting a graph that is not perfectly bipartite, but
is close to being bipartite (that is, it has a two-way par-
tition with relatively few “violating edges” within the two
parts).

. Scenarios similar to the one described in the previous item
except that the final decision must be exact (though a small
probability of failure is allowed). In such a case we can first
run the testing algorithm, and only if it accepts do we run the
exact decision procedure. Thus, we save time whenever the
input is far from having the property, and this is useful when
typical (but not all) inputs are far from having the property.
A related scenario, discussed in Section 1.4, is the application
of property testing as a preliminary step to learning.

7

78 Introduction

Thus, employing a property testing algorithm yields a certain loss in
terms of accuracy, but our gain, in terms of efficiency, is in many cases
dramatic. Furthermore, in many cases the loss in accuracy is inevitable
either because the input is huge or the problem is hard.

1.2 A Brief Overview

Property testing first appeared (implicitly) in the work of Blum
et al. [35], who designed the well-known Linearity testing algorithm.
It was first explicitly defined in the work of Rubinfeld and Sudan [123],
who considered testing whether a function is a low-degree polynomial.
The focus of these works was on testing algebraic properties of func-
tions, and they, together with other works, had an important role in
the design of Probabilistically Checkable Proofs (PCP) systems (cf.
[19, 20, 21, 22, 57, 66, 67, 123]).

The study of property testing in a more general context was initiated
by Goldreich et al. [72]. They gave several general results, among them
results concerning the relation between testing and learning, and then
focused on testing properties of graphs (in what we refer to as the dense-
graphs model). Following this work, property testing has been applied
to many types of inputs and properties.! In particular, the study of
algebraic properties of functions continued to play an important role,
partly because of the relation to the area of error correcting codes (for
a short explanation concerning this relation, see the beginning of Sec-
tion 3). The study of graph properties was significantly extended since
the work of Goldriech et al. [72]. This includes a large number of works
in the dense-graphs model, as well as the introduction of other models
(more suitable for graphs that are sparse or that are neither dense nor
sparse), and the design of algorithms that work within these models.
There has also been progress in the last few years on the design of test-
ing algorithms for properties of functions that can be viewed as logical
rather than algebraic (such as functions that have a small DNF repre-
sentation). The study of such properties is of interest from the point of
view of learning theory (see Section 1.4). Other families of properties to

1In what follows in this subsection we do not give references to relevant works. These refer-
ences can be found in the body of this monograph when each specific result is mentioned.

1.2 A Brief Overview 79

which the framework of property testing has been applied include Geo-
metric properties and “clusterability” of ensembles of points, properties
defined by restricted languages (e.g., regular languages), properties of
distributions, and more.

In some cases the algorithms designed are extremely efficient: The
number of operations they perform does not depend at all on the size
of the input, but only on the distance parameter €. In other cases the
dependence is some sublinear function of the size of the input (e.g.,
polylog(n) or y/n, for inputs of size n), where in many of the latter cases
there are matching (or almost matching) lower bounds that justify this
dependence on the size of the input.

While each algorithm has features that are specific to the prop-
erty it tests, there are several common algorithmic and analysis tech-
niques. Perhaps, the two better-known analysis techniques are the
self-correcting approach, which is applied in the analysis of many
testing algorithms of algebraic properties, and Szemerédi’s Regularity
Lemma [124], which is central to the analysis of testing graph properties
in the dense-graphs model. Other techniques include the enforce-and-
test approach (that is also applied in the analysis of testing algorithms
in the dense-graphs model, as well as in testing certain metric properties
and clustering properties), and the approach of testing by implicit learn-
ing whose application gives a variety of results (among them testing of
small DNF formula). Indeed, as the title of this monograph suggests, we
organize the results presented according to such common techniques.

In addition to the extension of the scope of property testing, there
have been several extensions and generalizations of the basic notion of
property testing. One extension (which was already introduced in [72]
but for which positive results appeared several years later) is allowing
the underlying distribution (with respect to which the distance mea-
sure is defined) to be different from the uniform distribution (and in
particular to be unknown — this is referred to as distribution-free test-
ing). Another natural extension is to tolerant testing. In tolerant testing
the algorithm is given two distance parameters: e; and ez, and it must
distinguish between the case that the object is €1-close to having the
property (rather than perfectly having the property as in the original
definition of property testing) and the case that the object is ex-far from

80 Introduction

having the property. A related notion is that of distance approzimation
where the task is to obtain an estimate of the distance to having the

property.

1.3 Property Testing and “Classical” Approximation

Consider for example the problem of deciding whether a given graph
G = (V,E) has a clique of size at least k, for k = pn where p is a fixed
constant and n = |V|. The “classical” notion of an approximation algo-
rithm for this problem requires the algorithm to distinguish between
the case that the max-clique in the graph has size at least pn and, say,
the case in which the max-clique has size at most pn/2.

On the other hand, when we talk of testing the “p-Clique” property,
the task is to distinguish between the case that the graph has a clique
of size pn and the case in which it is e-far from the any n-vertex graph
that has a clique of size pn. Since this property is relevant only to
dense graphs (where |E| = ©(n?)), our notion of e-far in this context is
that more than en? edges should be added to the graph so that it has
a clique of size pn. This is equivalent to the dual approrimation task
(cf., [89, 90]) of distinguishing between the case that an n-vertex graph
has a clique of size pn and the case that in any subset of pn vertices,
the number of missing edges (between pairs of vertices in the subset)
is more than en?.

The above two tasks are vastly different: Whereas the former task
is N'P-hard, for p <1/4 [30, 88], the latter task can be solved in
exp(O(1/€?))-time, for any p,e >0 [72]. We believe that there is no
absolute sense in which one of these approximation tasks is better than
the other: Each of these tasks is relevant in some applications and irrele-
vant in others. We also mention that in some cases the two notions coin-
cide. For example, consider the problem of deciding whether a graph
has a cut of size at least k for k = pn? (where p is a fixed constant).
Then a testing algorithm for this problem will distinguish (with high
probability) between the case that the max-cut in the graph is of size
at least pn? and the case in which the max-cut is of size less than
(p — €)n? (which for € = vp gives a “classical” (1 — ~)-factor approxi-
mation to the size of the max-cut).

1.4 Property Testing and Learning 81

Finally, we note that while property testing algorithms are decision
algorithms, in many cases they can be transformed into optimization
algorithms that actually construct approximate solutions. To illustrate
this, consider the two aforementioned properties, which we refer to
as p-Clique and p-Cut. For the first property, suppose the graph has
a clique of size at least pn. Then, building on the testing algorithm,
it is possible to obtain (with high probability (w.h.p.)), in time that
grows only linearly in n, a subset of pn vertices that is close to being a
clique. (That is, the number of missing edges between pairs of vertices
in the subset is at most en?.) Similarly, for the second property, if
the graph has a cut of size at least pn?, then it is possible to obtain
(w.h.p.), in time linear in n, a cut of size at least (p — ¢)n?. In both
cases the dependence on 1/e€ in the running time is exponential (whereas
a polynomial dependence cannot be obtained unless P = NP).

For these problems and other partition problems (e.g.,
k-colorability), the testing algorithm (when it accepts the input)
actually defines an implicit partition. That is, after the execution
of the testing algorithm, it is possible to determine for each vertex
(separately) to which part it belongs in the approximately good
partition, in time poly(1/e).

1.4 Property Testing and Learning

Following standard frameworks of learning theory, and in particular
the PAC learning model of Valiant [125] and its variants, when we say
learning we mean outputting a good estimate of a function to which
we have query access (or from which we can obtain random labeled
examples). Thus, another view of property testing is as a relaxation of
learning (with queries and under the uniform distribution).? Namely,
instead of asking that the algorithm output a good estimate of the
(target) function (which is possibly assumed to belong to a particular
class of functions F), we only require that the algorithm decide whether
the function belongs to F or is far from any function in F. Given

2 Testing under non-uniform distributions and testing with random examples (only) have
been considered (and we discuss the former in this monograph), but most of the work in
property testing deals with testing under the uniform distributions and with queries.

82 Introduction

this view, a natural motivation for property testing is to serve as a
preliminary step before learning: We can first run the testing algorithm
in order to decide whether to use a particular class of functions as our
hypothesis class.

