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1. INTRODUCTION

The local ratio technique is an approxima-
tion paradigm for NP-hard optimization
problems which has been enjoying a great
measure of success since its inception in
the early 1980’s. Its main feature of at-
traction is its simplicity and elegance; it is
very easy to understand, and has surpris-
ingly broad applicability. The technique
is based on exploiting the combinatorial
structure of the problem at hand—often
by making just one or two straightforward
observations—and is, therefore, accessi-
ble to the nonspecialist. In this sense, the
technique is not unlike dynamic program-
ming; it is easily mastered, and can be
used effectively in a wide variety of prob-
lems. Although it is often the case that
employing heavier machinery can produce
better results, the local ratio technique
usually provides a good head start on the
problem.

In this survey, we introduce the local
ratio technique and demonstrate its use
in the design and analysis of algorithms
for various problems. Among the multi-
tude of algorithms we describe, some are
algorithms that were developed initially
using the technique, and others are lo-
cal ratio interpretations of pre-existing al-
gorithms. Several of them appear here
for the first time. Whenever possible, we
present a unified analysis for a num-
ber of similar algorithms. We cover min-
imization and maximization problems,
approximation and exact optimization al-
gorithms, classical results, and more re-
cent developments.

1.1. A First Glimpse

Before actually beginning, let us briefly
introduce the basic notions of optimiza-
tion and approximation, as the intended
audience of this survey is the general
Computer Science community. (We give
more complete and precise definitions in
Section 2.) An optimization problem is one
where we seek a solution of minimum or
maximum cost, among a set of candidate
solutions. For example, if the problem is to

find the longest (simple) path between two
given vertices in a graph, the candidate
solutions are all simple paths connecting
the two vertices, and the cost of each
path is its length. Since this problem, and
many others, are NP-hard, we are often
interested in efficiently obtaining approx-
imate solutions, that is, solutions that,
although suboptimal, are not “far” from
optimal. A solution whose cost is within
a factor of r of the optimum is said to be
r-approximate. Thus, in the longest path
example, a path whose length is at least
one half the length of the longest path
is 2-approximate. An r-approximation
algorithm for a given problem is an
algorithm that finds r-approximate
solutions.

Say we want to develop an
r-approximation algorithm for a min-
imization problem. A key step in the
design of such an algorithm is to establish
a good lower bound b on the cost of the
optimal solution. This bound can later
be used in the analysis to prove that
the solution found by the algorithm, is
r-approximate by showing that its cost
is no more than r · b. At a high level
of abstraction, the local ratio technique
is based on a “local” variation of this
scheme. In essence, the idea is to break
down the cost c of the solution found
by the algorithm, into a sum of “partial
costs” c = c1 + c2 + · · · + ck , and simi-
larly, break down the lower bound b into
b = b1 + b2 + · · · + bk , and to show that
ci ≤ r · bi for all i. (For maximization prob-
lems, b is an upper bound, and we show
that ci ≥ bi/r for all i.) This high-level idea
of decomposing a cost and charging each
component to some corresponding object
is fairly standard, and is ubiquitous, for
example, in time complexity analyses of
algorithms. The local ratio technique is
all about implementing it in a certain
systematic manner. In the local ratio
methodology, the decomposition of c and
b is not a mere artifact of the analysis—
existing in hindsight—but is built directly
into the algorithm. Roughly speaking, the
algorithm constructs a solution by steps
designed to explicitly decompose c and
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b in such a way as to create the desired
effect. The actual ideas involved in the
technique are, of course, more elaborate;
we get down to the specifics in subsequent
sections.

To give a first taste of the local ratio
technique, we demonstrate it on the well
known vertex cover problem. In this prob-
lem, we are given a graph G = (V , E)
and a nonnegative weight function w on
its vertices, and the objective is to find a
minimum weight vertex cover, that is, a
minimum weight set of vertices C ⊆ V ,
such that every edge in the graph has at
least one endpoint in C. Let us develop a
2-approximation algorithm for this prob-
lem in intuitive terms. Imagine that we
are shopping for a vertex cover of the
graph at the local branch of Graphs ’ R’Us.
The direct approach would be to somehow
select a vertex cover, and then pay for it,
but rather than doing so, we agree with
the shopkeeper on the following method
of payment. We repeatedly select ver-
tices and make certain down payments
on them. (The down payment we make
each time may be less than the actual
cost of the vertex, and we may make sev-
eral payments on the same vertex.) The
shopkeeper, in turn, does not want to be
bothered with keeping track of all of our
down payments, so he adopts the follow-
ing strategy. Whenever we make a pay-
ment of ε on a vertex, he responds by
simply decreasing the price of that vertex
by ε.

More specifically, we conduct the busi-
ness transaction in rounds. In each round,
we select an edge (u, v) whose two end-
points have nonzero cost, and make a
down payment of ε = min{price of u, price
of v} on each of its endpoints. In response,
the shopkeeper lowers the prices of u and
v, by ε each. With these new prices in ef-
fect, at least one of the edge’s endpoints
has zero cost. Thus after O(|V |) rounds,
prices will have dropped sufficiently for
each edge to have at least one zero-cost
endpoint. When that happens, the set of
all zero-cost vertices is a vertex cover,
and it is free. We take this set as our
solution.

We formalize the above process as the
following algorithm.
Algorithm VC.
1. While there exists an edge (u, v),

such that min{w(u), w(v)} > 0:
2. Let ε = min{w(u), w(v)}.
3. w(u) ← w(u) − ε.
4. w(v) ← w(v) − ε.
5. Return the set C = {v | w(v) = 0}.

What is the cost of the solution in terms
of the original weights, and how far is it
from the optimal cost? Consider the ith
round. Let (ui, vi) be the edge selected in
this round, and let εi be the down payment
made on each of its endpoints. Since every
vertex cover must contain at least one of ui
and vi (in order to cover the edge connect-
ing them), decreasing both their prices by
εi has the effect of lowering the optimal
cost, denoted OPT, by at least εi. Thus, in
the ith round, we pay 2εi and effect a drop
of at least εi in OPT. Hence the local ra-
tio between our payment and the drop in
OPT is at most 2 in every round. It follows
that the ratio between our total payment
and the total drop in OPT, summed over
all rounds, is at most 2. Clearly, the cost of
the solution we find is fully covered by the
sum of all down payments we make, and
the total drop in the optimal cost is the
original value of OPT (as evidenced by the
fact that we find a vertex cover of zero cost
with respect to the final weights). Thus the
cost of our solution is at most 2OPT.

Note that our approximation ratio anal-
ysis makes no reference to the actual value
of ε in any given iteration. The choice of
ε = min{w(u), w(v)} is not compulsory; any
0 ≤ ε ≤ min{w(u), w(v)} would do just
fine and would result in a factor 2 ap-
proximation. We use ε = min{w(u), w(v)}
for reasons of efficiency. This choice en-
sures that the number of vertices with pos-
itive cost decreases with each iteration,
thus limiting the number of iterations to
less than |V |. (Note that although a naive
implementation of the algorithm runs in
�(|V ||E|) time, the algorithm can be made
to run in linear time by performing a sin-
gle sweep through the edges in arbitrary
order.)
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Another point worth noting is that our
analysis of algorithm VC contains some
slack in that it bounds the cost of the so-
lution by the sum of all down payments,
rather than by the sum of down payments
made for vertices that are actually taken
to the solution. It might seem that a more
refined analysis could yield a better ap-
proximation ratio, but unfortunately this
is not true for the vertex cover problem; one
can easily construct examples in which
all vertices for which down payments are
made are eventually taken to the solution.
Another source of slack is that in the fi-
nal step, all zero-cost vertices are taken
to the solution, and no attempt is made
to prune it by removing unnecessary ver-
tices. One obvious idea is to return a min-
imal (with respect to set inclusion) sub-
set of C that is still a vertex cover. This
idea fails too, as it is easy to construct
worst-case examples in which C is mini-
mal to begin with. As we shall see, though,
these ideas are useful (indeed, neces-
sary) in the context of other optimization
problems.

1.2. Historical Highlights

The idea of bounding (or computing ex-
actly) a numerical quantity by decompos-
ing it into parts and bounding each by a
more easily computable quantity is age-
old, and has appeared early on in the his-
tory of approximation algorithms. Some
examples include Garey et al. [1972] and
Garey et al. [1976a], who analyzed bin
packing algorithms by decomposing the
solution cost and comparing each compo-
nent with a corresponding component of a
suitably decomposed lower bound; Gavril
(see Garey and Johnson [1979, pp. 134]),
who obtained an approximation ratio of 2
for unweighted vertex cover by charging
the two endpoints of an edge to the one
endpoint that must be contained in the
optimal solution; and Rosenkrantz et al.
[1977], who used a similar charging idea
in the context of the traveling salesman
problem.

The origins of the local ratio technique
can be traced back to a paper by Bar-
Yehuda and Even [1981] on vertex cover

and set cover. In this paper, the au-
thors presented a generalization of Algo-
rithm VC suited for set cover, and gave
a primal-dual analysis of it. This lin-
ear time algorithm was motivated by a
previous algorithm of Hochbaum [1982]
which was based on LP duality1 and re-
quired the solution of a linear program.
Although Bar-Yehuda and Even’s primal-
dual analysis contains an implicit local ra-
tio argument, the debut of the local ra-
tio technique only occurred in a followup
paper [Bar-Yehuda and Even 1985] sev-
eral years later, where the authors pre-
sented a local ratio analysis of the same
algorithm. They also developed a spe-
cialized (2 − log2 log2 n

2 log2 n )-approximation al-
gorithm for vertex cover based on local-
ratio principles. More than a decade later,
Bafna et al. [1999] devised a local ratio 2-
approximation algorithm for the feedback
vertex set problem. In this landmark paper,
they incorporated the idea of minimal so-
lutions into the local ratio technique. Sub-
sequently, Fujito [1998] presented a uni-
fied local ratio approximation algorithm
for node-deletion problems, and later still,
Bar-Yehuda [2000] developed a generic lo-
cal ratio algorithm that explained most
local ratio and primal-dual approxima-
tion algorithms known at the time. At
this point, the local ratio technique had
reached a certain level of maturity, but
only in the context of minimization prob-
lems. No local ratio (or primal-dual) algo-
rithms were known for any maximization
problem. This changed in a paper by Bar-
Noy et al. [2001a], who presented the first
local ratio algorithms for maximization
problems. The key idea facilitating these
algorithms was the use of maximal solu-
tions, rather than minimal ones. The most
recent development, due to Bar-Yehuda
et al. [2002], is a novel extension of the lo-
cal ratio technique, called fractional local
ratio.

1LP stands for linear programming. The use of linear
programming in the context of approximation algo-
rithms is beyond the scope of this survey, as are the
details of the primal-dual schema, which is an ap-
proximation paradigm based on linear programming
concepts.
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1.3. Connection to the Primal-Dual Schema

The primal-dual schema for approxima-
tion algorithms is a widely used LP-
based method for the design and anal-
ysis of approximation algorithms. (See
Williamson [2002] for a good recent sur-
vey, or Goemans and Williamson [1997] for
an older one.) While it does not require the
actual solution of linear programs, it does
rely on LP duality and related concepts.
It is frequently regarded as an outgrowth
of the primal-dual method for the (exact)
solution of linear programs.

It has often been observed that primal-
dual algorithms have local ratio inter-
pretations, and vice versa. Some notable
examples include Bar-Yehuda and Even’s
[1981] primal-dual algorithm for vertex
cover, which was later formulated in local
ratio terms [Bar-Yehuda and Even 1985];
Bafna et al.’s [1999] local ratio algorithm
for feedback vertex set, which was later re-
cast as a primal-dual algorithm [Chudak
et al. 1998]; and Bar-Noy et al.’s [2001a]
approximation framework for several
maximization scheduling problems,
which was developed initially using the
local-ratio approach, and then explained
(in the same paper) in primal-dual terms.
Thus over the years, there was a growing
sense that the two seemingly distinct
approaches share a common ground,
but the exact nature of the connection
between them remained unclear (see,
e.g., Williamson [2002], where this was
posed as an open question). The issue
was resolved only recently by Bar-Yehuda
and Rawitz [2001]. They defined two
abstract frameworks, one encompassing
the primal-dual schema, and the other
encompassing the local ratio technique,
and showed that these two frameworks
are equivalent.2 The equivalence is con-
structive, meaning that an algorithm

2There are a small number of algorithms that are
usually considered to be primal-dual algorithms, but
which deviate in important respects from the main-
stream primal-dual schema. Although these algo-
rithms do not fit neatly in the abstract framework
of Bar-Yehuda and Rawitz [2001], and hence have
no clean local ratio counterparts, they do have non-
LP interpretations in the local ratio spirit (see, e.g.,
Freund and Rawitz [2003]).

formulated within one paradigm can be
translated quite mechanically to the other
paradigm.

1.4. Overview of This Survey

The survey is organized as follows. In
Section 2, we define the basic notions that
are used in the field of approximation al-
gorithms. We also establish some termi-
nology and notation to be used later in
the survey. In Section 3, we begin the sur-
vey proper by presenting two introductory
examples in the spirit of Algorithm VC
above. In Section 4, we state and prove
the Local Ratio Theorem (for minimiza-
tion problems) and formulate the local ra-
tio technique as a design and analysis
framework based on it. In Section 5, we
introduce the idea of minimal solutions
into the framework, making it powerful
enough to encompass many known ap-
proximation algorithms for covering prob-
lems (e.g., feedback vertex set and network
design). In Section 6, we develop a local
ratio framework for maximization prob-
lems, which is, in a sense, a mirror im-
age of its minimization counterpart devel-
oped in Sections 4 and 5. We apply the
framework to a few (interrelated) schedul-
ing problems. In Section 7, we present sev-
eral algorithms that deviate from the stan-
dard local ratio approach. In particular,
we show local ratio analyses of exact opti-
mization algorithms (for polynomial-time
solvable problems). In the final section of
the survey, Section 8, we describe a recent
development, namely, the fractional local
ratio technique.

Since this writeup is intended as a
primer as well as a survey, it is written
in a somewhat textbook style. We have re-
moved nearly all citations and references
from the running text, and instead have
included at the end of each major section
a subsection titled Background, in which
we cite sources for the material covered
in the section, and discuss related work.
The first such subsection, discussing ver-
tex cover, appears next.

1.5. Background

The vertex cover problem is known to be
NP-complete, even for planar cubic graphs
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with unit weights [Garey et al. 1976b].
Håstad [1997] proves a lower bound on
the approximability of the problem. He
shows, using PCP arguments, that ver-
tex cover cannot be approximated within
a factor of 7

6 , unless P = NP. Dinur and
Safra [2002] improve this bound to 10

√
5−

21 ≈ 1.36067. The first 2-approximation
algorithm for the weighted version of
vertex cover is due to Nemhauser and
Trotter [1975]. Hochbaum [1983] uses
this algorithm to obtain an approxima-
tion algorithm with performance ratio
2 − 2

dmax
, where dmax is the maximum

degree of a vertex. Gavril (see [Garey
and Johnson 1979]) gives a linear time
2-approximation algorithm for the non-
weighted case. (Algorithm VC reduces to
this algorithm in nonweighted instances.)
Hochbaum [1982] presents two approx-
imation algorithms for set cover, both
requiring the solution of a linear pro-
gram. The first constructs a cover, based
on the optimal dual solution, while the
second is a simple LP rounding algo-
rithm. Her algorithms achieve an ap-
proximation guarantee of 2 on instances
that are graphs (i.e., on vertex cover in-
stances). Bar-Yehuda and Even [1981]
present an LP-based approximation algo-
rithm for weighted set cover that does not
solve a linear program directly. Rather,
it constructs simultaneously a primal in-
tegral solution and a dual feasible solu-
tion without solving either the primal or
dual programs. It is the first algorithm to
operate in this method, a method which
later became known as the primal-dual
schema. Their algorithm reduces to Algo-
rithm VC on instances that are graphs.
In a subsequent paper, Bar-Yehuda and
Even [1985] provide an alternative local
ratio analysis for this algorithm, mak-
ing it the first local ratio algorithm as
well. They also present a specialized
(2 − log2 log2 n

2 log2 n )-approximation algorithm for
vertex cover. Independently, Monien and
Speckenmeyer [1985] achieved the same
ratio for the unweighted case. Recently,
Halperin [2000] improved this result to
2 − (1 − o(1)) 2 ln ln dmax

ln dmax
, using semidefinite

programming.

2. DEFINITIONS AND NOTATION

2.1. Optimization Problems

An optimization problem is a family of
problem instances, that is, possible inputs.
With each instance is associated a collec-
tion of solutions, each of which is either
feasible or infeasible, and a cost function
assigning a cost to each solution. Each op-
timization problem is classified as either a
maximization problem, or a minimization
problem. For a given problem instance,
an optimal solution is a feasible solution
whose cost is optimal, which is to say that
it is either minimal or maximal (depend-
ing, respectively, on whether the problem
is one of minimization or maximization),
among all feasible solutions. The cost of an
optimal solution is referred to as the opti-
mum value, or simply the optimum. For
example, the familiar minimum spanning
tree problem is a minimization problem
in which the instances are edge-weighted
graphs, solutions are subgraphs, feasible
solutions are spanning trees, the cost of
a given solution is the total weight of
its edges, and optimal solutions are span-
ning trees of minimum total edge weight.
Throughout this survey, we use the terms
cost and weight interchangeably.

