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Abstract

We give a new construction of pseudorandom generators from any one-way function. The
construction achieves better parameters and is simpler than that given in the seminal work of
H̊astad, Impagliazzo, Levin, and Luby [SICOMP ’99]. The key to our construction is a new
notion of next-block pseudoentropy, which is inspired by the notion of “inaccessible entropy”
recently introduced in [Haitner, Reingold, Vadhan, and Wee, STOC ’09]. An additional ad-
vantage over previous constructions is that our pseudorandom generators are parallelizable and
invoke the one-way function in a non-adaptive manner. Using [Applebaum, Ishai, and Kushile-
vitz, SICOMP ’06], this implies the existence of pseudorandom generators in NC0 based on the
existence of one-way functions in NC1.
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1 Introduction

The result of H̊astad, Impagliazzo, Levin, and Luby [17] that one-way functions imply pseudoran-
dom generators is one of the centerpieces of the foundations of cryptography and the theory of
pseudorandomness.

From the perspective of cryptography, it shows that a very powerful and useful cryptographic
primitive (namely, pseudorandom generators) can be constructed from the minimal assumption for
complexity-based cryptography (namely, one-way functions). With this starting point, numerous
other cryptographic primitives can also be constructed from one-way functions, such as private-
key cryptography [7, 25], bit-commitment schemes [26], zero-knowledge proofs for NP [8], and
identification schemes [4].

From the perspective of pseudorandomness, it provides strong evidence that pseudorandom bits
can be generated very efficiently, with smaller computational resources than the “distinguishers” to
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whom the bits should look random. Such kinds of pseudorandom generators are needed, for exam-
ple, for hardness results in learning [32] and the natural proofs barrier for circuit lower bounds [27].
Moreover, the paper of H̊astad et al. introduced concepts and techniques that now permeate the
theory of pseudorandomness, such as pseudoentropy and the Leftover Hash Lemma.

A drawback of the construction of H̊astad et al., however, is that it is quite complicated. While
it utilizes many elegant ideas and notions, the final construction combines these in a rather ad
hoc and indirect fashion due to various technical issues. In addition to being less satisfactory from
an aesthetic and pedagogical perspective, the complexity of the construction also has a significant
impact on its efficiency. Indeed, it is too inefficient to be implemented even for very modest settings
of parameters.

In the last few years, progress has been made on simplifying the construction of H̊astad et al. [19]
and improving its efficiency [16]. These constructions, however, still retain the overall structure of
the H̊astad et al. construction, and thus retain some of the complex and ad hoc elements.

In this paper, we present a significantly more direct and efficient construction of pseudorandom
generators from one-way functions. The key to our construction is a new notion of next-block
pseudoentropy, which is inspired by the recently introduced notion of “inaccessible entropy” [13].

1.1 The HILL Construction

Informally, a function f : {0, 1}n → {0, 1}n is a one-way function (OWF) if it is easy to compute (in
polynomial time) and hard to invert even on random inputs. (See Section 2 for formal definitions.)
A polynomial-time computable function G : {0, 1}n → {0, 1}m(n) is a pseudorandom generator
(PRG) if it is stretching (i.e., m(n) > n) and its output distribution is pseudorandom (i.e., G(Un) is
computationally indistinguishable from Um(n)). The theorem of H̊astad et al. relates these notions:

Theorem 1.1. If there exists a one-way function, then there exists a pseudorandom generator.

The key notion underlying their construction is the following generalization of pseudorandom-
ness.

Definition 1.2 (pseudoentropy, informal). A random variable X has pseudoentropy at least k if
there exists a random variable Y such that:

1. X is computationally indistinguishable from Y .

2. H(Y ) ≥ k, where H(·) denotes Shannon entropy.1

A pseudoentropy generator (PEG)2 is a polynomial-time computable function G : {0, 1}n →
{0, 1}m(n) such that X = G(Un) has pseudoentropy at least H(G(Un)) + ∆(n) for some ∆(n) ≥
1/ poly(n). We refer to ∆(n) as the entropy gap of G.

That every pseudorandom generator G : {0, 1}n → {0, 1}m(n) is a pseudoentropy generator
can be seen by taking Y = Um(n) and noting that H(Y ) = m(n), but H(G(Un)) ≤ H(Un) = n.
Pseudoentropy generators are weaker in that Y may be very far from uniform, and may even have
H(Y ) < n (as long as H(G(Un)) is even smaller).

1The Shannon entropy of a random variable X is defined to be E
x
R←X

[log(1/Pr[X = x])].
2H̊astad et al. [17] refer to such a generator as a false entropy generator, and require that a pseudoentropy generator

to have output pseudoentropy (at least) n + ∆(n), rather than just H(G(Un)) + ∆(n). For the informal discussion
here, however, we prefer not to introduce the additional term “false entropy”.
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The construction of pseudorandom generators from one-way functions proceeds roughly in the
following steps:

OWF to PEG: Given a one-way function f : {0, 1}n → {0, 1}n, H̊astad et al. define
PEG(x, h, i) = (f(x), h, h(x)1...i), where h is an appropriate hash function and h(x)1...i de-
notes the first i bits of h(x). PEG can be shown to be a pseudoentropy generator with an
entropy gap of roughly ∆ = logn/n — Whenever i = log |f−1(x)| + Θ(log n) (which hap-
pens with probability Θ(logn/n)) the first ≈ log |f−1(x)| bits of h(x) extract all the entropy
of x, and then we get Θ(log n) bits of pseudoentropy by the Goldreich–Levin Hardcore-Bit
Theorem [6].

Converting Shannon Entropy to Min-Entropy and Amplifying the Gap: Next, H̊astad
et al. use a direct product construction PEG′(x1, . . . , xt) = (PEG(x1), . . . ,PEG(xt)) to con-
vert pseudoentropy into pseudo-min-entropy, and increase the entropy gap to be ω(log n).
This turns out to require taking t = Õ(n/∆)2 copies.

Randomness Extraction: By hashing, H̊astad et al. extract pseudorandom bits from the
pseudo-min-entropy achieved so far. By also hashing the seed x to extract any remaining
entropy, they obtain a pseudorandom generator. Specifically, they show that G(x, h1, h2) =
(h1, h2, h1(PEG

′(x)), h2(x)) is a pseudorandom generator, if the output lengths of h1 and h2
are chosen appropriately. The choice of output lengths depends on the amount of min-entropy
in the output of PEG′, which in turn depends on the amount of entropy in the output of PEG.
Unfortunately, these quantities may be infeasible to compute; this is handled by the next step.

Enumeration: H̊astad et al. enumerate over all u = O(n/∆) possible values k for the output
entropy of PEG (up to an accuracy of ∆/2), construct a pseudorandom generator Gk for
each, use composition to make each Gk stretch its seed by a factor of greater than u, and
then take G(x1, . . . , xu) = G1(x1)⊕ · · · ⊕Gu(xu) as their final pseudorandom generator.

The total seed length in this informal description is n · t · u = Õ(n4/∆3) = Õ(n7). In fact, we have
been cheating a bit in order to present the construction in a more modular way than in [17]. (The
issues we ignored have to do with handling uniform adversaries, for which the (non-)samplability of
source Y in Definition 1.2 is an issue.) The actual seed length in the main construction presented
in [17] is of O(n10) (and the construction involves additional complications). A construction of seed
length O(n8) is outlined in [17], and has been formalized and proven in [19].

Above we see three main sources of inefficiency in the construction: (1) the entropy gap ∆ being
fairly small, (2) the conversion of Shannon entropy to min-entropy, and (3) enumerating guesses
for the output entropy of the initial pseudoentropy generator. Haitner, Harnik, and Reingold [16]
show how to save a factor of n in the enumeration step (by constructing a pseudoentropy generator
in which more is known about how the entropy is distributed) to obtain a seed length of O(n7),
but still all of the steps remain.

A further complication in the construction of H̊astad et al. is that the reductions demonstrating
the correctness of the construction are much more complex for uniform adversaries. This aspect
of the proof has recently been simplified and made much more modular via Holenstein’s uniform
hardcore lemma [18, 19].

In case the one-way function is secure against exponential running time (2Ω(n)) adversaries,
Holenstein [19] showed how to reduce the seed length to Õ(n4) (or O(n5) to obtain a PRG with
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exponential security), which was then improved by Haitner et al. [11] to Õ(n) (or O(n2) to obtain
a PRG with exponential security).3

1.2 Our Approach

Our construction is based on a generalization of the notion of a pseudoentropy generator. It is
similar in spirit to the Blum–Micali notion of next-bit unpredictability [2], which was shown by
Yao [33] to be equivalent to his (now-standard) definition of pseudorandomness. In one form, this
equivalence says that the pseudorandomness of a random variable X is equivalent to each bit of X
being indistinguishable from uniform given the previous ones. That is, X = (X1, . . . , Xn) is compu-
tationally indistinguishable from Un = (Y1, . . . , Yn) if and only if for every i, (X1, X2, . . . , Xi−1, Xi)
is computationally indistinguishable from (X1, X2, . . . , Xi−1, Yi). It is thus natural to consider what
happens if we require not that Xi be pseudorandom given the previous bits, but only that Xi has
pseudoentropy given the previous bits. More generally, we can allow the Xi’s to be blocks instead
of bits.

Definition 1.3 (next-block pseudoentropy, informal). A random variable X = (X1, . . . , Xm) has
next-block pseudoentropy at least k if there exists a set of random variables Y = {Y1, . . . , Ym},
each jointly distributed with X, such that:

1. For every i, (X1, X2, . . . , Xi−1, Xi) is computationally indistinguishable from
(X1, X2, . . . , Xi−1, Yi).

2.
∑

iH(Yi|X1, . . . Xi−1) ≥ k.

A next-block pseudoentropy generator (NBPEG) is a polynomial-time computable function G :
{0, 1}n → ({0, 1}ℓ)m such that (X1, . . . , Xm) = G(Un) has next-block pseudoentropy at least
H(G(Un)) + ∆(n), where again ∆(n) is called the entropy gap.

That is, in total, the bits of X “look like” they have k bits of entropy given the previous ones.
Note that the case of 1 block (m = 1) amounts to the definition of a pseudoentropy generator.
Also note that, when m > 1, allowing Y to be correlated with X in this definition is essential: for
example if all the blocks of X are always equal to each other (and have noticeable entropy), then
there is no way to define Y that is independent of X and satisfies the first condition.

