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Introduction The model Analysis results

The framework

A set of players (Society ), each of which has to choose a
strategy that best serves his goal.
The strategies chosen by all players determine the
resulting social state.
There is incomplete information among the players
regarding the preference relations of each player on the set
of possible social states.
The constitution and the power structure are given by an
effectivity function.
A decision scheme assigns to any profile of declared
preference relations, a probability distribution on the set of
social states.
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Introduction The model Analysis results

Example (After Gibbard (1974))
The society : N = {1,2}.
Each individual has two shirts, white (w) and blue (b), and
has to wear exactly one of them.
The set of social states is A = {ww ,wb,bw ,bb}.
Each individual is free to choose the color of his/her shirt,
then the effectivity function ,E , is:

E({1}) = {{ww ,wb}+,{bw ,bb}+},

E({2}) = {{ww ,bw}+,{wb,bb}+},

and E(N) = P0(A).

Player 1 has two types: T 1 = {1c ,1n} and player 2 has one
type: T 2 = {2}.
Player 2 assigns equal probabilities to the two types of
player 1.
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Example (continued.)
Each type of a player has a von-Neumann Morgenstern
utility function.
Each player declares a preference ordering on the social
states.
Given the profile of declared preferences, a decision
scheme chooses the social state (randomly).

Question:
Is there a pure strategy Bayes-Nash equilibrium of this game ?

Answer:
Yes, and we shall later exhibit one.
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Let A = {a1,a2, . . . ,am} be the set of alternatives (social
states), m ≥ 2.
For a finite set D let P(D) = {D′|D′ ⊆ D} and
P0(D) = P(D)\{ /0}.
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Effectivity function

Effectivity function

An effectivity function (EF) is a function E : P(N)→ P(P0(A))
satisfying:

(i) A ∈ E(S) for all S ∈ P0(N).
(ii) E( /0) = /0.
(iii) E(N) = P0(A).

Interpretation:

B ∈ E(S) means that the coalition S has the legal right to see
the final outcome in the set B.
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Properties of effectivity functions

An effectivity function E is monotonic if:

[S ∈ P0(N), S′ ⊇ S, and B′ ⊇ B, B ∈ E(S)]⇒ B′ ∈ E(S′).

An effectivity function E is superadditive if:

[Bi ∈E(Si), i = 1,2, and S1∩S2 = /0]⇒B1∩B2 ∈E(S1∪S2).
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Social Choice Correspondence

A social choice correspondence (SCC) is a function

H : W N → P0(A),

where W is the set of weak (i.e., complete and transitive )
orderings of A.
Let H : W N → P0(A) be an SCC. A coalition S ∈ P0(N) is
effective for B ∈ P0(A) if there exists QS ∈W S such that for
all RN\S ∈W N\S, H(QS,RN\S)⊆ B.
The effectivity function of H, denoted by EH , is given by
EH( /0) = /0 and for S ∈ P0(N),

EH(S) = {B ∈ P0(A)|S is effective for B}.

We assume that H satisfies: For all x ∈ A there exists RN ∈W N

such that H(RN) = {x}, and thus , EH is indeed an effectivity
function.
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Definition
A social choice correspondence H is a representation of the
effectivity function E if EH = E .

Definition

A decision scheme (DS) is a function d : W N →∆(A).
The Social Choice Correspondence associated with the
decision scheme d , denoted by Hd , is defined by:

Hd (RN) = {x ∈ A|d(x ,RN) > 0}.

A decision scheme d is said to be a representation of the
effectivity function E if EHd = E .
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The uniform core
For any weak preference relation on A, R ∈W .

Denote the strict preference by P.
Denote the indifference relation by I, that is, xIy holds for
x ,y ∈ A if xRy and yRx .
Given a vector of preference relations RN and a coalition
S ⊆ N, we write BPSA\B if xP iy for all x ∈ B, y ∈ A\B
and i ∈ S.
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Definition

Let E be an effectivity function, RN ∈W N a profile of preference
relations on A, and S ∈ P0(N) a non empty coalition.

A set of alternatives B ∈ E(S) uniformly dominates A\B
via the coalition S at RN if BPSA\B.
In that case, for any alternative x ∈ A\B we also say that B
uniformly dominates x via the coalition S.
The uniform core of E and RN , denoted by Cuf (E ,RN) (or
shortly Cuf (RN) ), is the set of all alternatives in A that are
not uniformly dominated at RN .
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Comparison to the Core

Definition
Given an effectivity function E and a vector of preference
relations RN ,

An alternative x ∈ A is dominated by B ⊆ A, x 6∈ B via the
coalition S ∈ P0(N), if B ∈ E(S) and B PS{x}.
An alternative x ∈ A is not dominated at (E ,RN) if there is
no pair (S,B) of a coalition S ∈ P0(N) and a set of states B
not containing x that dominates x via the coalition S.
The core of (E ,RN), denoted by C(E ,RN), is the set of all
alternatives in A that are not dominated at (E ,RN).
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It follows from the definitions that the core is a subset of the
uniform core.

