Regular Tournaments and their spectra
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Abstract

Tournament graphs are directed graphs with an (asymmetric) adjacency ma-
trix D which summarizes the result of regular round-robin tournaments between
N players: Every player plays against all the others, if ¢ wins against 7 then
D;;=1and D;; =0. Clearly D;; = 0. If NV is odd then a tournament can be
regular each player wins exactly half the times.

To construct regular tournaments we introduced a random walk in the space
of the tournament adjacency matrices which will be argued to be ergodic.

The spectrum of D for regular tournaments consists of one point on the real
axis, the rest are in the complex plane, all with real part = 1/2. The spectral
statistics on the ”critical lime” will be studied using a trace formula for the
spectral density. For large N it will be shown that the mean spectral density
approaches the semi-circle law. Moreover, numerical simulations supported by
theoretical arguments derived by using the trace formula, show that the spectral
statistics is consistent with the predictions of the Gaussian Unitary Ensemble
of random matrices.



Round Robin Tournaments:
A round-robin tournament (or all-play-all tournament) is a competition
"In which each contestant meets all other contestants in turn".

The term round-robin is derived from the term ruban, meaning "ribbon".
Over a long period of time, the term was corrupted and idiomized to robin.

Irregular Tournament
A kind of a Polo game, Afghanistan (Photo graph Courtesy N. A.)


http://en.wikipedia.org/wiki/Round-robin
http://en.wikipedia.org/wiki/Round-robin
http://en.wikipedia.org/wiki/Round-robin
http://en.wikipedia.org/wiki/Folk_etymology

Regular Tournament:
Round Robin tfournament where each player wins (and loses) exactly 3
of his/her games.
-> N :  Number of players in a reqular tournament is odd
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In a recent lecture by Bojan Mohar | learnt:

1. The spectrum of D consists of the trivial value %2(N-1) and N-1 complex values on the
line -%+iy

2. The spectral density (properly scaled) approaches the semi-circle distribution for
large N.

Being intrigued and with no clue of Bojan’s (unpublished) results I decided to look at
it myself — the more I studied the more intrigued I am. I’ll discuss here my present state
of ignorance and a few results | obtained along this way.



The set of regular tournaments of (odd) N players.
1. Equivalent classes — same tournament with a different enumeration of the players

oN(N—1)/2

2. The number of non-equivalent tournaments cannot be greater than i

this estimates misses the requirement that the tournament is regular.
3. B.McKay proved As n — oo with n odd,
9(n?—1)/2 ,-1/2

T p(n=1)/2n/2-1

RT(n) (1+0(n~1/2+))

Random walk in the space of regular tournaments

Random walk :

Choose entries (i,7) , (i,k) , (k,7)
at random however check that:
If Di’j =0 — Di,k = Dk,j =1
J ke k,j Dy =
Then swap 1 <—— 0 on all positions
(¢,9) (4,9) (k) (k,3) (k,7) (4, k)
(hitting probability =1/4)




Generating random regular tournaments

Random walk :

Choose entries (4,7) , (i,k) , (k,7)

D: 51x51

at random however check that:
If Di’j =0 — Di,k = Dk,j =1
If Di,j =1 — D’i,k: = Dk,j =0

Then swap 1 <—— 0 on all positions

(@,7) (7,0) (4, k) (k,7) k. 7) (. k)
(hitting probability =1/4)

Check: D+ DT




Ergodicity of the scrambling mapping
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The scrambling transformation is a rank two (effective one) perturbation, of random sign.

The starting spectrum is simple, and therefore the successive matrices generated ?
by the transformation are interlacing backwards and forwards depending on the sign.

Hence successive tournaments are not equivalent under permutations.

correlation

Correlation = 0sf

N/4| +~ -
Zil,jilj DatigtiDat N/a)+isat+ |IN/4]+5
(N/4)?