Many optimization problems can be for-
mulated as problems of selecting a subset
(satisfying certain constraints) of a given
set of weighted objects. For example, min-
imum spanning tree can be viewed as the
problem of selecting a subset of the edges
forming a spanning tree. In such problems,
we consider the cost function to be defined
on the objects, and extend it to subsets in
the natural manner. Nearly all of the prob-
lems we encounter in this survey are prob-
lems of this type.

2.2. Approximation Algorithms

An approximation algorithm for an op-
timization problem is an algorithm that
takes an input instance and finds a feasi-
ble solution for it. The word approximation
in the term approximation algorithm ex-
presses the idea that our goal in the design
of such an algorithm is to make it so that
the algorithm will always return a feasible
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solution whose value approximates the op-
timum in some sense. Approximation al-
gorithms are of interest chiefly in the con-
text of NP-hard problems, where finding
optimal solutions efficiently is not possible
(unless P = NP), but finding approximate
solutions efficiently quite often is.

The most popular measure of closeness
to the optimum is approximation ratio, de-
fined as follows. For r ≥ 1, a feasible so-
lution is said to be r-approximate, if its
cost is within a factor of r of the opti-
mum. More specifically, let w(X ) be the
cost of a given feasible solution X , and
let w∗ be the optimum value. Then, in
the case of minimization, X is said to be
r-approximate, if w(X ) ≤ r · w∗, and in
the case of maximization, it is said to be
r-approximate, if w(X ) ≥ w∗/r. (Note that
for both types of problems the smaller r
is, the closer X is to being optimal, and
if r = 1, X is optimal.) In the context
of approximation algorithms, we only con-
sider problems in which the optimum is
nonnegative for all input instances. An
r-approximate solution is also called an
r-approximation. An algorithm that al-
ways returns r-approximate solutions is
said to achieve an approximation factor of
r, and it is called an r-approximation algo-
rithm. Also, r is said to be a performance
guarantee, or an approximation guaran-
tee, for it. The approximation ratio of a
given algorithm is inf {r | r is a perfor-
mance guarantee for the algorithm}. Nev-
ertheless, the term approximation ratio is
sometimes used as a synonym for perfor-
mance guarantee.

2.3. Conventions and Notation

In the sequel, we assume the follow-
ing conventions, except where specified
otherwise.

—All weights are nonnegative and de-
noted by w. We denote by w(x) the
weight of element x, and by w(X ), the
total weight of set X , that is, w(X ) =∑

x∈X w(x).

—We denote the optimum value for a
given problem instance by OPT.

—Graphs are simple and undirected. A
graph is denoted G = (V , E). When-
ever a digraph is specified, it is denoted
G = (N , A). We denote the number of
vertices/nodes by n, and the number of
edges/arcs by m. We denote the degree
of vertex v by deg(v).

—We denote by Hn the nth harmonic num-
ber, that is, Hn = ∑n

i=1
1
i .

3. TWO INTRODUCTORY EXAMPLES

In this section, we demonstrate two easy
applications of the local ratio technique.
We describe approximation algorithms for
the prize collecting version of vertex cover
and for a certain graph editing problem.
Our treatment of these problems is simi-
lar to the treatment of vertex cover in the
introduction.

3.1. Prize Collecting Vertex Cover

The prize collecting vertex cover problem
is a generalization of vertex cover in which
we are not obligated to cover all edges,
but must pay a penalty for those left un-
covered. More specifically, both vertices
and edges have nonnegative weights; ev-
ery set of vertices is a feasible solution;
and the cost of a feasible solution is the
total weight of its vertices, plus the total
weight of the edges it does not cover. Our
algorithm for this problem is very similar
to Algorithm VC.

Algorithm PCVC.
1. While there exists an edge e = (u, v),

such that min{w(u), w(v), w(e)} > 0:
2. Let ε = min{w(u), w(v), w(e)}.
3. w(u) ← w(u) − ε.
4. w(v) ← w(v) − ε.
5. w(e) ← w(e) − ε.
6. Return the feasible solution C =

{v | w(v) = 0}.

The analysis here is similar to that of
vertex cover. First, observe that when the
algorithm halts, every edge not covered by
C has zero cost, and thus the cost of C is
zero. Next, consider the ith iteration. Let
ei = (ui, vi) be the edge involved, and let
εi be the amount by which the weights are
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reduced. We pay 3εi and effect a drop of at
least εi in the optimal cost (since every fea-
sible solution must either contain one (or
both) of ui and vi, or else pay for the edge
ei). Thus, a factor of 3 is immediate. How-
ever, we can tighten the analysis by taking
into account only payments that actually
contribute towards covering the cost of C.
Of the 3εi we seem to pay, only 2εi are actu-
ally “consumed,” since we must either pay
for ei, or for one or both of ui and vi, but
never for all three. Thus, the approxima-
tion ratio is 2.

We remark that our analysis still holds
if we set ε = min{w(u), w(v), 1

2 w(e)} in
Line 2, and decrease w(e) by 2ε in Line 5.
The ratio of 2 remains intact because OPT
still drops by at least ε, and we still pay
in actuality at most 2ε. In fact, we can set
ε = min{w(u), w(v), 1

α
w(e)}, and decrease

w(e) by α · ε, for any 1 ≤ α ≤ 2.

3.2. Graph Editing

A graph editing problem asks to trans-
form, by means of editing operations, a
given graph into a new graph possessing
some desired property. The editing opera-
tions we consider are:

Vertex deletion. Delete a vertex (and all
incident edges).

Edge deletion. Delete an edge.
Nonedge addition. Connect two nonad-

jacent vertices by an edge. We refer to a
pair of nonadjacent vertices as a nonedge,
and to the act of connecting them by an
edge as adding the corresponding nonedge
to the graph.

The input consists of a graph with
weights associated with its vertices, edges,
and nonedges, collectively known as the
graph elements. The cost of a transforma-
tion is defined as the total cost of the graph
elements involved, that is, the total cost of
edges removed (including edges removed
as part of vertex deletion operations), ver-
tices removed, and nonedges added. Dif-
ferent graph editing problems may impose
restrictions on the graph-element weights,
or on the types of permitted editing oper-
ations. For example, the vertex cover prob-
lem is a graph editing problem in which

all edge weights are zero, only vertex dele-
tion operations are allowed, and the de-
sired property of the target graph is in-
dependent set, that is, it must contain no
edges.

As another example, consider the prize
collecting vertex cover problem. One might
be tempted to think that it is a graph
editing problem (for the independent set
property) in which the permitted editing
operations are vertex deletion and edge
deletion. This is not the case, however, be-
cause in the graph editing framework, the
cost of deleting a vertex is its weight,
plus the total weight of its incident edges,
where in the context of prize collecting ver-
tex cover, the cost of a vertex is only its
own weight. Nevertheless, the prize col-
lecting vertex cover problem can be viewed
as a graph editing problem by means of the
following reduction. Given a vertex-and-
edge weighted graph G, construct the com-
plement graph G ′, that is, the graph ob-
tained from G by turning every edge into a
nonedge, and every nonedge into an edge.
Define weights on the graph element of G ′
as follows. The weight of a vertex in G ′ is
the same as its weight in G; the weight of a
nonedge in G ′ is the same as the weight of
the corresponding edge in G; the weights
of all edges in G ′ are zero. It can be easily
seen that the problem of finding a prize col-
lecting vertex cover in G is equivalent to
the graph editing problem on G ′ in which
the desired property is clique (i.e., the tar-
get graph must be complete).

We consider the following graph editing
problem. We are given a t-partite graph
G = (V , E), together with a partitioning
of G into t ≥ 2 (nonempty) sides V =⋃t

i=1 Vi, and a weight function w on G’s ele-
ments. The objective is to find a minimum
cost transformation, yielding a complete
t ′-partite graph for some t ′ ≤ t, whose
sides are subsets of the sides of G. We
stress that t ′ is not part of the input, but
rather is defined by the target graph. We
also consider a special case of this prob-
lem in which nonedge additions are not
allowed. (Or, in other words, w(e) = ∞ for
any nonedge e.) In the remainder of this
section, we develop an approximation al-
gorithm for the above mentioned editing
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problem and its special case with approxi-
mation guarantees of 3 and 2, respectively.

To analyze the problem, let us first in-
troduce some terminology. We define the
extended weight of a vertex u, denoted
w(u), as the sum of w(u), and the total
weight of edges incident on u. We say
that a nonedge e = (u, v) is costly, if
min{w(u), w(v), w(e)} > 0. Finally, we use
the term nonedge as an abbreviation of
nonedge between two vertices belonging to
different sides of the partition.

Consider a nonedge (u, v). If we delete u
or v from the graph, we will not be able to
add (u, v). On the other hand, if we leave
them both in the graph, we will be forced
to add (u, v) (since the target graph must
be complete t ′-partite). Similarly, if (u, v)
is an edge, it will be deleted, if and only
if at least one of its endpoints is deleted.
Thus, every feasible solution is completely
defined by the set of vertices which it re-
moves from the graph, and, conversely,
every set of vertices defines a feasible so-
lution in a similar manner. We can, there-
fore, identify feasible solutions with sets
of vertices.

OBSERVATION 1. The optimal cost is 0, if
and only if the graph contains no costly
nonedges, and if that is the case, the set
{v | w(v) = 0} is an optimal solution.

The following algorithm uses a similar
idea to the one behind Algorithm PCVC.

Aalgorithm (t, t)-Graph Editing.
1. While there exists a costly nonedge

e = (u, v):
2. Let ε = min{w(u), w(v), w(e)}.
3. w(u) ← w(u) − ε.
4. w(v) ← w(v) − ε.
5. w(e) ← w(e) − ε.
6. Return the feasible solution {v | w(v) = 0}.

There is a subtle point regarding the
implementation of Lines 3 and 4. Recall
that the extend weight w(x) of vertex x
is defined as the sum of w(x), and the to-
tal weight of edges incident on x. When
we say “w(x) ← w(x) − ε”, we actually
mean “decrease w(x) and the weights of
the edges incident on x by some nonnega-
tive (but not necessarily equal) amounts,
such that w(x) drops by ε as a result.” We

do not care exactly how much is subtracted
from the weight of each of the graph el-
ements involved, only that the total de-
crease amounts to ε, and the weights of
the graph elements remain nonnegative.
Note that the effect of this is not only to
decrease w(x) by ε, but possibly to also de-
crease the extended weight of some of x ’s
neighbors (as a result of decreasing the
weights of the edges connecting them to
x). The algorithm must keep track of these
changes. Regarding this point, note that u
and v (in Lines 3 and 4) are nonadjacent,
so decreasing the extended weight of one of
them has no effect on the extended weight
of the other.

The analysis is similar to the analysis
of Algorithm PCVC. In the ith iteration,
we pay 3εi, and manage to lower the opti-
mal cost by at least εi (because every fea-
sible solution must either delete at least
one of the two vertices, or else add the
nonedge). Thus, the solution returned is
3-approximate. Note that it is possible to
be forced to actually pay nearly 3εi, if the
weights of ui and vi are zero, and each
is adjacent to an edge contributing only
negligibly to the decrease in its extended
weight. In such a case, it might happen
that these two edges will remain in the
graph, all other edges incident on ui or vi
will be deleted by the removal of neighbor-
ing vertices, and the nonedge (ui, vi) will
be added. As a result, only the negligible
down payments made on the two surviving
edges will be recoverable.

In the special case where nonedge addi-
tions are prohibited, we only pay 2εi, yield-
ing an approximation guarantee of 2.

3.3. Background

Prize collecting vertex cover. The prize
collecting vertex cover problem (also
known as generalized vertex cover) was
introduced and studied by Hochbaum
[2002], who presented an O(nm log n2

m )-
time 2-approximation algorithm. Algo-
rithm PCVC shown here is due to Bar-
Yehuda and Rawitz [2001]. The lower
bounds of Håstad [1997] and Dinur and
Safra [2002] for vertex cover apply to the
prize collecting version because the plain
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vertex cover problem is a special case of the
prize collecting version (where edge costs
are infinite).

Graph editing. The graph editing prob-
lem discussed in this section has its
roots in a number of node-and-edge dele-
tion problems considered by Hochbaum
[1998]. She approximates these problems
by reducing them to max-flow problems.
Bar-Yehuda and Rawitz [2002] generalize
the problems and use the local ratio tech-
nique to approximate them. They consider
several variants of the following optimiza-
tion problem: given a graph and a nonneg-
ative weight function on the vertices and
edges, find a minimum weight set of ver-
tices and edges whose removal from the
graph leaves a complete k-partite graph.
The editing problem discussed in this sec-
tion generalizes one of these variants.

4. THE LOCAL RATIO THEOREM

As we have seen, the local ratio technique
is based on the idea of paying, in each it-
eration, at most r · ε, for some r, in order
to achieve a reduction of at least ε in OPT.
If the same r is used in all iterations, the
solution returned is r-approximate. This
idea has a very intuitive appeal, and works
well in the examples we have encountered
in the previous section. However, a closer
look at these examples reveals that the
idea worked mainly because we were able
to make a very localized payment and ar-
gue that OPT must drop by a proportional
amount because every solution must in-
volve some of the items we paid for. For
example, in vertex cover, the payment was
localized to a single edge; we paid ε for
each of its two endpoints and argued that
OPT must drop by at least ε because every
vertex cover must include at least one of
them. This localization of the payments is
at the root of the simplicity and elegance
of the analysis, but it is also a source of
weakness. How can we deal with problems
in which no single set of items is neces-
sarily involved in every optimal solution?
Consider, for example, the feedback ver-
tex set problem in which we are given a
vertex-weighted graph and are asked to
remove a minimum weight set of vertices,

such that the remaining graph will con-
tain no cycles. As we shall see, there is a
2-approximation local ratio algorithm for
this problem, yet surely it is not always
possible to find two vertices such that at
least one of them is part of every optimal
solution! The Local Ratio Theorem, which
we present below, allows us to go beyond
localized payments by shifting the focus of
attention from the weight function itself
to the changes in the weight function, and
treating these changes as weight functions
in their own right. A consequence of this is
that algorithms based on the theorem are
more readily formulated as recursive algo-
rithms, rather than iterative ones. This,
in turn, leads to the idea of concentrat-
ing on minimal solutions in a very natural
manner. By minimal, we mean minimal
with respect to set inclusion. Such solu-
tions are an essential ingredient in many
applications of the technique. We explain
and demonstrate all of this in this section
and subsequent ones.

The Local Ratio Theorem is deceptively
simple.3 It applies to optimization prob-
lems that can be formulated as follows.

Given a weight vector w ∈ R
n, and a set of

feasibility constraints C, find a solution vector
x ∈ R

n, satisfying the constraints in C that min-
imizes the scalar product w · x.

(For convenience we deal in this sec-
tion with minimization problems only.
In Section 6, we discuss maximization
problems.)

The most common type of optimization
problem that can be formulated as just de-
scribed consists of instances in which the
input contains a set I of n weighted el-
ements, and a specification of feasibility
constraints on subsets of I . Feasible solu-
tions are subsets of I satisfying the fea-
sibility constraints. The cost of a feasible
solution is the total weight of the elements
it comprises. In terms of the previous for-
mulation, the weight function on the ele-
ments is expressed by the weight vector
(where the ith component of the vector is

3Indeed, some authors refer to it as the Local Ratio
Lemma. We prefer Theorem in light of its fundamen-
tal role.
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the weight of the ith element), and sub-
sets are expressed as 0–1 vectors (where
the ith component of the vector is 1 if the
ith element is in the subset, and is 0 other-
wise). The scalar product w · x is then the
weight of the subset corresponding to x.

THEOREM 2 LOCAL RATIO—MINIMIZATION

PROBLEMS. Let C be a set of feasibility con-
straints on vectors in R

n. Let w, w1, w2 ∈
R

n be such that w = w1 +w2. Let x ∈ R
n be

a feasible solution (with respect to C) that is
r-approximate with respect to w1, and with
respect to w2. Then, x is r-approximate
with respect to w as well.

PROOF. Let x∗, x∗
1, and x∗

2 be optimal
solutions with respect to w, w1, and w2,
respectively. Clearly, w1 · x∗

1 ≤ w1 · x∗,
and w2 · x∗

2 ≤ w2 · x∗. Thus, w · x =
w1 · x + w2 · x ≤ r(w1 · x∗

1) + r(w2 · x∗
2) ≤

r(w1 · x∗) + r(w2 · x∗) = r(w · x∗).

(Note that the theorem holds even when
negative weights are allowed.)

The Local Ratio Theorem leads nat-
urally to the formulation of recursive
algorithms with the following general
structure.

(1) If a zero-cost solution can be found, re-
turn one.

(2) Otherwise, find a suitable decomposi-
tion of w into two weight functions w1
and w2 = w − w1, and solve the prob-
lem recursively, using w2 as the weight
function in the recursive call.

We demonstrate this on vertex cover.

Algorithm RecursiveVC(G,w).
1. If min{w(u), w(v)} = 0 for all edges (u, v):
2. Return the set {v | w(v) = 0}.
3. Else:
4. Let (u, v) be an edge such that

ε
�= min{w(u), w(v)} > 0.

5. Define w1(x) =
{

ε x = u or x = v,
0 otherwise,

and define w2 = w − w1.
6. Return RecursiveVC(G,w2).

