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FIRST-ORDER SYSTEMS

& 10
L=>) M;(x)D;+ Mo(z), D; = ~o— ®ERY (1)
J

J=1
Mo(z),...,M,(x) Hermitian K x K matrices , x € R", n > 2.

L symmetric (wrt £2(R"; CK) scalar product) on C5°(R"™; CK).

EXAMPLES:

e Classical physics: acoustic, electromagnetic and elastic waves in inhomo-
geneous anisotropic media.

e Dirac equation of relativistic quantum electrodynamics .

Treatise of Courant and Hilbert: commmon features emphasized.



HIGH-ORDER SYSTEMS

L= ) Au(z)D" D" = f[le‘J, z € R, (2)

a[<m

Aq(x) Hermitian p x p matrices , x € R™, n > 2.

L self-adjoint, positive in £2(R"; CP) . m > n.

GOAL: Characterize the spectral family FE,.

CLASSICAL WORK: Y. KANNAI Thesis (Hebrew University, 1967):

e The kernel E,(x,y) ("spectral function”) is smooth.
e Asymptotic behavior as A — oo (away from spectrum).

S. Agmon and Y. Kannai, On the asymptotic behavior of spectral functions
and resolvent kernels of elliptic operators, Israel J. Math. (1967)



FIRST-ORDER CONSTANT COEFFICIENT SYSTEMS

n 1 0
Lo= Y MjD;+ Mg, Dj==-—, z€R" (3)
= 10X ;
1=1 J
M, M?,..., MY constant Hermitian K x K matrices (over C).

Addition of Mg needed for massive Dirac operator .

n
Definition 1. Lg o, = X MJQDJ- is strongly propagative if

Jj=1
mn

there exists a fixed 0 < d < K so symbol M(§) = Y, M¢;

Jj=1
satisfies

dim ker(M(§)) =d, V{=(&1,...,6n) € R"\ {0}. (4)



— negative and positive eigenvalues of M (&), £ = 0, are
e Equal in number.

e Positive-homogeneous of degree 1.

Z = {£ # 0, the discriminant of M (£) vanishes}.

e ~/ is a closed cone of Lebesgue measure zero .

Every eigenvalue of M (&) has constant multiplicity in R*\ {Z U {0}}.

e Distinct eigenvalues (real analytic)

() > ..> X&) >0>A1(8) > ... > A ,(8), e R"\{ZU{0}}



A more restricted class is of operators for which Z = 0 :

n
Definition 2. Lgyom = > MQDj is uniformly propagative if
it is strongly propagative and, moreover, the eigenspace asso-
ciated with every eigenvalue \.(£) has a constant dimension ,

independent of £ € R™\ {0}.

Definition 3. The surfaces {/\j(g) = il} are called the slowness
surfaces of the system.

Courant-Hilbert:normal surfaces



The nonhomogeneous system (M (&) is strongly propagative):
n
M(€) = M(&) + Mg = Y Mj¢; + Mg. (5)
j=1

Proposition 4. There exists a closed set Z C R"™ of Lebesgue
measure zero such that:

For ¢ € R™\ Z every eigenvalue of M(§) that is not an eigenvalue
of M§, has constant multiplicity .

M(6) > ... > X(6), E€R™\ Z,

with corresponding (orthogonal) projection operators

Pj(€)7 j: 17"'7,r‘



SPECTRAL STRUCTURE OF NONHOMOGENEOUS SYSTEMS

" 1 0
Lo= Y MDj+M§, Dj=__—, zcR"
j=1 J

n
M(§) =M€+ MY = > M+ M.
j=1
Ey = spectral family of Lg.
E\(&) =symbol of E,, &€ R"

Ur={6€R"\Z, E\(€)#*0}.



Proposition 5. There exist a finite set A C R and an integer-
valued function k(A) > 0, A € R\ A, so that,

1. k(X\) is constant in open intervals of R\ A.

2. For k(X)) > O the sets

) ={£eR"\Z, \j(© =7}, i=1,...,k(),

are bounded smooth (n — 1)—manifolds, while

{E€R™\ Z, 3;(&) = A} =0, 5> k(\).
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Proposition 6. Let A € R\ A be such that k(\) > 0. Then there

exist nonempty open sets {U{‘, e Ul?(k)} :
k() _

1. UAN= U Up, UM\ Z=T;N).
j=1

2. UP={£€R™\ Z, \j(&) <A}, j€{1,...,k(V)}.

rank P;(§) = constant 7 0, & € U2,

and , for every &€ € U,
k(X)

Ex\(&) = ) Pi(8). (6)

j=1
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EIGENFUNCTION EQUATION
Lov(x) = M (x), x € R".

suppt(€) € U{€ € R, Aj(&) = A} =0
J

J

singularities in Z.