With this notion, our construction proceeds as follows.

OWF to NBPEG: Given a one-way function f , we define G(x, h) =
(f(x), h, h(x)1, h(x)2, . . . , h(x)n), where h : {0, 1}n → {0, 1}n is an appropriate hash
function, and h(x)i is the i’th bit of h(x). Notice that this is the same as the construction
of H̊astad et al., except that we do not randomly truncate the output. At first, this seems
problematic; by revealing all of h(x), it becomes easy for an adversary to compute x, and
thus the pseudoentropy of output equals its real entropy (i.e., we have zero entropy gap). We
show, however, that it does indeed have next-block pseudoentropy at least n+ log n, which is
even larger than the seed length of G. We have gained in two ways here. First, the entropy
gap is now ∆ = logn instead of ∆ = log n/n. Second, we know the total amount of entropy

3In more detail, Holenstein’s construction generalizes [17] for OWFs of “any hardness”, while Haitner et al. [11]
take a totally different route (based on the“randomized iterate” of a function introduced by Goldreich et al. [9]) and
obtain constructions based on exponentially hard OWFs, as well as on (unknown-)regular OWFs.
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in the output (though not the amount contributed by the individual blocks). These two
advantages improve the complexity and security of the rest of the construction. Furthermore,
the fact that the next-block pseudoentropy is larger than the seed length simplifies the
construction, as we do not need to extract any additional entropy from the seed.

Entropy Equalization: Here we use a technique from [13] to convert our knowledge about the
total entropy (summed over all blocks) into knowledge about the entropy in the individual
blocks. We evaluate G on u = O(n/∆) independent seeds and concatenate the outputs, but

randomly shifted by i
R← [n] coordinates. This increases our seed length and our entropy by a

multiplicatives factor of approximately u, but now almost all the blocks have pseudoentropy
at least the average pseudoentropy of the blocks of G.

Converting Shannon Entropy to Min-Entropy and Amplifying the Gap: This works
the same as in [17]. Again we take t = Õ(n/∆)2 copies, but concatenate them within each
block to obtain an m-block generator G′. Now each of the m blocks is indistinguishable
from having high min-entropy conditioned on the previous ones. Thus, what we have is
computational analogue of a block source [3], which are random sources in which each block
has high min-entropy conditioned on the previous ones.

Randomness Extraction: For this step, we use a known method for block-source extraction [3,
34] and define G(x, h) = (h, h(G′(x)1), . . . , h(G

′(x)m)), where h is a universal hash function.
Since we know how much pseudo-min-entropy is in each block, there is no difficulty in choosing
the output length of h.

In total, our seed length is O(n · u · t) = Õ(n4). For the case of exponentially hard one-way
functions, we can obtain ∆ = Ω(n), and thus achieve seed Õ(n) matching [11] (but, unlike [11], our
construction uses nonadaptive calls to the one-way function).

In addition, our pseudorandom generator makes q = u · t invocations of the one-way functions
and achieves additive stretch s = Ω(u · t · ∆) = Ω(q · log n). The ratio s/q = Ω(log n) is optimal
for black-box constructions, as shown by Gennaro et al. [5], and was not achieved by any previous
construction from general one-way functions.

Note that our construction involves no “guessing” of entropies, neither in the construction of the
initial NBPEG G, nor in an enumeration step at the end. While the entropy equalization “costs”
the same (namely u = O(n/∆)) as enumeration did, it is actually doing more for us. Enumeration
handled our lack of knowledge of a single entropy value (for which there were only O(n/∆) choices),
but here equalization is handling lack of knowledge for approximately n entropy values (one for
each block), for which there are exponentially many choices. Moreover, enumeration required
composing the pseudorandom generators to increase their stretch, resulting in a construction that
is highly sequential and makes adaptive use of the one-way function. Our pseudorandom generators
make nonadaptive use of the one-way function and are parallelizable (e.g., in NC1), for getting
pseudorandom generators with small stretch. Using Applebaum et al. [1], this implies the existence
of pseudorandom generators in NC0 based on the existence of one-way functions in NC1.

1.3 Relation to Inaccessible Entropy

The notion of next-block pseudoentropy generators was inspired by the notion of inaccessible entropy
generators in [13]. These are generatorsG that also producem blocks (x1, . . . , xm) with the property
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that it is infeasible for an adversary to generate a sequence of blocks (x1, . . . , xm) that are consistent
with the output of G in such a way that entropy of the individual blocks xi is high (conditioned on
the state of the adversary after generating the previous blocks). Thus, in a computational sense, the
output of G has low entropy. For this reason, the notions of next-block pseudoentropy generators
and inaccessible entropy generators seem to be dual to each other.

The initial construction of an inaccessible entropy generator in [13] is G(x) =
(f(x)1, . . . , f(x)n, x), which is very similar to our construction of a next-block pseudoentropy gen-
erator except that there is no hashing and the bits of f(x) instead of h(x) are treated as separate
blocks. This initial step is followed by entropy equalization and gap amplification steps that are
exactly the same as the one we use (but analyzed with respect to dual notions). The final hashing
step there (to construct statistically hiding commitment schemes) is more complex than ours and
is necessarily interactive.

Interestingly, the notion of inaccessible entropy generator was introduced in an attempt to make
the construction of statistically hiding commitment schemes from one-way functions “as simple”
as the construction of pseudorandom generators from one-way functions, via manipulating notions
of computational entropy. (The previous construction, from [12], was extremely complex.) In
return, that effort has now inspired our simplifications and improvements to the construction of
pseudorandom generators.

1.4 Subsequent Work

A subsequent paper by Vadhan and Zheng [30] improves our results in two ways. First, they remove
the hashing from our construction of a next-bit pseudoentropy generator. Specifically, they show
that if f : {0, 1}n → {0, 1}n is a one-way function, then G(x) = (f(x), x1, . . . , xn) is already a
next-block pseudoentropy generator (as we conjectured in oral presentations of our work). Second,
they show how to avoid the seed-length blow-up due to entropy equalization, and thereby reduce
the seed length from Õ(n4) to Õ(n3) (at the price of making adaptive calls to the one-way function).

A new paper by Holenstein and Sinha [21] shows that any black-box construction of a pseu-
dorandom generator from a one-way function on n-bit inputs must invoke the one-way function
Ω(n/ log n) times. Their lower bound also applies to regular one-way functions (of unknown reg-
ularity), and is tight in this case (due to the constructions of [9, 16]). Our construction from
general one-way functions, as well as the improved version in [30], invokes the one-way function
Õ(n3) times. It remains open whether the superlinear number of invocations or the superlinear
seed length is necessary, or the constructions can be furthered improved.

1.5 Paper Organization

Notations and definitions used through this paper are given in Section 2, where the new notion of
a next-block pseudoentropy generator is formally defined in Section 3. In Section 4 we present our
construction of next-block pseudoentropy generator from one-way functions, where in Section 5 we
show how to use next-block pseudoentropy generators to get a pseudorandom generator. Finally,
in Section 6 we use the above reductions to prove the main result of this paper.
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2 Preliminaries

2.1 Random Variables

Let X and Y be random variables taking values in a discrete universe U . We adopt the convention
that when the same random variable appears multiple times in an expression, all occurrences refer
to the same instantiation. For example, Pr[X = X] is 1. The support of a random variable X is

Supp(X) := {x : Pr[X = x] > 0}. We write x
R← X, to indicate that x is selected according to

X. Similarly, given a finite set S, we let s
R← S denote that s is selected according to the uniform

distribution on S.
We write ∆(X,Y ) to denote the statistical difference (a.k.a. variation distance) between X and

Y , i.e.
∆(X,Y ) = max

T⊆U
|Pr[X ∈ T ]− Pr[Y ∈ T ]| .

If ∆(X,Y ) ≤ ε (respectively, ∆(X,Y ) > ε), we say that X and Y are ε-close (resp., ε-far).

2.2 Entropy Measures

We refer to several measures of entropy in this work. The relation and motivation of these measures
is best understood by considering a notion that we refer to as the sample-entropy: For a random
variable X and x ∈ Supp(X), we define the sample-entropy of x with respect to X to be the
quantity

HX(x) := log(1/Pr[X = x]).

The sample-entropy measures the amount of “randomness” or “surprise” in the specific sample x,
assuming that x has been generated according to X. Using this notion, we can define the Shannon
entropy H(X) and min-entropy H∞(X) as follows:

H(X) := E
x

R←X

[HX(x)]

H∞(X) := min
x∈Supp(X)

HX(x)

Flattening Shannon Entropy. It is well-known that the Shannon entropy of a random variable
can be converted to min-entropy (up to small statistical distance) by taking independent copies of
this variable.

Lemma 2.1. 1. Let X be a random variable taking values in a universe U , let t ∈ N, and let
ε > 0. Then with probability at least 1− ε− 2−Ω(t) over x

R←Xt,

|HXt(x)− t ·H(X)| ≤ O(
√

t · log(1/ε) · log(|U| · t)).

2. Let X,Y be jointly distributed random variables where X takes values in a universe U , let
t ∈ N, and let ε > 0. Then with probability at least 1 − ε − 2−Ω(t) over (x, y)

R← (Xt, Y t) :=
(X,Y )t, ∣∣HXt|Y t(x|y)− t ·H(X|Y )

∣∣ ≤ O(
√

t · log(1/ε) · log(|U| · t)).
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Proof. 1. For x = (x1, . . . , xt), we have HXt(x) =
∑t

i=1HX(xi). Thus, when x
R← Xt, HXt(x)

is the sum of t independent random variables HX(xi), and thus we can obtain concentration
around the expectation (which is t · H(X)) via Chernoff-Hoeffding Bounds. These random
variables HX(xi) are not bounded (as is required to apply the standard Chernoff–Hoeffding
Bound), but they are unlikely to be much larger than O(log |U|). Specifically, for every τ > 0
we have

Pr
xi

R←X

[HX(xi) ≥ log(|U|/τ)] ≤
∑

xi∈U :HX(xi)≥log(|U|/τ)

Pr[X = xi]

≤ |U| · 2− log(|U|/τ)

= τ.