Algorithm RecursiveVC is clearly just
a recursive formulation of Algorithm VC.
However, the recursive formulation is
amenable to direct analysis based on the

Local Ratio Theorem. We prove that the
solution returned by the algorithm is
2-approximate by induction on the recur-
sion. In the base case, the algorithm re-
turns a vertex cover of zero cost, which
is optimal. For the inductive step, con-
sider the solution returned by the recur-
sive call. By the inductive hypothesis it
is 2-approximate with respect to w2. We
claim that it is also 2-approximate with
respect to w1. In fact, we claim that every
feasible solution is 2-approximate with re-
spect to w1. To see this, observe that the
cost (with respect to w1) of every vertex
cover is at most 2ε, since only u and v have
nonzero cost, and they each cost ε. On the
other hand, the minimum cost of a cover
is at least ε, since every vertex cover must
include at least one of u and v in order
to cover the edge (u, v). Thus, by the Lo-
cal Ratio Theorem, the solution returned
is 2-approximate with respect to w.

Note that different algorithms (for dif-
ferent problems), conforming to the gen-
eral structure outlined above, differ from
one another only in the decomposition
of w, and this decomposition is deter-
mined completely by the choice of w1.
(Actually, they might also differ in the
way they search for a zero-cost solution,
but most often the only candidate that
needs to be examined is the set of all
zero-cost elements.) Accordingly, such al-
gorithms also share most of their analy-
ses. Specifically, the proof that a given al-
gorithm is an r-approximation algorithm
is by induction on the recursion. In the
base case, the solution is optimal (and,
therefore, r-approximate) because it has
zero cost, and in the inductive step, the
solution returned by the recursive call is
r-approximate with respect to w2 by the
inductive hypothesis. Thus, different algo-
rithms differ from one another only in the
choice of w1, and in the proof that every
feasible solution is r-approximate with re-
spect to w1. (Obviously, they may also dif-
fer in the value of the approximation ratio
r.) The following definition formalizes this
notion.

Definition 1. Given a set of constraints
C on vectors in R

n and a number r ≥ 1, a
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weight vector w ∈ R
n is said to be fully r-

effective if there exists a number b, such
that b ≤ w · x ≤ r · b for all feasible
solutions x.

The analysis of algorithms in our frame-
work boils down to proving that w1 is
r-effective. Proving this amounts to prov-
ing that b is a lower bound on the optimum
value, and r ·b is an upper bound on the
cost of every feasible solution, and thus
every feasible solution is r-approximate
(all with respect to w1). For this reason,
we will henceforth focus solely on w1, and
neglect to mention the remaining details
explicitly.

In the remainder of this section, we
demonstrate the above framework on two
problems: hitting set and feedback vertex
set in tournaments. We remark that these
algorithms can be formulated just as eas-
ily in terms of localized payments; the true
power of the Local Ratio Theorem will be-
come apparent in the next section.

4.1. Hitting Set

The input in a hitting set instance is a col-
lection of nonempty sets C = {S1, . . . , Sm},
and a weight function w on the sets’ ele-
ments U = ⋃m

i=1 Si. An element x ∈ U is
said to hit a given set Si ∈ C if x ∈ Si. A
subset H ⊆ U is said to hit a given set
Si ∈ C if H ∩ Si = ∅. The objective is to
find a minimum-cost subset of U that hits
all sets Si ∈ C.

Let smax = max1≤i≤m |Si|. The following
decomposition of w achieves an approxi-
mation factor of smax. Let i be any index
such that Si contains no zero-weight el-
ements, and let ε = min{w(x) | x ∈ Si}.
Define:

w1(x) =
{

ε x ∈ Si,
0 otherwise.

We claim that w1 is smax-effective.
Clearly, the cost of every feasible solution
is bounded by ε ·|Si| ≤ ε ·smax. On the other
hand, every feasible solution must hit Si,
that is, must contain at least one element
of Si. Thus, every feasible solution costs at
least ε.

Remarks. The hitting set problem gen-
eralizes many covering problems. For ex-
ample, vertex cover can be seen as a hit-
ting set problem in which the sets are the
edges and the elements are the vertices.
Indeed, Algorithm RecursiveVC is just a
special case of the algorithm for hitting set
we have just described. (Note that smax = 2
for the formulation of vertex cover in terms
of hitting set.)

We also wish to comment on the relation
between hitting set and set cover. In the set
cover problem, we are given a collection of
sets C = {S1, . . . , Sm}, as in hitting set, but
this time the weight function is on the sets,
not on the elements. The objective is to
find a minimum-cost collection of sets that
“covers” all elements. In other words, the
union of the sets in the solution must be
equal to

⋃m
i=1 Si. It is well known that set

cover and hitting set are equivalent prob-
lems in the sense that each is obtained
from the other by switching the roles of
sets and elements. In set cover terms, the
approximation ratio obtained by the above
algorithm is the maximum degree of an
element, where the degree of an element
is the number of sets containing it as a
member.

4.2. Feedback Vertex Set in Tournaments

A tournament is an orientation of a com-
plete (undirected) graph, that is, it is a di-
rected graph with the property that, for ev-
ery unordered pair of distinct nodes {u, v},
it either contains the arc (u, v), or the arc
(v, u), but not both. The feedback vertex
set in tournaments problem is the follow-
ing. Given a tournament and a weight
function w on its nodes, find a minimum-
weight set of nodes whose removal
leaves a graph containing no directed
cycles.

An immediate observation, expressed in
the following lemma, is that we may re-
strict our attention to cycles of length 3.
(Note that the smallest possible cycle
length in a tournament is 3.) We refer to
the set of (three) nodes on a directed cy-
cle of length 3 as a triangle. We say that a
triangle is positive, if all of its nodes have
strictly positive weights.
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LEMMA 1. A tournament contains a di-
rected cycle, if and only if it contains a
triangle.

PROOF. The existence of a triangle im-
plies the existence of a directed cycle, by
definition. The existence of a directed cy-
cle implies the existence of a triangle, by
the following argument. Suppose the mini-
mum length of a directed cycle in the tour-
nament is k ≥ 3. If k = 3, we are done.
Otherwise, the tournament contains some
directed cycle v1, v2, v3, . . . , vk , v1. If the
tournament contains the arc (v3, v1), then
it contains the directed cycle v1, v2, v3, v1
of length 3. Otherwise, it contains the arc
(v1, v3) and, therefore, it contains the di-
rected cycle v3, . . . , vk , v1, v3 of length k−1.
In either case, we reach a contradiction
with the minimality of k.

Lemma 3 implies that the set of all
zero-cost nodes is an optimal solution
(of zero cost), if and only if the tour-
nament contains no positive triangles.
Thus, we obtain a 3-approximation algo-
rithm by means of the following fully 3-
effective weight function. Let {v1, v2, v3}
be a positive triangle, and let ε =
min{w(v1), w(v2), w(v3)}. Define:

w1(v) =
{

ε v ∈ {v1, v2, v3},
0 otherwise.

The maximum cost, with respect to w1,
of a feasible solution is clearly at most
3ε, while the minimum cost is at least ε,
since every feasible solution must contain
at least one of v1, v2, v3.

Cai et al. [2001] describe a 2.5-
approximation algorithm. They present
an algorithm that finds an optimal solu-
tion in any tournament T that does not
contain forbidden subtournaments, that
is subtournaments of the forms shown in
Figure 1 (where the two arcs not shown in
T1 may take any direction). They use this
algorithm to obtain a 2.5-approximation
algorithm for the general case, employ-
ing the following fully 2.5-effective weight
function. Let F be a subset of five positive-
weight vertices inducing a forbidden sub-
tournament, and let ε = min{w(v) |

Fig. 1. Forbidden subtournaments.

v ∈ F }. Define:

w1(v) =
{

ε v ∈ F,
0 otherwise.

This function is fully 2.5-effective since the
cost of every feasible solution is clearly
at most 5ε, while the minimum cost is
at least 2ε (as every four vertices in F
contain a triangle). At the basis of the
recursion—the case where every forbid-
den subtournament in T contains at least
one zero-weight vertex—an optimal solu-
tion is found by removing the set Z of
all zero-weight vertices (thereby eliminat-
ing all forbidden subtournaments), solv-
ing the problem optimally on the remain-
ing graph, and adding Z to the solution
found.

4.3. Background

Hitting set. For the unweighted hitting
set (or equivalently set cover) problem,
Johnson [1974] and Lovász [1975] show
that the greedy algorithm is an Hdmax -
approximation algorithm, where dmax is
the maximum degree of an element.
Chvátal [1979] generalizes this result
to the weighted case. His analysis has
a dual fitting interpretation (see Jain
et al. [2002]). Hochbaum [1982] gives
two smax-approximation algorithms, both
of which are based on solving a linear
program. Bar-Yehuda and Even [1981]
suggest a linear time primal-dual smax-
approximation algorithm. In subsequent
work [Bar-Yehuda and Even 1985], they
present the Local Ratio Theorem and pro-
vide a local ratio analysis of the same al-
gorithm. (Their analysis is the one given
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in this section.) Feige [1996] proves a
lower bound of (1 − o(1)) ln m (unless
NP⊆DTIME(nO(log log n))).

Feedback vertex set in tournaments. The
2.5-approximation algorithm for feedback
vertex set in tournaments discussed in this
section is due to Cai et al. [2001].

5. MINIMAL SOLUTIONS

In the previous section, we introduced the
idea of weight decomposition as a means of
going beyond localized payments, but the
examples we gave of its use did not, in fact,
depart from that paradigm. All we did was
translate the “payment” arguments into
weight decomposition language. In each
case, we identified a small subset of el-
ements such that every feasible solution
had to contain at least one of them, and by
associating a weight of ε with each of these
elements and a weight of zero with all oth-
ers, we were able to obtain an approxi-
mation ratio bounded by the size of the
subset. There are many problems, though,
where identifying such a small subset is
impossible, simply because no such subset
necessarily exists.

A case in point is the partial hitting set
problem. This problem is similar to hitting
set except that not all sets need to be hit.
More specifically, the input consists of a
collection of sets, a weight function on the
sets’ elements, and a number k. The ob-
jective is to find a minimum-cost subset of
elements that hits at least k of the sets.
The crucial difference between hitting set
and partial hitting set is that in the latter,
there is no single set that must be hit by
all feasible solutions. Recall that the algo-
rithm for hitting set picked some set Si,
and associated a weight of ε with each of
its elements. The analysis was based on
the fact that ε · |Si| is an upper bound on
the cost of every feasible solution, while
ε is a lower bound since Si must be hit.
This approach fails for partial hitting set
because ε is no longer a lower bound—an
optimal solution need not necessarily hit
Si. Thus, if we use the above weight func-
tion, we will end up with a solution whose
weight with respect to w1 is positive, while
the optimum value may be equal to 0.

Our method of handling such situations
is a logical extension of the same upper-
bound/lower-bound idea. Roughly speak-
ing, we do not know of any single sub-
set that must contribute to all solutions,
but the set of all elements must surely
do so (otherwise, the empty set is feasi-
ble and optimal). Thus, to prevent OPT
from being equal to 0, we can assign a pos-
itive weight to every element. This takes
care of the lower bound, but opens up the
question of how to obtain a nontrivial up-
per bound—clearly, it is almost never the
case that the cost of every feasible solu-
tion is within some reasonable factor of
the cost of a single element. It turns out
that the simple idea of considering only
minimal solutions works well in many sit-
uations. By minimal solution we mean a
feasible solution that is minimal with re-
spect to set inclusion, that is, a feasible
solution whose proper subsets are all in-
feasible. Minimal solutions are meaning-
ful mainly in the context of covering prob-
lems. (In our context, covering problems
are problems for which feasible solutions
are monotone inclusion-wise, that is, if a
set X is a feasible solution, then so is ev-
ery superset of X . For example, adding a
vertex to a vertex cover yields a vertex
cover, so vertex cover is a covering prob-
lem. In contrast, adding an edge to a span-
ning tree does not yield a tree, so minimum
spanning tree is not a covering problem.)
The idea of focusing on minimal solutions
leads to the following definition, which is
an adaptation of Definition 1 to minimal
solutions.

Definition 1. Given a set of constraints
C on vectors in R

n and a number r ≥ 1,
a weight vector w ∈ R

n is said to be
r-effective, if there exists a number b such
that b ≤ w·x ≤ r ·b for all minimal feasible
solutions x.

If we can show that our algorithm uses
an r-effective w1 and returns minimal so-
lutions, we will have essentially proved
that it is an r-approximation algorithm.
Designing an algorithm to return minimal
solutions is quite easy. Most of the creative
effort is therefore expended in finding an
r-effective weight function (for a small r).
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In this section, we present local ratio al-
gorithms for the problems of partial hit-
ting set network design, and feedback ver-
tex set algorithms that depend on obtain-
ing minimal solutions. We describe and
analyze the first of these algorithms in full
detail. We then outline the general frame-
work of local ratio algorithms obtaining
minimal solutions, and discuss the sub-
sequent algorithms informally with refer-
ence to this framework.

5.1. Partial Hitting Set

In the partial hitting set problem, the in-
put consists of a collection of nonempty
sets C = {S1, . . . , Sm}, a weight function
w on the sets’ elements U = ⋃m

i=1 Si, and
a number k. The objective is to find a
minimum-cost subset of U that hits at
least k sets in C. We assume that a fea-
sible solution exists, that is, k ≤ m.

The partial hitting set problem general-
izes hitting set, and as we have remarked
in Section 4.1, hitting set and set cover
are equivalent problems. For this reason,
the partial hitting set problem is often de-
scribed in the literature in set cover terms
and is referred to as partial covering. We
prefer the partial hitting set formulation
here in order to highlight the similarities
and differences between our treatment of
this problem and the hitting set problem.

Given an instance of partial hitting set,
let S(x) = {Si ∈ C | x ∈ Si} for x ∈ U .
Define the degree of an element x ∈ U as
d (x) = |S(x)|. We present a max{smax, 2}-
approximation algorithm. (Recall the def-
inition smax = max1≤i≤m |Si|.)
Algorithm PHS(CC, w, k).

1. If k ≤ 0, return ∅.
2. Else, if there exists an element x ∈ U such that w(x) = 0 do:
3. H ′ ← PHS(CC \ SS(x), w, k − d(x)).
4. If H ′ hits at least k sets in C:
5. Return the solution H = H ′.
6. Else:
7. Return the solution H = H ′ ∪ {x}.
8. Else:
9. Let ε be maximal such that ε · min{d (x), k} ≤ w(x)

for all x ∈ U .
10. Define the weight functions w1(x) = ε · min{d (x), k},

and w2 = w − w1.
11. Return PHS(CC, w2, k).

Note the slight abuse of notation in
Line 3. The weight function in the recur-
sive call is not w itself, but rather the re-
striction of w to

⋃
(C \ S(x)). We will con-

tinue to silently abuse notation in this
manner.

Let us analyze the algorithm. We claim
that the algorithm finds a minimal so-
lution that is max{smax, 2}-approximate.
Intuitively, Lines 2–7 ensure that the
solution returned is minimal, while the
weight decomposition in Lines 8–11 en-
sures that every minimal solution is
max{smax, 2}-approximate. This is done by
associating with each element x a weight
that is proportional to its “covering power,”
which is the number of sets it hits, but not
more than k, since hitting more than k sets
is no better than hitting k sets.

PROPOSITION 4. Algorithm PHS re-
turns a feasible minimal solution.

PROOF. The proof is by induction on the
recursion. At the recursion basis, the so-
lution returned is the empty set, which is
both feasible (since k ≤ 0) and minimal.
For the inductive step, k > 0 and there
are two cases to consider. If Lines 9–11
are executed, then the solution returned
is feasible and minimal by the inductive
hypothesis. Otherwise, Lines 3–7 are ex-
ecuted. By the inductive hypothesis H ′ is
minimal and feasible with respect to (C \
S(x), k−d (x)). If H ′ = ∅, then d (x) ≥ k and
H = H ′ ∪ {x} is clearly feasible and min-
imal. Otherwise, H ′ hits at least k − d (x)
sets in C that do not contain x, and by min-
imality, for all y ∈ H ′, the set H ′ \ { y} hits
less than k − d (x) sets that do not contain
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x. (Note that H ′ = ∅ implies k > d (x).)
Consider the solution H. Either H = H ′,
which is the case if H ′ hits at least k or
more sets in C, or else H = H ′ ∪ {x}, in
which case H hits at least k−d (x) sets that
do not contain x and additional d (x) sets
that do contain x. In either case, H hits
at least k sets and is therefore feasible. It
is also minimal (in either case), since for
all y ∈ H, if y = x, then H \ { y} hits less
than k − d (x) sets that do not contain x
and at most d (x) sets that do contain x,
for a total of less than k sets, and if y = x,
then x ∈ H, which implies H = H ′ ∪ {x},
which is only possible if H \ { y} = H ′ hits
less than k sets.

PROPOSITION 5. The weight function w1
used in Algorithm PHS is max{smax, 2}-
effective.

