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When Dinesh Thakur asked me to write an introduction to this volume, I
carelessly agreed. Later I started thinking that a short description of my journey to
non-archimedean analytic geometry and of some of the circumstances accompanying
it might be an entertaining complement to the notes of Matthew Baker and Brian
Conrad. Since I had no other ideas, I’ve written what is presented below.

I start by briefly telling about myself. I was very lucky to be accepted to
Moscow State University for undergraduate and, especially, for graduate studies in
spite of the well-known Soviet policy of that time towards Jewish citizens. I finished
studying in 1976, and got a Ph.D. the next year. (My supervisor was Professor Yuri
Manin.) Getting an academic position would be too much luck, and the best thing
I could hope for was the job of a computer programmer at a factory of agricultural
machines and, later, at the institute of information in agriculture. As a result, I
practically stopped doing mathematics, did not produce papers, and was considered
by my colleagues as an outsider. It took me several years to become an expert in
computers and nearby fields, and to learn to control my time. Gradually I started
doing mathematics again, and my love for it blazed up with new force and became
independent of surrounding circumstances. By the time my story begins, I was
hungry for mathematics as never before.

Thus, my story begins one July evening of 1985 in a train in which I was
returning to Moscow after having visited my numerous relatives in Gomel, Belarus.
Instead of talking to people near me — my usual occupation during long train
trips — I opened a book on classical functional analysis by Yuri Lyubich which my
eldest brother Yakov had given me a couple of days before. The basic material of
the book was familiar to me. Nevertheless, I was thrilled to read about it again
and, suddenly, asked myself: what is the analog of all this over a non-archimedean
field k? In particular, what is the spectrum of a bounded linear operator acting on
a Banach space over k?

It did not take much time to find that, if one defines the spectrum in the same
way as in the classical situation, it may be empty even if k is algebraically closed.
Indeed, if K is a non-archimedean field larger than k, then the multiplication by
any element of K which does not lie in k is an operator with empty spectrum. That
such a larger field always exists is easily seen: one can take the completion of the
field of rational functions in one variable over k with respect to the Gauss norm. I
was very intrigued, and decided to understand what all this meant.

I knew that my fellow Manin student Misha Vishik had written a paper on non-
archimedean spectral theory. The next day, I found the paper and started reading
it. It turned out Vishik was studying bounded linear operators on a Banach space
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over k with the property that their resolvents are analytic on the complement of
the spectrum defined in the usual way as a subset of k (the field was assumed
to be algebraically closed). When I understood that, a very natural idea came
to me. In the classical situation, the spectrum of an operator coincides with the
complement of the analyticity set of its resolvent. Can one find out what the
spectrum of a non-archimedean operator is by investigating a similar analyticity
set of its resolvent? That such a resolvent takes values in the Banach algebra of
bounded linear operators was not a problem. It was the notion of analyticity set
that was not clear. But at least, one could try to investigate sets from a reasonable
class at which the resolvent is analytic. For example, the resolvent is analytic at the
complement of a closed (or open) disc with center at zero of a big enough radius.

At the beginning, I considered the so-called quasiconnected (and infracon-
nected) sets introduced by M. Krasner in 1940s, and I found a curious phenomenon
whose slightly weakened form states the following. If the resolvent of a bounded
linear operator is analytic at a standard set (i.e., the complement of a nonempty
finite disjoint union of open discs in the projective line), then it is analytic at
a strictly bigger standard set (i.e., all of the radii of the corresponding discs are
strictly bigger or smaller). Of course, in the light of our present knowledge this
phenomenon is completely clear since the standard sets being defined by non-strict
inequalities are closed subsets of the compact projective line. But the analyticity
set of the resolvent being the complement of the compact spectrum is an open set.

At that time I was not so smart to see the above. I considered the analyticity
sets as strictly increasing families of finite disjoint unions of standard sets, and
the spectra as strictly decreasing families of complementary sets of the same type.
(A precise definition of complementary sets is given on p. 141 of my book.) The
latter families can be viewed as filters of finite unions of standard sets. It turned
out that one can easily describe the maximal elements in the family of filters, i.e.,
ultrafilters, and there are four types of them.