In this context too we are interested in testing algorithms that are
more efficient than the corresponding learning algorithms. As observed
in [72], property testing is no harder than proper learning (where the
learning algorithm is required to output a hypothesis from the same
class of functions as the target function). Namely, if we have a proper
learning algorithm for a class of functions F, then we can use it as a
subroutine to test the property of membership in F.

We also note that property testing is related to hypothesis testing
(see e.g., [101, Chap. 8]). For a short discussion of this relation, see the
introduction of [121].

1.5 Organization of this Survey

In this monograph we have chosen to present results in property testing
with an emphasis on analysis techniques and algorithmic techniques.
Specifically:

® [n Section 3 we discuss results whose analysis follows the
Self-correcting approach (e.g., testing linearity), and mention
several implications of this approach.

® In Section 4 we discuss results whose analysis follows the
enforce-and-test approach (e.g., testing bipartiteness in the
dense-graphs model). In many cases this approach implies
that the testing algorithm can be transformed into an effi-
cient approximate optimization algorithm (as discussed in
Section 1.3).

® The approach of Testing by Implicit Learning, whose appli-
cation leads to efficient testing of many function classes (e.g.,
DNF formula with a bounded number of terms), is described
in Section 5.

e The Regularity Lemma of Szemerédi [124], which is a very
important tool in the analysis of testing algorithms in the

1.6 Related Surveys 83

dense-graphs model, is presented in Section 6, together with
its application to testing triangle-freeness (in this model).

® [n Section 7 we discuss algorithms for testing properties of
sparse graphs that are based on local search.

® The use of random walks by testing algorithms for properties
of sparse graphs is considered in Section 8.

® In Section 9 we present two examples of lower bound proofs
for property testing algorithms, so as to give a flavor of the
type of arguments used in such proofs.

e A small selection of other families of results, which did not fit
naturally in the previous sections (e.g., testing monotonicity
of functions), is discussed in Section 10.

e We conclude the monograph in Section 11 with a discussion
of several extensions and generalizations of property testing
(e.g., tolerant testing).

1.6 Related Surveys

There are several surveys on property testing ([58, 69, 120], and the
more recent [121]), which have certain overlaps with the current sur-
vey. In particular, the recent survey [121] of the current author presents
property testing from a learning theory perspective. Thus, the empha-
sis in that survey is mainly on testing properties of functions (that is,
testing for membership in various function classes). Though the per-
spective taken in the current monograph is different, there are naturally
several results that appear in both articles, possibly with different levels
of detail.

For the broader context of sublinear-time approximation algorithms
see [104, 47]. For a survey on Streaming (where the constraint is sub-
linear space rather than time), see [107].

2

Preliminaries

2.1 Basic Definitions and Notations

For any positive integer k, let [k] ={1,...,k}. For a string ==
Z1,...,2p € {0,1}", we use |z| to denote the number of indices i such
that x; = 1. We use “-” to denote multiplication (e.g., a - b) whenever
we believe that it aids readability.

Since many of the results we survey deal with testing properties of
functions (or functional representations of objects, such as graphs), we
start with several definitions and notations pertaining to functions.

For two functions f,g: X — R over a finite domain X we let

dist(f,9) < Proex[f(z) # g(x)] (2.1)

denote the distance between the functions, where the probability is
taken over a uniformly selected x € X.

When we use the term “with high probability”, we mean with prob-
ability at least 1 — § for a small constant 6. When the claim is for higher
success probability (e.g., 1 — poly(1/n) where n is the input size), then
this is stated explicitly. When considering the probability of a certain
event we usually denote explicitly over what the probability is taken

84

2.1 Basic Definitions and Notations 85

(e.g., Pryex|[f(x) # g(z)]), unless it is clear from the context (in which
case we may write Pr[f(z) # g(x)]).

Let P be a property of functions (from domain X to range R). That
is, P defines a subset of functions, and so we shall use the notation g € P
to mean that function g has the property P. For a function f: X — R
we define

dist(f,P) < min{dist(f,9)}, (2.2)
g

where there may be more than one function g that attains the minimum
on the right-hand side. If dist(f,P) = ¢, then we shall say that f is at
distance € from (having) P (or has distance € to P).

Definition 2.1 (Testing (Function Properties)). A testing algo-
rithm for property P (of functions from domain X to range R) is
given a distance parameter ¢ and query access to an unknown function

f: X —R.

e [f f € P then the algorithm should accept with probability
at least 2/3; and

e If dist(f,P) > e then the algorithm should reject with prob-
ability at least 2/3.

We shall be interested in bounding both the query complexity and the
running time of the testing algorithm. In some cases our focus will be
on the query complexity, putting aside the question of time-complexity.
We observe that the choice of a success probability of 2/3 is arbitrary
and can clearly be improved to 1 — ¢, for any 6 > 0 at a multiplicative
cost of log(1/d) in the complexity of the algorithm. We say that a
testing algorithm has one-sided error if it accepts every f € P with
probability 1. Otherwise, it has two-sided error.

One may consider variations of the abovementioned notion of test-
ing. In particular, the underlying distribution (which determines the
distance in Equation (2.1), and hence in Equation (2.2)) may be an
arbitrary and unknown distribution (rather than the uniform distri-
bution). We refer to this as distribution-free testing, and discuss it in

86 Preliminaries

Section 11.1. Another variant requires that testing be performed based
on random (uniform) examples alone; that is, queries cannot be per-
formed. We shall not discuss this variant in the current survey (and
there are actually only few positive results known in this model [100]).

2.2 Testing Graph Properties

Much of the work in property testing deals with testing properties of
graphs, where several models have been studied. The first two models,
described next, correspond to representations of graphs as functions,
and hence essentially coincide with Definition 2.1. In all that fol-
lows, the number of graph vertices is denoted by n. Unless stated oth-
erwise, we consider undirected, simple graphs (that is, with no multiple
edges and no self-loops). For a vertex v we let I'(v) denote its set of
neighbors, and we let deg(v) = |I'(v)| denote its degree.

2.2.1 The Dense-Graphs (Adjacency-Matrix) Model

The first model, introduced in [72], is the adjacency-matriz model.
In this model the algorithm may perform queries of the form: “is
there an edge between vertices u and v in the graph?” That is, the
algorithm may probe the adjacency matrix representing the tested
graph G = (V(G), E(G)), which is equivalent to querying the function
fa:V xV —{0,1}, where fg(u,v) =1 if and only if (u,v) € E. We
refer to such queries as vertex-pair queries. The notion of distance is
also linked to this representation: A graph is said to be e-far from having
property P if more than en? edge modifications should be performed
on the graph so that it obtains the property. We note that since each
edge appears twice in the functional representation (and there are no
self-loops), to be exactly consistent with the functional view point, we
should have said that a graph is e-far from having P if more than e(g)
edge modifications have to be be performed so that the graph obtains
the property. However, it will be somewhat simpler to work with the
slightly different definition given here. This model is most suitable for
dense graphs in which the number of edges m is ©(n?). For this reason

we shall also refer to it as the dense-graphs model.

2.2 Testing Graph Properties 87

2.2.2 The Bounded-Degree (Incidence-Lists) Model

The second model, introduced in [76], is the bounded-degree incidence-
lists model. In this model, the algorithm may perform queries of the
form: “who is the i-th neighbor of vertex v in the graph?” That is, the
algorithm may probe the incidence lists of the vertices in the graph,
where it is assumed that all vertices have degree at most d for some
fixed degree-bound d. This is equivalent to querying the function fg :
V x [d] — V U {T'} that is defined as follows: For each v € V and i € [d],
if the degree of v is at least ¢ then fg(v,i) is the i-th neighbor of v
(according to some arbitrary but fixed ordering of the neighbors), and
if v has degree smaller than i, then fg(v,i) =T. We refer to these
queries as neighbor queries.

Here too the notion of distance is linked to the representation:
A graph is said to be e-far from having property P if more than edn
edge modifications should be performed on the graph so that it obtains
the property. In this case € measures the fraction of entries in the
incidence lists representation (the domain of fg, which has size dn),
that should be modified. This model is most suitable for graphs with
m = O(dn) edges; that is, whose maximum degree is of the same order
as the average degree. In particular, this is true for sparse graphs
that have constant degree. We shall refer to it in short either as the
bounded-degree model or as the incidence-lists model.