PROOF. In terms of w1, every feasible
solution costs at least ε · k, since it ei-
ther contains an element whose cost is
ε · k, or else consists solely of elements
with degree less than k, in which case
the cost of the solution equals ε times the
total degree of elements in the solution,
which must be at least k in order to hit
k sets. To prove that every minimal solu-
tion costs at most ε · k · max{smax, 2}, con-
sider a nonempty minimal feasible solu-
tion H. If H is a singleton, its cost is at
most ε · k, and the claim follows. Other-
wise, we prove the claim by showing that∑

x∈H d (x) ≤ k · max{smax, 2}. We say that
set Si is hit r times by H, if |Si ∩ H| = r.
We bound the total number of times sets
are hit by H, since this number is equal
to

∑
x∈H d (x). Clearly every set Si may be

hit at most |Si| ≤ smax times. Thus, if t is
the number of sets that are hit by H twice
or more, these sets contribute at most
t · smax to the count. The sets that are hit
only once contribute exactly

∑
x∈H d ′(x),

where d ′(x) is the number of sets hit by
x, but not by any other member of H. Let
x∗ = arg min

{
d ′(x) | x ∈ H

}
. Then (by the

choice of x∗ and the fact that H is not a
singleton) d ′(x∗) ≤ ∑

x∈H\{x∗} d ′(x). In ad-
dition, t + ∑

x∈H\{x∗} d ′(x) < k by the mini-
mality of H. Thus the sets that are hit only
once contribute d ′(x∗) + ∑

x∈H\{x∗} d ′(x) ≤

2
∑

x∈H\{x∗} d ′(x) < 2(k − t), and the to-
tal is less than t · smax + 2(k − t) ≤ k ·
max{smax, 2}.

THEOREM 6. Algorithm PHS returns
max{smax, 2}-approximate solutions.

PROOF. The proof is by induction on
the recursion. In the base case, the so-
lution returned is the empty set, which
is optimal. For the inductive step, if
Lines 3–7 are executed, then H ′ is
max{smax, 2}-approximate with respect to
(C \ S(x), w, k − d (x)) by the inductive
hypothesis. Since w(x) = 0, the cost of
H equals that of H ′, and the optimum
value for (C, w, k) cannot be smaller than
the optimum value for (C \ S(x), w, k −
d (x)) because, if H∗ is an optimal solu-
tion for (C, w, k), then H∗ \ {x} is a fea-
sible solution of the same cost for (C \
S(x), w, k − d (x)). If, on the other hand,
Lines 9–11 are executed, then by the in-
ductive hypothesis, the solution returned
is max{smax, 2}-approximate with respect
to w2, and by Proposition 5 it is also
max{smax, 2}-approximate with respect to
w1. Thus, by the Local Ratio Theorem, it
is max{smax, 2}-approximate with respect
to w as well.

5.2. A Framework

The general structure of a local ratio al-
gorithm obtaining minimal solutions con-
sists of a three-way if condition that di-
rects execution to one of the following
three options: optimal solution, problem
size reduction, and weight decomposition.
The top-level description of the algorithm
is:

(1) If a zero-cost minimal solution can be
found, do: optimal solution.

(2) Otherwise, if the problem contains
a zero-cost element, do: problem size
reduction.

(3) Otherwise, do: weight decomposition.

The three types of steps are:

Optimal solution. Find a zero-cost min-
imal solution and return it. (Typically, the
solution will simply be the empty set.) This
is the recursion basis.
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Problem size reduction. This option con-
sists of three steps.

(1) Reduce the problem size by deleting
a zero-cost element. This changes the
problem instance, and may entail fur-
ther changes (to achieve consistency
with the idea that the element has po-
tentially been taken to the solution).
For example, in the partial hitting set
problem we select a zero-cost element
and delete all sets containing it and re-
duce the hitting requirement param-
eter k by the number of these sets.
Sometimes the problem instance must
be adjusted more radically to reflect
the deletion of the element. For exam-
ple, a graph edge might be eliminated
by contracting it. As a result, two ver-
tices get “fused” together and the edges
incident on them undergo changes and
possibly fusions. In other words, the
modification consists of eliminating
some existing elements and introduc-
ing new ones. This, in turn, requires
that the weight function be extended to
cover the new elements. It is important
to realize, though, that the adjustment
of the weight function amounts to a re-
interpretation of the existing weights
in terms of the new instance, and not
to an actual change of weights.

(2) Solve the problem recursively on the
new instance.

(3) If the solution returned (when re-
interpreted in terms of the original in-
stance) is feasible (for the original in-
stance), return it. Otherwise, extend
it by adding the deleted zero-cost el-
ement, and return this solution.

Weight decomposition. Find an
r-effective weight function w1 such
that w − w1 is nonnegative, and solve
the problem recursively using w − w1 as
the weight function in the recursive call.
Return the solution obtained.

The preceding formulation of the
generic algorithm should not be taken too
literally. Each branch of the three-way
if statement may actually consist of
several subcases, only one of which is to
be executed. For example, Line 2 might

hypothetically represent something like:
If there is a vertex of degree less than 2,
take appropriate action. Otherwise, if there
is a zero-weight vertex, take appropriate
action. In both cases, appropriate action
would fall in the category of problem size
reduction. We shall see examples of this
in the sequel.

The analysis of an algorithm in the
framework described follows the pattern
of our analysis for partial hitting set. It
consists of proving the following three
claims.

(1) The algorithm returns a minimal fea-
sible solution.

(2) The weight function w1 is r-effective.
(3) The algorithm returns an r-approx-

imate solution.

The proof of the first claim is by induc-
tion on the recursion. In the base case,
the solution is feasible and minimal by
design. For the inductive step, if the al-
gorithm performs weight decomposition,
then the solution is feasible and mini-
mal by the inductive hypothesis. If the al-
gorithm performs problem size reduction,
the claim follows intuitively from the fact
that the solution returned by the recursive
call is feasible and minimal with respect
to the modified instance (by the induc-
tive hypothesis), and it is extended only
if it is infeasible with respect to the orig-
inal instance. Although the argument is
straightforward, the details of a rigorous
proof tend to be slightly messy, as they
depend heavily on the precise manner in
which the instance is modified.

The proof of the second claim follows
from the combinatorial structure of the
problem. There is no fixed pattern here.
Indeed, the key to the design of a local ra-
tio algorithm is understanding the com-
binatorial properties of the problem un-
der study and finding the right r and an
r-effective weight function.

The proof of the third claim is also by
induction on the recursion, based on the
first two claims. In the optimal solution
case, it is true by design. In the prob-
lem size reduction case, the solution found
recursively for the modified instance is
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r-approximate by the inductive hypothe-
sis, and it has the same cost as the so-
lution generated for the original instance
since the two solutions may only differ by a
zero-weight element. This, combined with
the fact that OPT can only decrease as a
result of the instance modification, yields
the claim. (Again, the details of a rigorous
proof tend to be somewhat messy.) In the
weight decomposition case, the claim fol-
lows by the inductive hypothesis and the
Local Ratio Theorem, based on the fact
that the solution is feasible and minimal,
and that w1 is r-effective.

In the next two sections we describe al-
gorithms for the network design and feed-
back vertex set problems in the context of
this framework.

5.3. Network Design

The network design problem is defined as
follows. Given an edge weighted graph
G = (V , E) and a demand function f :
2V → N, find a minimum weight set of
edges F that for all S ⊆ V , contains at
least f (S) edges from δ(S), where δ(S) is
the set of edges in the cut defined by S
(i.e., edges with exactly one endpoint in
S). We assume f (V ) = f (∅) = 0, for oth-
erwise no solution exists. Furthermore, we
assume the existence of a polynomial-time
oracle that provides f (S) when given a
subset S. We make this assumption be-
cause the number of subsets S ⊆ V is
exponential, and enumerating f (S) for
all of them in the input would be unrea-
sonable. Finally, to simplify the exposi-
tion, we generalize the problem and al-
low G to be a multi-graph, that is, G may
contain multiple edges between pairs of
vertices.

Many familiar problems can be formu-
lated as network design problems with 0-1
demand functions, that is, demand func-
tions with range {0, 1}. For example, in
the shortest path problem f (S) = 1, if
|S ∩ {s, t}| = 1, and f (S) = 0 otherwise;
in the minimum spanning tree problem,
f (S) = 1, if ∅ = S ⊆ V , and f (S) = 0
otherwise; and in the Steiner tree problem,
f (S) = 1, if ∅ = S ⊆ T , and f (S) = 0 oth-

erwise. The Steiner tree problem is: given
a graph G = (V , E) and a set of termi-
nals T ⊆ V , find a minimum weight set
of edges that induces a connected sub-
graph containing all terminals (and pos-
sibly other vertices as well). The key prop-
erty of 0-1 demand functions is that every
minimal solution induces a forest, for if a
feasible solution contains a cycle, remov-
ing a single edge from this cycle cannot de-
stroy the solution’s feasibility. (Of course,
multiple edges are redundant, too.)

In our treatment of the problem, we re-
strict our attention to 0-1 demand func-
tions. We further restrict our attention
to two families of 0-1 demand functions
for which deciding whether a given set
of edges constitutes a feasible solution is
easy. Specifically, we consider 0-1 proper
functions, and 0-1 downwards monotone
functions.

0-1 proper functions. A 0-1 demand
function f is proper if it satisfies two
conditions.

Symmetry. f (S) = f (V \ S) for all
S ⊆ V .

Maximality. For all pairs of disjoint sets
A and B, if f (A) = f (B) = 0, then f (A ∪
B) = 0.

Note that the examples given here for ap-
plications of 0-1 functions are actually ap-
plications of 0-1 proper functions.

0-1 downwards monotone functions. A 0-
1 demand function f is downwards mono-
tone if f (S) = 1 implies f (S′) = 1 for all
nonempty S′ ⊆ S. Notice that a down-
wards monotone function satisfies maxi-
mality, but not necessarily symmetry.

Downwards monotone functions can be
used to model several familiar problems.
For example, the edge covering problem
is that of selecting a minimum weight
set of edges spanning the entire vertex
set. This problem (which is polynomial
time solvable [Grötschel et al. 1988]) can
be modeled by: f (S) = 1, if and only if
|S| = 1, which is downwards monotone.
Another example is the lower capacitated
tree partitioning problem. Here we must
find a minimum weight set of edges F such
that (V , F ) is a forest in which each tree
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contains at least k vertices, for some pa-
rameter k. This problem can be modeled
by: f (S) = 1, if and only if 0 < |S| < k,
which again is downwards monotone.

Notice that if a 0-1 demand function f
is proper or downwards monotone, we can
check efficiently whether an edge set F is
feasible by checking if f (C) = 0 for ev-
ery connected component C of (V , F ). If
f (C) = 1 for some component C, then F
is clearly infeasible. Otherwise, F is fea-
sible since every S ⊆ V that is a union
of components obeys f (S) = 0 by max-
imality, and every S that is not a union
of components is satisfied by some edge
in F .

5.3.1. The Algorithm. We now present a
2-approximation algorithm. We begin with
some definitions and an observation, and
then describe and analyze the algorithm.

Definitions.

(1) The vertices v such that f ({v}) = 1 are
called terminals.

(2) We denote by τ (e) the number of end-
points of edge e that are terminals.
(Thus, τ (e) ∈ {0, 1, 2} for all e.)

(3) In the course of its execution, the algo-
rithm modifies the graph by perform-
ing edge contractions. Contracting an
edge consists in “fusing” its two end-
points u and v into a single (new) ver-
tex z. The edge (or multiple edges) con-
necting u and v are deleted, and every
other edge incident on u or v becomes
incident on z instead. In addition, the
demand function f is replaced with a
new demand function f ′, defined by

f ′(S) =
{

f ((S \ z) ∪ {u, v}) z ∈ S,
f (S) z ∈ S.

Clearly, if f is 0-1 proper or down-
wards monotone, then so is f ′.

OBSERVATION 7. Let I be an instance of
the problem, and let I ′ be the problem in-
stance obtained from it by contracting a
single edge e. Then:

(1) The optimum value for I is not less
than the optimum value for I ′.

(2) If F ′ is a minimal feasible solution for
I ′, then either F ′ is minimal feasible
for I , or else it is infeasible for I , but
F ′ ∪ {e} is minimal feasible for I .

The algorithm follows.

Algorithm ND(G, w, f).
1. If G contains no terminals, return ∅.
2. Else, if there exists an edge e such that

w(e) = 0 do:
3. Let (G ′, w′, f ′) be the instance

obtained by contracting e.
4. F ′ ← ND(G ′, w′, f ′).
5. If F ′ is a feasible solution with

respect to G:
6. Return the solution F = F ′.
7. Else:
8. Return the solution F = F ′ ∪ {e}.
9. Else:

10. Let ε = min{w(e)/τ (e) | τ (e) ≥ 1}.
11. Define the weight functions

w1(e) = ε · τ (e) and w2 = w − w1.
12. Return ND(G, w2, f ).

In terms of our framework, Line 1 imple-
ments the optimal solution case (correct-
ness follows from the maximality property
of f ), Lines 2–8 implement the problem
size reduction case (correctness follows
from Observation 5.3.1), and Lines 9–
12 implement the weight decomposition
case.

We claim that the solution returned by
the algorithm is 2-approximate, and to
prove this we only need to show that w1
is 2-effective.

LEMMA 8. Let F be a minimal feasible
solution. Then every tree in the forest in-
duced by F contains at most one nonter-
minal leaf (and all other leaves are termi-
nals).

PROOF. We first consider the case that
f is 0-1 proper. Suppose there exists some
leaf v that is not a terminal. Let Tv be the
tree containing v. Let F ′ be the set of edges
obtained from F by removing the edge in-
cident on v. Since F is minimal, F ′ is in-
feasible. Thus there exists ∅ = S ⊆ V such
that f (S) = 1 and δ(S) ∩ F ′ = ∅. By sym-
metry, we can assume v ∈ S without loss of
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generality. The fact that δ(S) ∩ F ′ = ∅ im-
plies that S is a union of trees in the forest
induced by F ′ (we consider trees to be sets
of vertices). The trees in this forest are ex-
actly the trees in the forest induced by F ,
except that Tv is split into two trees {v} and
Tv \{v}. Since F is feasible, every tree T in
the forest induced by it satisfies f (T ) = 0,
and by maximality, so does the union of
any number of them. Thus, f (S ∩ Tv) =
1, for otherwise maximality would imply
f (S) = 0. We know that S is a union
of trees in the forest induced by F ′, and
∅ = S ∩ Tv = Tv since f (S ∩ Tv) = 1. Thus,
either S∩Tv = Tv \{v}, or S∩Tv = {v}. The
latter is impossible since v is not a termi-
nal, so S∩Tv = Tv\{v}. But this contradicts
our assumption that v ∈ S. Thus in the
case of 0-1 proper functions, all leaves are
terminals.

Now consider the case that f is 0-1
downwards monotone. Again, suppose
some leaf v is a nonterminal. The proof
proceeds as before, except that this time
we cannot assume v ∈ S (since symme-
try does not necessarily hold). Thus in the
final step of the proof, we conclude that
S ∩ Tv = Tv \ {v}, and there is no contra-
diction. Hence, f (Tv \ {v}) = 1, which im-
plies (by downwards monotonicity) that all
vertices in Tv, except for v, are terminals.
We remark that the proof can be extended
quite easily to show that, in fact, if a tree
contains any nonterminal (not necessarily
a leaf), then all other vertices in the tree
are terminals.

The proof that w1 is 2-effective follows
from Lemma 8. Consider a minimal fea-
sible solution F . We claim that ε|Vt | ≤
w1(F ) ≤ 2ε|Vt |, where Vt denotes the set
of terminals. To show this, we prove the
equivalent claim |Vt | ≤ ∑

e∈F τ (e) ≤ 2|Vt |.
For the first inequality, observe that the
feasibility of F implies that every termi-
nal must be adjacent to at least one of
the edges in F , and thus

∑
e∈F τ (e) ≥ |Vt |.

Turning to the second inequality, let VF
be the set of vertices in the forest in-
duced by F , let degF (v) denote the de-
gree of vertex v in the forest, and let
k be the number of trees in the forest.

Then,

∑
e∈F

τ (e) =
∑
v∈Vt

degF (v)

=
∑
v∈VF

degF (v) −
∑

v∈VF \Vt

degF (v)

= 2(|VF | − k) −
∑

v∈VF \Vt

degF (v).

By Lemma 8, all but one of the nontermi-
nals in a given tree are not leaves, so each
has degree at least 2 in the forest. Thus,

∑
v∈VF \Vt

degF (v) ≥ 2|VF \ Vt | − k

= 2|VF | − 2|Vt | − k,

and thus
∑

e∈F τ (e) ≤ 2|Vt | − k ≤ 2|Vt |.
In a slightly more refined analysis, we

can take into account the −k term in the
last inequality and see that w1 is actu-
ally (2 − 1/|Vt |)-effective (since k ≥ 1).
Furthermore, if f is 0-1 proper, then all
leaves are terminals, and we can replace
the −k by −2k, so in this case, w1 is
even (2 − 2/|Vt |)-effective. (Note that Vt
decreases as the recursion proceeds to
ever deeper levels, so in the above expres-
sions, we must understand |Vt | to repre-
sent the number of terminals in the initial
graph.)

In particular, the ratio is 1 for short-
est path, since this problem is modeled by
a 0-1 proper function, and |Vt | = 2. In
fact, Algorithm ND can be viewed as a
recursive implementation of a variant of
Dijkstra’s algorithm using bi-directional
search (see Nicholson [1966]). Also, in
the case of minimum spanning tree, w1
is really 1-effective, since every min-
imal solution costs exactly 2ε(n − 1).
For this problem, Algorithm ND can be
seen as a recursive implementation of
Kruskal’s [1956] minimum spanning tree
algorithm.

5.4. Feedback Vertex Set

A set of vertices in an undirected graph
is called a feedback vertex set (FVS, for
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short) if its removal leaves an acyclic
graph (i.e., a forest). Another way of saying
this is that the set intersects all cycles in
the graph. The feedback vertex set problem
is: given a vertex-weighted graph, find a
minimum-weight FVS. In this section, we
describe and analyze a 2-approximation
algorithm for the problem following our
minimal-solutions framework.