First of all, every element a ∈ k defines an ultrafilter which is formed by the
sets (finite unions of standard sets) that contain the point a, i.e., a base of this
ultrafilter is formed by closed discs with center at a. Furthermore, every closed
disc E(a; r) of radius r > 0 with center at a ∈ k defines an ultrafilter. If r ∈ |k∗|,
a base of the corresponding ultrafilter p(E(a; r)) is formed by standard sets of the
form E(a; r′)\⋃n

i=1 D(ai; ri) with ri < r < r′, |ai − a| ≤ r and |ai − aj | = r for
1 ≤ i 6= j ≤ n, where D(ai; ri) is the open disc of radius ri with center at ai. If
r 6∈ |k∗|, a base of the corresponding ultrafilter p(E(a; r)) is formed by the closed
annuli E(a; r′)\D(a; r′′) with r′′ < r < r′. Finally, if the field k is not maximally
complete, then every family of nested discs with empty intersection is a base of an
ultrafilter. (By the way, it is easy to see that there is a natural bijection between
the set of ultrafilters and the set of nested families of closed discs.) The above four
types of ultrafilters correspond to what are now known as points of types (1)-(4) of
the affine line, and elements of the ultrafilters are precisely affinoid neighborhoods
of those points.

In fact, as soon as I found the above description, I knew that the space of all
ultrafilters must be considered as the affine line A1 over k. This space is endowed
with a natural topology with respect to which it is locally compact: its basis consists
of sets of ultrafilters which contain a given standard set. It is also endowed with a
natural sheaf of local rings, the sheaf of analytic functions OA1 . But my main reason
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to view the space A1 as the affine line was the fact that it provided an answer to
the question on the spectrum of a bounded linear operator I posed to myself at the
very beginning. Namely, the spectrum of such an operator is a nonempty compact
subset of A1, and it coincides with the complement of the analyticity set of its
resolvent. The field k is naturally embedded in the affine line as a dense subset,
and the operators studied by Misha Vishik were precisely those with spectrum
contained in k.

It was a pleasant exercise to extend Vishik’s results to arbitrary operators, and
it helped me to understand better the topological tree-like structure of the non-
archimedean affine and projective lines, to get used to them, and to accept them
as reality. During this work I met with Misha several times to tell him about the
progress. At that time, he was the only person (besides my wife) who shared my
excitement about all this. The usual reaction of my colleagues was simple indiffer-
ence at best, and the quite understandable reason for that was nicely expressed by
Professor Manin. When I told him about what I was doing, he observed that it is
worthwhile to develop a general theory only having in mind a concrete problem. Of
course, understanding what the spectrum of a non-archimedean operator should be
was not a concrete problem. Had I followed this wise advice, I would have turned
back to concrete problems I had in abundance in the area of computers, and would
probably have become rich during the present age of the high tech boom since I
was a really good programmer. Fortunately, I was already stupid enough to miss
such an attractive opportunity, and I continued my exploration of the unknown
new world revealed to me by a fluke.

My job occupied me five days per week from 8am till 5pm. It took me several
years to learn to devote an hour or two to mathematics during working hours.
Time free from my job belonged to my family, and when I was completely hooked
on mathematics and an hour or two per day was not enough for it, I discovered an
additional source of time. I learned to get up every day very early (often as early
as at 2am), and thus extended the time for doing mathematics. At this time of the
day, the world around me was quiet and fresh, nobody and nothing disturbed me,
my head was clear, and I could plunge into another world to explore and describe
it.

When I had finished writing everything I had in mind, I could look at it quietly
and listen to an inner feeling that something was not satisfactory. I thought about
this from time to time more and more often, but could not even express what
tormented me. One day at the very end of 1985 all this obsessed me. I could not
stop thinking about it at my job, and later at home. I did not go to bed early
as usual. The right question and an immediate answer to it came early the next
morning.

As I mentioned above, the affine line A1 is provided with a sheaf of rings OA1 .
Its stalk OA1,x at a point x is a local ring with residue field κ(x) provided with a
valuation that extends that on k. If x is of type (1) (i.e., corresponds to an element
of k), then OA1,x is the algebra of convergent power series at that point, and so
κ(x) = k. Otherwise, it is a field of infinite degree over k, and so it coincides with
the non-complete field κ(x). If H(x) denotes the completion of κ(x), one gets a
character k[T ] → H(x) over k. The question that came to me on that early morning
was the following. What are all possible characters k[T ] → K to non-archimedean
fields K over k?
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After the above question had been formulated, I already knew the answer: every
such character goes through a character k[T ] → H(x) for a unique point x ∈ A1.
The proof is very easy. Indeed, given a character χ : k[T ] → K, consider the family
of closed discs of the form E(a; |χ(T − a)|) with a ∈ k and χ(T − a) 6= 0. It is easy
to see that it is a nested family of discs and, if x is the corresponding point of A1,
the character χ goes through the character k[T ] → H(x).

