Chapter

16

Transition to Design

The main thrust of this book has been the careful description of a set
of languages for modeling complex reactive systems. A model built
with these languages can be used during the system development
process in various ways, depending on the development method adopted.
We shall call such a model the STATEMATE model, and as explained
briefly in Chap. 1, it is commonly used in the specification phase.

Now that we have finished describing and illustrating the modeling
languages themselves, we would like to come full circle and return to
the issue of positioning the resulting specification models within the
entire development process. In most development schemes, the design
phase comes after the specification and leads to the implementation.
Because different implementation technologies give rise to different
concerns and different criteria for the quality of the design, the meth-
ods used in the transition from specification to design will differ, too.

This chapter concentrates on using the STATEMATE model for specifi-
cation and on the main ways for carrying out the transition from the
specification model to the design.

16.1 Statemate Models in the
Development Process

There have been a number of proposals for defining the life-cycle
process of system development. Among these are the classical water-
fall model (Boehm 1976; Royce 1970), the rapid throwaway prototyp-
ing approach (Gomma and Scott 1981), the evolutionary prototyping
(Gomma 1986; McCracken and Jackson 1986), and the spiral model
(Boehm 1988). In general, such development processes start with
requirements analysis, during which the system’s specification is con-
structed. Although specifications—and therefore the models describ-
ing them—are treated differently in the various approaches, the

217



218 Chapter Sixteen

subsequent phase is almost always design, which is an essential pre-
requisite to implementation.

A STATEMATE model can be used in the specification phase of most of
the development processes. Nevertheless, it is important to under-
stand the model’s role in the overall process and how the information
contained in it can be used in subsequent phases, mainly the design
phase. We now show how STATEMATE models can be used in various -
ways during specification.

16.1.1 Models as prototypes

One common approach in developing complex systems is to use the
specification model for prototyping. Because a STATEMATE model is exe-
cutable, it lends itself nicely to this purpose. In fact, executable speci-
fications—termed operational by Zave (1984)—are the basis of the
“rapid throwaway prototyping” approach of Gomma and Scott (1981).
The structure of prototyping models in this case is problem-oriented,
not implementation-oriented, and the system’s external behavior is
studied by executing the model. The observed behavior must then be
preserved during transition to design, a topic we take up in Sec. 16.2.2.

When the system is to interface with humans, developers can use spe-
cial tools to build images of screen windows in computer systems or
mock-ups of the control panels that will eventually make up the actual
interface. If and when the interface of the model with its environment
(i.e., the input/output data) is defined as it will be in the implementa-
tion, this information can be transferred to the design phase. Other
portions of the model are not directly used in the design, and most of
the design has to be started from scratch.

16.1.2 Design using specification models

The second approach calls for using the specification model directly to
obtain a design. In other words, STATEMATE modeling is used as a
high-level implementation language. Because the model can then be
translated automatically into the target implementation by code syn-
thesis, this process can be viewed as true compilation.

In this approach, the principal structure of the implementation is
determined in the specification phase. This is one of its disadvan-
tages, because the specifier must consider issues that are not relevant
to this phase. However, the main advantage is continuity, which is
hailed as one of the main virtues of object-oriented development
methods. If an object-oriented approach is indeed taken, objects from
the problem domain are refined and appear in their new guise in the
implementation structure. Work that was carried out in the first
phase is not lost. There are better means for traceability, and the
resulting systems are therefore easier to maintain. The transition to



Transition to Design 219

design is thus more reliable, depending mainly on the reliability of
the code-synthesizer.

16.1.3 Restructuring for design

A “middle of the road” approach (i.e., not exactly full prototyping and
not exactly designing during the specification, but a little bit of both)
is restructuring the specification for design. There are two issues that
raise the need for a new model for design purposes, and hence for such
restructuring to take place:

® Specification is carried out in the problem domain, and design in the
implementation domain.

m There are many different kinds of implementation frameworks, which
requires using different design languages.

Restructuring requires the system developer to allocate elements of
the model to elements of the design. Thus the STATEMATE specification
model is not discarded. Rather, new constructs are prepared for the
system’s design, and the constructs of the STATEMATE languages are
mapped into them.

We should remark that although design is often carried out in a lan-
guage external to the STATEMATE framework, some parts of the design
can be carried out within STATEMATE, using module-charts and their con-
nections with other parts of the STATEMATE model. See Chaps. 9 and 10.

16.2 Mapping Models to Design
Structures

We now discuss “real” transition to design, that is, restructuring the
specification model and mapping it into the design structures, as intro-
duced in Sec. 16.1.3.

Specification structures must be mapped into a particular configura-
tion of implementation resources. Ideally, we would like automatic trans-
formations that preserve external behavior but change the mechanisms
that produce that behavior. This is usually not the case, so we will more
commonly use heuristics that recognize structures in the specification
model and transfer them to the design model. In general, this transition
to design involves a number of concepts regarding the usage of design cri-
teria for obtaining a mapping and the evaluation of the resulting map-
ping. Some of these are common to the different target environments,
and some are more specific to particular implementation technologies.

16.2.1 Design criteria

Different architectures are used for different target implementation
technologies, and each case involves different design considerations.



