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PREFACE
by Zvi Artstein*

We have assembled here at the completion of a year since the passing of Professor
Chaim Leib Pekeris, in order to honour his memory with an academic lecture. This
gathering takes place under the auspices of the Israel Academy of Sciences and
Humanities, of which Professor Pekeris was a leading member, and of the
Weizmann Institute’s Faculty of Mathematical Sciences, which he founded and
headed for many years. Permit me to preface the main lecture with a number of
biographical details, which, in the nature of things, will serve only as a limited
sampling of the weailth of his deeds and his contributions to science, to the
economy, to Israeli society and to the world.

Chaim Leib Pekeris was born in 1908 in a small town called Elytus in Lithuania
to a family wth a highly-developed Jewish awareness, which passed on to its
offspring a sense of responsibility for the Jewish community. Chaim was
recognized as a genius already in his youth at the Kovno Hebrew Academy, and he
went on to study sciences at the Massachusetts Institute of Technology, where he
also excelled, of course. In a letter to a refative, he wrote (and here we may imagine
his characteristic grin):

[T]his week I received the highest mark I ever got in my life. This is my test in
applied mechanics ... . The reason for the 120 is to make the mark of the
majority of the students near to the passing mark.

Al the same time, nineteen-year-old Pekeris was initiating activities to improve
the social and economic conditions of his people in Lithuania. In a letter to a
wealthy relative, Pekeris laid out a detailed plan for establishing a network of
agricultural schools for Lithuanian Jews, setting forth rationales, possible sites,
stages of operation and a budget. The content of the letter is revealing of the
historical period:

90% or more of Lithuanian Jewry are not self-supporting. There are as many
retail stores ... as the number of Jewish families. The government, knowing

* Professor Zvi Aristein is Dean of the Faculty of Mathematical Sciences at the Weizrnann
Institute of Science. The following remarks are taken from his introduction to Prolessor
Lighthill's address at the Israel Academy of Sciences and Humanities on 22 February 1994,
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that the retat! is entirely in Jewish hands, put most of the taxes on the

storekeepers ... . Almost every Jew has relatives in America who support him
... . They keep on with the stores just because they have not got anything else
to do.

In his habitual self-confident manner, young Pekeris continues: °[ think that if one
wants to do something for the Lithuanian Jews, he should not give them what they
ask, but ... establish them economically.” The solution he offers is consistent with
the way of thinking that he retained throughout his life: ‘They have to learn the
Science of farming ... be the pioneers of modern farming in the country.’

His plan to establish agricultural schools began to take on substance, and the
initial funds were budgeted, but the economic stresses of the time in America and,
later, the political troubles in Europe forestalled the fulfillment of the dream.
Meanwhile, Pekeris’s academic career continued to thrive. He finished his
bachelor’s degree in 1929 and his doctorate in 1933, both at MIT, where he was
supported part of the time by a prestigious Guggenheim Fellowship. After that,
Pekeris was awarded a scholarship from the Rockefeller Foundation, which he used
to continue his research in Boston and to spend a year at Cambridge University.
From 1936 until 1941, Chaim Pekeris taught at MIT and published important
articles on hydrodynamic stability, heat convection from the earth’s core, and even
on the role of ozone in the atmosphere. During World War [1, Professor Pekeris
joined the War Research Department at Columbia University in New York, where
he made his contribution to the war effort through his studies on the propagation of
underwater sound waves. After the war, he was appointed director of the
Mathematical Physics Group at Columbia University. He published fundamental
works on wave propagation in a variable substance and in the atmosphere, and on
magnetic fields in different types of antennas.

During this period, the seeds of two decisive developments began to sprout. The
first was Pekeris’s involvement, together with John von Neumann, in the
development of the electronic computer. Professor von Neumann, a refugee from
Hungary and, like Pekeris, a Jewish immigrant in America, was one of the
mathematical giants of the twentieth century. His interests took him into applied
mathematics as well, and it was he who initiated and built the first ejectronic
computer. After the war, von Neumann worked at IBM and later at the Institute for
Advanced Study in Princeton, and it was during this period that he and Pekeris
developed their strong ties of friendship and mutual esteem. Today it is hard to
imagine how modern science could exist without the electronic computer, but what
we now take for granted was by no means cbvious in those early days. Von
Neumann, and with him Pekeris, were among those who pioneered the use of the
computer for research purposes, a subject to-which we shall return.

6



Preface

Meanwhile, in New York, the first discussions about the establishment of the
Weizmann Institute of Science, based on the Dani¢l Sieff Research Institute in
Rehovot, got underway. Professor Pekeris was slated as head of one of the new
institute’s six departments, that of Applied Mathematics. He was an active
participant in planning the Institute from both the scientific and the administrative
points of view, and it is interesting to foliow the course of his contributions in these
matters. [ shall bring just one example which typifies Pekeris’s way of thinking and
acting. The discussion revolved around the administrative structure of the Instituie,
with many of the participants arguing that the Institute should be governed by a
committee composed of department heads, presided over by a director who would
have the power to determine a decision only if there was no majority for any one
position. Chaim Pekeris reacted to this at a meeting of the planning committee that
tock place at the Brooklyn Polytechnic Institute on 25 November 1946:

... the head of the department should be able to present his request to the
director, who will be the only one whom he had to convince ... [I] do not want
to spend time convincing a whole committee ... . A committee deciding on
such issues would only waste time and effort ... over matters they were notin a
position to evaluate adequately.

It was the opinion of Chaim Pekeris that won the day.

