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Probabilistic Graphical Models Final Exam

Please fill your name and I.D.:

Name: ................................
I.D.: ..................................

Duration: 3 hours.

Guidelines:

1. The test is composed of five questions. The credit for each question is 25 points. You
should accumulate as many points as you can from the possible 125 points. Notice that
you will gain credit for each section you solve, regardless of whether you answer the
complete question or not.
Your grade in the test will be the number of points you obtained (where grades above 100
will be rounded to 100).

2. Concise answers are preferred. But, make sure that your arguments are clear and well
supported.

3. Notations and definitions:

(a) Val(X) set of possible values of RV (Random Variable) X.

(b) Upper case letters denote RVs (e.g., X, Y, Z).

(c) Upper case bold letters denote set of RVs (e.g., X, Y).

(d) Lower case letters denote RV values (e.g., x, y, z).

(e) Lower case bold letters denote RV set values (e.g., x).

(f) Values for categorical RVs with |V al(X)| = k : x1, x2, . . . , xk.

(g) Marginal distribution over X: P(X).

(h) Pax - Parents of RV X.

(i) P |= (A ⊥ B) - P satisfies : A is independent of B

(j) P |= (A ⊥c B) - under context c, P satisfies that A is independent of B

(k) A positive distribution: a distribution P where ∀xP (X = x) > 0

(l) Entropy of a discrete variable Z: H(Z) =
∑

z −p(z) log p(z).

(m) Entropy of a discrete variable Z given evidence e : H(Z|e) =
∑

z:z|=e−p(z|e) log p(z|e).

(n) The Kullback Leibler distance, KL, between two distribution defined on the RV S:
KL(Pr(S), P r′(S)) =

∑
s Pr(s) log Pr(s)

Pr′(s) .

(o) The Kullback Leibler distance, KL, between two distribution defined on the RV S,
under evidence e: KL(Pr(S|e), P r′(S|e)) =

∑
s:s|=e Pr(s|e) log Pr(s|e)

Pr′(s|e) .

Good luck!
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Questions:

1. Learning Naive Bayes network.
In this question we will deal with learning a Naive Bayes classification network. The net-
work, illustrated in Figure 1, is composed of a discrete variable C with domain {c1 · · · cK},
and N boolean variables: X = X1 · · ·XN .

C

X2X1 XNX3 . . . .

CC

X2X2X1X1 XNXNX3X3 . . . .

Figure 1: Naive Bayes network

(a) [5 points] Assume you have M I.I.D instances of complete data: D = d1 · · · dM ,
where di = {c[i],x[i]} is the i-th instance of the data in which C = c[i] and X = x[i].
We define also the notation of xj [i] to be the value of Xj in data instance i.
Write the formulas of the maximum likelihood estimate (MLE) for the network pa-
rameters i.e. the parameters Θ that maximize the likelihood of the data L(D : Θ).
More specifically write the formulas of ΘXi|C and ΘC .
Remark: write the final solution without the entire derivation (e.g., no derivatives
and no integrals).

(b) [10 points] Now, we would like to compute the Bayesian estimators for the parametrs
incorporating a Dirichlet prior over the different variables.
Recall that the Dirichlet prior is defined by:

P (Θ) =
1
Z

∏

k

Θαk−1
k where Z =

∏k
i=1 Γ(αi)

Γ(
∑k

i=1 αi)
and Γ(x) =

∫ ∞

0

tx−1e−tdt

Write the following computations using Dirichlet prior over c and X:

i. P (Xj [M + 1] = x1|D, C[M + 1] = c1)
ii. P (C[M + 1] = c1|D)

Remark: write the final solution without the entire derivation (e.g., no derivatives
and no integrals).