The spectral properties of Tournament graphs
E=[LHQA[ -1 (1] =(1,1,---,1)

D= £ACD + 1B = LA0D + §(1)1| - 1

7

where AM) = 2§(D — %E) is a [Hermitian|matrix with entries:

A*S"f\f) =0 ; Ag\f) = ei¥r.s @’r,s = _quJ‘ — % .

AM): »Magnetic” Laplacian on a complete graph on N vertices d = (N—-1).

From now on, discuss the spectrum of AMM) . g(AM)),

V row (column) #(+i) = #(—i) = &1 — 0 € o(AM)), with eigenvector |1) .

o(AM)) /0 is symmetric about 0 since {A(M)}* = — AWM)

The spectrum of D consists of {3(N —1), =1 + Lpu,} ,u, € o(AM)/0 .

”"Ramanujan” : |u,| < 2v/N — 2. ?

Scaled spectral parameters €, = =




Ramanujan property : Max(e) — 1

Correlation

1.0

0.8
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A trace formula for the “Magnetic Laplacian™ spectrum

Reminder

Directed - edge connectivity vs. vertex connectivity
A;j » Adjacency Matrix, dimA =V ; Be e = 04(et) r(e) » dimB = 2F.
Jere =076 3 Y =B —J: The Hashimoto connectivity matrix.

#{t-periodic walks } = trB' = trA".
#{t-periodic non-backscattering walks } = trY? \/v 0

Bass’ (Bartholdi’s) identity for d-regular graphs: , _—

For any n arbitrary complex number.

det(nI®E) —v) = (i = 1)F "V det(IV) (n? + (d — 1)) — nA) .

I2E) and IV) unit matrix in 2E and V dimensions.

In the Magnetic case
B(M) = (50(6/) (e )6%(¢e+¢e’), and }/e(,]\;l) — B(M) —J = }/61 66%(¢6+¢6')

For regular tournaments the connectivities A and Y correspond to a complete graph



Bass’ (Bartholdi’s) identity for the ”Magnetic Laplacian”:

For any 7 arbitrary complex number.

det(nI — YD) = (n2 — 1) 52 det (™M (12 + (N — 2)) — nAM))

B =i 6,(0).7(c)Sign(e), and Y =BOD — J =Y, Sign(e)

e’ e

Denote the spectrum of AM) by {1
N(N—1)/2

r=1

Denote the spectrum of Y (M) by {1}

The 71 spectrum consists of

+iarccos — 2k
vVN —2e 2vV(N=2)  Afor all k
and the trivial 1 with multiplicity N(N —3)/2 .

Thus:
oy 1 tr(Y (M)
S T N (N 22
N
2 MK N(N—?)) 1—|—(—1)t
— —Zcostarccos (N—2)+ N (N—2)t/2
k=1
_ EZN:T( pe ) NIV =3) 14 (1)
S Nz Ta/N-y T 2N (V-2



Making use of the Bartholdi identity, and € = o2

the trace formula for the “Magnetic Laplacian” spectrum follows:

o) = & 3 de—e) =

€, ER M
— 3\/1 —€e2(1+ O(i)) + LR iy(M) Ti(e)
s N TV1—e? ‘ t
_ B (M) 1 tr(Y (M
Where :  Ti(z) = cos(tarccosz) z€[-1,1] ; y ' =~ (](V_Q)E)

tr(Y (M)t = 3"
W; - The set of t-periodic non back-tracking walks on the magnetic graph

wEWt(_l)kt(w) 3 trYt — ZwEWt ~ (N o 2)t

ki(w) - the number of negative bonds on the t - periodic walk.

OO Swew, (=1
t N Wil

Note: For odd ¢, ng) = 0,

consistent with the reflection symmetry of the spectrum.



nmax = 1501
# of attempted
hexagons 1125750




. Numerical results for a single tournament
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Spectral statistics

awf T _ .
Unfolding the spectrum (positive half only) : hmb_ipectral density
ELgS ]
N(e) = X(arcsine + ev/1 — €2) 5 ™
wf
0; = QW% Uniformly distributed on the unit circle |
10F
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[ Form factor |

L (smoothed)
1.0

nmax = 1500
Spectral points in the support 749
Scrambling 843334 iterations
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Random Matrix Theory in a nut shell.