The algorithm is as follows.

Algorithm FVS(G, w).
1. If G is empty, return ∅.
2. If there exists a vertex v ∈ V such that

deg(v) ≤ 1 do:
3. return FVS(G \ {v}, w).
4. Else, if there exists a vertex v ∈ V such

that w(v) = 0 do:
5. F ′ ← FVS(G \ {v}, w).
6. If F ′ is an FVS with respect to G:
7. Return F ′.
8. Else:
9. Return F = F ′ ∪ {v}.

10. Else:
11. Let ε = minv∈V

w(v)
deg(v) .

12. Define the weight functions
w1(v) = ε · deg(v)

and w2 = w − w1.
13. Return FVS(G, w2)

The analysis follows the pattern out-
lined above—the only interesting part
is showing that w1 is 2-effective. Since
w1(F ) = ε · ∑

v∈F deg(v) for any FVS F , it
is sufficient to demonstrate the existence
of a number b such that for all minimal
solutions F , b ≤ ∑

v∈F deg(v) ≤ 2b. Note
that the weight decomposition is only ap-
plied to graphs in which all vertices have
degree of at least 2. We shall henceforth
assume that our graph G = (V , E) is such
a graph.

Consider a feasible solution F . There
is a clear connection between

∑
v∈F deg(v)

and the number of edges deleted by re-
moving F from the graph, so it makes
sense to reason about these edges. Con-
sider the graph obtained by removing F
from G. This graph is a forest on |V | − |F |
nodes, and it therefore contains precisely
|V |− |F |−k edges, where k is the number
of its connected components (trees). The
number of edges deleted by the removal of

F is thus |E|−|V |+|F |+k > |E|−|V |+|F |,
and since each of these edges contributes
to the degree of some vertex in F , we get
the following lower bound: |E|−|V |+|F | <∑

v∈F deg(v).
Let us fix some feasible solution F ∗ that

minimizes |E| − |V | + |F ∗|, that is, let
F ∗ be a minimum cardinality FVS. We
claim that all minimal solutions F sat-
isfy |E| − |V | + |F ∗| <

∑
v∈F deg(v) ≤

2(|E| − |V | + |F ∗|), which proves that w1
is 2-effective. Let F be a minimal solu-
tion. The first inequality follows imme-
diately from the previous discussion and
our choice of F ∗. The second inequality,
however, is not immediate, and to prove
it we must first explore the structure
of G.

Consider a vertex v ∈ F . The minimal-
ity of F implies that there exists at least
one cycle in G such that v is the only ver-
tex in F contained in this cycle. Denote
this cycle by Cv (if more than one such cy-
cle exist, choose one arbitrarily), and let Pv
be the path obtained by removing v from
Cv. Let P = {Pv | v ∈ F }. Now consider the
connected components of the graph G ′ ob-
tained by removing F from G. Some of
these connected components contain ver-
tices from the paths P. We refer to them
as vpath-components. Let V1 be the set of
vertices in the vpath-components, and let
V2 be the remaining vertices in G ′. The
original graph G is partitioned into three
parts, as illustrated in Figure 2. (Although
F and V2 are each drawn in the figure as a
single oval, the subgraphs they induce are
not necessarily connected.) Observe that
there are no edges between V1 and V2 since
such edges would appear in G ′, but V1 is
a union of connected components in G ′.
Let n1 = |V1|, and n2 = |V2|. Let m1 be
the number of edges in G that are inci-
dent on vertices in V1 (i.e., edges between
vertices in V1 and edges connecting ver-
tices in V1 with vertices in F ). Similarly,
let m2 be the number of edges in G that
are incident on vertices in V2. Let m′

1 be
the number of edges connecting vertices
in F with vertices in V1, and let m′

2 be
the number of edges connecting vertices
in F with vertices in V2. Let mF be the
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Fig. 2. Partition of G.

number of edges in the subgraph induced
by F . Finally, let κ be the number of vpath-
components.

With this notation in place, we are ready
to bound

∑
v∈F deg(v). First, note that

|V | = n1+n2+|F |, and |E| = m1+m2+mF .
Also,

∑
v∈F

deg(v) = m′
1 + m′

2 + 2mF .

To achieve the desired bound on∑
v∈F deg(v), we bound m′

1, and m′
2

and sum these bounds together with
2mF . We will also need a bound on
2|F |.

As we have already pointed out, the re-
moval of F leaves a forest, and thus each
of the vpath-components is a tree. There-
fore, the number of edges in the subgraph
induced by V1 is n1 − κ, and therefore
m′

1 = m1 − n1 + κ. Let us bound κ. Con-
sider a path Pv ∈ P. This path is obtained
by deleting v from the cycle Cv. By defini-
tion, Cv contains exactly one vertex in F ,
namely v, so Pv contains no vertices from
F , and therefore exists in the graph G ′. It
follows that Pv is fully contained in exactly
one vpath-component. To bound the num-
ber of vpath-components, observe that for
all v ∈ F , the cycle Cv contains at least one
vertex of F ∗ (since F ∗ is an FVS), so either
v ∈ F ∗, in which case v ∈ F ∗∩F , or else Pv
contains a vertex of F ∗, in which case this
vertex belongs to F ∗ \ F . Thus each vpath-
component either contains a path Pv such
that v ∈ F ∗∩F , or else contains a vertex of
F ∗ \ F . Thus κ ≤ |F ∗ ∩ F |+|F ∗ \ F | = |F ∗|,

and hence

m′
1 ≤ m1 − n1 + |F ∗|.

The last expression also bounds 2|F |, since
every vertex v ∈ F is connected by at least
two edges to vertices in V1 (the two edges
connecting it to its neighbors in the cycle
Cv), and thus 2|F | ≤ m′

1, which implies

m1 − n1 + |F ∗| ≥ 2|F |.

To bound m′
2, recall that the degree of ev-

ery vertex in the graph is at least 2. Thus
2n2 ≤ ∑

u∈V2
deg(u) = 2(m2 − m′

2) + m′
2 =

2m2 − m′
2, which implies

m′
2 ≤ 2m2 − 2n2.

Putting the pieces together, we get
∑
v∈F

deg(v) = m′
1 + m′

2 + 2mF

≤ m1 − n1 + |F ∗| + 2m2 − 2n2

+ 2mF

= 2(m1 + m2 + mF ) − 2n1 − 2n2

− (m1 − n1 + |F ∗|) + 2|F ∗|
≤ 2|E| − 2n1 − 2n2 − 2|F |

+ 2|F ∗|
= 2(|E| − |V | + |F ∗|).

Remark. In addition to the above
choice of w1, the following two alterna-
tive weight decompositions have been pro-
posed in the literature, and both have been
shown to be 2-effective. The first is ob-
tained by replacing Lines 11 and 12 of
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Algorithm FVS with the following:

If G contains a semi-disjoint cycle4 C:
Let ε = minv∈C w(v).

Define the weight functions w1(v) =
{

ε v ∈ C,
0 otherwise,

and w2 = w − w1.

Else:
Let ε = minv∈V w(v)/(deg(v) − 1).
Define the weight functions w1(v)ε · (deg(v) − 1)
and w2 = w − w1.

The second is obtained by:

Choose an endblock5 B, and let ε = minv∈B w(v)/(deg(v) − 1).

Define the weight functions w1(v) =
{

ε · (deg(v) − 1) v ∈ B,
0 otherwise,

and w2 = w − w1.

5.5. Background

Minimal solutions and feedback vertex
set. The use of minimal solutions in
the local ratio setting appeared for the
first time in the context of feedback ver-
tex set [Bafna et al. 1999]. This problem
is NP-hard [Karp 1972] and MAX SNP-
hard [Lund and Yannakakis 1993], and
at least as hard to approximate as ver-
tex cover [Lewis and Yannakakis 1980].
An approximation algorithm for the un-
weighted case that achieves a perfor-
mance ratio of 2 log2 n is essentially con-
tained in a lemma due to Erdös and
Pósa [1962]. Monien and Shultz [1981] im-
prove the ratio to

√
log n. Bar-Yehudab

et al. [1998] give a 4-approximation al-
gorithm for the unweighted case, and an
O(log n)-approximation algorithm for the
weighted case. Bafna et al. [1999] present
a local ratio 2-approximation algorithm
for the weighted case (using the first of
the two alternative weight decompositions
presented above). Their algorithm is the
first local ratio algorithm to make use
of the concept of minimal solutions (al-
though this concept was used earlier in
primal-dual algorithms [Ravi and Klein
1993; Agrawal et al. 1995; Goemans and
Williamson 1995]). At about the same

4A cycle C is semidisjoint, if there exists a vertex
x ∈ C such that deg(u) = 2 for every vertex u ∈ C\{x}.
5An endblock is a biconnected component, containing
at most one articulation point.

time, Becker and Geiger [1996] also ob-
tained a 2-approximation algorithm for
the problem. Algorithm FVS is a recursive
formulation of their algorithm. Chudak
et al. [1998] interpret the above two al-
gorithms in primal-dual terms, and sug-
gest a third algorithm, whose local ratio
interpretation is described by the second
alternative weight decomposition given
above. Fujito [1998] proposes a generic lo-
cal ratio algorithm for node-deletion prob-
lems with nontrivial and hereditary graph
properties.6 Algorithm RecursiveVC, Al-
gorithm FVS, and the algorithm of Bafna
et al. [1999] can be seen as instances
of Fujito’s generic algorithm. Bar-Yehuda
[2000] presents a unified local ratio ap-
proach for covering problems. His presen-
tation contains a short generic approxi-
mation algorithm that can explain many
known exact optimization and approxi-
mation algorithms for covering problems.
Bar-Yehuda and Rawitz [2001] devise a
framework that extends the generic algo-
rithm from Bar-Yehuda [2000]. The notion
of effectiveness of a weight function first
appeared in Bar-Yehuda [2000]. A similar
idea appeared earlier in the primal-dual
setting [Bertsimas and Teo 1998].

6A graph property π is nontrivial if it is true for in-
finitely many graphs, and false for infinitely many
graphs; it is hereditary if every subgraph of a graph
satisfying π also satisfies π .
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Partial hitting set. The partial hitting
set problem generalizes hitting set, and
as we remarked in Section 4.1, hitting set
and set cover are equivalent problems. For
this reason, the partial hitting set problem
is often described in the literature in set
cover terms and is referred to as partial
covering. The problem was first studied by
Kearns [1990] in relation to learning. He
proves that the performance ratio of the
greedy algorithm is at most 2Hm + 3. (Re-
call that Hm is the mth harmonic number.)
Slavı́k [1997] shows that it is actually
bounded by Hk . The special case in which
the cardinality of every set is exactly 2
is called the partial vertex cover problem.
This problem was studied by Bshouty
and Burroughs [1998], who obtained the
first polynomial time 2-approximation
algorithm for it. The max{smax, 2}-
approximation algorithm for partial
hitting set given in this section (Algo-
rithm PHS) is due to Bar-Yehuda [2001].
In fact, his approach can be used to ap-
proximate an extension of the partial hit-
ting set problem in which there is a length
li associated with each set Si, and the goal
is to hit sets of total length at least k. (The
plain hitting set problem is the special
case where li = 1 for all i.) Gandhi et al.
[2001] present a multi-phase primal-dual
algorithm for partial hitting set achieving
a performance ratio of max{smax, 2}.

Network design. As we have seen, Al-
gorithm ND can be applied to problems
that can be modeled by 0-1 down-
wards monotone functions. These in-
clude lower capacitated partitioning prob-
lems [Goemans and Williamson 1995;
Imielińska et al. 1993] and location de-
sign problems [Laporte 1988; Laporte
et al. 1983]. (For further discussion see
Goemans and Williamson [1997].) Algo-
rithm ND has evolved from work on the
generalized Steiner network problem (also
called the survival network design prob-
lem), in which we are given a graph G =
(V , E), edge costs, and a nonnegative in-
teger rij, for each pair of vertices i and
j . Our goal is to find a minimum weight
subset of edges E ′ ⊆ E such that there
are at least rij edge-disjoint paths between
each pair of vertices i, j ∈ V in the graph

(V , E ′). This problem can be modeled as
a network design problem with the proper
function7 f (S) = maxi∈S, j ∈S rij. Note that
the Steiner tree problem is a special case
of this problem, where rij = 1, if i and
j are terminals, and rij = 0 otherwise.
Agrawal et al. [1995] describe an approxi-
mation algorithm for a variant of the gen-
eralized Steiner network problem in which
an edge can be selected (and paid for)
multiple times. The performance ratio of
their algorithm is 2�log2(rmax + 1)�, where
rmax = maxij rij. Goemans and Williamson
[1995] present a primal-dual approxima-
tion framework for network design prob-
lems in which the demand function is 0-1
proper. The approximation ratio of their
generic algorithm is 2 − 2

|Vt | . (In the case
of Steiner tree, their algorithm simulates
the algorithm of Agrawal et al. [1995].) Al-
gorithm ND is a local ratio version of this
algorithm. Williamson, Goemans, Mihail,
and Vazirani [1995] present the first ap-
proximation algorithm for general proper
functions. Their algorithm finds a solu-
tion within a factor of max{2 fmax − 1, 2}
of the optimal, where fmax = maxS f (S).
In addition to the primal-dual approach,
their algorithm uses the idea of satis-
fying f in “phases,” which was intro-
duced by Ravi and Klein [1993] (in the
context of a 3-approximation algorithm
for proper functions with range {0, 2}).
Gabow et al. [1993] improve the efficiency
of this algorithm. Goemans et al. [1994]
improve the ratio for the general case
to 2Hfmax . Jain [1998] considers weakly
super-modular functions, that is, functions
f satisfying (1) f (V ) = 0, and (2) f (A) +
f (B) ≤ max{ f (A \ B) + f (B \ A), f (A ∩
B) + f (A ∪ B)} for all A, B ⊆ V . (Note
that proper functions are weakly super-
modular.) He describes a 2-approximation
algorithm based on LP rounding.

6. MAXIMIZATION PROBLEMS AND
SCHEDULING APPLICATIONS

In this section, we describe applications of
the local ratio technique in the context of

7A function that satisfies symmetry and maximality
is called proper.
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maximization problems, focusing on prob-
lems of resource allocation and schedul-
ing. Our goal in this section is twofold.
First, we develop a local ratio theory for
maximization problems in general, and
second, we demonstrate the technique’s
applicability in an important branch of
optimization, namely, resource allocation
and scheduling. Resource allocation and
scheduling problems are immensely pop-
ular objects of study in the field of approx-
imation algorithms and combinatorial op-
timization, because of their direct appli-
cability to many real-life scenarios, and
their richness in terms of mathematical
structure. Historically, they were among
the first to be analyzed in terms of worst-
case approximation ratio, and research
into these problems actively continues to
this day.

We begin by presenting a local ratio
theorem for maximization problems, and
sketching a general framework based on
it in Section 6.1. We apply this framework
to a collection of scheduling maximization
problems in Section 6.2. We briefly discuss
other kinds of scheduling problems in
Section 6.3.

6.1. Local Ratio for Maximization Problems

The Local Ratio Theorem for maximiza-
tion problems is very similar to its min-
imization counterpart. It applies to opti-
mization problems that can be formulated
as follows.

Given a weight vector w ∈ R
n and a set of feasi-

bility constraints C, find a solution vector x ∈ R
n

satisfying the constraints in C that maximizes
the scalar product w · x.

Before stating the Local Ratio Theorem
for maximization problems, we remind the
reader that we call a feasible solution to
a maximization problem r-approximate, if
its weight is at least 1/r times the opti-
mum weight (hence approximation factors
are greater than or equal to 1).

THEOREM 9 (LOCAL RATIO—MAXIMIZATION

PROBLEMS). Let C be a set of feasibility con-
straints on vectors in R

n. Let w, w1, w2 ∈
R

n be such that w = w1 +w2. Let x ∈ R
n be

a feasible solution (with respect to C) that is
r-approximate with respect to w1, and with

respect to w2. Then, x is r-approximate
with respect to w as well.

PROOF. Let x∗, x∗
1, and x∗

2 be optimal so-
lutions with respect to w, w1, and w2, re-
spectively. Clearly, w1 · x∗

1 ≥ w1 · x∗, and
w2 ·x∗

2 ≥ w2 ·x∗. Thus, w·x = w1 ·x + w2 ·x ≥
1
r (w1 · x∗

1) + 1
r (w2 · x∗

2) ≥ 1
r (w1 · x∗) + 1

r (w2 ·
x∗) = 1

r (w · x∗).

The general structure of a local ratio ap-
proximation algorithm for a maximization
problem is similar to the one described
for the minimization case in Section 5.2.
It too consists of a three-way if condition
that directs execution to one of three main
options: optimal solution, problem size re-
duction, and weight decomposition. There
are several differences though. In contrast
to the minimization case, we make no ef-
fort to keep the weight function nonnega-
tive, that is, in weight decomposition steps,
we allow w2 to take on negative values.
Also, in problem size reduction steps, we
usually remove an element whose weight
is either zero, or negative. Finally and
most importantly, we strive to construct
maximal solutions rather than minimal
ones. This affects our choice of w1 in weight
decomposition steps. The weight function
w1 is chosen such that every maximal so-
lution (a feasible solution that cannot be
extended) is r-approximate with respect to
it.8 Accordingly, when the recursive call re-
turns in problem size reduction steps, we
extend the solution if possible (rather than
if necessary), but we attempt to do so only
for zero-weight elements (and not for neg-
ative weight ones).