In 1949, Pekeris arrived in Rehovot. Along with his old acquaintance from
Cambridge, Joe Gillis, with whom he werked in close cooperation throughout the
long course of his career at the Weizmann Institute, Pekeris established the
Department of Applied Mathematics and began to fulfill his vision of developing an
advanced electronic computer in Israel. With the encouragement and help of Von
Neumann, the Weizmann Institute team, led by Pekeris, improved on the Princeton
computer designs and built one of the most advanced computers in the world at that
time. This computer — the WEIZAC — was completed in 1955, in time to play a
critcal role in several of the scientific achievements described in the following
paragraphs. Today, WEIZAC is on display to the public in the entrance hall of the
Ziskind Building, which houses the Faculty of Mathematical Sciences at the
Institute. WEIZAC was followed by GOLEM 1 and GOLEM 2 (the latter is also on
display in the Ziskind Building), and other, smaller computers for special purposes.
It is difficult to overemphasize the importance of the efforts which took place in the
Weizmann Institute at that time to develop the fields of computing and high-tech
industries, both directly, by training experts who worked within the framework of
the Institute, and indirectly, by creating conditions for the development of new
frameworks, aided by the expertise of the computer personnel in the Department of
Applied Mathematics,
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Professor Pekeris himself continued with his theoretical and applied studies in
physics and mathematics, One of his projects was the first geophysical survey of
Israel, under the auspices of the oil institute that he had initiated, which concluded
with the discovery of the oil field at Heletz. Onty then was this operation transferred
to a governmental framework, with the establishment of the Israel Geophysical
Institute. Together with these endeavours in applied science and his administration
of the Applied Mathematics Department (no easy matter in those days of austcrit;r),
out of which, under his leadership, grew the Faculty of Mathematical Sciences,
Prof. Pekeris continued to work assiduously and in depth on the fundamental
problems that confront science, making intensive use of the computers built in
Rehovet. His research on the magnetic fields of the earth, on the spectroscopy of
helium atoms, on the modes of free oscillations of the planet Earth and on the ebb
and flow of tides made him world-famous.

Honours and prizes were not long in coming: in 1966 Pekeris was awarded the
Rothschild Prize in Mathematics; in 1974 he received the very prestigious Vetlesen
Prize for Earth Sciences; and in 1980 he was awarded a gold medat by the Royal
Astronomical Society as well as the Israel Prize in Physics. He was appointed to
many prestigious academies throughout the world, including the National Academy
of Science in America, the Royal Astronomical Society, the American
Philosophical Society, the American Academy of Arts and Sciences, and the Lincei
National Academy in Rome; and he was of course a Member of the Israel Academy
of Sciences and Humanities from 1961. Pekeris was appointed as Associate Fellow
of Churchill College in Cambridge, and he received honorary doctorates from the,
Hebrew University of Jerusalem, Brandeis University, and Tel-Aviv University.

Alongside his scientific activities, Professor Pekeris continued to offer his advice
and practical help in dealing with the social and intellectual needs of the State of
Israe] and the Jewish people. He was well-versed in Jewish sources, and he spent
much time in the company of the noted intellectuals of the day, among them his
friends Professor Gershom Scholem and the author 5.Y. Agnon. He knew how to
keep company with the great and powerful as well, and he corresponded with
presidents and heads of governments, on more than one occasion politely rebuking
them for actions or lapses of which he disapproved; and if they did not always
hearken 1o him, they nevertheless responded with great respect. As in his youth, he
took a keen interest in the situation of his people. He is well remembered for his
activities on behalf of Soviet Jewry in the period when the refuseniks were victims
of persecution. When Professor Alexander Lerner was left without any means to
earn a livelihood in Russta, Pekeris succeeded in obtaining an appointment for him
as a professor at the Weizmann Institute, on the basis of which, under Soviet law, he
was able to receive financial support — also organized by Professor Pekeris. In
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time, Professor Lerner was able to come to Israel, where he is engaged in active
research at the Weizmann Institute to this day.

In 1973, Professor Pekeris retired and stepped down from his duties as Director of
the Faculty of Mathematical Sciences, but he continued to bear the title of
Distinguished Institute Professor and to be involved in every aspect of the Faculty’s
activities, as well as constantly moving ahead with his scientific research. The
proofs of the last of his 145 scientific publications reached him only a few days
before his death in a good old age, at 85.

May his memory be blessed.

The honour of delivering the first Chaim Pekeris Memorial lecture has fallen to Sir
James Lighthill, who maintained a close personal and scholarly relationship with
with Chaim Pekeris for many vears. Sir James has served as Royal Society
Professor at Imperial College, London, as Lucasian Professor of Mathematics at
Cambridge University (the chair once occupied by Isaac Newton) and as Provost of
University College London, where he continues to pursue his research. He is a
member of the Royal Society and of many other academies around the world, and
he is the recipient of numerous scientific awards and honorary degrees. He has been
President of the Institute of Mathematics and its Applications in Britain, President
of the International Commission on Mathematical Instruction, Chairman of the
Committee on Oceanography and Fisheries of the Natural Environment Research _'
Coungil, and Chairman of the Special Committee for the International Decade for

Natural Disaster Reduction, established by the International Council of Scientific

Unions. His ties with the Weizmann Institute, of whose Board of Governors he is an

emeritus member, are long-standing.



OCEAN TIDES FROM NEWTON TO PEKERIS
by Sir James Lighthill

1. INTRODUCTION

Chaim Pekeris was one of the twentieth century’s pre-eminent figures in applied
mathematics, standing alongside such other giants as G.I. Taylor and Theodore von
Kérman (with both of whom he closely collaborated), and his great personal friend
Harold Jeffreys. Furthermore, while his contributions are of comparable importance
to theirs, he seems to have exceeded even them in the extraordinary breadth of his
scientific endeavours.

Pekeris’s first forty years included study, research and teaching at several famous
institutions: at MIT before the Second World War (with a sabbaticat absence at
Cambridge University, during which he first met Taylor and Jeffreys), at Columbia
University during the war years, and at Princeton’s Institute of Advanced Study
immediately afterwards. Then the twenty-five year period from 1949 to 1973 saw
Pekeris dedicatedly engaged in Israel. As inaugural Head of the Department of
Applied Mathematics, he created a great centre in what [ like to call “the art of
applying mathematics” — and alsc devoted much attention to ‘the art of teaching
the art of applying mathematics.” Simuitaneously, he developed geophysical
prospecting (including gravimetric survey) for Israel, to the great benefit of the
country’s natural resources, and established the Geophysical Institute. Meanwhile,
at Rehovot, he successively developed WEIZAC and GOLEM as a superb sequence
of computers for giving still greater power to creative applied mathematicians.
Above all, he inspired the young at the Weizmann Institute with a characteristic
combination of roguish humour and brilliant scientific and mathematical insight.
Then, in his last twenty years, Emeritus Professor Pekeris simply went on and on 10
yet further fields of study on the Rehovot campus, while becoming the recipient of
innumerable honours in the United States, Israel and Europe.