2.2.3 The Sparse-Graphs Model and the
General-Graphs Model

In [112] it was first suggested to decouple the questions of represen-
tation and type of queries allowed from the definition of distance to
having a property. Specifically, it was suggested that distance be mea-
sured simply with respect to the number of edges, denoted m, in the
graph (or an upper bound on this number). Namely, a graph is said to
be e-far from having a property, if more than em edge modifications
should be performed so that it obtains the property. In [112] (where the
focus was on sparse graphs), the algorithm is allowed the same type of
queries as in the bounded-degree incidence-lists model, and it can also
query the degree of any given vertex.

88 Preliminaries

The main advantage of the [112] model over the bounded-degree
incidence-lists model is that it is suitable for sparse graphs whose
degrees may vary significantly. Hence we refer to it as the sparse-graphs
model. We note that while it may seem that the sparse-graphs model
is (strictly) more general than the bounded-degree model, this is not
exactly true. The reason is that for some properties a graph may be
far from having the property in the bounded-degree model but close to
having it in the sparse-graphs model because it is far from any graph
that has the property and has degree at most d, but is close to a graph
that has the property but doesn’t have the degree limitation.

More generally, when the graph is not necessarily sparse (and not
necessarily dense), we may allow vertex-pair queries in addition to
neighbor queries and degree queries. This model was first studied by
Kaufman et al. [96], and is referred to as the general-graphs model.

3

The Self-correcting Approach

Recall that the goal of a testing algorithm for a particular property P
is to distinguish between the case that the tested object (function f)
has the property P and the case that it is far from any function that
has P. To this end many testing algorithms run several independent
executions of some local test. For example, in the case of linearity, the
algorithm tests whether f(z) 4+ f(y) = f(z + y) for uniformly selected
pairs z and y in the domain of f. The local tests are such that if the
function has the property, then they always pass. In order to show that
the testing algorithm rejects (with high constant probability) functions
that are far from having the property, the contrapositive statement is
established. Namely, that if the testing algorithm accepts a function f
with sufficiently large constant probability (that is, the probability that
a random local test doesn’t pass is sufficiently low), then f is close to
having the property.

For linearity and several other properties, this is done by defining a
self-corrected version of f. The self-corrected version is defined based
on the values of f (hence the usage of self), and the local tests. For
example in the case of linearity, the self-corrected version, g7(-), is such
that ¢/ () is the majority (or plurality) value of f(x + y) — f(y), taken

89

90 The Self-correcting Approach

over all points y in the domain. Showing that ¢/ is close to f tends to
be relatively easy, and the crux of the proof is in showing that ¢/ indeed
has the tested property (e.g., is a linear function).

A coding-theory perspective. The results described in this section
also have an interpretation from the point of view of coding theory.
Namely, each of the properties (function classes) corresponds to a code
(or family of codes): The Hadamard code, Reed-Solomon codes, Reed—
Muller codes, and Generalized Reed—Muller codes, respectively. If we
view functions as words (e.g., for the domain {0,1}", the word is of
length 2™), then the test distinguishes between codewords and words
that are e-far from every codeword. This is referred to as local testing
of codes (see, e.g., [70]). Taking this point of view, the self-corrected
version of a word that is not too far from being a codeword corresponds
to the closest codeword.

3.1 Linearity

For the sake of simplicity we consider functions from {0,1}" to {0,1}.
The result extends to functions f : G — H, where G and H are groups.
Thus, here addition is modulo 2, and for =,y € {0,1}", x 4+ y is the
bitwise sum (XOR) of the two strings, that is, it is the string z € {0,1}"
such that z; = x; + y;. For the sake of simplicity, here when we say
“linear functions” we mean linear functions that do not have a free term
(as defined next). In order to allow a free term, the test (Algorithm 3.1)
should be slightly modified. Thus, strictly speaking, the algorithm is
actually a homomorphism testing algorithm.

Definition 3.1 (Linearity). We say that f:{0,1}" — {0,1} is a lin-
ear function if there exist coefficients by,...,b, € {0,1} such that for
r=2x1,...,x, € {0,1}", f(z) =>_7" | biz;. In other words, there exists
a subset S C {1,...,n} such that f(z) =3, gz

Linearity testing is essentially the first property testing problem
studied, though the term “Property Testing” was not yet explic-
itly defined at the time. Linearity testing was first studied by

3.1 Linearity 91

Blum et al. [35] in the context of Program Testing. Namely, they were
interested in designing algorithms (program-testers) that, given access
to a program that is supposed to compute a particular function f, dis-
tinguish between the case that the program computes f correctly on
all inputs and the case that it errs on at least a certain fraction e of
the domain elements. The program-tester should be much simpler than
the program itself, and is typically based on calls to the program and
some basic operations on the resulting outputs.

In the case of testing whether a program computes a particular
linear function, the program-tester first distinguishes between the case
that the program computes some linear function and the case that the
function it computes is far from any linear function. That is, it first
performs property testing of linearity. The starting point of the BLR
test is the following characterization of linear functions, which is not
hard to verify (and some would actually use it as a definition of linear
functions).

Fact 3.1. A function f:{0,1}" — {0,1} is linear if and only if f(z) +
f(y) = f(x +y) for every z,y € {0,1}".

The BLR test is given in Figure 3.1.

Before we prove the correctness of the algorithm, we remark on its
complexity: the algorithm performs only O(1/¢) queries. In particu-
lar, its query complexity is independent of n. This is in contrast to
the query complexity of any learning algorithm for the class of linear

Algorithm 3.1: Linearity Test

1. Repeat the following ©(1/€) times.
(a) Uniformly and independently select z,y € {0,1}".

(b) If f(z)+ f(y) # f(x +y) then output reject (and
exit).

2. If no iteration caused rejection then output accept.

Fig. 3.1 The BLR linearity testing algorithm.

92 The Self-correcting Approach

(parity) functions, which is Q(n). This is true simply because every
two linear functions have distance 1/2 between them (under the uni-
form distribution), and a linear function is not uniquely determined by
fewer than n labeled points. We note that the difference in the running
time between testing and learning is less dramatic (linear in n versus
quadratic in n), since the testing algorithm reads all n bits of each
sampled string.

Theorem 3.1. Algorithm 3.1 is a one-sided error testing algorithm for
linearity. Its query complexity is O(1/¢).

Let £ denote the class of linear functions over {0,1}". By Fact 3.1,
Algorithm 3.1 accepts every function f € £ with probability 1. We turn
to proving that if dist(f,£) > e then the algorithm rejects with prob-
ability at least 2/3. Let e, (f) denote the distance of f to being lin-
ear. Namely, if we let £ denote the set of all linear functions, then
ec(f) f dist(f,L). We would like to prove that for every given e > 0, if
€ > ez (f), then the probability that the test rejects is at least 2/3. This
will follow from showing that if the constraint f(z) + f(y) = f(z + v)
is violated for relatively few pairs (x,y), then f is close to some lin-
ear function. In other words (using the terminology of [35, 123]), the
characterization provided by Fact 3.1 is robust. To this end we define:

def

n(f) = Proy[f(z) + fy) # &+ y)l; (3.1)

where in Equation (3.1) and elsewhere in this subsection, the probabil-
ity is taken over a uniform choice of points in {0,1}". That is, n(f) is
the probability that a single iteration of Algorithm 3.1 “finds evidence”
that f is not a linear function. We shall show that n(f) > e, (f)/c for
some constant ¢ > 1 (this can actually be shown for ¢ = 1 but the proof
uses Discrete Fourier analysis [29] while the proof we show builds on
first principles). It directly follows that if e£(f) > € and the number of
iterations is at least 2c/e, then the probability that the test rejects is
at least

1— (1 —n(f)¥ >1—e?2Dle>1 72> 9/3 (3.2)

thus establishing Theorem 3.1.

3.1 Linearity 93

Somewhat unintuitively, showing that n(f) > es(f)/c is easier if
er(f) is not too large. Specifically, it is not hard to prove the following
claim.

Claim 3.2. For every function f it holds that n(f) > 3es(f)(1 —
2e.(f)). In particular, if ez (f) < 1 then n(f) > 3¢(f) (and more gener-
ally, if n(f) = 3 — ~ for v > 0, then n(f) > 6ves(f), which gives a weak
bound as n(f) approaches 1/2).