(c) [10 points] In real applications the value of the classification variable C is often
hidden. In this setting one option for parameter estimation employs the EM algorithm
learned in class.

i. [2 points] Briefly describe what is the type of computation that is done in the
E-step and the M-step of an EM algorithm.

ii. [8 points] Write the explicit formulas for the computation of the E-step and the
M-step when learning the above network where C is hidden.
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2. Context Specific Independence (CSI)

(a) [15 points] Consider a BN B with a variable X that has a tree-CPD. Let c be some
context - a specific assignment of values for a subset C of X ′s parents (PaX). i.e.,
c ∈ V al(C) for C ⊆ PaX. Let Z 6∈ C be another variable in B s.t. Z ∈ PaX.
Propose a (simple) assumption on the distributions at the leaves of X’s tree-CPD
under which it holds that if PB |= (X ⊥c Z|PaX−Z, c), then Tc (the tree-CPD of X
restricted to the branches consistent with c) does not test Z. You may assume that
all of the variables in B are discrete binary variables.

(b) [10 points] Prove the following statement, or disprove it by finding a counterexam-
ple: CSI-sep (CSI - context specific independence) statements are monotonic in the
context; i.e., let c be an assignment to some set of variables C 6= ∅ in a BN, and let
C ⊂ C′ , c′ - an assignment to C′ that is consistent with c, then if X and Y are some
variables in the BN that are CSI-separated given c, they are also CSI-separated given
c′.
Reminder - CSI-sep: Let B be a BN, c be a context, and let X,Y be sets of
variables. if CSI − sep(B, c,X,Y) = true then PB |= (X ⊥c Y|c).
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3. I-equivalence
In this question you will prove the following theorem about I-equivalent networks:
If G and G′ are two I-equivalent networks, then there is a sequence of networks G =
G1...Gk = G′ that are all I-equivalent, such that the difference between any network Gi to
Gi + 1 is a single edge reversal.

(a) [2 points]
i. Define I-equivalence between two networks.
ii. State the two structural properties that must hold in any two I-equivalent Bayesian

networks.
(b) [3 points] Consider the network structures shown in Figure 2. Which of them belong

to the same I-equivalence class and which do not?

Figure 2: 4 different network structures

(c) [5 points] Choose two I-equivalent graphs from Figure 2, and mark them as G and
G′.

i. Show a series of networks G = G1...Gk = G′ all I-equivalent such that the difference
between any Gi to Gi + 1 is a single edge reversal.

ii. Show a series of networks G = G1...Gk = G′ such that the difference between any
Gi to Gi + 1 is a single edge reversal, but the graphs are not all I-equivalent.

(d) [5 points] Consider a network G and a single edge reversal in this network that results
in a new network G′, such that X → Y ∈ G and X ← Y ∈ G′.
State a general rule such that if it holds for an edge X → Y ∈ G then reversing this
edge will result in an I-equivalent network G′ (Hint: Consider the parents of nodes X
and Y ). Prove your claim.

(e) [5 points] Consider two I-equivalent networks G and G′. Let R be the set of all edges
X → Y ∈ G that have a different direction in G′ (i.e., X → Y ∈ G and X ← Y ∈ G′).
Show that there must exist at least one edge in R that the rule you defined in the
previous section holds for.

(f) [5 points] Use the above section to show that if G and G′ are two I-equivalent net-
works, then you can find a sequence of networks G = G1...Gk = G′ such that the
difference between any Gi to Gi + 1 is a single edge reversal.
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4. Approximate Inference by Edge Deletion
[25 points] In this question we consider the problem of deleting edges from a Bayesian
network for the purpose of simplifying models in probabilistic inference.
Let B be a Bayesian network over variables χ with node X having parents Y and U. The
network B′ which results from deleting edge Y → X from B given evidence e is defined as
follows:

- B′ has the same structure as B except that edge Y → X is removed.

- The CPT (conditional probability table) for variable X in B′ is given by:

θ′x|u .=
∑

y

θx|y,uPr(y|e).

- The CPTs for variables other than X in B′ are the same as those in N .