A Chernoff Bound for random variables with such exponentially vanishing tails follows from
[31], and it says that the probability that the sum deviates from the expectation by at least
∆ · (log(|U|/τ)) + 2τt is at most exp(−Ω(∆2/t)) + exp(−Ω(τt)), provided τ ∈ [0, 1]. An
appropriate choice of ∆ = O(

√
t log(1/ε)) and τ = min{1, O(log(1/ε)/t)} completes the

proof.

2. Similar, noting that HXt|Y t(x|y) =
∑t

i=1HX|Y (xi|yi).
�

2.3 One-way Functions and Pseudorandom Generators

We recall the standard definitions of one-way functions and pseudorandom generators.

Definition 2.2 (one-way functions). Let f : {0, 1}n 7→ {0, 1}m be a polynomial-time computable
function, where n is a security parameter and m = m(n). For T = T (n) and ε = ε(n), we say
that f is a (T, ε)-one-way function if for every probabilistic algorithm A running in time T and all
sufficiently large n, we have:

Pr[A(Y ) ∈ f−1(Y )] ≤ ε,

where the probability is taken over Y = f(Un) and the coin tosses of A. We say that f is a one-way
function if it is a (p(n), 1/p(n))-one-way function for every polynomial p.

Definition 2.3 (pseudorandom generators). Let X be a random variable, depending on a security
parameter n, and taking values in {0, 1}m, for m = m(n). For T = T (n) and ε = ε(n), we say
that X is (T, ε)-pseudorandom if for every probabilistic distinguisher D running in time T and all
sufficiently large n, we have:

|Pr[D(X) = 1]− Pr[D(Um) = 1]| ≤ ε.

A polynomial-time computable function G : {0, 1}n 7→ {0, 1}m with m = m(n) > n is a (T, ε)-
pseudorandom generator if G(Un) is (T, ε)-pseudorandom.

We say that X is pseudorandom if it is (p(n), 1/p(n))-pseudorandom for every polynomial p.
Similarly, G is a pseudorandom generator G if G(Un) is pseudorandom.
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3 Next-block Pseudoentropy

In this section we formally define the new notion of next-block pseudoentropy, for the cases of
both Shannon entropy and min-entropy. The definitions differ from the informal definition given
in the introduction (Definition 1.3) in the following two ways, both of which are important for the
treatment of uniform adversaries:

• We require indistinguishability even against algorithms that have an oracle for sampling
from the joint distribution (X,Yi). (This enables us to show, using a hybrid argument, that
pseudoentropy increases when we are taking many independent copies of X. In the case of
nonuniform adversaries, no oracle for sampling from (X,Yi) is needed, as the samples can be
nonuniformly hardwired into the adversary.)

• In order to achieve the first item, we allow the random variables Yi to depend on the distin-
guisher.

Similar issues arise for treating uniform adversaries with standard pseudoentropy.

Definition 3.1. (next-block (Shannon) pseudoentropy) Let X be a random variable taking values
in Um, where X, U , and m may all depend on a security parameter n. For T = T (n), k = k(n)
and ε = ε(n), we say that X has (T, ε) next-block pseudoentropy at least k if for every oracle-aided
distinguisher D(·) of running time at most T , there exists a set of random variables {Y1, . . . , Ym}
over U such that:

1.
∑m

i=1H(Yi | X1, . . . , Xi−1) ≥ k, and

2. E
i
R←[m]

[
Pr[DOX,Y (X1, . . . , Xi) = 1]− Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]

]
≤ L · ε, where

OX,Y (i), for i ∈ [m], samples according to the joint distribution (X,Yi), and L = L(n) is
a bound on number of calls made by D to OX,Y (including the challenge itself).

We say that X has next-block pseudoentropy at least k, if it has (p(n), 1/p(n))-next-block pseu-
doentropy at least k for every polynomial p. We say that every block of X has (T, ε)-next-block
pseudoentropy at least α = α(n), if condition (1) above is replaced with H(Yi | X1,...,i−1) ≥ α for
every i ∈ [m].

Note in comparing to the informal description given in the introduction, here we have omitted
absolute values in the indistinguishability condition (Condition 2) above (and below). This is purely
for technical convenience, as D can use O((m/ε)2) random samples from its oracle to test whether
the (signed) advantages inside the expectation are positive or negative to within an accuracy of
±ε/2m and negate itself for some values of i in order to ensure a positive advantage of at least
Lε/2.

Definition 3.2. (next-block pseudo-min-entropy) Let X be a random variable taking values in Um,
where X, U , and m may all depend on a security parameter n. For T = T (n), α = α(n), and
ε = ε(n), we say that every block of X has (T, ε)-next-block pseudo-min-entropy α, if for every
oracle-aided distinguisher D(·) running in time at most T (n), there exists a set of random variables
{Y1, . . . , Ym} over U such that:

1. H∞(Yi | X1,...,i−1) ≥ α, and
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2. E
i
R←[m]

[
Pr[DOX,Y (X1, . . . , Xi) = 1]− Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]

]
≤ L · ε, where OX,Y

and L is as in Definition 3.1.

We say that every block of X has next-block pseudo-min-entropy α, if every block of X has
(p(n), 1/p(n))-next-block pseudo-min-entropy α, for every polynomial p.

Unless explicitly stated otherwise, in the following sections we view a distribution over {0, 1}t
as a t-block distribution. When we refer to the next-block pseudoentropy properties of a function
G : {0, 1}n → {0, 1}m, these refer to the random variable G(Un).

4 One-way Functions to Next-block Pseudoentropy Generator

This section shows how to construct a next-block pseudoentropy generator Gnb
f out of a one-way

function f : {0, 1}n 7→ {0, 1}n.

Theorem 4.1. (Next-block pseudoentropy generator from one-way functions) Let n be a security
parameter and f : {0, 1}n 7→ {0, 1}n be a polynomial-time computable function. Then there exists
a polynomial-time computable generator Gnb : {0, 1}d 7→ {0, 1}m, with d = d(n) ∈ O(n) and m =
m(n) ∈ O(n), such that the following holds:

Security: Assume that f is a (T, ε) one-way function for some T = T (n) and ε = ε(n). Then for
any poly(n)-time computable value of ε′ = ε′(n) > 2−n/4, Gnb has (T · (ε′/n)O(1), ε′)-next-
block-pseudoentropy k = d+ log(1/ε)−O(log n).

Moreover, the reduction from the security of Gnb to that of f is fully black-box,4

Complexity: Gnb is computable in NC1 with one (uniformly random5) oracle call to f .

When f is a standard one-way function, we can take T = 1/ε = nc′ for an arbitrarily large con-
stant c′ and set ε′ = 1/nγc′ for a small universal constant γ, to deduce that Gnb has (n

Ω(c′), 1/nΩ(c′))-
next-block pseudoentropy at least k = d + c′ log n − O(log n). In particular, Gnb has next-block
pseudoentropy at least k = d+ log n.

Our construction employs a family of hash functions Q = {Qn = {q : {0, 1}n 7→ {0, 1}n}}. We
will shortly discuss the properties needed from Q. Given an appropriate family Q, we can define
Gnb

f quite easily:

Construction 4.2. On security parameter n, define the algorithm Gnb on domain {0, 1}n × Qn,
for Qn = {q : {0, 1}n 7→ {0, 1}n}, and oracle f : {0, 1}n → {0, 1}n as follows:

Gnb
f (s, q) := (f(s), q, q(s)1, . . . , q(s)n),

where s is n bits long and q(s)i denotes the ith bit of q(s). (Note that we abuse notation and write
q for both the function and its description.)

The following properties regarding the efficiency of Gnb
f are immediate:

4That is, the proof of security treats both f and a possible adversary as black boxes (i.e., as oracles). See [28] for
more details.

5Here and similarly throughout the paper, we mean that when Gnb is evaluated on a uniformly random seed, its
oracle call to f is uniformly random.
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Lemma 4.3. If Q is in NC1 then Gnb
f is in NC1 with one oracle call to f . If the description

length of Qn is O(n) then the input length of Gnb
(·) is linear in its first argument (as |q| = O(|s|).

Finally, Gnb
f invokes f exactly once (and thus is non-adaptive with respect to f). On a uniformly

random seed for Gnb, the single invocation of f is on a uniformly random input as well.

Indeed, we define Q that is both efficient and has a short description. The main requirement
from Q, however, has to do with ensuring that Gnb

f is a next-block pseudoentropy generator. Let
us start by presenting the following strategy showing that the entropy gap (i.e., k − d) is at least
log n when f is a standard one-way function. Let Df (y) := log |{x ∈ {0, 1}n : f(x) = y}| and
let S be uniformly distributed over {0, 1}n. Then the distribution of S conditioned on y = f(S)
still has Df (y) bits of entropy. We would like Q to extract these bits and in addition to ex-
tract log n bits of pseudoentropy. More concretely, we ask that the first Df (y) + log n bits of
q(S) are pseudorandom even given y = f(S) and q (to simplify notation, we ignore round-off
errors and treat Df (y) as an integer). Given such a Q, we are essentially done (at least when
considering non-uniform security6). Consider the distributions X = Gnb

f (S,Q) and the distri-
bution (Y1, . . . , Yn) := (f(S), Q,R1, . . . Rk, Q(S)K+1, . . . , Q(S)n), where S and Q are uniformly
distributed, K := Df (f(S)) + logn and the Ri’s are uniformly random bits. By the above dis-
cussion, X and Y (more formally, X and {Yi}) are next-block indistinguishable. In addition, we
have:

m∑
i=1

H(Yi | X1,...,i−1) ≥ H(f(S)) + H(Q) + H(R1, . . . , RK |f(S))

= H(f(S)) + H(Q) + E[Df (f(S)) + log n]

= n+ log |Qn|+ log n.

and therefore Gnb
f is indeed a next-block pseudoentropy generator.