As in the minimization case, we use the
notion of effectiveness.

Definition 3. In the context of maxi-
mization problems, a weight function w is
said to be r-effective, if there exists a num-
ber b such that b ≤ w · x ≤ r · b for all
maximal feasible solutions x.

6.2. Throughput Maximization Problems

Consider the following general problem.
The input consists of a set of activities,

8We actually impose a somewhat weaker condition,
as described in Section 6.2.
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each requiring the utilization of a given
limited resource. The amount of resource
available is fixed over time; we normalize
it to unit size for convenience. The activ-
ities are specified as a collection of sets
A1, . . . , An. Each set represents a single
activity: it consists of all possible instances
of that activity. An instance I ∈ Ai is de-
fined by the following parameters.

(1) A half-open time interval [s(I ), e(I ))
during which the activity will be ex-
ecuted. We call s(I ) and e(I ) the start-
time and the end-time of the instance.

(2) The amount of resource required for
the activity. We refer to this amount as
the width of the instance, and denote
it d (I ). Naturally, 0 < d (I ) ≤ 1.

(3) The weight w(I ) ≥ 0 of the instance.
The weight represents the profit to be
gained by scheduling this instance of
the activity.

Different instances of the same activity
may have different parameters of dura-
tion, width or weight. A schedule is a col-
lection of instances. It is feasible if (1) it
contains, at most, one instance of every ac-
tivity, and (2) for all time instants t, the to-
tal width of the instances in the schedule
whose time interval contains t does not ex-
ceed 1 (the amount of resource available).
The goal is to find a feasible schedule that
maximizes the total weight of instances in
the schedule.

In the following sections, we describe
local ratio algorithms for several special
cases of the general problem. We use the
following notation. For a given activity
instance I , A(I ) denotes the activity to
which I belongs, and I(I ) denotes the set
of all activity instances that intersect I ,
but belong to activities other than A(I ).

6.2.1. Interval Scheduling. In the interval
scheduling problem we must schedule jobs
on a single processor with no preemption.
Each job consists of a finite collection of
time intervals during which it may be
scheduled. The problem is to select a max-
imum weight subset of nonconflicting in-
tervals, at most one interval for each job.

Fig. 3. J , A(J ), and I(J ):
heavy lines represent A(J );
dashed lines represent I(J ).

In terms of our general problem, this is
simply the special case where every activ-
ity consists of a finite number of instances,
and the width of every instance is 1.

To design the weight decomposition for
this problem, we examine the properties
of maximal schedules. Let J be the ac-
tivity instance with minimum end-time
among all activity instances of all activi-
ties (breaking ties arbitrarily). Note that
the choice of J ensures that all of the inter-
vals intersecting it intersect each other at
J ’s right endpoint (see Figure 3). Consider
a maximal schedule S. Clearly S cannot
contain more than one instance fromA(J ),
nor can it contain more than one instance
from I(J ), since all of these instances in-
tersect each other. Thus, S contains, at
most, two intervals from A(J ) ∪ I(J ). On
the other hand,S must contain at least one
instance from A(J )∪I(J ), for otherwise it
would not be maximal (since J could be
added to it). This implies that the weight
function

w1(I ) = ε ·
{

1 I ∈ A(J ) ∪ I(J ),
0 otherwise,

is 2-effective for any choice of ε > 0, and
we can expect to obtain a 2-approximation
algorithm based on it.

A logical course of action is to fix ε =
min{w(I ) | I ∈ A(J ) ∪ I(J )}, and to solve
the problem recursively on w − w1, rely-
ing on two things: (1) w1 is 2-effective;
and (2) the solution returned is maxi-
mal. However, we prefer a slightly dif-
ferent approach. We show that w1 actu-
ally satisfies a stronger property than 2-
effectiveness. For a given activity instance
I , we say that a feasible schedule is I-
maximal if it either contains I , or it does
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not contain I , but adding I to it will ren-
der it infeasible. Clearly, every maximal
schedule is also I -maximal for any given
I , but the converse is not necessarily true.
The stronger property satisfied by the
above w1 is that every J -maximal sched-
ule is 2-approximate with respect to w1
(for all ε > 0). To see this, observe that no
optimal schedule may contain more than
two activity instances from A(J ) ∪ I(J ),
while every J -maximal schedule must
contain at least one (if it contains none,
it cannot be J -maximal since J can be
added). The most natural choice of ε is
ε = w(J ).

Our algorithm for interval scheduling is
based on the above observations. The ini-
tial call is IS(A, w), where A is the set of
jobs, that we also view as the set of all in-
stances, that is, ∪m

i=1Ai.

Algorithm IS(AA, w).
1. If A = ∅, return ∅.
2. If there exists an instance I such that w(I ) ≤ 0 do:
3. Return IS(A \ {I}, w).
4. Else:
5. Let J be the instance with minimum end-time in A.
6. Define the weight functions

w1(I ) = w(J ) ·
{

1 I ∈ A(J ) ∪ I(J ),
0 otherwise, and w2 = w − w1.

7. S ′ ← IS(A, w2).
8. If S ′ ∪ {J} is feasible:
9. Return S = S ′ ∪ {J}.

10. Else:
11. Return S = S ′.

As with similar previous claims,
the proof that Algorithm IS is
2-approximation is by induction on
the recursion. At the basis of the recur-
sion (Line 1), the schedule returned is
optimal and hence 2-approximate. For the
inductive step, there are two possibilities.
If the recursive call is made in Line 3,
then by the inductive hypothesis, the
schedule returned is 2-approximate with
respect to (A \ {I}, w), and since the
weight of I is nonpositive, the optimum
for (A, w) cannot be greater than the op-
timum for (A \ {I}, w). Thus the schedule
returned is 2-approximate with respect
to (A, w) as well. If the recursive scall

is made in Line 7, then by the inductive
hypothesis, S ′ is 2-approximate with
respect to w2, and since w2(J ) = 0 and
S ⊆ S′ ∪ {J}, it follows that S, too, is
2-approximate with respect to w2. Since
S is J -maximal by construction (Lines 8–
11), it is also 2-approximate with respect
to w1. Thus, by the Local Ratio Theorem,
it is 2-approximate with respect to w as
well.

6.2.2. Scheduling on Parallel Identical Ma-
chines. In this problem, the resource con-
sists of k parallel identical machines. Each
activity instance may be assigned to any
of the k machines. Thus d (I ) = 1/k for
all I .

In order to approximate this problem,
we use Algorithm IS, but with a different

choice of w1, namely,

w1(I ) = w(J ) ·



1 I ∈ A(J ),
1/k I ∈ I(J ),
0 otherwise.

The analysis of the algorithm is simi-
lar to the one used for the case k = 1
(i.e., interval scheduling). It is sufficient
to show that every J -maximal schedule is
2-approximate with respect to w1. This is
so because every J -maximal schedule ei-
ther contains an instance from A(J ), or a
set of instances intersecting J that pre-
vent J from being added to the schedule.
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In the former case, the weight of the sched-
ule with respect to w1 is at least w(J ). In
the latter case, since k machines are avail-
able but J cannot be added, the schedule
must already contain k activity instances
from I(J ), and its weight (with respect to
w1) is therefore at least k · 1

k ·w(J ) = w(J ).
Therefore, the weight of every J -maximal
schedule is at least w(J ). On the other
hand, an optimal schedule may contains,
at most, one instance from A(J ) and, at
most, k instances from I(J ) (as they all
intersect each other), and thus its weight
cannot exceed w(J ) + k · 1

k · w(J ) = 2w(J ).

Remark. Our algorithm only finds a
set of activity instances that can be sched-
uled, but does not construct an actual as-
signment of instances to machines. This
can be done easily by scanning the in-
stances (in the solution found by the al-
gorithm) in increasing order of end-time,
and assigning each to an arbitrary avail-
able machine. It is easy to see that such a
machine must always exist.

6.2.3. Bandwidth Allocation of Sessions in
Communication Networks. Consider a sce-
nario in which the bandwidth of a
communication channel must be allocated
to sessions. Here the resource is the chan-
nel’s bandwidth, and the activities are ses-
sions to be routed through the channel. A
session is specified as a list of intervals in
which it can be scheduled, together with a
bandwidth requirement and a weight for
each interval. The goal is to find the most
profitable set of sessions that can utilize
the available bandwidth.

To approximate this problem, we first
consider the following two special cases.

Special Case 1. All instances are wide,
that is, d (I ) > 1/2 for all I .

Special Case 2. All activity instances
are narrow, that is, d (I ) ≤ 1/2 for all I .

In the case of wide instances, the prob-
lem reduces to interval scheduling since
no pair of intersecting instances may be
scheduled together. Thus, we can use Algo-
rithm IS to find a 2-approximate schedule.

In the case of narrow instances, we find
a 3-approximate schedule by a variant of

Algorithm IS in which w1 is defined as
follows:

w1(I ) = w(J ) ·



1 I ∈ A(J ),
2 · d (I ) I ∈ I(J ),
0 otherwise.

To prove that the algorithm is a
3-approximation, it is sufficient to
show that every J -maximal schedule is
3-approximate with respect to w1. (All
other details are essentially the same as
for interval scheduling.) A J -maximal
schedule either contains an instance
of A(J ), or contains a set of instances
intersecting J that prevent J from being
added to the schedule. In the former case,
the weight of the schedule is at least
w(J ). In the latter case, since J cannot
be added, the combined width of activity
instances from I(J ) in the schedule must
be greater than 1 − d (J ) ≥ 1/2, and thus
their total weight (with respect to w1)
must be greater than w(J ) · 2 · 1

2 = w(J ).
And so, the weight of every J -maximal
schedule is at least w(J ). On the other
hand, an optimal schedule may contain,
at most, one instance from A(J ) and, at
most, a set of instances from I(J ) with to-
tal width 1, and total weight 2w(J ). Thus,
the optimum weight is, at most, 3w(J ),
and therefore, every J -maximal schedule
is 3-approximate with respect to w1.

In order to approximate the problem
in the general case where both narrow
and wide activity instances are present,
we solve it separately for the narrow in-
stances and for the wide instances, and
return the solution of greater weight. Let
OPT be the optimum weight for all activity
instances, and let OPTn and OPTw be the
optimum weight for the narrow instance
and for the wide instances, respectively.
Then, the weight of the schedule found is
at least max{ 1

3 OPTn, 1
2 OPTw}. Now, either

OPTn ≥ 3
5 OPT, or else OPTw ≥ 2

5 OPT.
In either case, the schedule returned is
5-approximate.

6.2.4. Variations and Extensions. In addi-
tion to the three problems we have just dis-
cussed, there are several other scheduling
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problems that can be approximated by var-
ious extensions and variations of Algo-
rithm IS. We briefly mention these prob-
lems here, without showing their solu-
tions. Full details can be found in the
papers describing them.

Independent set in interval graphs
[Bar-Noy et al. 2001a]. It is easy to see that
the special case of interval scheduling in
which each activity consists of a single in-
stance is just a reformulation of the prob-
lem of finding a maximum weight inde-
pendent set in an interval graph. It turns
out that for this special case, Algorithm IS
achieves an approximation ratio of 1, that
is, it solves the problem optimally. Algo-
rithm IS is not the first to do so, however.
See, for example Golumbic [1980].

Scheduling on parallel unrelated ma-
chines [Bar-Noy et al. 2001a]. Schedul-
ing on unrelated machines differs from
scheduling on identical machines in that
the profit derived from assigning an activ-
ity instance to a machine may be different
for different machines, and furthermore,
each activity instance may specify a list of
forbidden machines, that is, machines on
which it is not willing to be scheduled. A
variant of Algorithm IS approximates this
problem with approximation guarantee 2.

Continuous input [Bar-Noy et al.
2001a]. In our treatment of the general
scheduling problem, we have implicitly
assumed that each activity is specified as
a finite list of instances. We can generalize
the problem and allow each activity to
consist of infinitely many instances by
specifying the activity as a finite collection
of time windows. A time window is an
interval of time T , which together with
a length parameter l (T ) and a weight
parameter w(T ), represent the (infinite)
set of instances [s, t) such that s ∈ T
and t = s + l (T ). Each of these instances
has profit w(T ). The various variants of
Algorithm IS can be modified to handle
such “continuous” input efficiently, but
a sacrifice must be made in the approxi-
mation ratio. Specifically, for arbitrarily
small ε > 0, the algorithm can be made
to run in O(n2/ε) time and achieve an ap-
proximation factor of r + ε, where r is the
factor it would achieve on “discrete” input.

Batching [Bar-Noy et al. 2002]. While
most scheduling problems forbid the
scheduling of two simultaneous jobs on
the same machine, it is sometimes de-
sirable to relax this constraint and allow
multiple jobs (with similar characteris-
tics) to be batched together and scheduled
simultaneously. (For example, it is possi-
ble to broadcast a movie to several clients
who have asked for it.) The introduction
of batching into our general scheduling
problem complicates things considerably,
yet the basic idea of Algorithm IS is still
valid. Bar-Noy et al. [2002] developed 2-
approximation and 4–approximation algo-
rithms for two variants of the problem
of scheduling on identical machines with
batching. Their algorithms are based on
the same idea as Algorithm IS, though in
a far more complex manner.

Combinatorial auctions [Akcoglu et al.
2002]. A combinatorial auction is an auc-
tion in which each bidder places a bid on
some subset of the available goods (rather
than on individual items), and the auction-
eer accepts a collection of mutually dis-
joint bids, with the aim of maximizing rev-
enue. Akcoglu et al. [2002] describe such
auctioning as finding a maximum weight
independent set in a bid graph whose ver-
tices are the bids, and whose edges connect
pairs of conflicting bids. Since maximum
weight independent set is hard to approxi-
mate in general [Håstad 1996], they focus
on special cases. They present an approx-
imation algorithm based on Algorithm IS
for the problem on ordered graphs. The ap-
proximation guarantee they achieve is the
maximum over vertices v of the maximum
independent set size in the subgraph in-
duced by the neighbors of v that appear
after v in the ordering. They show that sev-
eral types of combinatorial auctions can be
modeled as bid graphs in which this value
is a constant.

6.3. Additional Scheduling Applications

Generally speaking, a scheduling prob-
lem is a problem in which jobs compete
for the use of some limited resource, and
the goal is to resolve all conflicts. Con-
flicts can be resolved either by scheduling
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only a subset of the jobs, or by enlarg-
ing the amount of available resource to
accommodate all jobs. In the previous
section, we considered the first option.
We assumed that the amount of resource
was fixed and that we could reject jobs.
We measured the quality of a schedule
by its throughput (total weight of the
accepted jobs), which we wished to max-
imize. In this section, we mention two ad-
ditional applications of the local ratio tech-
nique; one in the fixed-resource setting—
but from a minimization viewpoint,
and another in the enlargeable-resource
setting.

In the fixed-resource setting, we can
adopt a minimization point of view by
measuring the quality of a schedule by its
loss (total weight of rejected jobs), instead
of its throughput. Using this measure
turns throughput maximization problems
into loss minimization ones. While the
throughput and loss measures are equiv-
alent in terms of optimal solutions, they
are completely distinct when one consid-
ers approximate solutions.

Consider the loss minimization version
of the bandwidth allocation problem of
Section 6.2.3. The loss associated with a
schedule is the total weight of activity in-
stances that are not scheduled. This mea-
sure is unsatisfactory if multiple instances
per activity are allowed since, even in the
best case, at most one instance per activ-
ity can be scheduled (and all others con-
tribute to the loss),9 but the loss mea-
sure does make sense in the special case
where each activity consists of a single in-
stance. Bar-Noy et al. [2001a] provided a
4-approximation variant of Algorithm IS
for the generalization of this special case
in which the amount of available resource

9A more reasonable definition of loss is to associate
with each activity A a loss which is the difference be-
tween the maximum weight of an instance of A, and
the weight of the instance actually selected (if any).
However, this changes the nature of the problem com-
pletely. We now associate a nonnegative penalty with
each activity instance, and we must schedule exactly
one instance of each activity. (To represent the pos-
sibility of rejecting the activity entirely, we add to it
a virtual instance that intersects no other activity
instances.)

may vary in time. Using a suitable reduc-
tion, their algorithm can be used to ap-
proximate (with approximation factor 4)
the general caching problem, in which
pages of varying sizes and penalties must
be swapped in and out of a fixed size
cache. (The motivation for this problem is
caching World Wide Web pages; see Albers
et al. [1999] and Bar-Noy et al. [2001a] for
more details.)