EVOLUTION EQUATION

i%u(x,t) = Lou(x,t), (x,t) € R" xR.

u=/ eit)‘dEA
R

k(M)

w@) = fo 2y O RO OB
2
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C. H. Wilcox, Asymptotic wave functions and energy distribu-
tions in strongly propagative anisotropic media, J. Math. Pures
Appl. 57 (1978), 275-321.

(asymptotics for large time)

R. Weder, Analyticity of the scattering matrix for wave propa-
gation in crystals, J. Math. Pures Appl. 64 (1985), 121-148.

(eigenfunction expansion using geometry of slowness surfaces).

O. Liess, Curvature properties of the slowness surface of the
system of crystal acoustics for cubic crystals, Osaka J. Math.
45 (2008), 173-210.

(oscillatory integrals on slowness surfaces).
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DIRAC OPERATOR

D = (Dy,D5,D3), =€R> (8)
a = (a1,an,a3) is triplet of 4 x 4 Dirac matrices
0 o
J —
(0 %) i=12s (9)

Pauli matrices:

=23 =25) =3 5) oo

-5 2) -9
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DIRAC OPERATOR IS SQUARE ROOT:
(Hm)? = (=& +m?) @ Ia. (12)

Dom(Hp) = HY(R3: CH. (13)
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symbol Hp,(§) :
Hmf(€) = Hn(6)f(€), f€C&C®>CY), ¢ cR>. (14)

Hp(€) is a 4 x 4 Hermitian matrix

Hm(§) = - £+ mp. (15)

e Eigenvalues of Hp, (&) : AL (§) = i\/|§|2 + m?2,
both of double multiplicity (except for m = & = 0).

e For any ¢ € R3 there exists a unitary matrix U, (¢) such that

Un(€)* Hin(€) U (€) = (”(og)b /\_<Og>12> - (16)
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f e £2(R3;C*) define:
Gf(&) = Un(€)f(€), € € R>.
g : L%(R?’; cH — L?(R‘o’; C*) unitary
Foldy-Wouthuysen-Tani transformation

1 (A ©L, 0
GHmG 1‘( o /\_(5)12>‘

Em(X\) spectral family of Hy,.

feCEPR3CH, x>0

(EmN)f, f) = ( (XM@SAIQ O) Gf, gf).

0 15

xB(y) =1 (resp. xp(y) =0 ) ifyc B (resp. y € B).

(17)

(18)

(19)
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£25 = (f /112 = / (1+ |22)°|f (@)]Pdw < 0}, s €R

H™(R™) 1= {u(x)

HT = H = {&

{H_m’sa ” )

/D € L2°, |a| <m,|lulf = ) 1Dl .}

la<m

Ju € L%, illoo = |lullos}, o €R.

|-ms} = the dual space of H™*.

f € H~ 1% can be represented (not uniquely) as

- 0
D ito—fu  fe€L?, 0<k<n
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n
Lo= ) MPD;+ Mg, o(Lo) = its spectrum.
j=1
THEOREM. L, satisfies the LAP in W = into(Lo). More precisely, let s > 1
and consider the resolvent Ro(z) = (Lo — 2)~%, Imz # 0, as a bounded
operator from L£2*(R") to £ 5(R").

Then:
(a) Ro(z) is bounded wrt the H~Y*(R") norm. Density of £?% in H™ 1 =
Ro(z) € B(H '*(R™"), L>*(R™)).

(b) z — Ro(z) € B(H 1*(R"), £L275(R"™)), s>1, +Imz>0, (20)
can be extended continuously from
Ct = {z/ £ Imz> 0} to CiU{W \A} (in B(H-L3(R™), L>75(R™)).
Notation:
:i: _ . .
Ry(\) = girgo Ro(\ + i€).

Spectrum of Lg is absolutely continuous in open intervals C o(Lg).
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BACKGROUND for LAP—Dirac and first-order systems:

e Massive Dirac
Yamada (1973), Jensen-Kato (1979), Balslev-Helffer (1992)

e Homogeneous uniformly propagative
Tamura (1981)

e Homogeneous strongly propagative
Weder (1985)

e Nonhomogeneous systems
7?7
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GENERAL FRAMEWORK FOR LAP
Abstract treatment of the "LIMITING ABSORPTION PRINCI-
PLE"” (LAP) developed by MBA and A. Devinatz.

MBA, Smooth spectral calculus , In: M. Demuth, B.-W.
Schulze and I. Witt (Eds.) " Partial Differential Equations and
Spectral Theory”, pp. 119-182 , Springer Basel, 2010.