The vast range of scientific fietds illuminated by Pekeris might conveniently be
grouped under six major headings: (i) atomic physics, a field in which Pekeris is
honoured as the one who, in a series of papers, ‘got helium right’ — he alsc did
lithium; (ii) microwave propagation and associated antenna theory, to which he was
introduced by his wartime researches; (iii) seismology, a field into which he was
drawn by his friendship with Harold Jeffreys, with enormous benefits to
geophysical work in Israel; (iv) other aspects of the mechanics of solids with
geophysical applications (including studies of free oscillations of the Earth,
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alongside a related field that he called ‘terrestrial spectroscopy: using such studies
to interpret spectra of relevant instrumental data); (v} fluid mechanics, including
ocean tides and atmospheric tides (another tidal topic, the ‘bodily tide” in the solid
earth, falls within field [iv]); and, lastly, (vi) general relativity — a field into which
he moved after his retirement!

As a specialist in fluid mechanics, | am tempted 10 suggest that this field contains
particularly large areas which Pekeris illuminated. Apart from ocean tides, which I
shall discuss here in detail, he worked extensively on the propagation of sound and
shock waves, both in the atmosphete and in the ocean — another subject to which
he was introduced by wartime researches. He also made contributions of
fundamental importance to nonlinear features of the instability of fluid motions, and
to that theory’s relationships with transition to turbulence. In addition, he
ilturninated several aspects of the relationships of fluid mechanics to more general
physical science — for example, atmospheric ozone, astrophysical oscillations, and
the kinetic theory of gases,

In all this wide-ranging scientific activity, Pekeris’s work on ocean tides forms
just a small fraction of his total output, but his six papers on that subject were of
especial excellence. One of them, moreover, his 1969 paper with Y. Accad,
‘Solution of Laplace’s equations for the M tide in the world oceans,” was of a
revolutionary importance which [ regard as fully justifying the title of this paper.

2. INTRODUCTORY REMARKS ABOUT SOUND WAVES

[ shall devote three sections to introductory remarks about waves, such as those
which 1 am using to send messages to your ears. A sound wave in air travels at a
speed ¢, whose square was shown by Newton (1686) 1o be equal to the ratio of
pressure changes to density changes in a sound wave:

2 _dp
= (€Y
This conclusion may be understood relatively simply from a one-dimensional
diagram (Diagram 1a) showing a wave propagated in just one direction, the
x-direction. The diagram plots against x some quantity g (which may be the
pressure p, or the density p, or the air velocity v), and the solid line indicates the
‘wavy’ way in which g varies with x at a particular instant. Then the broken line
shows this wavy form of variation (the ‘waveform’) after it has moved on a distance
dx during a time interval

& )
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dg
(—E)dx
e ——uhhdx‘/
il » X T~
(a)
(€3]] p+D+ p+dp (©) v—>D+v+dv
dx dx

Diagram 1 (a) One-dimensional propagation of a wave in the x-direction. The solid
line plots the quantity ¢ against x at a certain instant, and the broken line shows this plot
after the wave has moved on a distance dx. Expression (4) gives the change in g
between the solid and the broken line — which, on division by the time interval {2),
yields the rate of change (3).

(b) Expressien (7) gives the force acting in the x-direction per unit volume of fluid.

(c) Expression (10) gives the compression rate per unit volume of fluid.

Often I shall use the result that the rate of change with time of any quantity ¢ in a
wave is
d
—c ot ©)
Thus, it is positive at any point — like the point picked out in the diagram with an
arrow — where g has a negative (that is, downward) gradient. At such a point, g
increases between the solid and broken lines by the amount

dq
()

and division of this change by the time interval (2} gives the expression (3) for rate
of change.

For example, if we take ¢ to be the air velocity v, we obtain its acceleration (rate
of change of v) as

_Ca‘ . )
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Now, Newton’s Second Law of Motion (Newton 1686) states that mass times
acceleration equals force. Applied per unit volume of air, it gives

dv dj .
p(wca)zndi, ©)

where mass per unit volume is the density p, acceleration takes the form (5), and
Diagram 1b explains why the force per unit volume acting in the x-direction is

dap
~dx Q)

From equation (6) follows the important expression

pev ®)
for excess pressure.
Again, if we take g to be the density p itself, we can write down an equation

d dv

Pl A id 9
¢ = ,o( ) ©)
which puts the rate of change of density egual to the density p itself multiplied by

the compression rate
dv
T (19)
Diagram lc explains this form (10) for the compression rate (more precisely, it
explains how the air between a position x, where the velocity is v, and a position
x+dx, where it is v+dv, has an expansion rate per unit volume equal to a ratio of dv
to dx; the compression rate taking, therefore, the same value with the sign changed).
From equation (9) a form
pv
< (11)
for the excess density is deduced. With equation (8) for excess pressure, this yields
Newton’s expression (1) for £ as the ratio of excess pressure to excess density.

3. INTRODUCTORY. REMARKS ABOUT SHALLOW-WATER WAVES

After our discussion of sound waves, it is interesting to ask whether there are any
water waves whose propagation in one dimension is of an essentially similar nature.
It turns out that this is indeed the case for “waves in shallow water’. The meaning of
this expression is that the depth # is small, not in any absclute sense, but in
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comparison with the wavelength (the distance within which the waveform of
Diagram la repeats itself).

For waves in shallow water, any increase of depth i produces an excess pressure
equal to pg times the excess depth. Here, pg is the weight of water per unit volume
(whose ratio to the mass p per unit volume is g, the gravitational acceleration). Then
Newton’s Second Law (6}, expressed now per unit volume of water, becomes:

PN I} 12
p( ¢ dx) =—pg 4 (12)
so that excess depth can be expressed as:

e (13)

£

Again, the rate of change of depth can be written according to the general
principle (3) as:

—Ca=h(—a) (14)

where the right-hand sidé represents the depth 2 multiplied by the compression rate
(10); thus, although the water remains effectively incompressible, horizontal
compression is able to be accompanied by an increase in water depth without
change of density.

From equation (14) a form )
hv
o (15)

for the excess depth is obtained (analogous to the form (11) for the excess density).
With expression (9) for the same guantity, this vields a classic equation:

ct= gh (16)

for the speed c of one-dimensional propagation of waves in shallow water of depth
h.