Example (Based on the Condorcet Paradox)
Let N = {1,2,3}, A = {x ,y ,z} and the effectivity function E
given by:

E(S) =

{
P0(A) if |S|> 1
{A} if |S|= 1

For the vector of preference relations:

RN =

1 2 3
x z y
y x z
z y x

At (E ,RN) every alternative is dominated but not uniformly
dominated. Hence,C(E ,RN) = /0 while Cuf (E ,RN) = A.
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Theorem (Abdou and Keiding (1991))

Let E be a monotonic and superadditive EF and let RN ∈W N .
Then the uniform core Cuf (E ,RN) is non-empty.

Theorem (Keiding and Peleg (2006))
Let E be a monotonic and superadditive EF. Then the social
choice correspondence Cuf (E ,RN) is a representation of E.
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Example (Continued.)

By Keiding and Peleg’s theorem, Cuf (E , ·) is a
representation of E by a social choice correspondence.
Convert this into a representation by a decision scheme by
assigning the uniform distribution on Cuf (E ,RN).
For example, if R1 = (ww ,wb,bw ,bb) and

R2 = (bw ,wb,ww ,bb), Then
Cuf (E ,RN) = {ww ,wb}, and hence,
A decision scheme representing E satisfies:

d(ww ,RN) = d(wb,RN) = 1/2

.
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Introduction The model Analysis results

Representation under complete information

Given a society N = {1,2, . . . ,n},
A set of social states A = {a1,a2, . . . ,am},
An effectivity function E ,
von-Neumann Morgenstern utility functions,
u1, . . . ,un, on ∆(A).

Theorem
Given a monotonic and superadditive effectivity function E, and
vNM utility functions (u1, . . . ,un), then there is a decision
scheme d : W N →∆(A) such that,

The decision scheme d is a representation of the effectivity
function E.
The game Γd = (N;W , . . . ,W ;u1, . . . ,un;d) has a Nash
equilibrium in pure strategies.
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Incomplete information
An information structure (IS) is a 2n-tuple
I = (T 1, . . . ,T n;p1, . . . ,pn) where T i is the (finite) set of types
of player i ∈ N, and for all i ∈ N and t i ∈ T i , pi(·|t i) is a
probability distribution on ×j 6=iT j .

Remark

It is not assumed that the beliefs of the players pi(·|t i) are
derived from a common prior that is, the game Γ is not
necessarily a Harsanyi game.
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Introduction The model Analysis results

Definition
1 A generalized decision scheme (GDS) is a function

d : W N ×T →∆(A).
2 A strategy of player i (with respect to a GDS) is a pair

(si ,π i) where si : T i →W and π i : T i → T i .
Denote by Si the set of all such mappings and let
S = S1×, · · · ,×Sn).
Equivalently, a strategy of player i is a mapping
s̃i : T i →W ×T i .
Denote by S̃i the set of pure strategies of player i and by
S̃ = S̃1×·· ·× S̃n the set of vectors of pure strategies.
A vector s̃ ∈ S̃ will also be written as s̃ = (s,π) where
s = (s1, . . . ,sn) ∈ S and π = (π1, . . . ,πn).
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The Bayesian game

An information structure I = (T 1, . . . ,T n;p1, . . . ,pn),
A vector of utility functions (ui)i∈N where ui : A×T → R,
A generalized decision scheme d : W N ×T →∆(A),defines a
game of incomplete information:

Γd = (N;W , . . . ,W ;I ;u1, . . . ,un;d).

The set of actions of player i ∈ N of any possible type t i is
W ×T i . The set of pure strategies of player i is S̃i .
The payoff to player t i when the players play the pure
strategy vector s̃ = (s̃1, . . . , s̃n) ∈ S̃ is U i(s̃|t i) given by:

U i
d (s̃|t i) = ∑

t−i∈T−i

pi(t−i |t i) ∑
x∈A

ui(x ; t)d(x ; s̃1(t1), . . . , s̃n(tn)).
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Bayes Nash quilibrium

Definition
An n-tuple of strategies s̃ is a Bayesian Nash equilibrium (BNE)
if for all i ∈ N, all t i ∈ T i and all (R i , t̂ i) ∈W ×T i ,

∑
t−i∈T−i

pi(t−i |t i) ∑
x∈A

ui(x ; t)d(x ; s̃(t)) ≥

∑
t−i∈T−i

pi(t−i |t i) ∑
x∈A

ui(x ; t)d((x ; s̃−i(t−i),(R i , t̂ i))).

