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Why in dimension 2 one can stop blowing bubbles and start making toy
pyramids

@ Trudinger-Moser (Yudovich, Peetre, Pohozhaev, Trudinger, Moser)
. . . . . . 47.”_’2 .
inequality defines an optimal nonlinearity [ e*™ on a ball in Sobolev
space for dimension 2, that exhibits more weak continuous behavior
than its counterpart [ |u|?" in higher dimensions.

@ This suggests that the inequality can be refined. We produce several
refinements, but argue that there an invariant local analog of [ |u|?’
does nor exist.

@ In the higher dimensions sequences approximating solutions to critical
elliptic (Yamabe-type) problems may form concentration profiles in
form of rescaled “standard bubbles”. In dimension 2 the analogous
sequences produce rescaled “toy pyramids”.
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Comparison of Sobolev and Trudinger-Moser inequalities

Sobolev ineq. DM?(RN), N > 2

Trudinger-Moser, H} (D), D C R?

SUP||Vull2<1 fRN |U|2* dx < o0

lu])|u]? dx = oo

h 1 oo, sup [pn h(

D12 < [2°2 Peetre '66
* (2
lull3-» = [[%]" dx (Hardy)

r

L2*,2 N L2* —_ L2*,2* N L2*,oo

[ul* no weak continuity at any u

Amru?
5“P||Vu||2§1 f]D) e dx < 00

sup [ h(|u )e*™ dx = oo

H} (D) — L>>2~1 Brezis-Wainger
. 12
lull3e o, = J dx (Leray)

_u
e
rlog <

Loo,2,71 N Loo,oo,fl/Z

= exp L2
fe‘“”’2 "almost" weakly cont.
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Weak continuity of the Moser functional

Lions’ compactness result. Let uy — v in H}(D) and ||[Vukl]2 < 1.
J(u) = [, (e*™ — 1)dx.
o If |[Vuklla <a <1, oru##0,then J(ux) — J(u).
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J(u) = [, (e*™ — 1)dx.
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o If u=0, ||[Vukll2 = 1, and the singular support of w — lim |V u|?dx is
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Weak continuity of the Moser functional

Lions’ compactness result. Let uy — v in H}(D) and ||[Vukl]2 < 1.
J(u) = [, (e*™ — 1)dx.
o If |[Vuklla <a <1, oru##0,then J(ux) — J(u).

o If u=0, ||[Vukll2 = 1, and the singular support of w — lim |V u|?dx is
anything but a single point, then J(ux) — J(u).

e Adimurthi and CT (Annali SNS Pisa, to appear): J(ux) — J(u) unless
IV (uk = pa (- = yi))ll2 = 0

for some y, € D and t, — 0, where
1 1 1
we(x) et (2%)*%(Iog ?)*% min {Iog T’ log t} , te€(0,1), xe D.
b%

(Moser function). The condition is still not necessary: convergence of
J(Akpee, ) with Ay — 1 depends on the sequence Ay (Adimurthi &
Prashanth)
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Perfectly critical nonlinearity

@ For N > 2 one can derive the critical nonlinearity from the Hardy
. . o2 2 .
inequality [on [Vul? > (%2)7 [on 4. Hardy functional lacks weak
continuity, but only on sequences concentrating at zero.

Cyril Tintarev Uppsala University Yudovich-Maoser



Perfectly critical nonlinearity

@ For N > 2 one can derive the critical nonlinearity from the Hardy
. . o2 2 .
inequality [on [Vul? > (%2)7 [on 4. Hardy functional lacks weak
continuity, but only on sequences concentrating at zero.

e By using rearrangements, one forces the concentration to occur in the
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Perfectly critical nonlinearity

For N > 2 one can derive the critical nonIinearity from the Hardy

inequality [pn [Vul? > (252 ) Jgn Y. Hardy functional lacks weak
continuity, but only on sequences concentrating at zero.

By using rearrangements, one forces the concentration to occur in the
.. *2 I .. * .
origin: [ “7 . This is the standard definition of the L?"2-quasinorm.

Radial estimate: sup,-q u*(r )r 2 < C||Vul|2. The left hand side is
the L2°°- norm (weak L2", Marcinkiewicz My+). Holder inequality
defines quasinorms for a family of Lorentz spaces, L?*9, g > 2. For
radial functions all these quasinorms are invariant with respect to

0o N-2
dilations u +— t 2 u(t-), thus no compactness.