(a) [8 points] Can the transformation described above be performed in polynomial time
in general? be precise.

For the following parts we will use the definitions of the entropy and the KL distance from
the notations and definitions section.

Assume that all distributions are positive and that the RVs which are instantiated in e do
not contain X,Y or U.

(b) [8 points] Let B and B′ be two Bayesian networks as given in the definition. Prove
that,

KL(Pr(χ|e), P r′(χ|e)) = log
Pr′(e)
Pr(e)

−
∑
y,u

Pr(y,u|e)
∑

x

Pr(x|y,u, e)log
( θ′x|u

θx|y,u

)

(c) [9 points] Let B and B′ be two Bayesian networks as given in the definition. Use
the previous result to prove that,

KL(Pr(χ|e), P r′(χ|e)) ≤ log
Pr′(e)
Pr(e)

+ H(Y |e)
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5. Generalized Belief Propagation (GBP)
[25 points] In class we saw that we can improve on the basic loopy belief propagation
algorithm by propagating messages on a general cluster graphK, resulting in the generalized
belief propagation (GBP) algorithm. Recall that such a graph is specified both by the
scope of its factors (the variables over which the factor are defined), and by the scope of
the edges between these factors. In this question we are interested in applying GBP to
directed models. To do so we need to transform a general Bayesian network B into an
undirected general cluster graph.
Reminder:

Recall the following definitions of sepset and running intersection in cluster graph and in
general cluster graph.
Given two of the graph nodes Ci, Cj , the main difference between the definitions of sepset
in cluster graph and in a general cluster graph is that while in a cluster graph the sepset
Si,j is defined by Si,j = Ci ∩ Cj , in a general cluster graph this definition is relaxed to
Si,j ⊆ Ci ∩ Cj . In other words, while in a cluster graph the sepset is associated with the
variables in the intersection of the two neighboring nodes, in general cluster graph it is
associated with a subset of these variables.
running intersection in a cluster graph - if x ∈ Ci and x ∈ Cj then x is in each cluster in
the (unique) path between Ci and Cj .
running intersection in a general cluster graph - for each X ∈ Ci and X ∈ Cj , there is
exactly one path between Ci and Cj for which X ∈ S for each subset S along the path.

(a) [10 points] Below are two schemes for converting a Bayesian network B to a cluster
graph K. For each of these two schemes, either show (by proving the necessary prop-
erties) that it produces a valid general cluster graph for a general Bayesian network,
or disprove this result by showing a counter-example. Note that exactly one of these
schemes produces a valid general cluster graph for GBP inference.
Scheme 1: For each node Xi in B, define a factor φi over the family of Xi in B (the
node Xi and its parents). Connect φi and φj if Xj is a parent of Xi in B. The scope
of such an edge is the intersection of the clusters.
Scheme 2: For each node Xi in B, define a factor φi over the family of Xi in B (the
node Xi and its parents). Connect φi and φj if Xj is a parent of Xi in B. The scope
of such an edge is {Xj}.
In both cases, the initial potential in each factor φi is simply the CPD corresponding
to Xi given its parents in B.

(b) [10 points] Construct an alternative scheme to the ones proposed in (a) that uses a
spanning tree algorithm. (You can assume the existence of a spanning tree algorithm
without defining it, but must be precise on how it is used.) Your scheme must trans-
form any Bayesian network into a valid cluster graph. Reminder: A spanning tree
algorithm is an algorithm that takes a graph G as an input, and finds a subset of the
edges that form a tree which spans all G’s nodes. Hint: You can show how you use a
spanning tree algorithm to fix the result of the scheme in (a) that outputs a non-valid
general cluster graph.

(c) [5 points] Show an example where the method you suggested in (b) could give a
superior result to that of the one legal method of (a). Hint: You can actually show
an example where (b) can give exact marginals, but the one legal method of (a) is
only guaranteed to be an approximation.