It remains to prove that even when e, (f) is not bounded away
(from above) from 1/2 then still n(f) > es(f)/c for a constant c¢. To
this end we define the following majority function: for each fixed choice
of z € {0,1}",

V0 =) eV TOTIEN 0y
Let

def
V(@)= fa+y) = f) = f@) + fl@+y) (3-4)
be the Vote that y casts on the value of . By the definition of g/ (z)
it is the majority vote taken over all y. Note that if f is linear then
V] (z) = f(a) for every y € {0,1}".
We shall prove two lemmas, stated next.

Lemma 3.3. dist(f,g7) < 2n(f).

Lemma 3.4. If n(f) < % then g7 is a linear function.

By combining Lemmas 3.3 and 3.4 we get that n(f) > %eg(f). To
see why this is true, observe first that if n(f) > %, then the inequality
clearly holds because e, (f) < 1. (In fact, since it can be shown that
ec(f) <1/2 for every f, we actually have that n(f) > Lez(f).) Other-

wise (n(f) < é), since g/ is linear and dist(f,gf) < 2n(f), we have that

er(f) < dist(f,g7) < 2n(f), so that n(f) > es(f)/2, and we are done.

94 The Self-correcting Approach

Since g/ is defined only based on f (and it is a linear function close
to f), we view it as the self-corrected version of f (with respect to
linearity).

Proof of Lemma 3.3. Let A(f,g/) = {z : ¢/(z) # f(2)} be the set
of points on which f and ¢/ differ. By the definition of ¢/ (z), it is the
majority value of Vyf (x) taken over all y. Hence, for every fixed choice
of x € A(f,g') we have that Pry[Vyf(x) # f(x)] > 1/2. Therefore,

Pr,,[f(x) # V{ (x)] > Prolz € A(f,¢7)]
Pry[f(x) # V) (z) |z € A(f,97)]
> “Prly(2) # f(x)]. (3.5)

Since Pr,,[f(z) # Vi (z)] =n(f), it must hold that Pr,[gf(z) #
f(@)] <2n(f). 0

Proof of Lemma 3.4. In order to prove this lemma, we first prove
the next claim.

Claim 3.5. For every z € {0,1}" it holds that Pr,[¢/(z) = Vyf(a:)] >
1 —2n(f).

Note that by the definition of g/ as the “majority-vote function”,
Pr, ¢/ (z) = Vyf(:c)] > L. Claim 3.5 says that the majority is actually
“stronger” (for small n(f)).

Proof. Fixing =z, let po(x)= Pry[%f(m) =0], and let pi(z)=
Pry[Vyf(:p) =1]. We are interested in lower bounding pys(,)(2),
where, by the definition of g/, Pyt (2)(2) = max{po(x),p1(x)}. Now,

Pyt (2)(%) = Dyr(z) (@) - (po(2) + p1(2)) > (po())* + (p1(2))* . (3.6)

Since (po(z))? + (p1(x))? = Pry,Z[Vyf(a:) = V/(2)], in order to lower
bound pgs () (), it suffices to lower bound Pr, [Vyf(x) = V/ (2)], which
is what we do next. In what follows we shall use the fact that the range

3.1 Linearity 95
of fis {0,1}.
Pry. [V (z) = V/(2)]

= Pry.[V)/(x) + V/(z) = 0]

=Pry.[f(y) + flz+y)+ f(2) + flz +2) =0

=Pr:[f(y) + fla+2)+ fly+a+2)
+f(2)+ flz+y) + flz+2+y) =0

>Pry [f(y) + fle+2)+ fly+z+2)=0
ANf(2) + flz+y) + fz+x+y)=0]

=1-Pr.[fy) +fl@e+2)+ fly+taz+2)=1
VIE) + flz+y) + flz+z+y) =1]

>1— (Pry:[f(y) + flz+2)+ fly+ oz +2)=1]
+Pry [f(2) + f(x +y) + fz+2+y)=1])

=1-2n(f). O

In order to complete the proof of Lemma 3.4, we show that for any
two given points a,b € {0,1}", g/ (a) + ¢/ (b) = g/ (a + b). We prove this
by the probabilistic method. Specifically, we show that there exists a
point y for which the following three equalities hold simultaneously:

(1) ¢/(a) = fla+y) — fly) (= Vi (a)).
(2) /() = fb+ (a+y) — fla+y) (=V],0).
(3) g/(a+b)=fla+b+y) — fly) (= Vi (a+Db)).

But in such a case,

g @)+ g’ () =fb+a+y) — fly) =g/ (a+D), (3.7)

and we are done. To see why there exists such a point y, consider
selecting y uniformly at random. For each of the above three equalities,
by Claim 3.5, the probability that the equality does not hold is at most
2n(f). By the union bound, the probability (over a uniform selection
of y) that any one of the three does not hold is at most 6n(f). Since
n(f) < 1/6, this is bounded away from 1, and so the probability that
there exists a point y for which all three equalities hold simultaneously
is greater than 0, implying that such a point y indeed exists. O

96 The Self-correcting Approach

3.1.1 Self-correction in Its Own Right

In the foregoing discussion we presented self-correction as an analysis
technique. However, the argument introduced directly implies that if
f is not too far from being linear, then it can be constructively self-
corrected (which was also a task studied in [35]). Namely, for any = of
our choice, if we want to know the value, on x, of the linear function
closest to f (or, in the coding theory view, we want to know the correct
bit in the position corresponding to x in the closest codeword), then we
do the following. We select, uniformly at random, y1,...,y; and take the
majority vote of Vyji (x),..., Vy{ (z) (where the choice of ¢ determines the
probability that the majority is correct). The fact that self-correction
can be done constructively has several implications, which we discuss
in Section 3.3.

3.2 Low-Degree Polynomials

Self-correcting is also applied in several results on testing low-degree
polynomials over finite fields [11, 66, 92, 98, 123]. Consider first
the univariate case, that is, testing whether a function f:F — F
for a finite field F' is of the form f(x) :Z?:OCiffvi for a given
degree-bound d (where the coefficients C’if belong to F'). In this case,
the testing algorithm [123] works by simply trying to interpolate the
function f on O(1/¢) collections of d + 2 uniformly selected points,
and checking whether the resulting functions are all polynomial of
degree at most d. Thus the algorithm essentially works by trying to
learn the function f (and the interpolated function obtained is the
self-corrected version of f).!

When dealing with the more general case of multivariate polynomi-
als, the results vary according to the relation between the size of the
field | F'| and the degree-bound d. In what follows we give the high-level
idea of the results, and note where self-correcting comes into play.

n fact, a slightly more efficient version of the algorithm would select d + 1 arbitrary
points, find (by interpolating), the unique polynomial g of degree d that agrees with f
on these points, and then check that g agrees with f on an additional sample of O(1/e¢)
uniformly selected points.

3.2 Low-Degree Polynomials 97

The case of large fields. In the first result, of Rubinfeld and
Sudan [123] (which builds in part on [66]), it is assumed that |F| >
d + 2 (and that F' is a prime field). The idea of the algorithm is to
select random [lines in F™, and to verify that the restriction of f to
each line is a (univariate) polynomial of degree at most d. To be precise,
the algorithm does not query all points on the line, but rather d + 2
evenly spaced points of the form f(z 4 i-y) (for uniformly selected
x,y € F™), and verifies that they obey a certain linear constraint.

Here the self-corrected version of f (denoted g/) is defined (for each
x € F™) as the plurality value taken over all y € F™ of the vote V;,f(:):)
of y on the value of . This vote is the value that f(z) “should have”,
so that the restriction of f to the line defined by x and y will indeed
be a univariate polynomial of degree at most d (conditioned on the
values that f has on « + i -y for ¢ # 0). This value is simply a linear
combination of f(z + i -y) for 1 <i<d + 1. Similarly to the analysis
of the linearity testing algorithm, it is shown that if the test accepts
with sufficiently high probability, then ¢f is a polynomial of degree at
most d and is close to f.

Small fields and the general case. The case that |F| < d + 2 was
first studied by Alon et al. [11] for the special case of |F'| =2 (which
corresponds to the well-known Reed—Muller codes), and was later gen-
eralized to |F'| > 2 in [98, 92] (where the two works, [98] and [92], differ
somewhat in the scope and the techniques). A main building block of
the analysis of the general case in [98] is the following characterization
of degree-d multivariate polynomials over finite fields.