Where s̃(t) is the vector (s̃i(t i))i∈N
and s̃−i(t−i) is the vector (s̃j(t j))j 6=i .
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Main result

Theorem
Let E : P(N)→ P(P0(A)) be a monotonic and superadditive EF.
Let I = (T 1, . . . ,T n;p1, . . . ,pn) be an IS, and let
(u1, . . . ,un), ui : A×T → R, be a vector of vNM utilities for the
players. Then E has a representation by a generalized decision
scheme d : W N ×T →∆(A) such that the game
Γd = (N;W , . . . ,W ;I ; (ui)i∈N ;d) has a BNE in pure strategies.
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Outline of the proof

Define the generalized decision scheme d1 : W N×T →∆(A) by

d1(RN , t) = duf (RN), ∀(RN , t) ∈W N ×T .

Consider the ex-ante game:

Gd1 = (N;S1, . . . ,Sn;h1, . . . ,hn;d1)

in which the payoff functions are:

hi(s1, . . . ,sn) = ∑
t∈T

pi(t) ∑
x∈A

ui(x , t)d1(x ;s(t)),

Note that in this game, the strategy sets are Si rather than S̃i

since d1(RN , t) does not depend on t .
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Outline of the proof cont.

Let (q(s))s∈S be a correlated equilibrium (CE) of the game
Gd1 .The equilibrium conditions are:

∑
s∈S

q(s)hi(s)≥ ∑
s∈S

q(s)hi(s−i ,δ (si)),

which holds for all i ∈ N and for all δ : Si → Si .
From this (by appropriate choice of δ ) that:

∑
s∈S

q(s)U i
d1

(s|t i)≥ ∑
s∈S

q(s)U i
d1

(s−i ,R i |t i),

and
∑
s∈S

q(s)U i
d1

(s|t i)≥ ∑
s∈S

q(s)U i
d1

(s−i ,si (̃t i)|t i)

holds for all i ∈ N and for all t i and t̃ i in T i and all R i ∈W .
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Outline of the proof cont.

Define now a generalized decision scheme d by:
d(x ; IN , t) = ∑s∈S q(s)d1(x ;s(t)), ∀x ∈ A, ∀t ∈ T .

d(x ; (I−i ,R i), t) = ∑s∈S q(s)d1(x ;s−i(t−i),R i),

for all i ∈ N, R i ∈W , t ∈ T , and x ∈ A.

d(x ;RN , t) = duf (x ;RN) otherwise.
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Outline of the proof cont.

Claim:
This generalized decision scheme d is a representation of
the effectivity function E .
Basically because the uniform core duf is a representation
of E (By Peleg and Keiding).
The vector s̃ in which s̃i(t i) = (I, t i),
for all i ∈ N and for all t i ∈ T i , where I is the total
indifference preference on A, is a BNE of the game

Γd = (N;W , . . . ,W ;I ; (ui)i∈N ;d).
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Outline of the proof cont.

Deviation of player i of type t i :
Deviate from (I, t i) to (R i , t i) where R i 6= I.
This is not profitable by the CE inequality:

∑
s∈S

q(s)U i
d1

(s|t i)≥ ∑
s∈S

q(s)U i
d1

(s−i ,R i |t i).

Deviate from (I, t i) to (I, t̃ i) where t̃ i 6= t i .
This is not profitable by the CE inequality:

∑
s∈S

q(s)U i
d1

(s|t i)≥ ∑
s∈S

q(s)U i
d1

(s−i ,si (̃t i)|t i).

Deviate from (I, t i) to (R i , t̃ i) where R i 6= I and t̃ i 6= t i .
This is not profitable as in the first case since:

d(x ; (I−i ,R i),(t−i , t̃ i)) = d(x ; (I−i ,R i), t).
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Definition
A preference relation R ∈W is dichotomous if there exist
B1,B2 ∈ P(A) such that B1 6= /0,B1∩B2 = /0 and B1∪B2 = A
such that xIy if x ,y ∈ Bi , i = 1,2 and xPy if x ∈ B1, y ∈ B2. The
set of all dichotomous preferences in W is denoted by Wδ .