The second setting we consider is
the enlargeable-resource setting. Here we
must satisfy all jobs, and can achieve this
by increasing the amount of resource. The
objective is to minimize the cost of the re-
source used, hence such problems are
called resource minimization problems. An
example of a resource minimization prob-
lem is the bandwidth trading problem. In
this problem, we are given a set of ma-
chine types T = {T1, . . . , Tm}, and a set of
jobs J = {1, . . . , n}. Each machine type Ti
is defined by two parameters: a time in-
terval I (Ti) during which it is available,
and a weight w(Ti), which represents the
cost of allocating a machine of this type.
Each job j is defined by a single time in-
terval I ( j ) during which it must be pro-
cessed. A given job j may be scheduled
feasibly on a machine of type T , if type
T is available throughout the job’s inter-
val, that is, if I ( j ) ⊆ I (T ). A schedule is a
set of machines together with an assign-
ment of each job to one of them. It is fea-
sible if every job is assigned feasibly and
no two jobs with intersecting intervals are
assigned to the same machine. The cost
of a feasible schedule is the total cost of
the machines it uses, where the cost of
a machine is defined as the weight asso-
ciated with its type. The goal is to find
a minimum-cost feasible schedule. Bhatia
et al. [2003] present a 3-approximation
local ratio algorithm for the bandwidth
trading problem. Their algorithm is some-
what unusual in that it does not use an
r-effective (or fully r-effective) weight
function in the weight decomposition
steps, nor does it return minimal solu-
tions. Instead, it uses a weight function
for which “good” solutions satisfy a cer-
tain property different from minimality.
Accordingly, the algorithm modifies the
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solution returned from each recursive call
in a rather elaborate manner in order to
transform it into a “good” solution.

6.4. Background

As mentioned earlier, single machine
scheduling with one instance per activ-
ity is equivalent to maximum weight in-
dependent set in interval graphs, and
hence polynomial-time solvable [Golumbic
1980]. Arkin and Silverberg [1987] solve
the problem efficiently even for un-
related multiple machines. The prob-
lem becomes NP-hard (even in the
single machine case) if multiple instances
per activity are allowed [Spieksma 1999],
or if instances may require arbitrary
amounts of the resource. (In the latter
case, the problem is NP-hard as it con-
tains knapsack [Garey and Johnson 1979]
as a special case in which all time intervals
intersect.) Spieksma [1999] studies the
unweighted interval scheduling problem.
He proves that it is Max-SNP-hard, and
presents a simple greedy 2-approximation
algorithm. Bar-Noy et al. [2001b] consider
real-time scheduling, in which each job is
associated with a release time, a deadline,
a weight, and a processing time on each
of the machines. They give several con-
stant factor approximation algorithms for
various variants of the throughput maxi-
mization problem. They also show that the
problem of scheduling unweighted jobs on
unrelated machine is Max-SNP-hard.

Bar-Noy et al. [2001a] present a general
framework for solving resource allocation
and scheduling problems that is based on
the local ratio technique. Given a resource
of fixed size, they present algorithms that
approximate the maximum throughput or
the minimum loss by a constant factor.
The algorithms apply to many problems,
some of which are: real-time scheduling
of jobs on parallel machines, bandwidth
allocation for sessions between two end-
points, general caching, dynamic storage
allocation, and bandwidth allocation on
optical line and ring topologies. In particu-
lar, they improve most of the results from
Bar-Noy et al. [2001b], either in the ap-
proximation factor, or in the running

time complexity. Their algorithms can
also be interpreted within the primal-dual
schema (see also Bar-Yehuda and Rawitz
[2001]) and are the first local ratio (or
primal-dual) algorithms for maximization
problems. Section 6.2 is based on Bar-Noy
et al. [2001a]. Independently, Berman and
DasGupta [2000] also improve upon the al-
gorithms given in Bar-Noy et al. [2001b].
They develop an algorithm for interval
scheduling that is nearly identical to the
one from Bar-Noy et al. [2001a]. Further-
more, they employ the same rounding idea
used in Bar-Noy et al. [2001a] in order to
contend with time windows. In addition
to single machine scheduling, they also
consider scheduling on parallel machines,
both identical (obtaining an approxima-
tion guarantee of (k + 1)k/((k + 1)k − kk))
and unrelated (obtaining an approxima-
tion guarantee of 2).

Chuzhoy et al. [2001] consider the
unweighted real-time scheduling prob-
lem and present an (e/(e − 1) + ε)-
approximation algorithm. They general-
ize this algorithm to achieve a ratio of
(1 + e/(e − 1) + ε) for unweighted band-
width allocation.

7. ODDS AND ENDS

In this section, we present three local ratio
algorithms that do not fit properly in the
frameworks introduced previously. Each
algorithm deviates from these frameworks
in a different manner, but they are all
based on the Local Ratio Theorem and
related ideas. The first two algorithms
are interpretations of known algorithms
for longest path in a DAG and minimum
s-t cut. These problems are polynomial-
time solvable, and the algorithms pre-
sented here demonstrate the use of the
local ratio technique in the design of
1-approximation algorithms and the uti-
lization of negative weights in this con-
text. The third problem we consider is
capacitated vertex cover, for which we de-
scribe a 2-approximation algorithm. The
interesting feature of this NP-hard prob-
lem is that feasible solutions are not nec-
essarily 0-1 vectors.
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7.1. Longest Path in a DAG

The longest path problem is, given an edge-
weighted graph and two distinguished
vertices s and t, find a simple path from s to
t of maximum length, where the length of a
path is defined as the sum of weights of its
edges. For general graphs (either directed
or undirected), the problem is NP-hard,
but for directed acyclic graphs (DAGs), it
is solvable in linear time by a Dijkstra-
like algorithm that processes the nodes
in topological order. In this section, we
present a local ratio interpretation of this
algorithm. We allow negative arc weights,
and we assume without loss of generality
that s is a root, that is, that every node
is reachable from s. (Otherwise, simply
delete all unreachable nodes.)

Let us first introduce some terminology.
We say that node u is a proper successor of
node v, if u is entered by exactly one arc,
and this arc is (v, u).

OBSERVATION 10. Let s be the root of a
DAG on two or more nodes. Then s has
at least one proper successor in the graph.
(For example, the second node in a topolog-
ical sort of the graph is a proper successor
of s.)

We also define the act of contracting
an arc (u, v) as the following three-step

Algorithm LPDAG(G, s, t, w).
1. If s = t return the path consisting of the single node s.
2. Else, if s has a proper successor v such that w(s, v) = 0 do:
3. Let G ′ be the graph obtained by contracting (s, v).
4. P ′ ← LPDAG(G ′, v, t, w).
5. Return the path in G corresponding to P ′.
6. Else:
7. Let x be a proper successor of s and let ε = w(s, x).

8. Define the weight functions w1(u, v) =
{

ε u = s,
0 otherwise,

and w2 = w − w1.
9. Return LPDAG(G, s, t, w2).

process:

(1) Delete the arc (u, v).
(2) Redirect every arc leaving (or enter-

ing) u to leave (or enter) v instead.
This modification may create pairs of
parallel arcs. For each such pair, delete

the arc of lesser weight (breaking ties
arbitrarily).

(3) Delete u.

Let G ′ be the graph obtained from G
by contracting an arc (u, v), and let P ′ =
v, v1, . . . , vk be a path leaving v in G ′.
The arc (v, v1) in G ′ may have originated
from (u, v1), or from (v, v1) in G. Depend-
ing on what the case is, we define the
path P in G corresponding to P ′ to be ei-
ther the path u, v1, . . . , vk , or the path u, v,
v1, . . . , vk .

OBSERVATION 11. Let G be an arc-
weighted DAG with root s. Let v be a proper
successor of s, and suppose w(s, v) = 0. Let
G ′ be the graph obtained from G by con-
tracting (s, v). Then:

(1) G ′ is a DAG with root v.
(2) The maximum length of a path from

s to t in G is equal to the maximum
length of a path from v to t in G ′.

(3) If P ′ is a longest path from v to t in G ′,
then the corresponding path P in G is
a longest path from s to t.

The algorithm is based on Observa-
tions 10 and 11. It repeatedly contracts the
arc connecting the DAG’s root to one of its
proper successors.

It is easy to see that w1 is fully
1-effective for all ε (even negative.) Hence,
Algorithm LPDAG solves the problem op-
timally.
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7.2. Minimum s-t Cut

The minimum s-t cut problem is defined
as follows. Given an arc-weighted directed
graph G = (N , A) and a pair of dis-
tinct distinguished nodes s and t, a di-
rected s-t cut (or simply cut for short) is
a set of arcs whose removal disconnects
all directed paths from s to t. The goal
is to find a minimum cut, that is, a cut
of minimum weight. Note that there al-
ways exists a minimum cut which is also
minimal (in the sense of set inclusion),
since arc weights are nonnegative. Thus
we restrict our attention to minimal cuts,
and, therefore, have the following equiv-
alent definition (which is more common
in the literature). A cut is a partition of
the graph nodes into two sets S and S̄
such that s ∈ S and t ∈ S̄, and the cut
arcs are the arcs leaving S and entering
S̄. We use the two definitions of cut in-
terchangeably. We remark that the undi-
rected version of the problem can be re-
duced to the directed case by replacing
each edge by two arcs (in opposite direc-
tions) with the same weight as the original
edge.

It is well known that the minimum
s-t cut problem can be solved by max-
flow techniques, particularly, by the Ford
and Fulkerson algorithm [1956] for max-
flow. In this section, we present a lo-
cal ratio interpretation of the Ford and
Fulkerson algorithm. Apart from the fact
that the following algorithm solves an
optimization problem optimally, it is also
unique in that it is the first (and only,
as far as we know) local ratio algorithm
that uses negative weights in w1.10 Be-
cause of these negative weights, there
are cases where zero weight arcs become
positive again, and, therefore, we can-
not delete zero-weight arcs as in previous
algorithms.

In the algorithm that follows, we as-
sume that for every arc (u, v) in the graph,
the arc (v, u) exists as well. (If this is not

10Although we have allowed negative weights in
Algorithm LPDAG (Section 7.1), that algorithm
may be easily modified to avoid them. In con-
trast, negative weights are inherent in the present
algorithm.

Fig. 4. The weight of a
cut with respect to w1.

the case, we can simply add the missing
arcs with zero weight.) The algorithm is
based on the following observation. We say
that an arc is unsaturated if its weight is
strictly positive. A path is unsaturated if
it consists of unsaturated arcs only. Let P
be an unsaturated path from s to t, and let←−
P be its reverse (from t to s). Define

w1(u, v) =




ε (u, v) ∈ P,

−ε (u, v) ∈ ←−
P ,

0 otherwise.

We claim that w1 is 1-effective because the
cost (with respect to w1) of every cut is pre-
cisely ε. To see this, let C be any minimal
feasible solution, that is, let C be a set of
arcs defined by a cut (S, S̄). Consider the
path P . It starts at s and proceeds ini-
tially within S. At some point, it crosses
over to S̄, and then possibly crosses the
cut back and forth several times, ending
finally in S̄. It then continues to t within
S̄. Thus, if k ≥ 1 is the number of times
P crosses the cut from S to S̄, then k − 1
is the number of times it crosses the cut
in the reverse direction. Thus C contains
precisely k edges of P and k − 1 edges of←−
P , and thus its weight with respect to w1
is ε · k − ε(k − 1) = ε. (See Figure 4 for an
illustration.)

Algorithm stCut is actually Ford and
Fulkerson’s algorithm [1956]. Path P is
an augmentation path, and w2 defines the
residual weights. As with the original al-
gorithm, the time complexity of the al-
gorithm depends on how P is chosen in
Line 4. If it is chosen poorly, the algorithm
might require pseudo-polynomial time (or
even fail to terminate if irrational weights
are allowed).
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Algorithm stCut(G, s, t, w).
1. Let S be the set of nodes reachable from

s by unsaturated paths.
2. If t ∈ S, return the cut (S, S̄).
3. Else:
4. Let P be an unsaturated path from s

to t and let
←−
P be

its reverse.
5. Let ε = min{w(u, v) | (u, v) ∈ P}.
6. Define the weight functions

w1(u, v) =




ε (u, v) ∈ P,

−ε (u, v) ∈ ←−
P ,

0 otherwise,
and w2 = w − w1.

7. Return stCut(G, s, t, w2).

7.3. Capacitated Vertex Cover

The capacitated vertex cover problem is
similar to plain vertex cover, but now each
vertex u has, in addition to its weight w(u),
also a capacity c(u) ∈ N that determines
the number of edges it may cover. Specif-
ically, vertex u may cover up to c(u) inci-
dent edges. However, multiple “copies” of
u can be used to cover additional edges.11

And so, a feasible solution is an assign-
ment of every edge to one of its endpoints,
subject to the constraint that no edge is as-
signed to a zero-capacity vertex. Note that
the presence of zero-capacity vertices may
render the problem infeasible, but detect-
ing this is easy: the problem is infeasible,
if and only if there is an edge whose two
endpoints have zero capacity. We will as-
sume henceforth that a feasible solution
exists. Also note that the special case in
which c(u) ≥ deg(u) for every vertex u is
the ordinary vertex cover problem.

To define the cost of a feasible solu-
tion A, let us introduce some notation.
Denote by A(u) the set of edges assigned
to vertex u, and by α(u) the number of
copies of u required to cover the edges
A(u). (If A(u) = ∅, then α(u) = 0. Oth-
erwise, α(u) = �|A(u)|/c(u)�. Note that,
in the latter case, the ratio |A(u)|/c(u) is
well defined, since c(u) must be positive.)
The cost of assignment A is

∑
u α(u)w(u).

11Such capacities, are called soft. With hard capaci-
ties, only one copy of every vertex is allowed.

Thus, although feasible solutions are de-
fined as assignments of edges to vertices,
when considering their cost, they can be
viewed as vectors of α values, and there-
fore can be treated within the local ratio
framework.

In the description of the following recur-
sive algorithm, we use N (u) to denote the
set of vertex u’s neighbors, we denote by
V+ the set of vertices with non-zero ca-
pacity and non-zero degree, and we denote
c̃(u) = min{deg(u), c(u)}.

Algorithm CVC(G = (V, E), c, w).
1. If E = ∅, return the assignment

A(v) = ∅ for all v ∈ V .
2. Else, if there exists a vertex u ∈ V+ such

that w(u) = 0 do:
3. Let G ′ be the graph obtained from G

by deleting u.
4. A ← CVC(G ′, c, w).
5. For every v ∈ N (u) do:
6. If deg(v) ≤ c(v) and A(v) = ∅ do:
7. A(v) ← A(v) ∪ {(u, v)}.
8. Else:
9. A(u) ← A(u) ∪ {(u, v)}.

10. Return A.
11. Else:
12. Let ε = minu∈V+{w(u)/c̃(u)}.
13. Define the weight functions w1(v) =

ε · c̃(v) and w2 = w − w1.
14. Return CVC(G, c, w2).

Consider the recursive call made in
Line 4. In order to distinguish between the
assignment obtained by this recursive in-
vocation and the assignment returned in
Line 10, we denote the former by A′, and
the latter by A. Assignment A′ is for graph
G ′, and we denote the corresponding pa-
rameters α′ and c̃′. Similarly, we use α and
c̃ for the parameters of A and G.

To analyze the algorithm, we use a
charging scheme where the cost of the so-
lution is charged to the graph edges. More
specifically, we imagine that each edge is
alloted two coins that it may distribute
between its endpoints. We aim to show
that there is a way to distribute the coins
so that the number of coins given to any
vertex u is at least α(u)c̃(u). The key ob-
servation is the following.
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OBSERVATION 12. Suppose a recursive
call is made in Line 4. Let v ∈ N (u). Then:

(1) If deg(v) ≤ c(v) and A′(v) = ∅, then
α(v) = α′(v) = 1, and c̃(v) = c̃′(v) + 1.
Thus α(v)c̃(v) = α′(v)c̃′(v) + 1.

(2) If deg(v) > c(v), or A′(v) = ∅, then
A(v) = A′(v), and therefore α(v) = α′(v).
Moreover, there are two (not mutually
exclusive) cases: α(v) = α′(v) = 0, or
deg(v) ≥ c(v) + 1. In the latter case, the
degree of v in G ′ is at least c(v), and
therefore c̃(v) = c̃′(v) = c(v). Thus in
either case α(v) c̃(v) = α′(v)c̃′(v).

(3) In all cases, α(v) = α′(v). (This follows
from the previous two observations.)

LEMMA 13. There exists a charging
scheme (with respect to graph G and
assignment A) in which every vertex u
is given at least α(u)c̃(u) coins. Thus∑

u α(u)c̃(u) ≤ 2|E|.
PROOF. The proof is by induction on the

recursion. For the base case E = ∅, it is
trivial. For the inductive step there are
two cases. If the recursive call is made
in Line 14, the claim follows by the in-
ductive hypothesis. Otherwise, the recur-
sive call is made in Line 4, and by the in-
ductive hypothesis, there exists a charging
scheme for (G ′, A′). We extend this scheme
to (G, A) as follows. First note that the
transition from (G ′, A′) to (G, A) consists
of adding a single vertex u and a collec-
tion of edges incident on it, and assigning
each of these edges to either u, or its other
endpoint. Thus we need only take care of
u and its neighbors; these are the only ver-
tices whose α and c̃ values may change. All
other vertices are already satisfied by the
charging scheme for (G ′, A′). Let v ∈ N (u).
If deg(v) ≤ c(v) and A′(v) = ∅, then by Ob-
servation 12, α(v)c̃(v) −α′(v)c̃(v) = 1. Edge
(u, v) (which is assigned to v) passes one of
its coins to v to cover the difference, and
passes its other coin to u. If, on the other
hand, deg(v) > c(v), or A′(v) = ∅, then
by Observation 12, v is already satisfied
by the charging scheme for (G ′, A′). Edge
(u, v) (which is assigned to u) passes both
its coins to u. And so, we ensure that all of
u’s neighbors are satisfied, and it remains
to show that u is satisfied as well. Con-

sider the coins given to u by its incident
edges. Each edge assigned to u contributes
two coins, and each edge not assigned to u
contributes one coin. Thus the number of
coins is

|A(u)| + deg(u) ≥ |A(u)| + c̃(u)

=
( |A(u)|

c̃(u)
+ 1

)
· c̃(u)

≥
( |A(u)|

c(u)
+ 1

)
· c̃(u)

> α(u)c̃(u).