Theorem 3.6. Let F'= GF(q) where ¢ =p® and p is prime. Let d
be an integer, and let f: F"™ — F. The function f is a polynomial of
degree at most d if and only if its restriction to every affine subspace

of dimension ¢ = [qﬁ}p] is a polynomial of degree at most d.

Theorem 3.6 generalizes the characterization result of Friedl and
Sudan [66] (on which the aforementioned algorithm of [123] builds)
which refers to the case ¢ — q/p > d + 1. That is, the size of the field

98 The Self-correcting Approach

F is sufficiently larger than the degree d, and the affine subspaces con-
sidered are of dimension ¢ = 1.

The testing algorithm of [98] utilizes the characterization in Theo-
rem 3.6 (which is shown to be robust). Specifically, the algorithm selects
random affine subspaces (of dimension ¢ as defined in Theorem 3.6),
and checks that the restriction of the function f to each of the selected
subspaces is indeed a polynomial of degree at most d. Such a check is
implemented by verifying that various linear combinations of the val-
ues of f on the subspace sum to 0. Here too the self-corrected version
of f, g7, is defined for each x € F" as the plurality value of a certain
vote. In this case the vote is taken over all -tuples y1,...,y, which are
linearly independent points in F™. Each such tuple, together with z,
determines an affine subspace of dimension ¢, and the vote is the value
that f(x) “should have” so that the restriction of f to the subspace be
a polynomial of degree at most d (conditioned on the values of f on
the other points in the subspace).

The query complexity and running times of the above algorithms
depend on the relation between |F'| and d. Roughly speaking, for any
degree d, as the field size |F| increases, the complexity decreases from
being exponential in d (e.g., when |F'| =2) to being polynomial in d
when F' is of the same order as d (or larger). This behavior can be shown
to be fairly tight by almost matching lower bounds. More details on
these algorithms and their analyses can be found in [121, Section 3].

Extending the results for testing low-degree polynomials.
The testability of low-degree polynomials was significantly extended by
Kaufman and Sudan [99]. Using invariance properties of algebraic func-
tion classes, they give sufficient conditions for efficient testing. These
conditions imply previously known results as well as new ones (e.g., sub-
families of polynomials with degree that is linear in n). Self-correcting
plays a role in their analysis as well.

Other techniques for testing algebraic properties. One of the
analysis techniques that was used early on in the study of testing lin-
earity by Bellare et al. [29] is Fourier analysis. Bellare et al. [29] reveal
a relation between the Fourier coefficients of (an appropriate transfor-

3.3 Implications of Self-correction 99

mation of)) a function f and its distance to linearity as well as a relation
between these coefficients and the probability that the BLR test [35]
rejects f. Using these relations they gain better understanding of the
behavior of the linearity test.

Another technique that was applied more recently by Kaufman and
Litsyn [97] for testing certain families of “almost-orthogonal” codes
(e.g., dual-BCH) is the weight distribution (spectrum) of a code and its
dual.

3.3 Implications of Self-correction
3.3.1 Self-correcting and Distribution-Free testing

One interesting implication of self-correction is in the context
of distribution-free testing. In distribution-free testing there is an
unknown underlying distribution D over the domain X, and distance
is defined with respect to this distribution. That is, for two functions
f,9: X — R we let

distp(f,9) < Prouplf(z) # g()], (3.8)

and for a function f: X — R and a property (family of functions) P
we let

distp (f,P) ¥ min{distp(f,9)}. (3.9)
geP

As in the “standard” definition of testing (when the underlying distri-
bution is uniform), the algorithm is given query access to the tested
function f. In addition, the algorithm is given access to examples z € X
distributed according to D. The algorithm should still accept with prob-
ability at least 2/3 if?> f € P, but now it should reject (with probability
at least 2/3) if distp(f,P) > e.

The notion of distribution-free testing was introduced in [72]. How-
ever, in that paper it was only observed that distribution-free (proper)
learning implies distribution-free testing. Other than that, in [72] there

2 An alternative definition would require that the algorithm accept (with high probability)
if dist p (f,P) = 0. We adopt the requirement that f € P since the known results are under
this definition.

100 The Self-correcting Approach

were only negative results about distribution-free testing of graph prop-
erties, which have very efficient standard testing algorithms (that is,
that work under the uniform distribution). The first positive results
for distribution-free testing (with queries) were given by Halevy and
Kushilevitz [81, 84]. Here we describe their general result for obtaining
distribution-free testing algorithms from standard testing algorithms
when the function class has a (property) self-corrector.

Halevy and Kushilevitz introduce the notion of a property self-
corrector, which generalizes the notion of a self-corrector, introduced
by Blum et al. [35].

Definition 3.2. A ~v-self-corrector for a class of functions F is a prob-
abilistic oracle machine M, which is given oracle access to an arbitrary
function f:X — R and satisfies the following conditions (where M/
denotes the execution of M when given oracle access to f):

o If f € F then Pr[M/(z) = f(z)] =1 for every = € X.
e If there exists a function g € F such that dist(f,g) < ~, then
Pr[M/(z) = g(z)] > 2/3 for every = € X.

In this definition, the distance (i.e., the measure dist(-,-)) is defined
with respect to the uniform distribution. However, it will be useful
for distribution-free testing (when the distance (distp(-,-)) is measured
with respect to some fixed but unknown distribution (D)). Observe that
the second condition in Definition 3.2 implies that ¢ must be unique.

Theorem 3.7. Let F be a class of functions that has a standard test-
ing algorithm 7" and a ~v-self-corrector M. Let Qr(-) be the query com-
plexity of T' (as a function of the distance parameter €) and let Qs be
the query complexity of M (that is, the number of queries performed in
order to determine MY (z)). Then there exists a distribution-free testing
algorithm for F with query complexity O(Qr(min{e,v}) + Qar/e).

In Figure 3.2 we give the distribution-free testing algorithm referred to
in Theorem 3.7. We assume that the distance parameter e is smaller
than ~ (or else we set € to 7).

3.3 Implications of Self-correction 101

Algorithm 3.2: Distribution-free test based
on self-correction

1. Run the standard testing algorithm T on f, 24 (indepen-
dent) times with the distance parameter €. If T outputs
reject in at least half of these executions then halt and out-
put reject.

2. Repeat 2 /e times:

(a) Sample a point x € X according to the underlying
distribution D.

(b) Repeat twice: Compute M7 (x) and query f(x). If
M (z) # f(x) then output reject (and exit).

3. If no iteration caused rejection then output accept.

Fig. 3.2 The distribution-free testing algorithm that is based on self-correction.

Proof of Theorem 3.7. Clearly, the query complexity of Algo-
rithm 3.2 is as stated in Theorem 3.7. Hence we turn to proving its
correctness. Consider first the case that f € F. In such a case the stan-
dard testing algorithm 7" should accept with probability at least 2/3,
and the probability that it rejects in at least half of its 24 indepen-
dent executions is less than 1/3. Assume such an event did not occur.
By the first condition in Definition 3.2, for every € X, we have that
M7 (x) = f(z) with probability 1. Hence the second step of the algo-
rithm never causes rejection. It follows that the algorithm accepts with
probability at least 2/3. (Note that if 7" has one-sided error then so
does Algorithm 3.2.)

In what follows, in order to distinguish between the case that dis-
tance is measured with respect to the uniform distribution and the case
that it is measured with respect to the underlying distribution D, we
shall use the terms (e,U)-close (or far) and (e, D)-close (or far), respec-
tively. Assume now that f is (e, D)-far from F. If f is also (¢, U)-far
from F then it is rejected by 7" with probability at least 2/3, and is
therefore rejected by the algorithm in its first step with probability at
least 2/3. Hence assume that f is (e,U)-close to F.

