Probabilistic Graphical Models

 

 

 

 

Course Outline:

 

Date

Week

Topic

Reading

Homework

Solutions

Due (Course's Mailbox)

15/3

1

Introduction
Bayesian Networks Representation

1,2

     

22/3

2

Bayesian Networks Representation (cont.)

2,3

5/4

29/3

3

Local Probability Models

5

19/4

5/4

4

Undirected Graphical Models

4

19/4

12/4

5

Class cancelled - Passover Holiday

       

19/4

6

Undirected Graphical Models (cont.)

4

3/5

26/4

7

Exact inference - Variable Elimination

9,10

10/5

3/5

8

Exact Inference - Clique Trees

9,10

17/5

10/5

9

Learning: Parameter Estimation

16,17

24/5

17/5

10

Learning (cont.)

16,17

7/6

24/5

11

Learning: Structure

18

14/6

31/5

12

Learning: Structure (cont.)

 

     

7/6

13

Learning: Partially Observed Data

19

     

14/6

14

HMMs

 

     
   

Approximate Inference

12

     

 

Back to main page

Weizmann Institute main page