Cyril Tintarev Uppsala University Yudovich-Maoser



Perfectly critical nonlinearity

For N > 2 one can derive the critical nonIinearity from the Hardy

inequality [pn [Vul? > (252 ) Jgn Y. Hardy functional lacks weak
continuity, but only on sequences concentrating at zero.

By using rearrangements, one forces the concentration to occur in the
.. *2 I .. * .
origin: [ “7 . This is the standard definition of the L?"2-quasinorm.

Radial estimate: sup,-q u*(r )r 2 < C||Vul|2. The left hand side is
the L2°°- norm (weak L2", Marcinkiewicz My+). Holder inequality
defines quasinorms for a family of Lorentz spaces, L?*9, g > 2. For
radial functions all these quasinorms are invariant with respect to

0o N-2
dilations u +— t 2 u(t-), thus no compactness.

Imbedding into L2"2 is optimal in the class of Rl spaces (Peetre
1966), but the quasinorm of L2"?"coincides with the 2"~ norm.
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Dilation-invariant nonlinearity

Same derivation in dimension 2 can be carried out with a twist and only at
90%. First of all there is no function space D'?(IR?). Its role rather
convincingly is taken over by H} (D) with the norm || Vul|2.

On the unit disk we have analogs of translations and dilations acting on
H} (D) and preserving || Vul.
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Same derivation in dimension 2 can be carried out with a twist and only at
90%. First of all there is no function space D'?(IR?). Its role rather
convincingly is taken over by H} (D) with the norm || Vul|2.

On the unit disk we have analogs of translations and dilations acting on
H} (D) and preserving || Vul.

z—¢
1_&) , ¢ €D.

Translations: u (
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Dilation-invariant nonlinearity

Same derivation in dimension 2 can be carried out with a twist and only at
90%. First of all there is no function space D'?(IR?). Its role rather
convincingly is taken over by H} (D) with the norm || Vul|2.

On the unit disk we have analogs of translations and dilations acting on
H} (D) and preserving || Vul.

. i ch
Translations: u (1—C_Z> , ¢ eD.

Dilations (a semigroup): j~1/2u(2/), j € N, extend to radial functions to
the group
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The counterpart of Hardy inequality is the Leray inequality (dilation
invariant)

1 u*2
V|3 > / ——— dx Leray, 1933
4 Jp (rlog+)?

Replacing 1/r with e/r we have the quasinorm of the Lorentz-Zygmund
space L2090,
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The counterpart of Hardy inequality is the Leray inequality (dilation
invariant)

V|2 > 1/u*2dx Leray, 1933
2= 4 D(rlog%)2 v

Replacing 1/r with e/r we have the quasinorm of the Lorentz-Zygmund
space L2090,
Radial estimate: sup,-

—

u*(r

< 1 00,00;—1/2 H :
sl = mHVUHQ. L coincides with

the Orlicz space exp L2.
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The counterpart of Hardy inequality is the Leray inequality (dilation
invariant)

V|2 > 1/u*2dx Leray, 1933
2= 4 D(rlog%)2 v

Replacing 1/r with e/r we have the quasinorm of the Lorentz-Zygmund

space L2090,
u*(r)

Radial estimate: su < L ||Vullp. Lo>=1/2 coincides with
Pr>o0 \/@ > \/g” H2

the Orlicz space exp L2.

The scale of Lorentz-Zygmund spaces L°Pi1/P=1/2 is similar to the Lorentz
scale and the L°9°%~1/2_quasinorm is a clear analogue of the 2" -norm. As
fiascos come, this is one of the nicest, a true Pyrrhic victory.
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Why Mobius transformations?

@ Poincaré disk model of the hyperbolic space H?: du = de;
1 dull?2 g2y = IV ull3;

sup / (e4’“’2 —1)du < .
uEH(HR), || dul|p <1 /H2

"Hyperbolic refinement” of Trudinger-Moser: Adimurthi &CT,
Sandeep and Mancini, 2010
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Why Mobius transformations?