Since a dichotomous preference relation is determined by a
single subset B ⊆ A, the set of most preferred alternatives, we

use the notation R =
B

A\B
for a generic dichotomous

preference relation.
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Theorem
Let E : P(N)→ P(P0(A)) be a monotonic and superadditive EF.
Let I = (T 1, . . . ,T n;p1, . . . ,pn) be an IS, and let (u1, . . . ,un) be
a vector of utilities for the players. Then E has a representation
by a generalized decision scheme d : W N

δ
×T →∆(A) such

that the game Γ = (N;Wδ , . . . ,Wδ ;I ; (ui)i∈N ;d) has a (pure
strategy) BNE.
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Example (back to Gibbard’s example.)
Recall the information structure
I = (T 1,p2) where T 1 = {1c ,1n} and p2(1c) = p2(1n) = 1/2.
(player 2 has one type).

u1(ww ,1c) = u1(bb,1c) = 1 and
u1(bw ,1c) = u1(wb,1c) = 0 (1c likes ‘conformity’).
u1(a,1n) = u1(a,1c)−1 for all a ∈ A
(1n also likes ‘conformity’ but at a lower level of utilities).
u2(a,1c) =−u1(a,1c) and u2(a,1n) =−u1(a,1n)
for all a ∈ A (the utility of player 2 is ‘opposed’ to that of
player 1 whatever his type is).
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Example (continued.)
Consider the Bayesian game in which the players submit
dichotomous preferences:

Γδ = (N;Wδ ,Wδ ;I ;u1,u2;duf )

In the strategic form of this game:
Player 2 has 16 pure strategies
(indexed by the subsets of A).
Player 1 has 162 pure strategies.
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Example (The reduced game cont.)
Here, the pure strategies are denoted by the upper-set in the

dichotomous preference that is: (ww ,wb)≡ ww ,wb
bw ,bb

etc.

A BNE of this restricted game is (s1,s2) where

s1(1c) =
ww ,wb
bw ,bb

, s1(1n) =
bw ,bb
bw ,bb

,

and

s2 =
1
2

ww ,bw
wb,bb

+
1
2

wb,bb
ww ,bw

.

It can be shown that this is also a BNE of the game Γδ .
As far as we can see, Γδ has no BNE in pure strategies.
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Example (Cont.)
It turns out that in this simple example the BNE can be obtained
from the game induced by a decision scheme (rather than a
GDS):

Define a decision scheme d that satisfies:

d(a; ÎN) =
1
4

for all a ∈ A

and
d(a; Î−i ,R i) =

1
4

for all a ∈ A and i ∈ N

where R1 ∈ {(ww ,wb),(bw ,bb)} and
R2 ∈ {(ww ,bw),(wb,bb)}.

With this decision scheme d , the pure strategy vector ÎN is
a BNE of the induced Bayesian gamae Γδ .
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Example (Two-person 2×2 games)

Consider the game G = ({1,2};C1,C2;u1,u2) in which:
The players are 1 and 2.
The pure strategy sets are C1 and C2 respectively,
satisfying |C i |= 2, i = 1,2.
The utility functions are ui : C1×C2→ R, i = 1,2.

Consider the set of alternative to be C := C1×C2.
Consider the natural effectivity function
EG : P(N)→ P(P0(C)) defined as follows:

A coalition S is effective for B ∈ P0(C) if there exists
cS

0 ∈ CS such that B ⊇ {cS
0 }×CN\S , and

EG(S) := {B ∈ P0(C)|S is effective for B}
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Example (Two-person 2×2 games, cont.)
A correlated strategy is a probability distribution p on
C = C1×C2.
The corresponding payoffs to a correlated strategy p is

ui(p) = ∑
c1∈C1

∑
c2∈C2

p(c)ui(c1,c2), i = 1,2.

The security levels (in mixed strategies) of player 1 and
player 2 are:

v1 = max
σ1∈∆(C1)

min
c2∈C2

u1(σ
1,c2)

v2 = max
σ2∈∆(C2)

min
c1∈C1

u2(c1,σ2)
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Definition

A decision scheme d : W N
δ
→∆(C) is individually rational (IR)

(w.r.t. the game G) if each player i ∈ N has a strategy V i ∈Wδ

such that ui(d(V i ,RN\{i}))≥ v i for all RN\{i} ∈W N\{i}
δ

.

Proposition

Let p ∈∆(C). Then ui(p)≥ v i for i = 1,2, if and only if there
exists a decision scheme d : W N

δ
→∆(C) such that,

(i) The decision scheme d is a representation of EG, the EF
of G.

(ii) The game Γ = (N;Wδ ,Wδ ;u1,u2;d) has a Nash
equilibrium (R1,R2) ∈W N

δ
such that d(· ,(R1,R2)) = p.

(iii) The decision scheme d is individually rational.

The result is valid for any n-player finite game in strategic form.
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Consider the prisoners’ dilemma given in the following game:
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Example (The prisoners’ dilemma, Cont.)

Here v1 = v2 = 0 and the set of NE payoffs is given in Figure 1:

Recall that (0,0) is the unique correlated equilibrium payoff.
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