Thus, the affine line A1 can be defined as the set of equivalence classes of
characters k[T ] → K to non-archimedean fields K over k or, equivalently, as the
set of all multiplicative seminorms on k[T ] that extend the valuation on k. Wow,
this definition was so simple and easily seen to be applicable in a much more
general setting (e.g., for defining affine spaces of higher dimension). It also gave a
clear idea how to define the non-archimedean analog of the Gelfand spectrum of a
complex commutative Banach algebra. But the main thing I was struck by was the
fact that this definition was also applicable in the classical situation and gave the
corresponding classical objects. In this way, I was thrown into the new (for me)
area of analytic geometry. It took me several days to calm down and to quietly
look at what all that meant.

The above observation made it clear how to define analytic spaces over an arbi-
trary field k complete with respect to a nontrivial valuation (archimedean or not).
First of all, one should start one step earlier and define the affine space An as the
set of multiplicative seminorms on the ring of polynomials k[T1, . . . , Tn] that extend
the valuation on k. The space An is endowed with the evident topology, and each
point x ∈ An defines a character k[T1, . . . , Tn] → H(x) : f 7→ f(x) to a complete
valuation field H(x) over k so that the corresponding seminorm is the function
f 7→ |f(x)|. Furthermore, as we were taught by Krasner, an analytic function f on
an open subset U ⊂ An should be defined as a local limit of rational functions. The
latter means that f is a map that takes each point x ∈ U to an element f(x) ∈ H(x)
with the following property: one can find an open neighborhood x ∈ U′ ⊂ U such
that, for every ε > 0, there exist polynomials g, h ∈ k[T1, . . . , Tn] with h(x′) 6= 0
and

∣∣∣f(x′)− g(x′)
h(x′)

∣∣∣ < ε for all points x′ ∈ U′. Finally, arbitrary analytic spaces
are those locally ringed spaces which are locally isomorphic to a local model of the
form (X, OX), where X is the set of common zeros of a finite system of analytic
functions f1, . . . , fm on an open subset U ⊂ An and OX is the restriction of the
quotient OU/J by the subsheaf of ideals J ⊂ OU generated by f1, . . . , fm. By the
way, the spectrum M(A) of a commutative Banach k-algebra A should be defined
as the space of all bounded multiplicative seminorms on A.

If k = C, the affine space An is the maximal spectrum of the ring of polyno-
mials C[T1, . . . , Tn] (i.e., the vector space Cn), analytic functions are local limits
of polynomials, and the spectrum of a complex commutative Banach algebra is
the Gelfand space of its maximal ideals. If k = R, the above construction gives
a new object: the real analytic affine space An is the maximal spectrum of the
ring of polynomials R[T1, . . . , Tn] (i.e., the quotient of Cn by the complex conjuga-
tion), and local limits of polynomials with real coefficients are not enough to define
analytic functions.

The above definition of an analytic space was a lodestar in my journey, but I was
unable to work with it directly. The difficulty was in establishing functional analytic
properties of the analytic spaces, whereas establishing their geometric properties
was much easier. Fortunately, the fundamental paper by John Tate on rigid analytic
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Figure 1

spaces was available since it was translated and published in the Soviet Union (even
before it was published in the West). It was Tate’s theory of affinoid algebras and
affinoid domains that compensated for the lack of the usual complex analytic tools
in the non-archimedean world. I studied Tate’s work intensively and adjusted to
the new framework, introducing a category of analytic spaces which eventually
coincided with that given above. In the present framework, it is precisely the full
subcategory of the category of analytic spaces consisting of the spaces without
boundary. They are glued from the interiors of affinoid spaces (the interior of
M(A) consists of the points x for which the corresponding character A → H(x)
is a completely continuous operator), and include the analytifications of algebraic
varieties. The new analytic spaces were applied to define the common spectrum
of a finite family of commuting bounded linear operators, to develop holomorphic
functional calculus, and to prove the Shilov idempotent theorem. The latter states
that for any open and closed subset of the spectrum M(A) of a commutative Banach
algebra A there exists a unique idempotent e ∈ A which is equal to 1 precisely at
that subset.