I. The Gaussian Orthogonal Ensemble (GOE)
The set of N x N symmetric real normally distributed random matrices H

Pcor(H)dH = Cy exp(—trH?) H dH,;

i>j

II. The Gaussian Unitary Ensemble (GUE)
The set of N x N Hermitian complex normally distributed random matrices
H

Poup(H)dH = Cyexp(—trHH') | [ dH, ;
i>]
Eigenvalues distribution: =
The spectral density: p(\) = ~ Z;\;l S(A—Aj).
The Wigner Semi-circle law: For N — 0o (p(A)cop.cve — 3= VAN — A2

Example: Nearest neigbour spectral distribution

Ay — )\ R

n - \n—1

i mean spacing () AK k;( (s = 5k) ~ >
TS 82 3252 452

PGOE(S):EGXP(_T) ; Poug(s) = — eXp(—7)



Spectral 2-points correlations:
The Circular ensembles (COE,CUE):

_ o Nur(A))

/i V-1

{mapping the spectrum on the unit circle)

V-1
K(1) = ﬁ < Z cos(6; — 0,)t > , and t = (V — 1)1 (scaling property)
ij=1

GUE GOE
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Two versions of the spectral form-factor.

¢; = arccose; ; (p(p)) = 2sin” ¢ 0, =20 o (p0)) = L
K 1tg; ’ N it0.: 2
K(t;N):%<‘Zj\rzlet¢’J > K(t;N):%<‘Zj:let93 >

| i " TFor large N | |
~ ) T
K(t;N) = 2/ p(@ K( )dqb T = — .
8= 2 | PO o) N
~ T 1 1 VT
= 5 5oVt —(2 - - f 4
Kaup(T) 5~ 7. VT4 —T) + 77( T) arccos 5 for 7 <
_3/2  5/2 i
~/ - /2
37 1207 +O( )
— 1 for >4
K(t,N = 750) K(t,N = 750)

300 1000 1500 2000 2500 3000 3500



The fluctuating part of the spectral density :

5 2 1 1 = M)
€) =ple) — —/1 —¢€2 = — E T, (€)1
p() p() T ﬂ_mt:?) t( )yt

Using the Orthogonality of the Chebyshev Polynomials:

—z/ de f(e) Ty(e)
(yM))2 —4f / Ti(e)Ti(e") (p(e)p(€')) dede

Map the spectrum to the unit circle: ¢ = arccose , ¢ € [0, 7]

I / ' f " cost cos i [(3(0)3(0))] dede

However : Kt;N)= 2 <(Zg:1 cos(tcbk))2>

Therefore

REN) = MMy = & <<&Izwewt(1)kt(m)z>




K 1)k \
R(:N) = §<(y§M>>2>§<(§Zwem|§N y )>

((tZper (-110))

1
N? t| P
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P : The set of non back tracking t-periodic orbits.

“Diagonal Approximation”:
Assuming signs on periodic orbits
are uncorrelated, and remembering
that walks are of length t.

The remaining terms in the Taylor expansion
of the form-factor remain to be computed. This
Is a non-trivial problem in combinatorics.

Assuming that the spectral fluctuations are of the GUE type,

(Spen-0m0))

t
—‘K(r) =2 for Njt w00, —=71>4.
B, . (7) — for N, 00, ¥ =T>




Open questions and future work
Prove uniform coverage of tournament space by the random walk.
"Ramanujan” property for the Magnetic Laplacian spectrum

GUE spectral statistics vis-a-vis periodic orbits statistics, beyond the
diagonal approximation

Nodal counts

Irregular tournaments and almost regular tournaments (even N)

Thank you for your attention