Actually, the analogy with sound-wave propagation is rather complete. Thus, if
we take the view that an ‘effective’ excess density is:

% {excess depth), while excess pressure = pg (excess depth), (17)

then Newton’s value for ¢* as excess pressure divided by excess density takes the
‘effective’ value (16) for shallow-water waves.
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4. NUMERICAL VALUES OF SHALLOW-WATER WAVE SPEED

Yalues of the shallow-water wave speed ¢, given by equation (16) for various
depths A, are tabulated below:

Depth & c = V{gh) %
{metres) (m/s) (seconds)
Estuaries { 1 3 0.3
10 10 1
. 40 20 2
Continental shelf { 100 30 3
1000 100 10
Deep oceans 4000 200 20
10060 300 30

1t is noteworthy that the values of ¢ characteristic of deep oceans have magnitudes
which approach that of the speed of sound in air (340 m/s). But we need to ask
whether the theory of Section 3 can really be applied to deep oceans.

Essentially, the theory is one which concentrates upon v, the horizontal velocity
of the water, while neglecting any dynamic effects of vertical motions. Now these
have a typical speed

dh
=, 18
dt (15) :
the rate of increase of water depth (where ¢ is time). With expression (13) for the
excess depth, this rate of increase (18) has an order of magnitude:

cv

o’ (19)
where T is the wave period. Thus, the condition for vertical velocities to be
negligibly small compared with v, so that the theory of Section 3 can be applied, is

that the period T must be much greater than the quantity

g (20)
values of which are given in the above table.

Evidently this condition is satisfied, with an enormous margin to spare, for ocean
tides, which have periods of at least 12 hours, while the quantity (20) never exceeds
about half a minute. By contrast, ordinary waves on the sea surface have periods of
around 5 to 10 seconds and fail to satisfy the conditions; in other words, vertical
motions are important for such surface waves,
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For tides, on the other hand, we can expect equation (16) to apply even in deep
oceans. Actually, the average depth of the world’s oceans is 4 km, for which ¢ =
200 m/s (see Table). At this speed, a wave would travel about 4000 km in & hours
(about half a tidal period), suggesting that distances between ‘nodes” (places where
the waveform crosses the x-axis — see Diagram 1) might be around 4000 km.

5. TIDES VIEWED AS SHALLOW-WATER WAVES

There is a suggestion here that ‘deep oceans masquerade as shallow water’ for
propagation of tidal motions. Furthermore, these are primarily horizontal motions.

Indeed, even though tides seem superficially to be periodic vertical motions that
alter sea level, essentially all their Kinetic energy is in the horizontal motions. It
appears in that pattern of powerful tidal currents which offers exciting spectacles
off many coastlines. At a headland, for example, the current may be observed
rushing past from left to right, while six hours later it is seen to be rushing with
equal vigour from right to left!

Essentially, the pattern of such tidal currents is propagated in a wavelike manner.
The type of wave propagation involved, moreover, is that characteristic of
shallow-water waves.

6. Newton's ELucipaTION OF TIDE-RAISING FORCES

Newton (1686) recognized that his gravitational theory explained why the moon
has a very special influence on tides. Diagram 2 (below) gives a schematic
illustration of his ideas on the subject. It depicts the effect of an attracting body —
which might be the moon (or, alternatively, the sun} — both on the solid earth and
on the oceans. )

If the solid earth could be viewed essentially as a rigid body, Newton showed that
its motion would be that generated by the value of the gravitational force exerted by
the attracting body at the earth’s centre. At the same time, because Newton’s
universal law of gravitation requires the gravitational force to decrease (according
to an inverse-square law) with distance from the attracting body, different parts of
the ocean would be subject to different forces:

(i} water nearest to the attracting body would be subject to a greater gravitational
farce; in other words, to an excess attraction over that experienced by the solid
earth; while

(ii) water farthest from the attracting body would experience a deficit in
gravitationaj force; in other words, a relative repulsion {relative, that is, to the
solid earth’s own motion).
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Diagram 2 Gravitational forces tending to raise sea level (short arrows} reach
maxima at points nearest to and farthest from an atiracting body. They are known as
tide-raising forces. As explained in Section 7, Newton considered that the resulting
ocean depth distributions might be as suggested schematically by the broken lines.
Later (Section 8), Laplace noted that the horizontal components of the forces play
leading roles, being able moreover to produce a convergence of tidal currents that
would raise sca level.

For any attracting body, then, forces tending to raise sea-level (known as
tide-raising forces) would reach maximum values at points on the earth’s surface
nearest to and farthest from the attracting body. However, because the earth is
rotating, the positions of these locations of maximum tide-raising force would vary,
with periods close to 12 hours.

Does the moon or the sun exert the greater tide-raising forces? Of course the sun
is enormously more massive than the moon, but it is also very much farther away.
Now, Diagram 2 shows that tide-raising forces depend not on the absolute vajue of
the gravitational attraction (which is greater for the sun), but on the difference
between values of that attraction on the two sides of the earth. It depends, in other
words, on the gradient of gravitational force with distance from the attracting body.
Newton showed how this is about 4.5 times greater for the moon than for the sun.

The largest tide-raising forces, then, are experienced at points nearest to and
farthest from the moon. But they are augmented still more if and when these points
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almost coincide with the points nearest to and farthest from the sun. Then the
moon’s tide-raising force is augmented by an approximately collinear solar force.

Such an approximate collinearity occurs once a fortnight, at full or new moon (for
example, when seen from the earth as fully illuminated by the sun, the moon must
be nearly in line with sun and earth}, and produces the relatively stronger ‘spring’
tides. By contrast, rather weaker ‘neap’ tides appear halfway between the full and
the new moon (when the two tide-raising forces are orthogonal).

Etymologically, the word ‘spring’ in ‘spring tides’ possesses a different
Germanic root from ‘spring’ in the sense of season, and lacks any seasonal
connotation. However, the well-known tilt in the earth’s axis of rotation means that
the approximate collinearity of sun and moon occurring once a fortnight becomes a
near-perfect collinearity at an equinox (either March or September). So the
equinoctial spring tides tend to be stronger still; by contrast, equinoctial neap tides
are even weaker than ordinary ones!