The first remaining challenge is to construct such a family Q. As we discuss below, it is easy
to obtain all the above properties with hash functions that have description length n2. For better
efficiency, we settle on Q with slightly weaker properties (where the pseudorandom bits extracted
by q ∈ Q are pseudorandom up to advantage 1/n rather than an arbitrary inverse polynomial
advantage). An additional challenge is achieving next-block pseudoentropy in the (more standard)
uniform setting. The difficulty is that we need X and Y to be next-block indistinguishable even
given oracles that sample these distributions. While X is efficiently samplable (and thus an oracle
that samples X is easy to implement), Y may not be (as Df (y) may be hard to compute). To
overcome this difficulty we employ Holenstein’s Uniform Hardcore Lemma [18]. Employing the
Hardcore Lemma also closes the gap between the properties of Q we obtain and the stronger
properties in the discussion.

4.1 The family Q and unpredictability

A family Q with the above properties, but with description length n2, can be obtained by defining
q(s) to be As, where A is a uniformly chosen n×n matrix over GF(2). For a random y = f(S), the
Leftover Hash Lemma [24] yields that the first Df (y)− c log n bits of Q(S) are statistically close to
uniform up to statistical distance 1/nΩ(c). An additional (c + 1) · log n bits are pseudorandom by
reduction to the Goldreich-Levin hardcore predicate [6]. An interesting open problem is to come

6I.e., the distinguisher is non-uniform and does not get oracle access to OX,Y .
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up with a family Q that has similar properties and in addition has description length n. Instead,
in this paper we relax the requirements from Q.

Defining q(s) = As is equivalent to selecting each one of the output bits of q(s) to be a uniformly
selected location of the Hadamard encoding of s. If instead we let each bit be a location in
a polynomially-long encoding of s, we get description length n log n. As long as this encoding
possesses good list-decoding properties, such a construction still suffices for our purposes. To save
the final logn factor, we look at an encoding of x into logarithmically long symbols (and thus only
need n/ log n symbols as the output of q(s)). The following lemma formalizes the properties of the
encoding we use. As with the Hadamard Code, the code we use satisfies both the role of extracting
Df (y)−O(log n) truly random bits via the Leftover Hash Lemma and the role of extracting O(log n)
pseudorandom bits similarly to a hardcore function.

Lemma 4.4. There exists an NC1 algorithm Enc such that on input s ∈ {0, 1}n, the algorithm
Enc produces t = poly(n) symbols Enc(s)1,Enc(s)2, . . . ,Enc(s)t with each Enc(s)i ∈ {0, 1}ℓ for
ℓ = ⌈log n⌉ and such that the following properties hold:

Almost 2-Universal: For every two distinct n-bit strings s ̸= s′ it holds that

Pr
i∈[t]

[Enc(s)i = Enc(s′)i] ≤ 2−ℓ · (1 + 1/(2n5)).

List Decoding: There exists a polynomial-time algorithm Dec that on input 1n and given oracle
access to a function Ã : [t] × {0, 1}ℓ → {0, 1}, outputs a list of poly(n) strings that includes
every s ∈ {0, 1}n satisfying the following:

Pr
i
R←[t]

[Ã(i,Enc(s)i) = 1]− Pr
i
R←[t],z

R←{0,1}ℓ
[Ã(i, z) = 1]] > 1/5n2.

Note that the oracle Ã has a domain of size t · 2ℓ = poly(n), so Dec has enough time to query
it on all inputs (i.e. “local decoding” is not needed).

Proof. Enc can be taken to be the concatenation of the Reed-Solomon Code of degree d = n−1 over
F = GF(2cℓ) with the Hadamard Code over F′ = GF(2ℓ), where ℓ = ⌈logn⌉ and c ∈ N is a sufficiently
large constant to be determined below. That is, codewords are of length t = |F|2 = poly(n), and
for s = (s0, . . . , sn−1) ∈ {0, 1}n and (a, b) ∈ F2, we set Enc(s)a,b = (

∑
i=0 sia

i) ⊙ b ∈ F′, where ⊙
denotes dot product (viewing elements of F as c-dimensional vectors over F′).

The almost-universality property follows from a standard argument: the probability that
Enc(s)a,b = Enc(s′)a,b is bounded by the probability that a random symbol of two distinct Reed-
Solomon codewords agree (which is at most d/|F| < n/nc) plus the probability that a random
symbol in two distinct Hadamard codewords agree (which is 1/|F′| = 1/2ℓ). By taking c sufficiently
large, we get the desired property.

For the list-decoding property, given Ã : [t] × {0, 1}ℓ → {0, 1} that can distinguish a random
symbol of some (unknown) codeword Enc(s) from uniform with advantage greater than 1/5n2, we
show how to obtain from Ã a list k = poly(n) of “received words” r1, . . . , rk ∈ ({0, 1}ℓ)t such Enc(s)
agrees with one of the ri’s in more than a α = (1 + 1/5n2)/2ℓ fraction of positions. By applying
the list-decoding algorithm of [10, Thm. 7] to each of the ri’s, we are guaranteed to recover each
such s provided that

α ≥ 1

|F′|
+

√
d

|F|
+O

(
1

t

)
.
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Since α = 1/|F′| + Ω(1/n3), and
√
d/|F| + O(1/t) = O(

√
1/nc−1), the inequality is satisfied for a

sufficiently large choice of the constant c.
We still need to show how to obtain the received words r1, . . . , rk from Ã. For this, we use the

standard transformation from distinguishers to predictors [33]. For each pair u, v ∈ F′, we define

ru,v[i] =

{
u if Ã(i, u) = 1

v otherwise.

Now consider any s such that

Pr
i
R←[t]

[Ã(i,Enc(s)i) = 1]− Pr
i
R←[t],z

R←{0,1}ℓ
[Ã(i, z) = 1]] > 1/5n2.

Let’s analyze the expected agreement between s and ru,v, when u and v are uniformly random
distinct elements of {0, 1}ℓ.

Pr
u,v,i

[ru,v[i] = Enc(s)i] = Pr
u,v,i

[u = Enc(s)i ∧ Ã(i,Enc(s)i) = 1] + Pr
u,v,i

[v = Enc(s)i ∧ Ã(i, u) = 0]

=
1

2ℓ
· Pr

i
[Ã(i,Enc(s)i) = 1] +

1

2ℓ
· Pr
i,u̸=Enc(s)i

[Ã(i, u) = 0]

=
1

2ℓ
·
(
Pr
i
[Ã(i,Enc(s)i) = 1] + 1− Pr

i,u ̸=Enc(s)i
[Ã(i, u) = 1]

)
>

1

2ℓ
·
(
1 + Pr

i
[Ã(i,Enc(s)i) = 1]− Pr

i,u
[Ã(i, u) = 1]

)
>

1 + 1/5n2

2ℓ

�

Construction 4.5. Let n, Enc, t and ℓ be as in Lemma 4.4. The description of a random hash
function q ∈ Qn is composed of ⌈n/ℓ⌉ random indices i1, . . . , i⌈n/ℓ⌉ ∈ [t]. On input s define q(s) =
Enc(s)i1 . . .Enc(s)i⌈n/ℓ⌉ (which for simplicity is assumed to be exactly n-bit long).

Lemma 4.6. Let n be a security parameter, Q be as in Construction 4.5, let Gnb be the oracle-
aided algorithm for Construction 4.2 (with respect to Q), and let f : {0, 1}n → {0, 1}n be a (T, ε)
one-way function, for T = T (n) ≥ n, ε = ε(n). Then there exists a constant c > 0 such that

n−1∑
i=0

Pr[P (f(S), Q,Q(S)1, . . . , Q(S)i) ̸= Q(S)i+1] ≥
n−H(f(S)) + log(1/ε)− c log n

2
,

even when P is allowed to run in time T/nc, where S and Q are uniformly distributed over {0, 1}n
and Qn respectively.

Note that above (and below) Q(S)1, . . . , Q(S)i+1 refer to individual bits of Q(S), not ℓ-bit
blocks.

Proof. Consider the following two distributions:

• X := (f(S), Q,Q(S)1, . . . Q(S)K) where K is the random variable Df (f(S)) + log(1/ε) −
c′ log n, and
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• Y := (f(S), Q,R1, . . . , RK), where R1, . . . , RK are uniformly random and independent bits.

We show that, for a sufficiently large choice of the constant c′, no algorithm with running time
T ′ = T/nc′ can distinguish X from Y with advantage better than 1/n. The lemma then follows
by observing that the sum of the error probabilities in predicting the bits R1, . . . , RK is at least
E[K]/2. In more detail, first note that K is always smaller than n, because if Df (t) ≥ n− log(1/ε)
for some t, then Pr[Un ∈ f−1(t)] ≥ ε, which gives rise to a trivial inversion algorithm that succeeds
with probability at least ε. Thus,

n−1∑
i=0

Pr[P (f(S), Q,Q(S)1, . . . , Q(S)i) ̸= Q(S)i+1]

≥
n−1∑
i=0

Pr[i < K ∧ (P (f(S), Q,Q(S)1, . . . , Q(S)i) ̸= Q(S)i+1)]

≥
n−1∑
i=0

(Pr[i < K ∧ (P (f(S), Q,R1, . . . , Ri) ̸= Ri+1)]− 1/n)

≥
n−1∑
i=0

(Pr[i < K]/2− 1/n)

= E[K]/2− 1

= (n−H(f(S)) + log(1/ε)− c′ log n− 2)/2.

We assume for simplicity that ℓ always divides both Df (t) and log(1/ε). Let A = Df (f(S))/ℓ
and a′ = log(1/ε)/ℓ. Recall that q(s) is defined to be (Enc(s)i1 . . .Enc(s)i⌈n/ℓ⌉). Therefore, we
need to prove that (Enc(S)I1 . . .Enc(S)IA+a′−c′ ) is 1/n-pseudorandom even given f(S) and Q =
(I1, . . . , I⌈n/ℓ⌉). To prove this, we introduce a hybrid distribution Z, defined as follows:

• Z := (f(S), Q,Enc(S)I1 , . . . ,Enc(S)IA−5
ZA−4 · · ·ZA+a′−c′), where Z1, . . . , ZA+a′−c′ are uni-

formly random and independent elements of {0, 1}ℓ.