102 The Self-correcting Approach

In such a case, by the second condition in Definition 3.2, for every
r € X, Pr[M/(x) = g(x)] > 2/3, where ¢ is a fixed function in F that is
(v,U)-close to f and the probability is taken over the internal coin flips
of M (recall that e < - so such a function g exists). In particular, for any
point x such that f(z) # g(x) we have that Pr[M7(z) # f(x)] > 2/3.
Thus, if in one of the (2/¢) iterations of the second step of the algorithm
we obtain such a point x, then the algorithm rejects with probability at
least 1 — (1/3)2 = 8/9 (since it computes M/ (x) twice). But since f is
(e, D)-far from F, for every function h € F, we have that Pr,.p[f(x) #
h(z)] > €, and in particular this is true of g. Hence the probability that
the algorithm does not obtain any point x for which f(z) # g(z) is at
most (1 — €)%/¢ < exp(—2) < 1/6. It follows that the algorithm rejects
with probability at least 1 — (1/9 + 1/6) > 2/3, as required. |

In particular, Theorem 3.7 can be applied to obtain distribution-free
property testing algorithms for all properties described in this section.
Other properties (function classes) include singletons (since they are a
subclass of the class of linear functions), and k-juntas (since they are
a subclass of degree-k multivariate polynomials).

3.3.2 Self-correcting and Testing Subclasses of Functions

Two other (related) results that build on self-correcting are testing
singletons (also known as dictator functions) and testing monomials.

Definition 3.3 (Singletons and Monomials). A function f:
{0,1}" — {0,1} is a singleton function if there exists an i € [n] such
that f(z) = z; for every x € {0,1}" or f(x) =Z; for every z € {0,1}".

We say that f is a monotone k-monomial for 1 < k < n if there exist
k indices i1,...,i € [n] such that f(x)=x; A--- Axy, for every x €
{0,1}". If we allow some of the x;;s above to be replaced with z;;, then
f is a k-monomial. The function f is a monomial if it is a k-monomial
for some 1 < k <n.

Here we describe the algorithm for testing singletons and explain how
self-correcting comes into play. The testing algorithm for k-monomials
generalizes the algorithm for testing singletons and also builds on

3.3 Implications of Self-correction 103

self-correcting. We actually describe an algorithm for testing whether
a function f is a monotone singleton. In order to test whether f is
a singleton we can check whether either f or f passes the monotone
singleton test. For the sake of succinctness, in what follows we refer to
monotone singletons simply as singletons.

For z,y € {0,1}" we shall use A y to denote the bitwise “AND”
of the two strings. That is, z =z A y satisfies z; = x; A y; for every
1<i<n.

The following characterization of monotone k-monomials motivates
our algorithm.

Lemma 3.8. Let f:{0,1}" — {0,1}. The function f is a monotone
k-monomial if and only if the following two conditions hold:

(1) Pr[f(z)=1] = Qk, and
(2) flzAy)=f(x) A fy) for all z,y € {0,1}".

In what follows we shall say that a pair of points z,y € {0,1}" are
violating with respect to f if f(x Ay) # f(z) A f(y).

Proof. If f is a k-monomial then clearly the conditions hold. We turn
to prove the other direction. We first observe that the two conditions
imply that f(x) = 0 for all |z| < k, where |z| denotes the number of ones
in z. In order to verify this, assume in contradiction that there exists
some z such that |x| < k but f(z) = 1. Now consider any y such that
y; = 1 whenever x; = 1. Then x A y =z, and therefore f(x Ay)=1.
But by the second item, since f(z) = 1, it must also hold that f(y) =1
However, since |x| < k, the number of such points y is strictly greater
than 27~ %, contradicting the first item.

Next let F; & {z: f(x) =1}, and let y = A\ ., v. Using the second
item in the claim we get:

fy=r{ Nz|= A f@=1. (3.10)

zeF zeF

However, we have just shown that f(x) =0 for all |z| < k, and thus
ly| > k. Hence, there exist k indices 71, . ..,7y such that y;, = 1forall 1 <

104 The Self-correcting Approach

7 <k.But Yi; = /\IeF1 Ti;. Hence, z;, = ... = z;, =1 for every x € F}.
The first item now implies that f(x)=x; A... Ax;, for every z €
{0,1}™.]

Given Lemma 3.8, a natural candidate for a testing algorithm for
singletons would take a sample of uniformly selected pairs (x,y), and for
each pair verify that it is not violating with respect to f. In addition, the
test would check that Pr[f(z) = 0] is roughly 1/2 (or else any monotone
k-monomial would pass the test). As shown in [116], the correctness of
this testing algorithm can be proved as long as the distance between
f and the closest singleton is bounded away from 1/2. It is an open
question whether this testing algorithm is correct in general.

We next describe a modified version of this algorithm, which con-
sists of two stages. In the first stage, the algorithm tests whether f
belongs to (is close to) a more general class of functions (that contains
all singleton functions). In the second stage it applies a slight variant
of the original test (as described in the previous paragraph). Specifi-
cally, the more general class of functions is the class £ of linear Boolean
functions over {0,1}", which was discussed in Section 3.1. Clearly, every
singleton function f(z) = z; is a linear function. Hence, if f is a sin-
gleton function, then it passes the first stage of the test (the linearity
test) with probability 1. On the other hand, if it is far from any linear
function, then it will be rejected already by the linearity test. As we
shall see, if f is far from every singleton function, but it is close to some
linear function that is not a singleton function (so that it may pass the
linearity test), then we can prove that it will be rejected in the second
stage of the algorithm with high probability.

In order to motivate the modification we introduce in the afore-
mentioned “natural” singleton test, we state the following lemma and
discuss its implications.

Lemma 3.9. Let S C [n], and let gy(z) =) ,cgx; (where the sum is
taken modulo 2). If | S| is even then

1

1
Praylgs(z A y) = gs(x) A gs(y)] = 2t 218[+1

3.3 Implications of Self-correction 105

and if |S| is odd then

Pryylgs(z A y) = gs(x) A gs(y)] = % + %

Proof. Let s =S|, and let z,y be two strings such that (i) x has 0 <
i<sonesin S, thatis, [{{€S: zy=1}=14; (ii) z Ay has 0 < k <3
ones in S; and (iii) y has a total of j + k ones in S, where 0 < j < s — 1.

If gs(z A y) = gs(x) A gs(y), then either (1) ¢ is even and k is even,
or (2) i is odd and j is even. Let Z; C {0,1}" x {0,1}" be the subset of
pairs z,y that obey the first constraint, and let Zo C {0,1}" x {0,1}"
be the subset of pairs z,y that obey the second constraint. Since the
two subsets are disjoint,

Pryy[gs(z A y) = gs(2) A gs(y)] = 272" 21| + | Za)). (3.11)

It remains to compute the sizes of the two sets. Since the coordinates
of z and y outside S do not determine whether the pair x,y belongs to
one of these sets, we have

aerre (2 () s (D)

1=0,7 even k=0,k even

(3.12)
and
s s % i s—1 s
__on—s n—s
a3 (26) 2 CF)

=0, odd k=0 j=0,j even

(3.13)

The right-hand side of Equation (3.12) equals

92n—2s (22372 + 2371) — 92n—2 + 92n—s—1 _ 92n (272 + 27(s+1)).
(3.14)
The right-hand side of Equation (3.13) equals 22" - (272 4 2=+ if 5
is odd and 22"~2 if s is even. The lemma follows by combining Equa-
tions (3.12) and (3.13) with Equation (3.11). O

Hence, if f is a linear function that is not a singleton and is not
the all-0 function, that is, f = g for |S| > 2, then the probability that

106 The Self-correcting Approach

a uniformly selected pair z,y is violating with respect to f is at least
1/8. In this case, a sample of 16 such pairs will contain a violating pair
with probability at least 1 — (1 — 1/8)16 > 1 —¢72 > 2/3.

However, what if f passes the linearity test but is only close to being
a linear function? Let g denote the linear function that is closest to f
and let 0 be the distance between them. (Note that ¢ is unique, given
that f is sufficiently close to a linear function). What we would like
to do is check whether ¢ is a singleton, by selecting a sample of pairs
x,y and checking whether it contains a violating pair with respect to g.
Observe that, since the distance between functions is measured with
respect to the uniform distribution, for a uniformly selected pair x,y,
with probability at least (1 — §)2, both f(z) = g(x) and f(y) = g(y).
However, we cannot make a similar claim about f(z A y) and g(x A y),
since x A y is not uniformly distributed. Thus, it is not clear that we can
replace the violation test for g with a violation test for f. In addition
we need to verify that ¢ is not the all-0 function.