7. WHAT TiDES ARISE FROM TIDE-RAISING FORCES?

Diagram 2 illustrates schematically not only the tide-raising forces identified by
Newton, but also Newton’s tentative ideas about the changes in sea-level that they
would produce. Essentially, he expected high tides to occur at those locations on the
rotating earth where tide-raising forces are greatest. But the problems of
determining what real ocean tides arise from tide-raising forces are much more
difficult, for a reason that has been indicated in Section 5 and for other reasons.

Before embarking on this subject, however, I’ll briefly mention two other tidal
themes that greatly interested Pekeris. Essentially, the same tide-raising forces act
on the atmosphere. Thus, the problem of atmospheric tides, to which Pekeris was
introduced by G.1. Taylor, is one of identifying the atmosphere’s own response to
tide-raising forces. A further issue, brought to his attention by Harold Jeffreys, is
that of the earth’s bodily tide, upon which we shall touch again later. It arises from
the deformability of the earth, which allows the tide-raising forces of Diagram 2 to
produce departures from the ‘rigid-body’ motions there assumed for the sotid earth
as a whole. There are intricate difficulties involved in investigating these
departures, but we shall leave them aside in the present context.

8. LarLaciE’s NEw Loox AT OceaN TIiDEs

It was Laplace {1775), at the age of 26, who initiated and used a highly impressive
tluid-mechanical analysis to give a picture differing from that of Newton in three
important aspects:
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(i) it allowed for the essentially wavelike character (Section 5) of the pattern of
ocean-current response to tide-raising forces; of which, furthermore,

(ii) only the horizontal components could energize tidal currenis (sea-level then
being raised, as explained in the caption to Diagram 2, by the convergence of
those horizontal currents); while, moreover,

(iii}y the earth’s rotation, besides determining periods for different tide-raising
forces, also has an important dynamic effect.

1 shall concentrate here on describing the essential physics associated with
Laplace’s analysis; moreover, just as conclusion (i) has aiready been explained in
Sections 2 through 5 by comparing one-dimensional propagation of sound and
shallow-water waves and showing them to be essentially similar, so also the new
and important conclusion (iii) will be explained in Sections 9 through 12 by
comparing two-dimensional propagation in the two cases. (Evidently, the two
dimensions with which we are concerned in relation to propagation of tidal currents
are the north-south and the east-west dimensions.) This time we shall find that an
important difference emerges.

9, SOUND WAVES IN Two DIMENSIONS

Air motions in any sound wave constitute a “potential’ field, that is, one that_fnay be
derived from a scalar potential — as an electric field is from an electric potentiat or
a magnetic field from a magnetic potential. In fluid-mechanical terms, this means a -
field without vorticity.

The physical interpretation of this important conclusion emerges most simply if
we consider the dynamics of a small sphere of fluid (Diagram 3). The forces acting
on such a sphere are all pressure forces acting at right angles to its surface. These
pressure forces are not necessarily equal all around the boundary; however, they all
act through its centre, and therefore cannot alter its angular momentum.

Now, vorticity (see Section 10) specifies the angular momentum of such a small
sphere; which, if it is initially zero, must remain zero. It was another great French
applied mathematician, Lagrange, who first enunciated this important result — that
when a fluid motion has zero vorticity everywhere at one moment, then the vorticity
will continue to be everywhere zero.

This is important for sound waves, because when they propagate through air that
is previously undisturbed (and therefore has zero vorticity), the air metions wiil
continue to have zero vorticity. In twe dimensions, for example, this means that any
‘shears’ in the x- and y-components of the air velocity, u and v, must make
cancelling contributions to the angular momentum {Diagram 3). This is the
condition
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() (b)

Diagram 3 (a) Because pressure forces acting on a small sphere of fluid are directed
through its centre, they do not change its angular momentum. If this angular
momentum is initially zero (in a sound wave, for example), it will remain zero.

(b) In a two-dimensional sound wave, shears can be present only if {as in the case
shown) equation (21) is satisfied — giving them cancelling (clockwise and
anticlockwise} contributions 1o angular momentum.

v _du 21

e 1)
which is automatically satisfied in any ‘potential’ field with # and v as the x- and
y-derivatives of a potential.

10. FURTHER EXPLANATIONS ABQUT VORTICITY

It may be desirable to explain this behaviour of sound a litile further, in preparation
for appreciating the different behaviour of shallow-water waves. The explanation
continues to be based on the dynamics of a small sphere of fluid.

Such a sphere’s motion can be divided into three parts (Diagram 4, below):

(i) uniform translation with the velocity of the centre;

{ii) rigid rotation with angular velocity '/2m (where @ is the vorticity); and

(iii) a symmetrical squeezing or ‘straining’ motion.

Evidently, parts (i) and (ii) arc motions of which a rigid bedy would be capable; and
they carry, respectively, all of the sphere’s linear and all of its angular momentum.
But a fluid sphere, far from being rigid, is of course highly deformable, and part (iii)
represents its instantaneous rate of deformation or ‘strain’, usually involving an
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Diagram 4 The general motion of a
small sphere of fluid consists of a simple
rigid-body motion, made up of a
translation (i) and a rotation (ii), in
combination with a deformation (iii) that
takes the form of a symmetrical straining
mation as shown here.

elongation in one direction and a foreshortening in some direction at right angles.

It is worth recalling (Diagram 5) that a simple rigid rotation with angular velocity
@ involves at a distance r from the centre of rotation a motion with velocity cwr,
which can be resolved into x- and y-components as shown (the x-component u
being —awy and the y-component v being + ). Thus, the rotation is a combination of
two shears — each of which separately must have angular velocity Y/:@ in its own
separate ‘part (ii)’ motion, so that its vorticity is «w. Moreover, the fact that each of
the two shears depicted in Diagram 5 possesses on its own the vorticity @ permits us
to write the vorticity «w for a quite general two-dimensional motion as

av  du
=—-— 22
@ ax dy (22)

obtained, of course, from adding up the contributions to e from local shears in the '
x-component & and in the y-component v of fluid velocity.