First we argue that Z has statistical distance at most 1/10n2 from Y =
(f(S), Q, Z1, . . . , ZA+a′−c′). Let’s condition on any fixed value f(S) = t. This also deter-
mines that A = Df (t)/ℓ =: a. The distribution of S conditioned on f(S) = t still has min-entropy
Df (t) = a · ℓ. As Enc is almost universal (see first property in Lemma 4.4), for every two distinct
n-bit strings s ̸= s′ we have that

Pr[Enc(s)I1 . . .Enc(s)Ia−5 = Enc(s′)I1 . . .Enc(s
′)Ia−5 ] ≤ 2−(a−5)ℓ · (1 + 1/100n4).

Therefore, the Leftover Hash Lemma [24, 23] yields that (conditioned on f(S) = t) the prefix
(Q,Enc(S)I1 . . .Enc(S)IA−5

) is δ-close to uniform for δ = 1/2 ·
√

2−5ℓ + 1/100n4 ≤ 1/10n2.
Now we argue that there is no algorithm B that runs in time T ′ and distinguishes X =

(f(S), Q,Enc(S)I1 , . . . ,Enc(S)IA+a′−c′ ) from Z with advantage better than 9/10n. Assume that
there is such an algorithm A. By an hybrid argument, we get that for a random index J between
A−4 and A+a′−c′ the algorithm B distinguishes with advantage at least 9/10n2 the distributions
HJ and HJ+1 where

• Hj = (f(S), Q,Enc(S)I1 , . . . ,Enc(S)Ij−1 , Zj · · ·ZA+a′−c′).
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Now, by a Markov argument, it holds that with probability at least 1/2n2 over fixing B’s coin
tosses and all components of HJ and HJ+1 other than IJ , Enc(S)IJ , and ZJ , B distinguishes
(IJ ,Enc(S)IJ ) from (IJ , ZJ) with advantage at least 2/5n2. Thus, if we can generate those com-
ponents given a value of f(S), we can plug B into the decoder Dec guaranteed by Lemma 4.4 to
recover S and hence invert f . We will not generate the components exactly, but closely enough so
that the inversion still succeeds with nonnegligible probability.

The inverter gets as input t = f(S) and operates as follows:

1. Guess the value of a
R← [n/ℓ].

2. Sample uniformly at random coin tosses for B.

3. Sample uniformly at random i1 . . . ia−5
R← [t]) and z1, . . . zia−5

R←{0, 1}ℓ.

4. Select at random j
R←{a− 4, . . . , a+ a′ − c′}.

5. Sample uniformly at random ia−4, . . . ij−1, ij+1, . . . ia+a′−c′
R← [t] and

za−4, . . . zj−1, zj+1, . . . za+a′−c′
R←{0, 1}ℓ.

6. We have fixed all of the inputs of B aside from ij and zij . Denote the resulting algorithm

after all of these fixings as B̃.

7. Invoke DecB̃(1n), where Dec is as in Lemma 4.4.

8. Select at random an element in the list returned by DecB̃.

Let’s examine how the distribution of B’s inputs that are fixed by the inverter differs from that
in HJ and HJ+1:

• The inverter chooses a uniformly at random. This value is correct (i.e. equal to ℓ · Df (t))
with probability at least 1/n.

• The inverter chooses z1, . . . zia−5 uniformly at random, whereas in HJ these are distributed
according to (Enc(S)I1 , . . . ,Enc(S)Ia−5). However, by the indistinguishability of Z and Y ,
the latter distribution is (1/10n2)-close to uniform (given f(S) and Q). Thus, this reduces
the probability of a good fixing by at most 1/10n2, from 1/2n2 to 2/5n2.

• The inverter chooses za−4, . . . zj−1 uniformly at random whereas in HJ these are distributed
according to (Enc(S)IA−4

, . . . ,Enc(S)IJ−1
). However, this amounts to guessing at most u =

(a′ + 5− c′) · ℓ bits, and hence is correct with probability at least 2−u ≥ ε · nc′/n5.

In total, the list-decoding algorithm successfully recovers S (among a list of poly(n) possibilities)
with probability at least (1/n) · (2/5n2) · (ε · nc′/n5) = ε · nc′/poly(n). Choosing at random from
the list of decodings reduces the inversion probability by another factor of poly(n). Taking c′

sufficiently large, the inverter succeeds with probability at least ε. We note that the inverter runs
in time poly(n) making at most 2ℓ · t = poly(n) queries to B. Thus if B runs in time T (n)/nc for
a sufficiently large constant c, the inverter runs in time at most T (n), contradicting the security of
f . �
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4.2 Proving Next-block Pseudoentropy via Hardcore Lemma

Lemma 4.6 shows that the output of Gnb (after f(S) and Q) satisfies a weak next-bit unpredictabil-
ity. In this section, we use Holenstein’s uniform variant of Impagliazzo’s Hardcore Lemma [22] to
translate this weak next-bit unpredictability into next-bit pseudoentropy, thereby proving Theo-
rem 4.1.

The Hardcore Lemma translates weak unpredictability (of a single bit) into strong unpredictabil-
ity on a noticeable fraction of inputs:

Proposition 4.7 ([20]). Let n be a security parameter, and let h : {0, 1}n 7→ {0, 1}ℓ(n) and
V : {0, 1}n 7→ {0, 1} be polynomial-time computable functions. Let δ0 = δ0(n) ∈ [0, 1], δ = δ(n) ∈
[δ0, 1], and γ = γ(n) ∈ [0, 1] > 2−n/3. Assume that

Pr[M(δ0, γ, h(Un)) = V (Un)] ≤ 1− δ/2

for every probabilistic algorithm M running in time T = T (n) and large enough n. Then for every
oracle-aided predictor P running in time T · (γδ0/n)O(1) and all sufficiently large n, there exists a
set L ⊆ {0, 1}n of density at least δ such that

Pr
W

R←L

[PχL(h(W )) = V (W )] < (1 + γ)/2,

where χL is the characteristic function of L, provided that all the queries of P to χL are computed
independently of the input h(W ). Furthermore, the reduction is fully black-box.

The above differs from Holenstein’s Hardcore Lemma in that it does not require that δ be known
to M , but only requires a lower bound δ0 on δ. However, the above can be readily deduced from
Holenstein’s version; see Appendix A.

We now reinterpret Holenstein’s Hardcore Lemma in terms of conditional pseudoentropy, simi-
larly to the reinterpretation of Impagliazzo’s Hardcore Lemma in [29].

Proposition 4.8. Let n be a security parameter, δ0 = δ0(n) ∈ [0, 1], δ = δ(n) ∈ [δ0, 1], and γ =
γ(n) ∈ [0, 1] > 2−n/3. Let (A,B) be a poly(n)-time samplable random variable over {0, 1}ℓ(n)×{0, 1}
such that

Pr[M(δ0, γ, A) = B] ≤ 1− δ/2

for every probabilistic algorithm M running in time T = T (n) and large enough n. Then for every
oracle-aided distinguisher D running in time T ′ = T · (δ0γ/n)O(1) and all sufficiently large n, there
is a random variable C, jointly distributed with (A,B), such that:

1. H(C|A) ≥ δ.

2. Pr[DOA,B,C (A,B) = 1]− Pr[DOA,B,C (A,C) = 1] ≤ γ,

where OA,B,C is an oracle that samples according to the joint distribution (A,B,C).

Proof. Let (h, V ) : {0, 1}n → {0, 1}ℓ(n) × {0, 1} be the poly-time sampling algorithms for (A,B),
i.e. (h(Un), V (Un)) = (A,B). (By renaming the security parameter n, we may assume that the
sampling algorithms use n coin tosses.) Thus we may apply Proposition 4.7 to the pair (h, V ). For
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any given subset L ⊆ {0, 1}n of density δ, we define a probabilistic function VL : {0, 1}n → {0, 1},
where

VL(r) =

{
V (r) if r /∈ L

a random bit if r ∈ L.

From this we get a random variable CL jointly distributed with (A,B), defined by (A,CL) =
(h(Un), VL(Un)). Notice that H(CL|A) is at least the density of L, namely δ. We show that
taking C = CL for some L suffices. Suppose for contradiction that we have an oracle-aided
distinguisher D running in time T ′ such that for every L of density δ, Pr[DOA,B,CL (A,B) =
1]− Pr[DOA,B,CL (A,CL) = 1] > γ. Since B and CL are identical when Un /∈ L, we have

Pr[DOA,B,CL (A,B) = 1|Un ∈ L]− Pr[DOA,B,CL (A,CL) = 1|Un ∈ L] > γ.

Since CL is a uniformly random bit when Un ∈ L, we can apply the standard reduction from
distinguishing to predicting to obtain an oracle-aided predictor P , running in time T ′ +O(1) such
that

Pr[PχL(A) = B|Un ∈ L] > (1 + γ)/2. (1)

Specifically, on input x, P generates a random bit b
R← {0, 1}, runs DOA,B,CL (x, b), outputs b if D

outputs 1, and outputs ¬b if D outputs 0. P can simulate random samples from the oracle OA,B,CL

by choosing r
R←{0, 1}n and outputting (h(r), V (r), VL(r)), which can be efficiently computed using

P ’s oracle access to χL. Equation (1) can be rewritten as:

Pr
W

R←L

[PχL(h(W )) = V (W )] > (1 + γ)/2.

This contradicts Proposition 4.7. �

We now use this form of the Hardcore Lemma to deduce Theorem 4.1 from Lemma 4.6.

Theorem 4.9 (Theorem 4.1, restated). Let n be a security parameter and f : {0, 1}n 7→ {0, 1}n be
a polynomial-time computable function. Then there exists a polynomial-time computable generator
Gnb : {0, 1}d 7→ {0, 1}m, with d = d(n) ∈ O(n) and m = m(n) ∈ O(n), such that the following
holds:

Security: Assume that f is a (T, ε) one-way function for some T = T (n) and ε = ε(n). Then for
any poly(n)-time computable value of ε′ = ε′(n) > 2−n/4, Gnb has (T · (ε′/n)O(1), ε′)-next-
block-pseudoentropy k = d+ log(1/ε)−O(log n).

Moreover, the reduction from the security of Gnb to that of f is fully black-box,

Complexity: Gnb is computable in NC1 with one (uniformly random7) oracle call to f .