@ Poincaré disk model of the hyperbolic space H?: du = de;
1 dull?2 g2y = IV ull3;

sup / (e‘””’2 —1)du < .
uEH(HR), || dul|p <1 /H2

"Hyperbolic refinement” of Trudinger-Moser: Adimurthi &CT,
Sandeep and Mancini, 2010

o M&bius transformations 7 are isometries on H2.
“Translation-invariant” Lorentz-Zygmund spaces have to use
rearrangements relative to p. This helps the quasinorms, but not the
Trudinger-Moser functional!
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Forcing invariance:

Creating an invariant functional in H&’r(]D)) by limit:
lims_o J(hsu) — J(0) = 0 and lims_,o0 J(hsu) — J(0) = 271 py(u) where
M = {:ut}tE(O,l)-
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Forcing invariance:

Creating an invariant functional in H&’r(]D)) by limit:

lims_0 J(hsu) — J(0) = 0 and lims_o0 J(hsu) — J(0) = 2m1py(u) where
M = {pt}ten)-

If the functional [ F(r, u)dp is both Mdbius-translation invariant and
dilation invariant, then F = 0.
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More refinements of Trudinger-Moser inequality

sup / eI gy « o0 A < A (D) =5.7...
ueHg (D), Vul2<1 /D
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More refinements of Trudinger-Moser inequality

sup / eI gy « o0 A < A (D) =5.7...
ueHg (D), Vul2<1 /D

@ Under general conditions (the singularity of V' at the origin has to be
sub-Leray) the inequality

2
sup /e47”’ < 00
ueHI(Q)||Vul2—[ V(r)u2<1 /D

holds if and only if the quadratic form is subcritical in the sense of Agmon
(positive without a virtual bound state). CT (preprint 2012)

@ Expressing this with the Orlicz norm is not kind to the constant 4.

@ Adimurthi-Druet inequality follows from the case of V(r) = A\. Wang
and Ye (2012) have V = ﬁ
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Trudinger-Moser on the plane

Bernhard Ruf (2005):

2
c(\) = sup / '™ < o0o,.
ueHY(Q)||Vul]24+X [ 12<1 JR?

Conjecture: [ u? can be replaced by a weaker term, as long as some
coercivity is sustained. Perhaps not by ([, u)??

In general, it's time to look for the counterpart of the
Caffarelli-Cohn-Nirenberg inequalities.
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How to blow bubbles

o Critical sequences for the limit Sobolev functional in higher
2N
dimensions, ||Vu|> — [|u|¥=2, develop elementary concentrations

(“bubbles™) ' w(t(- — y)). There is only one possible positive
bubble, the “standard bubble”

o W(X) = %
(1+x2)"2
o Existence results require elimination of concentration. Once
concentration is eliminated, the sequence converges. “How to blow

bubbles” by Brezis and Coron, 1984.
o What happens in the case of |Vul|? — fe“’”lz?
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@ The elementary concentration: t*/2w(|x — y|'/t). (Druet, Struwe and
others studied sequences of solutions that allowed Euclidean blowups).

o Convergence after elimination of bubbles: Adimurthi and CT, to
appear in Annali SNS Pisa, radial case Adimurthi, do Oand CT (2010)

@ Instead of a standard bubble the profiles are infinitely many “toy
pyramids” (David Costa and CT, preprint 2012).
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How to build toy pyramids

o A radial function uc, ¢ € HE(B), parametrized by closed disjoint sets
C4, C_ C(0,1), is called a Moser-Carleson-Chang tower if puc, ¢_(r) =

/1 1
5-log re Cy,
/1 1
—\/3zlog s, re .,

An+ Bylog L, r € (an, bn) (a connected complement of (0,1)\ (Cy |

@ When the set C; consists of a single point and C_ = (), this is the
original Moser function, and it uniquely minimizes||Vc, c_||2 -

@ The coefficients A,,, B, are defined uniquely by the requirement of
continuity.

@ The function pc, ¢ (r) has continuous derivative at every point of
(0,1) except the endpoints{ap, by }.

@ The number of times the function pic, ¢ on (0,1) changes sign does
not exceed | Ve, ¢ |15 — 1.

. _ log 3

@ Restriction on C_,Cy : > Z"J < oo where o, = \/Iog?.
. 1

bn
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