As indicated in Diagram 4, part (iii) of the sphere’s motion may involve an
elongation in one direction. In the propagation of shallow-water waves, for

L
u=—'wy V= 4+0x
4._._..—_
-
- ]
— . _I_ ll'
_’
e
_

Diagram § A simple rigid rotation with angular velocily w creates at a distance » from
the centre a motion with velocity wr, which can be resolved into x- and y-components as
shown, It follows that each of these shearing motions has vorticity o
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example, this may be the vertical direction wherever there is an increase of water
depth h from its initial value &, Such an elongation, necessarily accompanied by
foreshortening in a direction at right angles, reduces the moment of inertia about the
axis which is being elongated. Therefore, since the sphere’s angular momentum is
not changing (Section 9), its angular velocity about this axis must be increasing.
(We see this when an ice skater, in the course of a spin, raises her arms above her
head, decreasing her moment of inertia about a vertical axis and thus increasing
angular velocity.) These effects augment the vorticity e by just that factor

—;;U— (23)

by which the sphere is being vertically elongated.

11. SHALLOW-WATER WAVES IN Two DIMENSIONS

It is at first not at all obvious why the augmentation factor (23), which in
shallow-water wave propagation must be applied to the vorticity, should be of any
significance. Indeed we can still conclude as in Section 9 that, if the vorticity is zero
initially, then it must remain zero, producing the same equation (21) that is satisfied
by sound waves.

But the earth rotates at an angular velocity of one revolution (or 360°, or 2x
radians} per day. Thus, every small sphere of water in the ocean shares this angular
velocity of 2n radians/day, so that part (ii) of its motions (see Section 10} possesses
an initial vorticity — before the shallow-water waves appear — equal to 4a/day.

Actually, we are only interested in the vertical component of vorticity, because
this is the component which is stretched by any increase in sea level and also
because horizontal motions are associated by equation (22) with a vertical
component of vorticity. At the North Pole, where the latitude & is 90°, the vertical
vorticity takes the full value of 4n/day, but at any other latitede the vorticity due to
the earth’s rotation has to be multiplied by sin 0 to give its vertical component as

F= 47 sin 6 4xsin 8

day = 240600y = (145X 10 sin 8)s™. (24

This very famous quantity fis now usually called the planetary vorticity.

In shallow-water waves, then, the water’s initial vorticity before the waves appear
takes the value f. This is then augmented by the factor (23} wherever ocean depth 4
is increased above its initial value A,
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Out of this augmented vorticity, of course, the part f still corresponds to the
earth’s rotation, so that it is the remaining part,

-

which must correspond to effects other than the earth’s rotation. These are the
effects (22) of shears in the water’s horizontal motions.

12. THE Puysics oF TipAL CURRENTS

Now I am abie to summarise briefly the essential physics underlying the behaviour
of tidal currents. Their propagation, as shallow-water waves in two dimensions, is
very much like that of sound waves (the wave velocity c being, however, related as
in equation (16) to the local water depth), except that the vorticity is not zero. In
fact, the value of the vorticity (22} is dominated by the expression (25) associated
with vertical stretching of planetary vorticity.

Actually, the expression for the vorticity (22) also includes another term —
though this is generally a lot smaller. Any small northward displacement # of a fluid
sphere causes the planetary vorticity (24) to increase by fn (the ‘beta effect’), where

B=(2.3x 10" cos 8)s'm’ (26)

The sphete’s total vorticity can then be written (f + 81) + @; and, equating this to the
initial value fmultiplied by the stretching factor (23), we obtain

%—g—i= =—ﬁn+f(——1) 27
as a (generally moderate) correction to expression {25).

[ have tried to outline only the essential physics underlying the behaviour of tidal
currents. Laplace (1775) derived the correspending full equations of motion in a
rigorous mathematical way, and they are necessarily quite complicated in their
detailed forms; in particular, they need to use latitude and longitude as coordinates
(that is, not Cartesian coordinates x and y such as were adopled in Sections 9
through 11, but spherical polar coordinates). They represent, of course, an
enormous step forward from Newton’s ideas of tides (Diagram 2); and it is,
perhaps, not surprising that almost a century separated the work of Newton (1686)
from that of Laplace (1775).

Against this background, it may, however, seem quite surprising that Laplace’s
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tidal equations were not actually solved for any realistic ocean until almost two
centuries later. This was the very special achievement of Pekeris & Accad (1969),
which is described in Sections 15 through 17. Before it, the only use made of
Laplace’'s tidal equations had been to derive solutions for extremely simple mode!
problems with highly arbitrary and unrealistic geometries. (For an excellent
compendium of pre-Pekeris knowledge on tides, see Defant [1961].) It is thus no
exaggeration to view the three principal milestones in the mathematical analysis of
tides as having been the investigations of Newton, Laplace and Pekeris. But [ must
lead you back once more to the work of the first of these great scientists before
trying to describe the successes of the third.

13. Tur SPECTRGSCOPY OF TIDES

Absolutely all mathematical analyses of tides, and all interpretations of tidal
observations, start from Newton's elucidation of tide-raising forces {(Section 6) and
spectrally analyse them. The largest component is known as M,, the moon’s
‘semi-diurnal’ influence; actually, its period T is longer than half a day by one
twenty-eighth (giving T = 12 hours 25 minutes), because the moon’s orbital motion
is in the same sense as the earth’s rotation but has a period 28 times greater.

The next-largest component of the tide-raising forces is known as S that part of
the sun’s tide-raising force which has period T almost exactly equal to 12 hours.
There are very many other spectral components (practically all with much longer
periods) which I do not need to define here, observing in particular that the basic
cycle (Section 6) of spring tides and neap tides derives from the ‘beats’ between M,
and 5.

For constructing tide tables, of course, very many different components in the
spectrum of tide-raising forces must be taken into account. Then, for example,
corresponding spectral components in the data gathered from tide gauges need to be
identified, and utilised in the prediction of tidal behaviour. This work is of the
greatest practical importance; in itself, however, it fails to probe those physical
mechanisms by which (say) the A, tide-raising force produces the M, tide.

14, Tiprs NEAR SHORELINES

One of these physical mechanisms has not yet been mentioned. because Laplace
(1775) did not allow for it, although Pekeris & Accad (1969) did 1ake it into
account. It is associated with the behaviour of tides near shorelines.