Proof. (of Theorem 4.9) Let W = (Q,S) be uniformly distributed over the domain of Gnb (i.e.,
{0, 1}n×Qn), let X = Gnb(W ) and denote the length of X by m = m(n) = 2n+ log |Qn|. Assume
that the theorem does not hold. In particular, there exists an oracle-aided algorithm D whose
running time is running time is bounded by T ′ = T ′(n) and the following holds for every set of

7Here and throughout the paper, when we say that Gnb makes a uniformly random call to f , we refer to the
distribution of the call when we run Gnb on a uniformly random seed.
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distributions {Yi}i∈[m] over {0, 1}, jointly distributed with X, with
∑m

i=1H(Yi | X1, . . . , Xi−1) ≥
k = d+ log(1/ε)− c · log n:

E
i
R←[m]

[
Pr[DOX,Y (X1, . . . , Xi) = 1]− Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]

]
≥ L · ε′ ≥ ε′, (2)

where L is the number of oracle queries made by D and c is the constant of Lemma 4.6.
Recall that X = (f(S), Q,Q(S)1, . . . , Q(S)n). By Lemma 4.6, if we take A =

(f(S), Q,Q(S)1, . . . , Q(S)I−1) and B = Q(S)I , for I uniformly random over [n], we have

Pr[M(ε′, A) = B] ≤ 1− δ/2, (3)

for
δ = n−H(f(S))+log(1/ε)−c logn

n

and any algorithm M running in time T/nc−p(n) ≤ T/2 ·nc, where p ∈ poly is the computing time
of ε′, and for the inequality we assume without loss of generality that T > 2p(n) ·nc (otherwise the
conclusion of the theorem holds trivially). In the following we use Proposition 4.8 for showing that
Equation (3) is in contradiction to Equation (2).

Let C be any random variable, jointly distributed with A, such that H(C|A) ≥ δ. We can use
any such C to define a set {Yi} of random variables jointly distributed with X:

Yi|X=(x1,...,xm) =

{
xi if i ≤ n+ log |Q|
C|I=i,X=(x1,...,xn) otherwise.

Then

m∑
i=1

H(Yi|X1, . . . , Xi−1) =

n+log |Q|∑
i=1

H(Xi|X1, . . . , Xi−1) +

n∑
i=1

H(C|A, I = i)

= H(f(S), Q) + n ·H(C|A)
≥ H(f(S)) + H(Q) + n−H(f(S)) + log(1/ε)− c log n

= d+ log(1/ε)− c log n = k,

where d is the seed length of Gnb. Therefore Equation (2) holds, i.e. D is a next-block distinguisher
for X and {Yi} with advantage ε′. Observe that D has zero advantage when i ≤ n+log |Q| (because
then Yi = Xi), and thus must gain its entire advantage when i > n + log |Q|. In the latter case,
D is distinguishing (A,B) from (A,C) with advantage ε′. Moreover, each of D’s oracle queries to
OX,Y (i) can be simulated with O(n) queries to OA,B,C . (It may take an expected O(n) trials to
get a sample in which I has the desired value.) Thus, we obtain an algorithm D0 running in

time T0 = O(T ′ · n) such that D
OA,B,C

0 distinguishes (A,B) from (A,C) with advantage greater
that ε′, for any C such that H(C|A) ≥ δ. Proposition 4.8 yields the existence of an algorithm M of
running time T0 · (n/ε′)O(1) such that Pr[M(ε′, A) = B] > 1− δ/2 for infinitely many n’s. (We can
set δ0 = 1/n, since if δ < 1/n, the conclusion of the theorem holds trivially.) Setting the constant
in the definition of T ′ to large enough value (recall that T ′ = T · (ε′/n)O(1)) yields that the running
time of M is bounded by T/2 · nc, in contradiction to Equation (3). �
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5 From Next-Block Pseudoentropy to Pseudorandom Generators

In this section we show how to transform a next-block pseudoentropy generator into a pseudorandom
generator.

Theorem 5.1. (Next-block pseudoentropy generator to pseudorandom generator) Let n be a security
parameter, and let m = m(n), ∆ = ∆(n) ∈ [1/poly(n), n], and κ = κ(n) ∈ {1, . . . , n} be poly(n)-
time computable. For every polynomial-time computable, m-block generator Gnb : {0, 1}n 7→ {0, 1}m,
there exists a polynomial-time computable generator G : {0, 1}d → {0, 1}d·(1+Ω(∆/n)) with seed length

d = d(n) = O

(
n2 ·m2 · κ · log2 n

∆3

)
such that the following holds:

Security: If Gnb has (T, ε)-next-block pseudoentropy at least n+∆, for T = T (n), ε = ε(n), then
G is a (T −nO(1), nO(1) · (ε+2−κ))-pseudorandom generator. Moreover, the reduction is fully
black-box.

Complexity: G is computable in NC1 with O(d/n) (uniformly random) oracle calls to Gnb.

In Theorem 5.1, it may be convenient to view κ(n) as the security parameter of the construction.
In particular, when κ(n) logarithmic in 1/ε(n) we get that (T (n), ε(n))-next-block pseudoentropy
turns into an (T (n)/ poly(n),poly(n) · ε(n))-pseudorandom generator.

We prove Theorem 5.1 via the following sequence of reductions:

1. In Section 5.1 we show how to get a better handle on the output distribution of the Gnb

— specifically, we apply a generic transformation on Gnb, to get a generator for which the
(conditional) pseudoentropy of each of its output blocks is the same (i.e., (n+∆)/m).

2. In Section 5.2 we consider a direct product of the latter next-block pseudoentropy generator,
and show that this action both increases the absolute gap between the next-block pseudoen-
tropy of the generator and its real entropy (i.e., its input length), and transforms its next-block
pseudoentropy into next-block pseudo-min-entropy.

3. In Section 5.3 we show to extract pseudorandomness from the output of the latter type of
generators.

4. In Section 5.4, we put the above parts together to prove Theorem 5.1.

To simplify notations, we prove the first three steps with respect to arbitrary next-block pseu-
doentropy distributions. Given a distribution X over Um, a set of distributions Y = {Yi}i∈[m] over

U , and an oracle-aided algorithm D(·), we let δDX,Y := E
i
R←[m(n)]

[
δDX,Y,i := Pr[DOX,Y (X1, . . . , Xi) =

1] − Pr[DOX,Y (X1, . . . , Xi−1, Yi) = 1]
]
, where OX,Y (i) samples according to the joint distribution

(X,Yi) (see Definition 3.1). Finally, in all of the following claims we assume the description of the
“universe” U is polynomial in n.
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5.1 Entropy Equalization

In this section we show to manipulate a given distribution to gain a better characterization of its
next-block pseudoentropy, without losing “too much” pseudoentropy. The following transformation
is closely related to a similar reduction from [13]. The idea is the following: consider an m-block
random variable X over Um with next-block pseudoentropy k. Now generate m · ℓ blocks by
concatenating ℓ independent copies one after the other. Finally, for a random j ∈ [m], erase the
first j blocks and the last m − j blocks. We now have a new variable X̃ with m · (ℓ − 1) blocks
and for every location i the block in the ith location of X̃ is a block of X in a random location. It
is not hard to prove (as we do below) that the next-block pseudoentropy of each block is at least
k/m. On the other hand, the real entropy of X̃ is at most ℓ times that of X. Taking large enough
ℓ we get that the (relative) difference between next-block pseudoentropy and real entropy has not
significantly decreased.

For j ∈ [m] and z(1), . . . , z(ℓ) ∈ Um, we let

Equalizer(j, z(1), . . . , z(ℓ)) := (z
(1)
j , . . . , z(1)m , . . . , z

(ℓ)
1 , . . . , z

(ℓ)
j−1).

Lemma 5.2. Let n be a security parameter, and let m = m(n) = poly(n) and ℓ = ℓ(n) = poly(n)
be poly(n)-time computable integer functions, where ℓ(n) > 1. Let X be random variable over Um

with (T, ε)-next-block pseudoentropy at least k, for T = T (n), ε = ε(n) and k = k(n). Let J be
uniformly distributed over [m] and let X̃ = Equalizer(J,X(1), . . . , X(ℓ)), where the X(i)’s are iid
copies of X. Then every block of X̃ has (T − O(ℓ ·m · log |U|), ℓ · ε) next-block pseudoentropy at
least k/m. Moreover, the reduction between the security of X̃ and X is fully black-box.

Proof. Let m′ = (ℓ−1) ·m and let Y = {Y1, . . . , Ym} be a set of random variable jointly distributed
with X. In the following we think of Y as a single random variable Y = (Y1, . . . , Ym) jointly
distributed with X, though we only sample a single entry Yi per instance of Y . Let Y (1), . . . , Y (ℓ)

be iid copies of Y and let Ỹ = Equalizer(J, Y (1), . . . , Y (ℓ)) be jointly distributed with X̃ in the
natural way —- J takes the same value as in X̃, and for every j ∈ [ℓ], Y (j) is jointly distributed
with X(j) according to the joint distribution (X,Y ). Notice that Ỹi = YJ+i−1 mod m (where we
define m mod m to equal m rather than 0), and that J + i− 1 is uniformly distributed in [m].

Thus, for every i ∈ [m′] we have that

H(Ỹi | X̃1,...,i−1) ≥ H(YJ+i−1 mod m|X1, . . . , X(J+i−1 mod m)−1) (4)

= E
i′

R←[m]

[H(Yi′ | X1, . . . , Xi′−1)].

Let D̃ be an adversary the violates the next-block pseudoentropy of X̃. We define D for breaking
the next-block pseudoentropy of X as follows: on input (x1, . . . , xi−1, z), D generates a random
sample x′ = (x′1, . . . , x

′
m′) from X̃ (using OX,Y ). It then selects i′ ∈ [m′] uniformly at random

such that i′ = j + i − 1 mod m, where j is the value of J in the generation of x′, and returns
D̃O

X̃,Ỹ (x′1, . . . , x
′
i′−i, x1, . . . , xi−1, z), while answering D̃’s queries to O

X̃,Ỹ
using OX,Y .

We note that D makes at most ℓ times more oracle queries than D̃, and that D can be imple-
mented in the running time of D̃ plus O(ℓ ·m · log |U|).