THEOREM 14. Algorithm CVC returns
2-approximate solutions.

PROOF. The proof is by induction on the
recursion. In the base case, the algorithm
returns an empty assignment, which is op-
timal for the empty graph. For the induc-
tive step, there are two cases. If the re-
cursive invocation is made in Line 4, then
by the inductive hypothesis, the assign-
ment A′ it returns is 2-approximate with
respect to G ′. Clearly, the optimum value
for G can only be greater than the opti-
mum value for G ′, and because w(u) = 0
and α(v) = α′(v) for all v ∈ V \ {u} (by
Observation 12), the cost of A equals the
cost of A′. Thus A is 2-approximate with
respect to G. If the recursive call is made
in Line 14, then by the inductive hypothe-
sis the assignment is 2-approximate with
respect to w2. By Lemma 13, its cost with
respect to w1 is at most 2ε|E|, and clearly
the optimal cost is at least ε|E|. Thus the
assignment is 2-approximate with respect
to w1, too, and by the Local Ratio Theorem,
it is 2-approximate with respect to w as
well.

7.4. Background

The problem of finding the longest path
in a DAG (also called the critical path)
arises in the context of PERT (Pro-
gram Evaluation and Review Technique)
charts. For more details see Cormen
et al. [1990, page 538] or Even [1979,
pp. 138–142]. Algorithm stCut, the lo-
cal ratio interpretation of Ford and Fulk-
erson’s Algorithm [1956], is from Bar-
Yehuda and Rawitz [2004]. The algorithm
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for capacitated vertex cover (Algorithm
CVC) is a local ratio version of the primal-
dual algorithm given by Guha et al. [2002].

8. FRACTIONAL LOCAL RATIO

As we have seen, the standard local ra-
tio approach is to use a weight decompo-
sition that guarantees that the solution
constructed by the algorithm will be r-
approximate with respect to w1 (for some
desired r). In essence, the analysis con-
sists of comparing, at each level of the re-
cursion, the solution found in that level,
and an optimal solution for the problem
instance passed to that level, where the
comparison is made with respect to w1 and
with respect to w2. Thus, in each level of
the recursion, there are potentially two op-
tima (one with respect to w1, and one with
respect to w2) against which the solution
is compared, and in addition, different op-
tima are used at different recursion levels.
The fractional local ratio paradigm takes
a different approach. It uses a single solu-
tion x∗ to the original problem instance as
the yardstick against which all intermedi-
ate solutions (at all levels of the recursion)
are compared. In fact, x∗ is not even feasi-
ble for the original problem instance, but
rather for a relaxation of it. Typically, x∗
will be an optimal fractional solution to a
linear programming12 (LP) relaxation.

The fractional local ratio technique is
based on a “fractional” version of the
Local Ratio Theorem. Recall that both
previous versions of the theorem (Theo-
rems 2 and 9) apply to problems that can
be formulated as finding an optimal vec-
tor x ∈ R

n, subject to a set of feasibility
constraints C. In all previous applications,
we have assumed that the constraints de-
scribe the problem to be solved precisely,
and in particular, one of the constraints
is that x must be a 0-1 (or at least an
integral) vector. In contrast, applications
of the fractional local ratio technique con-
sider relaxations of the actual problems—
typically, LP relaxations of their integer

12This section assumes familiarity with the concepts
of integer programming, linear programming, and
LP relaxations.

programming (IP) formulations. This is
the context in which we formulate the
new version of the theorem. Particularly,
we consider nonintegral vectors, hence the
term fractional. We precede the statement
of the theorem with the following useful
definition.

Definition 4. Let r ≥ 1, and let w ∈ R
n

be a vector of weights in the context of
an optimization problem. Let x and x∗ be
vectors in R

n. Vector x is said to be r-
approximate relative to x∗ (with respect to
w), if w · x ≤ r(w · x∗) (for a minimization
problem), or w · x ≥ (w · x∗)/r (for a maxi-
mization problem).

The theorem is nothing more than the
following straightforward observation.

THEOREM 15 (FRACTIONAL LOCAL RATIO).
Let w, w1, w2 ∈ R

n be weight vectors in the
context of an optimization problem such
that w = w1 + w2. Let x∗ and x be vectors
in R

n such that x is r-approximate relative
to x∗ with respect to w1, and with respect
to w2. Then, x is r-approximate relative to
x∗ with respect to w as well.

The first step in the fractional local ra-
tio technique is to obtain an optimal solu-
tion x∗ to an LP relaxation of the problem.
This solution is then used to drive a recur-
sive algorithm that constructs a feasible
solution (to the actual problem, not the re-
laxation) in a manner quite similar to the
standard local ratio method. At each level
of the recursion, either the problem size
is reduced (conceptually), or the weight
function is decomposed. The novelty of the
fractional approach is that in weight de-
composition steps, the construction of w1
is based on x∗, and the analysis compares
the weight of the solution returned with
w · x∗. Thus the fractional local ratio tech-
nique is a combination of LP rounding and
the standard local ratio approach.

Intuitively, the drawback of the stan-
dard local ratio technique is that, at each
level of the recursion, we attempt to ap-
proximate the weight of a solution that is
optimal with respect to the weight func-
tion present at that level. The super-
position of these “local optima” may be
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significantly worse than the “global opti-
mum,” that is, the optimum for the orig-
inal problem instance. Conceivably, we
could obtain a better bound, if at each
level of the recursion, we approximated
the weight of a solution that is optimal
with respect to the original weight func-
tion. This is the idea behind the fractional
local ratio approach.

The best way to explain the tech-
nique is by means of an example. In the
next section, we demonstrate the tech-
nique on maximum weight independent
set, and following that, we apply it to max-
imum weight independent set in t-interval
graphs, which is somewhat more involved.

8.1. Maximum Weight Independent Set

In the maximum weight independent set
problem, we are given a vertex-weighted
graph G = (V , E), and are asked to find
a maximum weight independent set of
vertices. An independent set of vertices is
a subset of V in which no two vertices are
adjacent.

Consider the following weight function.
For a given vertex v, let N [v] denote the set
consisting of vertex v and all its neighbors.
Fix some vertex v, and let ε > 0. Define

w1(u) =
{

ε u ∈ N [v],
0 otherwise.

Let � = maxu∈V max{1, deg(u)}. Clearly,
w1 is �-effective since every feasible solu-
tion has weight at most ε ·max{1, deg(v)} ≤
ε · �, and every maximal solution has
weight at least ε. We can, therefore, use
this weight function as the basis for a �-
approximation algorithm in the standard
local ratio framework. We can do better,
however, by employing the fractional lo-
cal ratio technique. Specifically, we can
achieve an approximation guarantee of
1
2 (� + 1), as we now show.

The first step is to solve the following LP
relaxation of the natural IP formulation of
the problem.

Maximize
∑
u∈V

w(u)xu subject to

xu + xv ≤ 1 ∀ (u, v) ∈ E,
0 ≤ xu ≤ 1 ∀ u ∈ V .

Let x∗ be an optimal (fractional) solution.
We now run the recursive algorithm de-
scribed next to obtain an independent set.
Note that the algorithm does not contain
problem-size reduction steps, as do other
local ratio algorithms. Specifically, it does
not delete vertices of nonpositive weight.
This is due to the nature of the analysis
to follow; it is more convenient to simply
ignore vertices of nonpositive weight than
to delete them.

Algorithm FracLRIS(G, w, x∗).
1. Let V+ = {u | w(u) > 0} and let G+ = (V+,

E+) be the subgraph of G induced by V+.
2. If E+ = ∅, return V+.
3. Let v ∈ V+ be a vertex minimizing∑

u∈N [v]∩V+

x∗
u and let ε = w(v).

4. Define the weight functions

w1(u) =
{

ε u ∈ N [v] ∩ V+,
0 otherwise,

and w2 = w − w1.
5. S′ ← FracLRIS(G, w2, x∗).
6. If S′ ∪ {v} is an independent set do:
7. Return S = S′ ∪ {v}.
8. Else:
9. Return S = S′.

For the analysis, let x denote the inci-
dence vector of the solution S returned by
the algorithm. We claim that x is 1

2 (�+1)-
approximate relative to x∗ (or in other
words, that w · x ≥ 2/(� + 1)(w · x∗)),
and thus S is 1

2 (� + 1)-approximate. As
usual, the proof is by induction on the re-
cursion, but to facilitate it, we need an ad-
ditional claim, namely, that S ⊆ V+ (at
all levels of the recursion). We prove both
claims simultaneously. In the base case
(E+ = ∅), we have S = V+ and, w · x =∑

u | w(u)>0 w(u) · 1 ≥ ∑
u | w(u)>0 w(u) · x∗

u ≥∑
u w(u) ·x∗

u = w ·x∗. Since w ·x ≥ 0, we get
w ·x ≥ 2/(�+1)(w ·x∗), even if w ·x∗ is neg-
ative. For the inductive step, let x ′ be the
incidence vector of S′ (obtained in Line 5),
and let V ′

+ = {
u | w2(u) > 0

}
. Then, by the

inductive hypothesis and the definition of
w2, S′ ⊆ V ′

+ ⊆ V+. Since v ∈ V+, Lines 6–9
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Fig. 5. (a) A 2-interval graph; (b) one of its realizations.

ensure that S ⊆ V+. By the inductive hy-
pothesis, w2 · x ′ ≥ 2/(� + 1)(w2 · x∗). Since
w2(v) = 0, we get that w2 · x = w2 · x ′, and
therefore x is 1

2 (� + 1)-approximate rela-
tive to x∗, with respect to w2. In addition,
Lines 6–9 also ensure that either v ∈ S,
or else S contains some v′ ∈ N [v] ∩ S′ ⊆
N [v] ∩ V+. In either case, S contains at
least one vertex from N [v] ∩ V+, and thus
w1 · x ≥ ε. The following lemma implies
that w1 · x∗ ≤ 1

2ε(� + 1). Hence, x is
1
2 (� + 1)-approximate relative to x∗ with
respect to both w1 and w2, and by the Frac-
tional Local Ratio Theorem, we get that x
is 1

2 (� + 1)-approximate.

LEMMA 16. The choice of v in Line 3 en-
sures that

∑
u∈N [v]∩V+ x∗

u ≤ 1
2 (� + 1).

PROOF. It is sufficent to show that∑
u∈N [s]∩V+ x∗

u ≤ 1
2 (� + 1) is satisfied for

some vertex s ∈ V+. We show this for
s = arg maxu∈V+ x∗

u. Note that N [s] ∩ V+
is the set consisting of s and its neighbors
in G+, and that |N [s] ∩ V+| ≤ � + 1. If
s is an isolated vertex in G+, it clearly
satisfies the condition. Otherwise, if
x∗

s ≤ 1/2, then x∗
u ≤ 1/2 for all vertices u

in G+, and the condition is again satisfied.
Otherwise, x∗

s > 1/2, and thus x∗
u < 1/2

for all neighbors u of s in G+. Fix any
such neighbor s′. Then

∑
u∈N [s]∩V+ x∗

u =
(x∗

s + x∗
s′ ) + ∑

u∈(N [s]∩V+)\{s,s′} x∗
u < 1+

1
2 (� − 1) = 1

2 (� + 1).

8.1.0.1. Remark. The analysis shows that
v can actually be chosen (in Line 3) as any
vertex satisfying

∑
u∈N [v]∩V+ x∗

u ≤ 1
2 (� +

1)—not necessarily the one minimizing∑
u∈N [v]∩V+ x∗

u. By the proof of Lemma 16,

the simplest 15 choice is the vertex in
v ∈ V+, maximizing x∗

v .

8.2. Maximum Weight Independent Set in a
t-interval Graph

Consider a teaching laboratory shared by
several different academic courses, where
each course has a schedule during which
it requires the use of the laboratory for t
(or less) sessions of varying duration. The
problem is to maximize the utilization of
the laboratory by admitting a subset of
nonconflicting courses. This type of prob-
lem has a simple abstraction as the prob-
lem of finding a maximum weight indepen-
dent set in a vertex-weighted t-interval
graph. To define what a t-interval graph
is, we need the following auxiliary defi-
nitions. A t-interval system is a collection
{I1, I2, . . . , In} of nonempty sets of real in-
tervals, where each Ii consists of t or less
disjoint intervals. Given a t-interval sys-
tem, the corresponding intersection graph
is defined as follows. Each set Ii, is repre-
sented by a vertex vi, and there is an edge
between two distinct vertices vi and vj , if
some interval in Ii intersects some inter-
val in I j . A t-interval graph is the intersec-
tion graph of some t-interval system. The
set system is then said to be a realization
of the graph. (Note that a given t-interval
graph may have many different realiza-
tions.) Figure 5 shows a 2-interval graph
and one of its realizations.

In this section, we present a 2t-
approximation algorithm for the problem
of finding a maximum weight independent
set in a vertex-weighted t-interval graph.
Since even deciding whether a given graph
is t-interval is NP-hard (for t ≥ 2) [West
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and Shmoys 1984], we will assume that a
realization of the graph is given as part
of the input. Given a realization of a t-
interval graph, we identify each vertex
with the corresponding set of intervals,
and furthermore, we adopt the point of
view that the intervals are not merely
pairs of endpoints, but rather are objects
in their own right. What we mean by this
is that if a certain interval [a, b] belongs
to two vertices, we do not view [a, b] as
a single interval shared by two vertices,
but rather as two distinct intervals that
happen to have identical endpoints. Thus,
when viewed as sets of intervals, the graph
vertices are always pairwise disjoint. In
addition, for a given point p and vertex
v, we denote by p ∈∈ v the statement p is
contained in some interval belonging to v.
Finally, we assume for simplicity that the
intervals are closed.

The algorithm is nearly identical to the
algorithm for maximum weight indepen-
dent set in general graphs presented in
the previous section. The only difference
is that in the first step, we solve the fol-
lowing LP relaxation, rather than the one
used there. Let R denote the set of right
endpoints of intervals in the system. The
linear program is:

Maximize
∑
u∈V

w(u)xu subject to

∑
u | p∈∈u xu ≤ 1 ∀ p ∈ R,

0 ≤ xu ≤ 1 ∀ u ∈ V .

In the second step, we run Algorithm
FracLRIS on the optimal (fractional) so-
lution found, as before. The analysis is
similar, except that Lemma 16 is replaced
by the following lemma, which provides an
approximation guarantee of 2t.

LEMMA 17. The choice of v in Line 3 en-
sures that

∑
u∈N [v]∩V+ x∗

u ≤ 2t.

PROOF. To reduce clutter, we restrict the
discussion to the graph G+. Thus, vertex
means vertex in V+;

∑
u, stands for

∑
u∈V+ ;

N [v], stands for N [v]∩V+; and so on. Also,
if I is an interval belonging to vertex v,
we define x∗

I = x∗
v . In general, we will use

I and J to denote intervals belonging to
vertices.

To prove the lemma, it is sufficient to
show that there exists a vertex s such that∑

u∈N [s] x∗
u ≤ 2t. Clearly, every isolated

vertex satisfies this condition, so we as-
sume that G+ contains no isolated ver-
tices. Thus, an equivalent claim would
be that there exists a vertex s satisfy-
ing x∗

s
∑

u∈N [s] x∗
u ≤ 2tx∗

s (note that x∗
s >

0 since s is a vertex in G+), and to
prove this claim it is enough to show that∑

s x∗
s
∑

u∈N [s] x∗
u ≤ 2t

∑
s x∗

s .
Let us denote by I ∼ J the statement

that interval I and interval J intersect,
and by J ∼R I , the statement that inter-
val J contains the right endpoint of inter-
val I . (Note that I ∼ I and I ∼R I for all
I .) Then,∑

s

x∗
s

∑
u∈N [s]

x∗
u ≤

∑
I∼J

x∗
I x∗

J

≤ 2
∑

J∼R I

x∗
I x∗

J

= 2
∑

s

∑
I∈s

∑
J∼R I

x∗
I x∗

J

= 2
∑

s

x∗
s

∑
I∈s

∑
J∼R I

x∗
J .

(In the right-hand-side of the first inequal-
ity, I and J are ordered, so every pair
of distinct intersecting intervals appears
twice.) The second inequality follows from
the fact that, if two intervals intersect, one
of them necessarily contains the right end-
point of the other. To complete the proof,
note that the feasibility constraints ensure
that

∑
J∼R I x∗

J ≤ 1 for all intervals I , and
thus

∑
I∈s

∑
J∼R I x∗

J ≤ t for all s (as every
vertex contains at most t intervals).

8.3. Background

The algorithm for maximum weight
independent set in t-interval graphs
(Algorithm FracLRIS) is taken from
Bar-Yehuda et al. [2002], where it is also
shown that the problem is APX-hard for
all t ≥ 2, even for highly restricted in-
stances. (Note that a 1-interval graph is an
ordinary interval graph, in which finding
a maximum weight independent set is a

ACM Computing Surveys, Vol. 36, No. 4, December 2004.



Local Ratio: A Unified Framework for Approximation Algorithms 461

polynomial-time solvable problem.) Prior
to this, paper, the problem was consid-
ered only on proper union graphs [Bafna
et al. 1996]—a restricted subclass of t-
interval graphs—and the approximation
factor achieved was (2t − 1 + 1/2t).
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