Other abstract approaches:

1) (commutators): Mourre (1981)

2) (energy estimates): C. Gérard (2008).
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H self-adjoint in Hilbert space H,

R(z)=(H—-2)"Y, Imz#0. E()\) spectral family.
X CH C X* continuous, dense imbedding.
Definition 7. H satisfies the

LIMITING ABSORPTION PRINCIPLE (LAP) at
AeR If ElglrgiR(A +ie) = RE()\)

in B(X,X*) wuniform topology.
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3 lim R(\ +ie) = RE())
e—0+
Definition 8. U C R open, 0<a < 1.

H is of type (X, X*,a,U) if FAN) € B(X,X™*) such that
() HFENz,y) =< AN)z,y>,  zyeX, IeU

(i) 1A — AWl px x+ < Mg|A—pl®* ApeKCU
K compact.

THEOREM. If H is of type (X, X*,a,U) then

it satisfies the LAP in U.

PROOF The Privalov-Korn theorem: R(z) = de(A) = f%.
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REMARKS
1) A()) is called “density of states” in physics literature.

2) If H satisfies the LAP , it does not mean f(H) satisfies LAP,
even for f(H) = H?.

However, H of type (X, X*,a,U) = f(H) of type (X, X*,a,f(U)).

3) The abstract framework can be extended to H + V, where
V is “short-range” in a suitable sense.

4) Still no good abstract theory for long-range perturbations.
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£25 = {f/If 1220 = [ 1+ 121 (@)Pdz < o0}, sER
Rn

H = {F/IIfllns = | fll p2s < o0}
The norm in £2 =H? = £20 is denoted by || |.

Trace Lemma. Let f € H*(R"),n > 3,5 < s < 3. Then for
any r > 0,

([ 1F©Pdo) 2 < C - Min (72,1 - | Flags,

&=
where doy is the Lebesgue surface measure on || = r and the
constant C depends only on s, n.
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The spectral derivative A()\) is connected to the slowness sur-
faces

M) ={€€R"\ Z, \j(©) =2}, i=1,...,k(N),

by the trace lemma.

Interpretation of de(g) in the oscillatory integral solution of tu; =
Lou
k() N
ulx,t ——/ § / e &L (6)AP: (€)d.
( ) R] ] rj()\) O(S) J(g)

26



Massive Dirac Operator

_ ([Xrp@©<af2 O
B0 = (9= Dorer). e
d - A 5
BN = [ 1@H©Pdo s
€l=vA2—m?2
(22)

where (Gf)71 is a 2—vector consisting of the first two components
of Gf.
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(GO < IGHE)| = If©),
By Trace Lemma , for any A € R,

< A\ F, f >:= %(Em(k)f, f)
1 (23)
57

< cmin ( G2 = m) ) f]20, s >

A
\/AQ_mQ

<, >= (L% 35(R3,C*), £25(R3; C*)) pairing.

Am(N) = %(Em(A)) uniformly bounded and uniformly Ho&lder
continuous in the uniform operator topology of

B(L£25(R3:CHY, L2 5(R3: CY), s> 1.
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EXAMPLE: KLEIN-GORDON EQUATION

B=(-A+m?)2=F1(gP+mHY2F, m>o0.

(ENL) = [ F©3@de , fgeCF®RM,

£24-m2<)\2
d A\ R
NEWNL9) = o o | F©3©do s

§2+m2=)\2
dor is the Lebesgue surface measure on [&| = r.
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%(E(/\)f,g) =<ANf,9> = (2 _/7\712)1/2 / JOUOLL

£24-m2=\2

Trace lemma = dif\(E(A)f,g) is continuous on £2% x £%% s > % so it defines
A(N) € B(L£?%,£%>7%), X >m and with the same C, s,

| < AN f,9> | < C%-A(A2 = m2) 72 - Min ((AQ —m?2)*7, 1) NNzl gl 22

( <,> is the pairing between L*75 L),

Corollary. B satisfies the LAP in B(L?%, £>79),
A>m, s>1/2.

Remark. The Holder continuity of A()A) follows by interpolation with large
s, where it is Lipschitz by Sobolev imbedding.
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THE CLASSICAL WAVE EQUATION

02w
52 Au = 0, (24)
u(x,0) = ug(x), Owu(x,0) =vg(x). =€ R"™ (25)

The Morawetz estimate :

| [ 1273 ue, 0 2dedt < C(ITuolF + llvolld), n >4,  (26)
R R"
For n > 3 we gave the estimate

| [ 1272 ute, 0)Pdadt < CallllVI*uol3+I1V1° eold),  n >3,
R R”

for every a € (0, 1).
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Global weighted—L2 spacetime estimates for Schrodinger oper-
ators well established.