For every Y as above with
∑

i∈[m]H(Yi | X1,...,i−1) ≥ k, Equation (4) yields that Ỹ is a random

variable that D̃ should be able to next-block distinguish from X̃. Since the query to D̃ done by D
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is distributed identically to a random challenge to D̃ with respect to the joint distribution (X̃, Ỹ ),
it follows that

δD̃
X̃,Ỹ

= δDX,Y ≤ L · ε = L̃ · (ℓε),

where L and L̃ are the number of oracle calls made by D and D̃, respectively.This is contradiction
to the assumption about the next-block pseudoentropy of X. �

5.2 Next-block Pseudoentropy Converts to Pseudo-Min-Entropy

In this section we show how to transform next-block (Shannon) pseudoentropy to next-block pseudo-
min-entropy, while increasing the overall entropy gap. The transformation of X is simply a t-
fold parallel repetition of X (i.e., every block of the new random variable Xt is composed of t
corresponding blocks of t independent copies of X). This generalizes an analogous transformation
that was used by H̊astad et al. [17] in the context of standard (i.e. single-block) pseudoentropy.

Given an m-block random variable V taking values in Um and an integer t > 0, we let V t =

((V
(1)
1 , . . . , V

(t)
1 ), . . . , (V

(1)
m , . . . , V

(t)
m )) ∈ (U t)m, where the V (i)’s are iid copies of V .

Lemma 5.3. Let n be a security parameter, and m = m(n) = poly(n), t = t(n) = poly(n), be
poly(n)-time computable functions, and let X be a random variable over Um where every block of
X has (T, ε) next-block pseudoentropy at least α, for T = T (n), ε = ε(n), α = α(n). Then for
every κ = κ(n) > 0 it holds that every block of Xt has (T ′, ε′) next-block pseudo-min-entropy α′,
where

• T ′ = T ′(n) = T −O(m · t · log |U|).

• ε′ = ε′(n) = t2 · (ε+ 2−κ + 2−c·t) for a universal constant c > 0, and

• α′ = α′(n) = t · α− Γ(t, κ, |U|), for Γ(t, κ, |U|) ∈ O(
√
t · κ · log(|U| · t)).

Furthermore, the reduction between the security of Xt and X is fully black-box.

Notice that the t ·α term is the largest we could hope for the pseudoentropy — getting α bits of
pseudoentropy per copy. However, since we wish to move from a pseudo-form of Shannon entropy
(measuring randomness on average) to a pseudo-form of min-entropy (measuring randomness with
high probability), we may have a deviation that grows like

√
t. By taking t large enough, this

deviation becomes insignificant.
In more detail, consider the case thatX has next-block pseudoentropy at least α with polynomial

security, i.e. T and 1/ε can be taken to be arbitrarily large polynomials in n, and we would like to
deduce that Xt has next-block pseudo-min-entropy α′ with polynomial security. Moreover, assume
U = {0, 1}. Then we should take κ and t to be an arbitrarily large multiples of logn, and we have
α′ = t · (α−O(

√
(log n)/t) · log t). So if we would like to have pseudo-min-entropy at least t · (α−δ),

we should take t to be polylog(n)/δ2. In our application, we have δ = Θ(∆/n) = Θ(log n/n), so
we take t = Õ(n2) copies.

Proof. For a random variables Yi over U jointly distributed with X, we defined the, jointly dis-
tributed with Xt, variable (Yi)

t = ((Yi)
(1), . . . , (Yi)

(t)), where for each j ∈ [t] the entry (Yi)
(j) is

jointly distributed with the entry X(j) in Xt according to the joint distribution (X,Yi). Given an
adversary Dt that violates the next-block pseudo-min-entropy of Xt, we define D for breaking the
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next-block pseudoentropy ofX as follows: given an input (x1, . . . , xi−1, z) and oracle access to OX,Y ,

D first samples j
R← [t] and (xt, yt) from (Xt, (Yi)

t) (using OX,Y ). Then it replaces (xtj,1 . . . , x
t
j,i−1)

(the (i−1) prefix of j’th column of xt) with (x1, . . . , xi−1), sets z
[j] = (xti,1, . . . , x

t
i,j−1, z, y

t
j+1, . . . , y

t
t),

and returns D
OXt,(Yi)

t

t (xt1,...,i−1, z
[j]), while answering Dt’s queries to OXt,(Yi)t using OX,Y . That is,

D queries Dt on the j’th hybrid between (Xt
1,...,i−1, (Yi)

t) and Xt
1,...,i.

We note thatD makes at most t times more oracle calls than Dt, and that it can be implemented
in the same time as D plus O(t ·m · log |U|).

Assuming that H(Yi | X1,...,i−1) ≥ α for i ∈ [m], Lemma 2.1 yields that there exists a random
variable W over U t jointly distributed with Xt, such that the following hold:

1. ∆((Xt
1,...,i−1, (Yi)

t), (Xt
1,...,i−1,W )) ≤ 2−κ + 2−c·t for a universal constant c > 0, and

2. H∞(W | x1,...,i−1) ≥ α− Γ(t, κ, |U|) for every x ∈ Supp(Xt).

For j ∈ [t], let Z [j] = ((Xt
i )1,...,j , (Yi)

t
j+1,...,t) (i.e., the j’th hybrid between Xt

i and (Yi)
t). It follows

that for each i ∈ [m], we have

δDX,Y,i

:=
1

t
·
∑
j∈[t]

(
Pr[D

OXt,(Yi)
t

t (Xt
1,...,i−1, Z

[j]) = 1]− Pr[D
OXt,(Yi)

t

t (Xt
1,...,i−1, Z

[j−1]) = 1]
)

=
1

t
·
(
Pr[D

OXt,(Yi)
t

t (Xt
1,...,i−1, Z

[t]) = 1]− Pr[D
OXt,(Yi)

t

t (Xt
1,...,i−1, Z

[0]) = 1]
)

=
1

t
·
(
Pr[D

OXt,(Yi)
t

t (Xt
1,...,i−1, X

t
i ) = 1]− Pr[D

OXt,(Yi)
t

t (Xt
1,...,i−1, (Yi)

t) = 1]
)

≥ 1

t
·
(
Pr[D

OXt,W

t (Xt
1,...,i−1, X

t
i ) = 1]− Pr[D

OXt,W

t (Xt
1,...,i−1,W ) = 1]− L′ · (2−κ − 2−c·t)

)
=:

1

t
·
(
δDt

Xt,W,i − L′ · (2−κ − 2−c·t)
)
,

where L′ is a bound on the number of oracles calls made by Dt. Taking expectations over i
R← [m],

we have

δDX,Y ≥ 1

t
·
(
δDt

Xt,W − L′ · (2−κ + 2−c·t)
)

≥ 1

t
·
(
t2 · L′ · (ε+ 2−κ + 2−c·t)− L′ · (2−κ + 2−c·t)

)
≥ L′ · t · ε = Lε,

where L = t · L′ is a bound on the number of oracle calls made by D. Since this holds for all {Yi}
such that H(Yi | X1,...,i−1) ≥ α, this contradicts the assumption about the next-block pseudoentropy
of X. �

5.3 Next-block Pseudo-Min-Entropy to Pseudorandomness

For our final step, we assume that X is such that each of the m blocks of X has large next-block
pseudo-min-entropy α. Using a two-universal independent hash function S, we extract almost all
its pseudo-min-entropy of each block individually. The result is a sufficiently long pseudorandom
bit sequence. This is a computational analogue of block-source extraction in the literature on
randomness extractors [3, 34].
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Lemma 5.4. Let n be a security parameter, m = m(n) = poly(n), t = t(n) = poly(n), α =
α(n) ∈ [t(n)] and κ = κ(n) ∈ [α(n)] be poly(n)-time computable integer functions. There exists
an efficient procedure Ext ∈ NC1 that on input x ∈ ({0, 1}t)m and s ∈ {0, 1}t, outputs a string
y ∈ {0, 1}t+m·(α−κ) such that the following holds.

Let X be a random variable over ({0, 1}t)m such that every block of X has (T, ε) next-block
pseudo-min-entropy α, for T = T (n) and ε = ε(n), then Ext(X,Ut) is (T −m · tO(1),m · (ε+2−κ/2))
pseudorandom. Moreover, the reduction between the pseudorandomness of Ext(X,Ut) and the
security X is fully black-box.

Proof. Let Ext(x, s) := (s, s(x1), . . . , s(xm)), where s is interpreted as a member of a family of
two-universal hash functions from t bits to α− κ bits in NC1 (such as s(x) := s · x over GF (2t)
truncated to α− κ bits). Let DPRG be an adversary for the pseudorandomness of Ext(X,Ut), and
let δPRG be its distinguishing advantage. We define D for breaking the next-block pseudoentropy of
X as follows: on input (x1, . . . , xi−1, z), D returns DPRG(s, s(x1), . . . , s(xi−1), s(z), U(α−κ)·(m−i)),
where s is uniformly chosen from {0, 1}t.

We note that D makes no oracle calls (and thus we count its query complexity as one), and
that its running-time is at most that of DPRG plus m · poly(t).

Let Z [i](W ) := (S, S(X1), . . . , S(Xi−1), S(W ), U(α−κ)·(m−i)), for a uniformly distributed hash
function S. Let Y = {Y1, . . . , Ym} be a set of random variable over U jointly distributed with
X, with H∞(Yi | X1,...,i−1 = x1,...,i−1) ≥ α for every x ∈ Supp(X) and i ∈ [m]. The Leftover
Hash Lemma [24, 23] yields that Z [i](Yi) has statistical difference at most 2−κ/2 from Z [i−1](Xi−1).
Thus

δPRG = Pr[DPRG(Z
[m](Xm)) = 1]− Pr[DPRG(Z

[0](X0)) = 1]

=
m∑
i=1

(
Pr[DPRG(Z

[i](Xi)) = 1]− Pr[DPRG(Z
[i−1](Xi−1)) = 1]

)
≤

m∑
i=1

(
Pr[DPRG(Z

[i](Xi)) = 1]− Pr[DPRG(Z
[i](Yi)) = 1] + 2−κ/2

)
= m · (δDX,Y + 2−κ/2)

≤ m · (ε+ 2−κ/2).

�

5.4 Putting It Together

We are now ready to prove Theorem 5.1.