On any continental shelf, tidal kinetic energy becomes relatively concentrated
within the relatively shallower water near a shoreline. This causes tidal currents to
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be augmented, leading to significant dissipation of energy by bottom friction in
these shallower waters. What is the energy source that compensates for such
dissipation?

The energy source for the tides is the earth’s rotation itself (which stores energy
-rather as a flywheel does in some machines). If the earth rotated so slowly as to turn
always the same face to the moon, then there would be no M, tide, or any other tidal
movements of lunar origin. The effect of the moon in this case would be to produce
(as in Diagram 2) a static ¢levation of water at the points nearest to and farthest
from the moon itself.

Tidal movements of lunar origin, then, are due to excess rotation {i.e., to the fact
that the day is shorter than the moon’s orbital period) and derive their energy from
it. Accordingly, dissipation of such energy reduces that excess; in other words,
‘tidal friction lengthens the day’! (Simultaneously, it reduces the moon's orbital
period, since the overall angular momentum of the earth-moon system cannot be
changing; clearly, this effect conspires with the lengthening of the day to diminish
further the difference between the day and the moon’s orbital peried.} It was G.l.
Taylot {1919) who first verified the above statermment through estimates of the rate of
dissipation of tidal energy in shallow seas. The average lengthening of the day that
results is by about a mitlisecond per century.

Before proceeding in Section 15 to consequences of the fact that ocean tides
represent a damped system of forced oscillations of the world’s oceans in response
to tide-raising forces, I’1] end this section by asking a simple question, not explicitly
related to ocean tides as such. Why is it that the moon always turns the same face to
us? The answer is that the process described above, whereby dissipation of tidal
energy progressively reduces differences between the earth’s period of rotation and
the moon’s orbital period, was long ago carried through to completion as far as the
bodily tides in the much smaller moon were concerned. Dissipation of their energy
reduced the difference between the moon’s period of rotation and its orbital period
until the present very familiar situation was reached, in which both are identical.

15. NUMERICAL ANALYSIS BY PEKERIS & ACCAD

Pekeris and Accad (1969), beldly taking up the scientific challenge, used the then
relatively new GOLEM computer to obtain, for the first time, a solution of the tidal
equations of Laplace (1775) for a realistic ocean model. The one feature they added
to the original form of Laplace’s equations (for reasons outlined in Section 14) was
a representation of frictional forces resisting tidal currents near shorelines. They
then pursued the objective of computing the M, tide (see Section 13) in the world’s
oceans, using refined numerical analysis to achieve this goal.
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Covering the oceans with a grid of points separated by 1° spacings in both latitude
and longitude, they needed to solve a linear system of simultaneous equations with
50,000 unknowns; namely, the amplitude and phase of each component of velocity
(the eastward component # and the northward component v) at each grid point.
They carried out the computations both for the real system — the damped forced
oscillation in which bottom friction near coasts plays a significant role — and for
the original undamped forced oscillation described by the unmodified tidal
equations of Laplace.

Interestingly, the numerical analysis in the case where allowance was made for
friction exhibited two important features to an enormously greater degree than
when the undamped system was treated. These features were:

(a) stability (of the solution as the grid spacing was reduced, say from 2°to 1°); and
(b) insensitivity (to details of the assumed coastline shapes).

All of the computations carried out by Pekeris & Accad (1969) that incorporated
frictional damping possessed qualities (a) and (b) to a most satisfactory degree.

16. THE M, TIDE As DEPICTED BY PEKERIS & ACCAD

The ocean model with 1° grid spacing which Pekeris & Accad (1969) used is
reproduced in Figure 1.* Coastlines are composed of meridians of longitude and
parallels of latitude, atranged for convenient use with a 1° grid spacing (those for
Europe and Asia, moreover, being drawn as continuous across the Straits of
Gibraltar, since these are penetrated by negligible amounts of tidal energy). The
contour lines for ocean depths are given in metres at intervals of 500 m, and
represent a ‘smoothed’ variation of depth for the world oceans.

Figure 2 represents the M, tide computed for this model ocean with 1° grid
spacing, taking bottom friction into account. Here, the broken lines are ‘co-range
lines’; that is, they are contours of the tidal range in metres. (The tidal range, of
course, is the vertical distance between high and low tide; thus, the vertical
amplitude of the M, tide takes a constant value along any one of these broken lines.)
The solid lines are ‘co-tidal lines’. All along any of these solid lines high tide occurs
at one and the same time, This makes them contours of the phase of high tide, which
is specified in ‘hours’ relative to the time of lunar transit across the Greenwich
meridian. (Strictly, these ‘hours’ are lunar hours, defined as one-twelfth of the M,
tide’s basic period of 12 hours and 25 minutes.}

Extremely striking features of such a map are the amphidromes. These are points

* The Figures are reproduced consecutively at the end of this brochure.
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where values of the tidal range become zero while values of the phase ‘rotate’
around them. In terms of the physics of tidal currents (Section 12), the spacing of
amphidromes in Figure 2 may be related to the propagation properties of
shallow-water waves. In a ‘waves’ context these points where the range becomes
zero may be regarded as ‘nodes’, expected (see the end of Section 4) to have
average spacings of around 4000 km — an expectation broadly supported by Figure
2. At the same time, the essential contribution made by vorticity to the physics of
tidal currents is reflected in the phase ‘rotation’ around each amphidrome.

Although the existence and importance of amphidromes had long been
recognized, it was the work of Pekeris and Accad (1969) that established how
widely they are distributed. For example, the existence of a South Atlantic
Amphidrome had not previously been suspected; accordingly, the authors treated
their prediction of this prominent new amphidrome as a test case, trinmphantly
demonstrating {Section 17) how well their South Atlantic predictions agreed with
observation.

17. SoME TESTS OF THE COMPUTED RESULTS

But their first, absolutely essential tests of the computed results concentrated on
those two specially important features of the numerical analysis which I designated
as (a) and (b) in Section 15. For example, Figures 3 and 4, when compared with
each other and with Figure 2, demonstrate rather cleatly the ‘stability’ feature (a).
In Figure 3, coastlines are approximated more crudely, for convenient use with a 2°
grid spacing. Plotting the results of computations with that spacing, it obtains
co-range and co-tidat lines not very different from those of Figure 2. Again, their
comparison with Figure 4, a computation using a 1° grid spacing but the same
cruder coastline shapes as Figure 3, shows similarly good agreement. Other
comparisons, involving rather larger variations of coastline shape, also confirm the
‘insensitivity” feature (b).