Such estimates for Dirac operators obtained by
Boussaid (2006), D'Ancona-Fanelli (2008).

Illustrated here via Klein-Gordon.
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APPLICATION TO KLEIN-GORDON EQUATION

(¥) ug—ADu4+m?u=0 , m>0,
with Cauchy data,
U(.CU, O) — ’U,O(CU) ) Ut(af, O) — UO(x)a rc R"

The solution u(x,t) can be represented as,

u(z,t) = ug(z,t) +u_(z,t),

wi(e,t) = (2m [ AR, (e)ae,
Rn
where

() = Slio(&) F illE2 + m?) B (),

33



(¥) ug—ADu4+m?u=0 , m>0,

B=(—A4m)Y? =F (P +m*)V2F, m>o.

THEOREM. Let m > 0,n > 3, and let u(x,t) be the solution to

(*). There exists a constant C > 0, depending only on n, such
that

//(1+|x|2)_1|U(a?,t)|2da:dtg

R R"
(2m) M2 (m? + DY2Cllluol|Zogay + 1B~ voll 2o gny]-

Remark Note that the operator B~1 is bounded (in £2(R"))
only if m > 0.
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Proof of Theorem m > 0

(&) = (277)—3/@(56715)6—7?5396133,

Rn

5(x,t) = (27) 2 / v(z,t)e T dt.

R
(-,-), (-,+) the scalar products in £2(R"), £2(R"t1), respectively.

B = (—=A+m?2)1/2 | 3 positive self-adjoint operator in £2(R™) (in fact, B > m),
with domain D(B) = H!(R").

{E(N\)} its associated spectral family (E(A) is the projection operator on
(—o0,A)).

A(\) = LE()) in the weak sense.
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@ LAY g < [AOY . 1 - [AN)g, g,
(id) / LA/, fdA = |If]1.

We may assume (by a standard density argument) that wp,vo € CF(R™). To
estimate ui(z,t) = eBpy use a duality argument. Take w(z,t) € CP(R").
Then,

(Ug, w) = /dt/ < e ANy, w(-,t) > d\

(0.}

=/<A()\)<,0+,/e_itkw(-,t)dt>d)\

— 00
oo

= (27‘()1/2/ < A()\)90_|_,’ITJ(,>\) > dA.

m

Using the Cauchy-Schwartz inequality , and noting (i)-(ii)
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o0

() = @012 [ < Ay, B ) >

m

@ LAY g < TAYF 1 - [AV)g, g,
(id) / LA/, fdA = |If]1.

0o 1/2 00 1/2
[(uy, w)| < (2m)1/2 (/ < AN 4, o4 > d>\> : (/ < AN)D(-, A), D(, ) > d>\>
) :Z 1/2
= (2m)'?||p4]l - (/ < AN, A), w(-, A) > dA) -
| < AN frg > |

<% A2 = m?) 3 Min (2 = m2)7 5, 1) || L ee g oo
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So that

00 1/2
(g w)] < @DY2pr] | [ < ANBEN), B, ) > iy
< (2m) 2|2 - / AO2 = m2) 7 Min (2 = m2)* 3, 1) « [ G, ) [

Take s = 1 and use the Plancherel theorem

1/2
[(ug, w)| < (2m)Y2C(m? + 1) |4 | /Ilw(-,t)llimdt
R
Let f(z,t) € L2(R"FY), w(z,t) = (14 [z[2) 2 f(x,1),
g”w('at)l‘%mdt — HfHQQ(Rn+1)1
(A + 12D Fug, £ < @020 (m2 + DY log |- Ifl @y Q-E.D
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BACKGROUND for LAP—Limiting Absorption Principle

e Eidus, Ikebe, Jager, Kato, Kuroda (1960's),

e Agmon, Boutet de Monvel-Berthier, Hormander, Mochizuki, Mourre,
Saito (1970's).

e "Low-order” perurbations of constant-coefficient elliptic operators.
e N—body (Perry, Sigal, Simon).

e LAP—periodic case (divergence-form)—Murata and Tsuchida (2006).
(1-D case by Weidmann in 1970's).
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Physical models (second-order elliptic operators with " top
order” variable coefficients):

e "acoustic” or "elastic” propagators in nonuniform media. ( "layered
media"’ — beginning in the 1980's)

MBA, Croc, Dermenjian, Guillot, Kadowaki, Perthame, Vega and Weder.

e Divergence-form with smooth coefficients (semiclassical ),
Melrose, Ralston, Robert, Sjostrand (away from thresholds)

e Bony, Bouclet, Hafner (near thresholds, 2008).

e Divergence-form non-smooth coefficients,
MBA, (2008-2010)
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