Theorem 5.5 (Theorem 5.1, restated). Let n be a security parameter, and let m = m(n),
∆ = ∆(n) ∈ [1/poly(n), n], and κ = κ(n) ∈ {1, . . . , n} be poly(n)-time computable. For every
polynomial-time computable, m-block generator Gnb : {0, 1}n 7→ {0, 1}m, there exists a polynomial-
time computable generator G : {0, 1}d → {0, 1}d·(1+Ω(∆/n)) with seed length

d = d(n) = O

(
n2 ·m2 · κ · log2 n

∆3

)
such that the following holds:
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Security: If Gnb has (T, ε)-next-block pseudoentropy at least n+∆, for T = T (n), ε = ε(n), then
G is a (T −nO(1), nO(1) · (ε+2−κ))-pseudorandom generator. Moreover, the reduction is fully
black-box.

Complexity: G is computable in NC1 with O(d/n) (uniformly random) oracle calls to Gnb.

Proof. Let X = Gnb(Un). Without loss of generality, we may assume that the number m of output
blocks (=bits) of Gnb is a power of 2 (by padding with zeroes if necessary). X can be generated
using n random bits, and has next-block pseudoentropy k = n+∆.

We now set ℓ = ⌈2(n+∆+logm)/∆⌉ = O(n/∆) and apply Entropy Equalization (Lemma 5.2)
to obtain X̃ := Equalizer(J,X(1), . . . , X(ℓ)), where J is uniformly distributed over [m] and the
X(i)’s are iid copies of X. X̃ can be generated using dℓ = logm + ℓ · n random bits, and has
m′ = (ℓ−1) ·m blocks. Every block of X̃ has (Tℓ = T−O(ℓ ·m), εℓ = ℓ ·ε)-next-block pseudoentropy
at least αℓ = k/m. Thus the total next-block pseudoentropy in X̃ is at least

m′ · αℓ = m · (ℓ− 1) · k/m
= (n+∆) · (ℓ− 1)

≥ n · ℓ+ logm+∆ℓ/2

= dℓ +∆ℓ/2,

where the inequality follows from the setting of ℓ.
Next we apply t-fold parallel repetition (Lemma 5.3) to obtain (X̃)t, for a parameter t = poly(n)

to be set below. (X̃)t can be generated using dt = t · dℓ random bits and has m′ blocks of t bits
each. Every block of (X̃)t has (Tt = Tℓ −O(m′ · t), εt = t2 · (εℓ + 2−κ + 2−Ω(t)))-next-block pseudo-
min-entropy αt = t · αℓ − Γ(t, κ).

Finally, we apply Lemma 5.4, extracting αt − 2κ bits from each block of (X̃)t using a seed of
length t. This yields our final output Ext((X̃)t, Ut), which is (T ′, ε′) pseudorandom, for

T ′ = Tt −m′ · tO(1) = T − poly(n)

ε′ = m′ · (εt + 2−κ) = poly(n) · (ε+ 2−κ + 2−Ω(t)).

Ext((X̃)t, Ut) can be generated using a seed of length

d = dt + t = t · dℓ + t = O(t · ℓ · n),

and has an output length of

d′ = m′ · (αt − κ) + t

= m′ · (t · αℓ − Γ(t, κ)− κ) + t

≥ t · dℓ + t∆ℓ/2−m′ · (Γ(t, κ) + κ) + t

= d+ t∆ℓ/2−m′ ·O(
√
tκ · log t+ κ)

≥ d+ t∆ℓ/4 = (1 + Ω(∆/n)) · d,

where the last inequality follows from an appropriate setting of

t = O

((
m′

∆ℓ

)2

· κ · log2
(
m′κ

∆ℓ

))
= O

(
m2 · κ · log2 n

∆2

)
.
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Finally, we can bound the seed length d by

d = O(t · n · ℓ) = O

(
n2 ·m2 · κ · log2 n

∆3

)
.

�

6 Deducing the Main Results

We are now ready to prove the main result of the paper.

Theorem 6.1 (Pseudorandom generators from one-way functions). Let n be a security parameter
and f : {0, 1}n 7→ {0, 1}n a polynomial-time computable function. For all poly(n)-time computable
functions ε = ε(n) ≤ 1/nc (where c is a universal constant) and κ = κ(n) ∈ [n/4], there exists an
efficient generator G from strings of length d = d(n) = O(n4 · κ · log2 n/ log3(1/ε)) to strings of
length d · (1 + Ω(log(1/ε))/n), such that the following holds:

Security: Assume that f is a (T, ε) one-way function for T = T (n). Then for every poly(n)-
time computable function ε′ = ε′(n) ≥ 2−κ, G is a (T · (ε′/n)O(1), ε′ · nO(1))-pseudorandom
generator. Moreover, the reduction is fully black-box,

Complexity: G is computable in NC1 with O(d/n) (uniformly random) oracle calls to f .

Proof. We let c be the constant of Theorem 4.1. We start by applying Theorem 4.1 on f , to
get a generator Gnb : {0, 1}d1 7→ {0, 1}m1 that has (T · (ε′/n)O(1), ε′)-next-block-pseudoentropy
k = d1 + log(1/ε)/2, where d1,m1 ∈ O(n).

In the next step we apply Theorem 5.1 with respect to the above Gnb, κ and ∆ := log(1/ε)/2,
to get an efficient generator from strings of length

d = O

(
d21 ·m2

1 · κ · log2 n
∆3

)
= O

(
n4 · κ · log2 n
log3(1/ε)

)
to strings of length d · (1 + Ω(log(1/ε))/n), that is (T · (ε′/n)O(1) − nO(1), (ε1 + 2−κ) · nO(1)) =
(T · (ε′/n)O(1), ε′ · nO(1))-pseudorandom. �

The above theorem yields the following important corollaries.

Corollary 6.2 (Pseudorandom generator from one-way functions — polynomial security case).
Let n be a security parameter and f : {0, 1}n 7→ {0, 1}n a one-way function.Then there exists a
pseudorandom generator G from strings of length d = d(n) ∈ Õ(n4) to strings of length d · (1 +
Ω((log n)/n)).

Furthermore, the reduction is fully black-box. G is computable in NC1 with O(d/n) (uniformly
random) oracle calls to f .

Proof. Applying Theorem 6.1 on f , ε = 1/nc and κ = log2 n, we get an efficient generator G
of the stated input and output lengths. Assume now that G is not a pseudorandom generater.
Namely, there exists p ∈ poly such that G is not (p(n), 1/p(n)) pseudorandom. Therefore, G is not
(T · (ε′/n)O(1), ε′ · poly(n))-pseudorandom, for ε′ := 1/p(n) · poly(n) > 2−κ and T = poly(n) · p(n).
It follows that f is not (T, ε)-one-way, in contradiction. �
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Corollary 6.3 (Pseudorandom generator from one-way functions —exponential hardness case).
Let f : {0, 1}n 7→ {0, 1}n be a (2Ω(n), 2−Ω(n))-one-way function. Then

1. There exists a (2Ω(n), 2−Ω(log2 n))-pseudorandom generator G from strings of length d = d(n) ∈
Õ(n) to strings of length d · (1 + Ω(1)), and

2. There exists a (2Ω(n), 2−Ω(n))-pseudorandom generator G from strings of length d = d(n) ∈
Õ(n2) to strings of length d · (1 + Ω(1)),

Furthermore, in both cases it holds that the reduction is fully black-box, G is computable in NC1

with O(d/n) (uniformly random) oracle calls to f .

Proof. Immediate from Theorem 6.1, taking κ = log2(n) and κ ∈ Ω(n) in the first and second cases
respectively, and ε′ = 2−κ. �
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A The Uniform Hardcore Lemma

In this section, we show how to deduce our version of the Uniform Hardcore Lemma (Proposi-
tion 4.7) from what Holenstein proves. Holenstein’s statement of the Hardcore Lemma requires the
functions γ(n) and δ(n) to be computable in time poly(n) and to be at least 1/poly(n). However,
the same proof yields the following, where we give δ and γ as input to the algorithm M , and we
allow a loss of (δγ)O(1) in the running time:

Proposition A.1 ([20], Thm 6.8). Let n be a security parameter, and let h : {0, 1}n 7→ {0, 1}ℓ(n)
and V : {0, 1}n 7→ {0, 1} be polynomial-time computable functions. Let δ = δ(n) ∈ [δ0, 1], and
γ = γ(n) ∈ [0, 1] > 2−n/3. Assume that

Pr[M(δ, γ, h(Un)) = V (Un)] ≤ 1− δ/2 + γ2δ5/8192
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for every probabilistic algorithm M running in time T = T (n) and large enough n. Then for every
oracle-aided predictor P running in time T · (γδ/n)O(1) and all sufficiently large n, there exists a
set L ⊆ {0, 1}n of density at least δ such that

Pr
W

R←L

[PχL(h(W )) = V (W )] < (1 + γ)/2,

where χL is the characteristic function of L, provided that all the queries of P to χL are computed
independently of the input h(W ). Furthermore, the reduction is fully black-box.

Note the hypothesis of Holenstein’s lemma is slightly stronger in that it works even if the
success probability of M is slightly higher than 1 − δ/2; this slackness is convenient for deducing
Proposition 4.7, which we now do.

Proof of Proposition 4.7. Assume that

Pr[M(δ0, γ, h(Un)) = V (Un)] ≤ 1− δ/2 (5)

for every probabilistic algorithm M running in time T = T (n) and large enough n. Then we will
argue that

Pr[M ′(δ′, γ, h(Un)) = V (Un)) ≤ 1− δ′/2 + α, (6)

for every probabilistic algorithm M ′ running in time T ′ = T (n) · (δ0γ)O(1) and large enough n,
where δ′ is the smallest multiple of α = δ50γ

2/8192 that is at least as large as δ (so δ′ ≤ δ + α).
Suppose for contradiction that there is an M ′ violating Inequality (6). Then we can obtain an
M violating Inequality (5) by trying δ′ = i · α for each i = 0, . . . , ⌊1/α⌋, estimating the success
probability to within accuracy α/3 (by random sampling), and finally running M ′ with the value
of δ′ that achieves maximum estimated success probability.

Since α ≤ (δ′)5γ2/8192, we can apply Proposition A.1 to obtain, for every predictor P running
in time T ′ · (γδ′/n)O(1) = T · (γδ0/n)O(1), a hardcore set L of density δ′ ≥ δ. �
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