As for their demonstration of the validity of their discovery of the South Atlantic
Amphidrome, Figure 3 shows how Pekeris & Accad (1969) made detailed
comparisons of their predictions in the South Atlantic with observations at relevant
istands, including Ascension, St. Helena, Tristan da Cunha and South Georgia. At
each such island the observed phase in ‘hours’ (see Section 16) is underlined, while
the observed range, this time in centimetres, is bracketed. These observations
correspond fairly well to the computed results and are seen to establish very clearly
the existence of this important amphidrome.

Generaily, the computations of Pekeris and Accad (1969} give quite good
agreement with observations in the Atlantic and Indian Oceans. There are, however,
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a few parts of the Pacific where agreement is poor; and the fact that these parts
include the general vicinity of the distinguished Scripps Institute of Oceanography
in La Jolla, California, may have influenced ‘Scripps-oriented’ oceanographers to
undervalue the marvellous breakthrough in tidal knowledge which the 1969 paper
represented!

18. FURTHER ADVANCES IN THE NEXT NINE YEARS

I’ll mention just one more paper, published by Accad & Pekeris (1978) nine years
later. This was important in several different ways. Above all, it calculated the §,
tide as weli as the M, tide. Though this was an extremely valuable addition, in the
present framework [ discuss only their new results on the M, tide.

The 1978 paper allowed for two ‘secondary’ effects in addition to those taken
into account in the 1969 paper. First, it allowed for tidal yielding of the solid earth
— including deformations both in respense to the tide-raising forces themselves
and in response to tidal shifts in the weight of ocean water overlying the solid
bottom. Secondly, it allowed for the water’s gravitational self-attraction. Neither of
these effects was expected to be very significant, and they were found in
combination to yield a correction of only about 10%, but Accad & Pekeris (1978)
rightly emphasized how important it had been o establish quantitatively the size of
that correction. Moreover, this modest correction proved to be particularly
important in its influence on the placing of the Northeast Pacific Amphidrome.
Instead of being placed erroneously atmost on the Californian coast, as in Figures 2,
3 and 4 above, the correction shifted it offshore to a position fully consistent with
abservations at La Jolla and elsewhere on that famous coastline.

In addition, Accad & Pekeris (1978) introduced an improved representation of
bottom friction near shorelines, which they referred to as the sloping-shelf model.
With this representation they obtained not only the previous benefits of features (a)
and (b) as described in Section 16 but also excellent agreement with observations in
practically all paris of the world’s oceans.

19. THE M, TIDE As DESCRIBED BY AcCCAD & PEKERIS (1978)

By 1978 a more detailed distribution of ocean depth, shown in Figure 6 on a 1° grid
representation, had become availtable to Accad and Pekeris. However, they applied
it exclusively in a smoothed version using a 2° grid, because of the ‘stability’
property {(a) which they had previously established. Figure 7 shows their
compuiation of the M, tide as thus obtained, allowing for the effects noted in
Section 18.
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Here the good agreement with observations in the Atlantic and Indian Oceans
became still better. The greatest improvement, however, was in the Northeast
Pacific, where the movement of the amphidrome away from the Californian coast
produced the correct northward progression of high tide along that coast. Figure 8
shows this area in an enlarged form with observed data included.

Another comparison with observations along the Northeast Pacific coast is given
in Figure 9. Observed phases are extremely close to the computed curve; observed
ranges, however, are a little higher than the computed values because the 2° grid
does not sufficiently resolve the near-shore regions of shallower water.

Similarly good comparisons are found for the West Atlantic coast in Figure 10,
As to the Western Pacific, where the 2° grid (Figure 7) effectively makes an
impermeable barrier out of East Asia and Australasia, Figure 11 again shows
excellent agreement between computations and tidal observations from Sydney to
Kamchatka — with, perhaps, the single exception of the Coral Sea, where the
assumption of impermeabitity is least realistic.

Accad & Pekeris (1978) alsc showed that proper boundary conditions for their
model could satisfactorily be applied even at smoothly shaped ocean boundaries.
Figure 12 shows the results of this computation, with all other aspects of the model
the same as in Figure 7. The data are extremely close to the results shown in Figure
7. At the same time, this final representation of the computed M, tide may perhaps
be the most useful of all from a broad geophysical standpoint.

20. Ocean TIDES FRoM NEWTON TO PEKERIS

What an enormous difference we observe between this modern picture of tides in
the world oceans and those simpte ideas, schematically illustrated in Diagram 2,
that were originally put forward by Newton! Newton’s elucidation of tide-raising
forces has of course continued to be recognized as essentially correct (Section 13),
but his over-simplified view of the ocean tides that those forces generate stands in
the sharpest possible contrast to the complex picture delineated in Figure 12.

But then we may perhaps recall Newton’s own famously modest comparison of
his labours to ‘playing on the seashore” while ‘the immense ocean of truth extended
before me unexplored.” It was above all the initiative of Chaim Pekeris that mapped
the immense ocean of tidal fruth.
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Figure 5 Comparisons of the tidal computation of Figure 2 with observations
of the M, tide at islands in the South Atlantic (Pekeris & Accad 1969).
Observed phases (in “hours™) are underlined while observed ranges (in cm) are
bracketed.
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Figure 6 The refined coastline and ocean depth distributions (given here for a 1°

grid) that were adopted by Accad & Pekeris (1978).
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Figure 83 Comparisons of the tidal computation of Figure 7 with observations
of the M, tide on the Californian coast (Accad & Pekeris 1978). Observed
phases (in ‘hours’} are underlined while observed ranges (in cm) are
bracketed.
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Figure 9 Comparisons of observations (crosses) of tidal phase and range
with computed values (circles, connected by line) for the Northeast Pacific
coast.
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Figure 10 Comparison of observations (crosses) with computed vaiues
(circles, connected by line) for the West Atlantic.

]

Halifax

JO°N

30

Caribbean

i

TS

Rio de Janeiro

00—

H /em

Amphidrome



Figure 11 Comparison of observations (crosses) with computed values

{circles, connected by line} for the West Pacific.
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