At that time I found that the process of writing down of what I was starting
to understand was very enjoyable and extremely helpful for better understanding.
The need to express an idea forced me to concentrate on each small object or
detail of reasoning. This concentration helped me see hidden and refined nuances
which could change the whole picture, or to discover again and again a deep-rooted
prejudice or wrong vision or simple stupidity.

The first typewritten text was finished in April of 1986, and I succeeded in
passing it to Professor Barry Mazur, who knew me from my previous work. Later
on, I was surprised to learn that my text had been accepted by the American
Mathematical Society for publication as a book. But I was actually lucky that
everybody at AMS immediately forgot about me finishing that book, and so I
could continue to rewrite the text infinitely many times, gradually extending the
framework of the new analytic spaces and investigating their amazing properties.

Tate’s paper was still the only source of my knowledge in rigid analytic geom-
etry, when I considered the following situation. Assume that the ground field k is
algebraically closed and the characteristic of its residue field is not 2, and let E be
an elliptic curve over k defined by the affine equation y2 = x(x − 1)(x − λ) with
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Figure 2

0 < |λ| ≤ 1 and |λ − 1| = 1. (The latter can be always achieved after a change of
coordinates.) Recall that the projective line P1 has the property that any two differ-
ent points can be connected by a unique path. Let us connect the points 0, 1, λ and
∞ in P1. We get one of the two graphs Γλ presented in Figure 1, which correspond
to the cases |λ| = 1 and |λ| < 1. (For brevity the point p(E(0; r)) is denoted by pr.)
The complement of Γλ in P1 is a disjoint union of open discs of the form D(a; ra)
with a ∈ k\{0, 1, λ} and ra = min{|a|, |a− 1|, |a− λ|}. Every such disc is glued to
its boundary which is a point of Γλ, and Γλ is a strong deformation retraction of
the whole projective line P1. Consider now the x-projection π : Ean → P1 from
the analytification Ean of E. Since the characteristic of the residue field of k is not
two, the square root of each of the linear factors of x(x−1)(x−λ) can be extracted
at D(a; ra) and, therefore, the preimage of π−1(D(a; ra)) is a disjoint union of two
open discs which are glued to their boundaries at the preimage π−1(Γλ). Thus, the
latter is a strong deformation retraction of Ean. If 0 < r < |λ|, then the square roots
of x− λ and x− 1 are extracted at the open annulus D(0; r + ε)\E(0; r − ε) with
0 < r− ε < r + ε < |λ|, but the square root of x is not. This means that each point
of the interval that connects 0 with p|λ| has a unique preimage in Ean. Similarly,
each point from the intervals that connect 1 with p1, λ with p|λ|, and ∞ with p1,
has a unique preimage in Ean. In particular, if |λ| = 1, then π−1(Γλ) ∼→ Γλ. If now
|λ| < 1, then the square roots of x − 1 and of the product x(x − λ) are extracted
at the open annulus D(0; r + ε)\E(0; r − ε) with |λ| < r − ε < r + ε < 1. This
means that each point pr with |λ| < r < 1 has two preimages in Ean, and the graph
π−1(Γλ) has the form presented in Figure 2.

Thus, the analytic curve Ean is contractible if |λ| = 1, and homotopy equivalent
to a circle if |λ| < 1. It is well known that these two cases correspond to those
when the modular invariant j(E) is integral or not. But the latter case |j(E)| > 1
is precisely that of a Tate elliptic curve. Wow, such a curve is homotopy equivalent
to a circle! I was always fascinated by Tate elliptic curves, but never understood
the reason for which they admit uniformization. And here I had a very elementary
explanation of this astonishing phenomenon discovered by Tate; it reminded me of
the classical construction of the Riemann surface of an algebraic function.

Of course, all this strongly lifted up my spirit and eagerness in exploration of
the new spaces. This was very timely since it distracted me from a serious health
problem I had at that time, not to mention my job in a dull institution and the
reality of a country in an advanced stage of decaying.
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The great day of liberation for me and my family came in August, 1987, when
we got out of the cesspool of the Soviet Union and arrived in the wonderful, sunny
and crazy State of Israel. Although I was not so young, I was given an opportunity
to renew my scientific career without also having to earn my family’s living in some
other way. I was again hungry for mathematics as never before, and ready for the
next steps in my journey.