The solution is to use a self-corrector for linear functions, essentially
as defined in Definition 3.2. Namely, given query access to a function
f:{0,1}" — {0,1}, which is strictly closer than 1/4 to some linear func-
tion g, and an input x € {0,1}", the procedure Self-Correct(f,) returns
the value of g(x), with probability at least 9/10. The query complexity
of the procedure is constant. The testing algorithm for singletons is
given in Figure 3.3.

Theorem 3.10. Algorithm 3.3 is a one-sided error testing algorithm
for monotone singletons. The query complexity of the algorithm is

O(1/e).

Proof. Since the linearity testing algorithm has a one-sided error, if f is
a singleton function, then it always passes the linearity test. In this case
the self-corrector always returns the value of f on every given input
point. In particular, Self-Correct(f,1) = f(1) =1, since every mono-
tone singleton has value 1 on the all-1 vector. Similarly, no violating
pair can be found in Step 3.3.2. Hence, Algorithm 3.3.2 always accepts
a singleton.

3.3 Implications of Self-correction 107

Algorithm 3.3: Test for Singleton Functions

1. Apply the linearity test (Algorithm 3.1) to f with distance
parameter min(1/5,¢). If the test rejects then output reject
(and exit).

2. If Self-Correct(f,1) = 0 (where 1 is the all-1 vector), then
output reject (and exit).

3. Uniformly and independently select m = 64 pairs of points
x,y.

e For each such pair, let b, = Self-Correct(f,x), by =
Self-Correct(f,y) and bypy = Self-Correct(f,x A
Y)-
4. Check that bypny = by N by.
(1) If one of the checks fails then output reject. Otherwise out-
putl accept.

Fig. 3.3 The testing algorithm for singletons (that is based on self-correction).

Assume, without loss of generality, that ¢ < 1/5. Consider the case
in which f is e-far from any singleton. If it is also e-far from any lin-
ear function, then it will be rejected with probability at least 9/10 in
the first step of the algorithm. Otherwise, there exists a unique linear
function g such that f is e-close to g. If g is the all-0 function, then f
is rejected with probability at least 9/10 (in Step 3.3.2).

Otherwise, g is a linear function of at least two variables. By
Lemma 3.9, the probability that a uniformly selected pair z,y is a
violating pair with respect to g is at least 1/8. Given such a pair,
the probability that the self-corrector returns the value of g on all the
three calls (that is, b, = g(z), by = g(y), and bypy = g(z A y)), is at least
(1 — 1/10)3 > 7/10. The probability that Algorithm 3.3.2 obtains a vio-
lating pair with respect to g and all calls to the self-corrector return the
correct value, is greater than 1/16. Therefore, a sample of 64 pairs will
ensure that a violation b;a, # by A b, will be found with probability at

108 The Self-correcting Approach

least 9/10. The total probability that f is accepted, despite being e-far
from any singleton, is hence at most 3 - (1/10) < 1/3.

The query complexity of the algorithm is dominated by the query
complexity of the linearity tester, which is O(1/¢). The second stage
takes constant time. |

4

The Enforce-and-Test Approach

In order to introduce the idea of the “enforce-and-test” approach, we
start by giving a very simple example: testing whether a graph is a
biclique. We later present the slightly more involved analysis for the
more general problem of testing whether a graph is bipartite, and
shortly discuss other properties for which the enforce-and-test approach
is applied. We note that this approach was most commonly (though not
solely) applied when testing properties of graphs in the dense-graphs
model.

4.1 Testing Whether a Graph is a Biclique

A graph G = (V,E) is a biclique if there exists a partition (V7,V5)
of the graph vertices such that F =V; x V5 (that is, V; and V5 are
independent sets and there is a complete bipartite graph between V;
and V3). Recall that by the definition of the dense-graphs model, a
graph is e-far from being a biclique (and hence should be rejected with
probability at least 2/3) if more than en? edge-modification (additions
and/or deletions) should be performed on the graph so that it becomes
a biclique. This is equivalent to saying that for every partition (V1,V2),
the size of the symmetric difference (E\ Vi x Vo) U (V] x Vo \ E) is

greater than en?.

109

110 The Enforce-and-Test Approach

Consider the following algorithm. It first selects an arbitrary ver-
tex vg. It then uniformly and independently selects s =2/e pairs of
vertices (u1,w1),..., (us,ws) and queries each pair (u;,w;) as well as
(vo,uj) and (vg,w;). If the algorithm encounters evidence that the
graph is not a biclique (that is, for some 1 < j < s we have that (u;,w;),
(vo,u;), and (v, w;) are all edges or exactly one of them is an edge),
then it rejects. Otherwise it accepts. Since the algorithm only rejects
when it finds evidence that the graph is not a biclique, it accepts every
biclique with probability 1.

In order to prove if the tested graph is e-far from being a biclique,
then the algorithm rejects it with probability at least 2/3, we do the
following. We view vg as enforcing a partition of all graph vertices in the
following manner. On one side of the partition (V) we put vy together
with all vertices that it does not neighbor, and on the other side (V2),
we put all the neighbors of vg. The vertex vy enforces this partition
in the sense that if the graph is indeed a biclique then this is the only
partition that obeys the biclique conditions. On the other hand, recall
that if the graph is e-far from being a biclique, then for every partition
(V1,Va) we have that |E \ Vi x Va| + |Vi x Vo \ E| > en?. In particular
this is true of the aforementioned partition where V3 =V \ I'(vg) and
Vo =T'(vg) (recall that I'(vg) denotes the set of neighbors of vy).

Therefore, with probability at least 1 — (1 —€)® > 1 — exp(—es) >
2/3, among the s sampled pairs (u1,w1),..., (us,ws) there will be at
least one pair (u;,w;) either in £\ Vi x Vy orin Vi x Vo \ E. In the
former case either u; and w; both belong to Vi, and so the subgraph
induced by u;, w;, and vy contains a single edge (u;,w;), or u; and
w; both belong to Vs, and so the subgraph induced by wu;, wj, and
vo contains all three edges. In the latter case this subgraph contains a
single edge (between vy and either u; or w;). For an illustration, see
Figure 4.1.

The General Idea. As exemplified by the problem of testing
whether a graph is a biclique, the high-level idea behind the design and
analysis of algorithms that follows the “enforce-and-test” approach is
roughly the following. The algorithm takes a sample from the tested
object (e.g., a small random subgraph), and checks whether the sample

4.2 Testing Bipartiteness in the Dense-Graphs Model 111

Vo Va Vs
Vi Vi Vi

o ity (=

A\ A

Fig. 4.1 Illustrations of the three cases in the analysis of the biclique tester. On the left is
an illustration for the case that (uj,w;) € E\ V1 x V2 and uj,w; € Vi; in the middle is an
illustration for the case that (uj,w;) € E '\ V1 x V2 and uj,w; € V2; and on the right is an
illustration for the case that (uj,w;) € Vi x Vo \ E, and u; € V1, w; € V2. In the last case
the “missing edge” between u; and w; is marked by a dotted line.

has a particular property, which is possibly, but not necessarily, the
property tested. The analysis views the sample as consisting of two
parts. The first part is the “enforcing” part, and the second is the
“testing” part. The goal of the enforcing part is to implicitly induce
certain constraints over the structure of the (yet unseen portion) of the
object. The constraints are such that if the object is far from having the
property, then with high probability over the choice of the testing part
it will contain evidence that (together with the enforce part) “proves”
that the object does not have the tested property.

4.2 Testing Bipartiteness in the Dense-Graphs Model

Recall that a graph G = (V, E) is bipartite if there exists a partition
(V1,Va) of the vertices where there are no edges (u,w) such that u,w €
V1 or u,w € V5. We say in such a case that the partition is bipartite.
If a partition (V1,V2) is not bipartite, then we shall say that the edges
(u,w) € E such that u,w € Vi or u,w € V, are wiolating edges with
respect to (V1,V2). Recall that we can decide (exactly) whether a graph
is bipartite in linear time by running a Breadth First Search (BFS).
By the definition of the dense-graphs model, a graph G is e-far from
(being) bipartite in this model if (and only if) it is necessary to remove
more than en? edges to make it bipartite.

The algorithm is very simple and is given in Figure 4.2. Note that
the number of queries performed is independent of the size of the graph,
and only depends (polynomially) on 1/e. Clearly, if the graph G is

112 The Enforce-and-Test Approach

Algorithm 4.1: Bipartiteness Test

1. Take a sample S of © (72 - log(1/€)) vertices, selected uni-
formly at random.

2. Ask wvertex-pair queries for all pairs in the sample, thus
obtaining the induced subgraph Gg.

3. Run a Breadth First Search (BFS) on Gg: if it is bipartite
then accept, otherwise, reject.

Fig. 4.2 The bipartiteness testing algorithm (for dense graphs).

bipartite then it is accepted by Algorithm 4.1 with probability 1, and
when the algorithm rejects a graph it provides evidence “against” the
graph in the form of a small subgraph (Gg) that is not bipartite. Hence,
from this point on assume G is e-far from being bipartite, and we will
show that it is rejected with probability at least 2/3.

If G is e-far from bipartite then this means that for every partition
(V1,Va) of V, there are more than en? violating edges with respect to
(V1,V2). Consider the following initial attempt of analyzing the algo-
rithm: If we consider a single partition (Vi,V2) (that has more than
en? violating edges, since the graph is e-far from bipartite), then it is
easy to see that a sample of s =© (¢~! - log(1/0)) vertices will “hit”
the two end-points of such an edge (i.e., that is violating with respect
to (V1,Va)) with probability at least 1 — §. The natural idea would be
to take a union bound over all partitions. The problem is that there
are 2" possible partitions and so in order for the union bound to work
we would have to take § < 27", implying that the sample should have
size linear in n.

Instead, we shall think of the sample as consisting of two disjoint
parts, U (the “enforce” part) and W (the “test” part). The intuition
is that in some sense U will introduce constraints that will effec-
tively reduce the number of “relevant” partitions of V' to a much
smaller number than 2", and then W will be used to “test” only
them. We let |U| =0 (¢~ -log(1/e)) and |[W|=0 (¢! log2lVl) =
O (e72 - log(1/e)).

4.2 Testing Bipartiteness in the Dense-Graphs Model 113

We first introduce a couple of additional definitions:

Definition 4.1. For any fixed partition (Uy,Us) of U, we shall say that
W is not compatible with (U,Us) if there is no partition (Wi, Ws) of
W such that (U; U W1,Uy U Wa) is a bipartite partition.

We would like to show that (since G is e-far from bipartite), with
high probability over the choice of U and W, no matter how we parti-
tion U into (Uy,Us), the subset W will not be compatible with (Uy,Us)
(implying that there is no bipartite partition of both U and W, which
causes the algorithm to reject).

Definition 4.2. Let (U;,U2) be a (bipartite) partition of U. We
shall say that a vertex w is a witness against (Uj,Us) if there exist
uy € Uy and ug € U such that (w,uy),(w,uz) € E. We shall say that
a pair w; and wy are witnesses against (Uy,Us) if (wq,ws) € E and
there exist uy,us € U such that uy,us € Uy or uy,us € Uy and (wy,u1),
(wg,UQ) € FE.

For an illustration of the notion of witnesses, see Figure 4.3.

Observation: If W contains a vertex w that is a witness against
(Uz,Uz) or a pair of vertices w; and wy that are witnesses against
(U1,Us) then W is not compatible with (Uy,Us). Hence, we would like
to show that with high probability over U and W, there are witnesses
in W against every partition of U.

Simplifying assumption: We first continue the analysis under the
assumption that U is such that every v € V has at least one neighbor

Ul UQ U1 U2
\ wy
w Wo

Fig. 4.3 An illustration of a witness w, and a pair of witnesses wi,ws2, both with respect
to the partition (Uy,Us) of U.

114 The Enforce-and-Test Approach

in U. (We later remove this assumption.) Under this assumption, given
a bipartite partition (Uy,Us) of U, we define a partition of all of V.
For w € U we put w in Vp if w € U; and we put u in Vo if u € Us. For
v eV \ U (that is, almost all vertices are considered here) if v has a
neighbor in U; then we put v in V2 and otherwise (it has a neighbor in
Us), then we put it in V;. For an illustration, see Figure 4.4.

Now, each one of these at most 2!Vl partitions of V' contains more
than en? violating edges. Since (Uy,Us) is bipartite, and we put each
vertex in V' \ U opposite its neighbor, these edges are of the form
(wi,w9) € E where wy and ws both have a neighbor in U; or both
have a neighbor in Us, or they are of the form (w,us) where uy € Us
and w has a neighbor u; € Uy (so it was put in V3). But this exactly
coincides with our definition of witnesses against (Uy,Us). Therefore, if
we catch such a vertex (pair), then W in not compatible with (Uy, Us).
For simplicity of the analysis, even in the case that w is a witness
because it was put in V7 but it has a neighbor us € Us, we shall think
of (ug,w) as a pair of witnesses, and so it won’t be considered sufficient
that w € W but we’ll require that uo,w € W.

We shall think of the uniform sample W as a sample over uniformly
selected pairs of vertices. Since the probability that we catch a pair of

Fig. 4.4 An illustration of the partition of V that is defined based on (U1,Uz2) when we
make the simplifying assumption that every vertex in V has a neighbor in U. Violating
edges (which correspond to witnesses) are marked by bold lines.

4.2 Testing Bipartiteness in the Dense-Graphs Model 115

witnesses in a single trial is more than ET:L—; = ¢, the probability that we
don’t catch any pair of witnesses in W is at most (1 — €)I"W1/2_If we take
|W|=©(|U|/e) then this is less than (1/6) - 27IVI. By a union bound
over all two-way partitions of U, the probability that for some (Uy,Us),
we have that W is compatible with (U;,Us) is hence at most 1/3. In
other words, with probability at least 5/6 there is no bipartite partition
of UUW.

It remains to remove the assumption that every vertex in V' has a
neighbor in U.

Definition 4.3. We say that a vertex in V has high degree if its degree
is at least (€/4)n. Otherwise it has low degree.

Lemma 4.1. With probability at least 5/6 over the choice of (4/¢) -
log(24/¢) vertices (denoted U), all but at most (e¢/4)n of the high degree
vertices in V have a neighbor in U.

We prove this lemma momentarily, but first show how to modify the
argument based on the lemma. Assume U is as stated in the lemma
(where we later take into account the probability of 1/6 that this is
not the case). Then, given a partition (Uy,Us) of U, we define a par-
tition of all vertices similarly to what we did before. In particular,
the vertices in U and their neighbors are partitioned as before. All
remaining vertices, which do not have a neighbor in U and whose set
is denoted R, are put arbitrarily in V;. For an illustration, see Fig-
ure 4.5. Once again, for every bipartite partition (Uy,Us), the parti-
tion of V just defined contains more than en? violating edges. Now,
some of these violating edges might not correspond to witnesses. In
particular, some of these edges might be incident to vertices in R.
However, the total number of edges that are incident to vertices in R
is at most n - (¢/4)n + (e/4)n - n = (¢/2)n?. Hence, there are at least
(¢/2)n? violating edges that correspond to witnesses, and we shall catch
one with high constant probability.

More precisely, if |W| = 0(e~! - |U|) = ©(¢~2 - log(1/¢)), then, con-
ditioned on U being as in Lemma 4.1, with probability at least 5/6

116 The Enforce-and-Test Approach

Fig. 4.5 An illustration of the partition of V that is defined based on (U1,Uz2) when we
remove the simplifying assumption that every vertex in V has a neighbor in U. Violat-
ing edges that are incident to R are marked by dashed lines while violating edges which
correspond to witnesses are marked by bold lines.

over the choice of W, there is a pair of witnesses in W against every
partition of U. The probability that either U is not as in Lemma 4.1, or
W does not include a witness against some partition of U, is at most
1/3. It follows that with probability at least 2/3 (over the choice of
S =U U W) the algorithm rejects (since there is no bipartite partition
of S). It remains to prove Lemma 4.1.

Proof of Lemma 4.1. Consider any fixed high degree vertex v. The
probability that U does not contain any neighbor of v is at most
(1 — (¢/4))lVl < €/24. Therefore, the expected fraction of high degree
vertices in V' that do not have a neighbor in U is at most €/24. By
Markov’s inequality, the probability that there is more than an €/4
fraction of such vertices in V' (that is, more than six times the expected
value), is at most 1/6.]

4.2.1 Reducing the Number of Queries