220 Chapter Sixteen

Moreover, the level of design can vary, too: one could decide to work on
a high level of system design, in which there is a division into subsys-
tems, or on lower levels, in which there is a mapping into the actual
constructs of the final software or hardware.

In high-level design, especially in real-time embedded systems, there
will often be both software and hardware components. In such cases,
the first stage in the mapping to design involves allocating the func-
tional requirements described by the system-level specification model
to software and hardware components. This is done by the systems
engineer, according to a variety of criteria: the basic nature of the func-
tion (e.g., certain things can only be done with hardware, such as sens-
ing information from the physical world), desired performance, existing
components, etc.

The decomposition itself can be carried out in STATEMATE mapping
from activity-charts to module-charts (using the “implemented by
module” relationship), as discussed in Chap. 10. One such case, used
in MIL-STD-498, was described in Chap. 15, that is, the division of a
system into its software and hardware components (the CSCI and
HWCT of the standard, respectively).

When we carry out this design decomposition, some additional issues
have to be dealt with these concern requirements management, deriv-
ing interfaces from the allocation, and traceability concerns. Many of
these are discussed in articles appearing in the two first chapters of
Thayer and Dorfman (1990), and some of them can also be carried out
within the STATEMATE languages.

If a system is pure software (or if we are in later levels of software/
hardware design), we will reach the need to map into software compo-
nents. This, too, depends on the target technology. There are essen-
tially three general issues here. One is the fact that since we have an
orderly, complete and consistent specification model, we are in a posi-
tion to identify patterns of similarity in the functional components.
This makes it possible to make decisions regarding the mapping of,
say, similar functions that appear in different processes of the behav-
ioral specification into a single software function with parameters or
to a class with several instances or subclasses.

The second issue is that of an object-oriented target implementation,
an extremely popular and beneficial approach in recent years. While
objects are very useful in the implementation stage, some systems are
better thought of at the early stages of development in nonobject ways.
In such cases, the issue is to transfer requirements based on functional
decomposition into an object-oriented implementation. This is dis-
cussed in several places; see, for example, Ward (1989) and Gomma
(1993). Some of the methods are based on Ward/Mellor or Hatley/
Pirbhai specifications, but they hold also for function-based STATEMATE
models. Other possibilities involve generating scenarios (or the more



Transition to Design 221

general use-cases) from the STATEMATE model and to proceed from
there as in object-oriented design. Of course, if the modeling itself is
carried out—already in the specification stage—in an object-oriented
fashion, the mapping to an object-oriented design will be straight-
forward. The generic-charts construct of our languages (see Chap. 14)
can help with this because a generic chart is a natural candidate to be
a class in the implementation.

The third issue is that of specific kinds of applications, such as hard,
real-time systems. For these, there are usually more singular criteria
and specialized considerations of performance. Some techniques and
components available in specific implementation environments are
concurrent tasks, synchronization and communication mechanisms,
and timers of the particular real-time kernel. Good coverage of the
design process for real-time systems, starting from the specification is
given by Gomma (1993).

In principle, many of the special criteria can be embodied in algo-
rithms for carrying out the mapping. The automatic code generation
can be based on them, with some user guidance (employing various
compilation profiles) about such questions as to whether an activity
should be translated into a function or a task, whether to use a polling
method for some particular input or interrupt, and so on.

This guided translation into code has proved itself very well in the
arena of pure hardware (e.g., ASIC). Chip designers use VHDL and
Verilog, high-level design languages similar to programming lan-
guages, to express their designs (Smith 1996). (This code can be later
automatically transformed into chip schemes by commercial tools.)
The designers can write the code manually; alternatively, they can
develop STATEMATE models, which are translated into VHDL and
Verilog by automated tools (such as the translator developed by
I-Logix). There are also compilation profiles to guide the translation.
These profiles are based on the designer’s knowledge and the criteria
he or she applies in the particular case at hand. The profiles contain
high-level instructions, such as putting several model components in
the same design entity and defining the port signals, and low-level
decisions, such as how the signals will be implemented (e.g., the po-
larity of conditions).

16.2.2 Evaluation of the mapping

Once a mapping from the model to the design has been constructed, it
should be checked for completeness and consistency, from both struc-
tural and behavioral points of view. The formality of our languages
obviously make such tests possible in principle, and indeed the
STATEMATE tool supports a broad variety of them.

First, we have to make sure that all the requirements have been cov-
ered, for example, that all the functions in the specification model have



222 Chapter Sixteen

been mapped to structures in the design. Conversely, we must show
that all parts of the design have some source in the specification model.
The better and more detailed these links are between the specification
model and the design, the easier it is to carry out forward and back-
ward traceability, which is crucial for convenient maintenance of the
system under development.

We also have to check the structural consistency of the mapping.
This includes several things, such as consistency of the hierarchy and
of the interfaces. For example, if an activity A was mapped to some
design structure M, and a subactivity B of A was mapped to N, then N
must be a substructure of M in an appropriate sense. Similarly, if a
data-item X was specified as flowing from an activity A to an activity
B, there must be a way for X (or its mapped image) to flow from the
design structure implementing A to that implementing B.

The behavioral aspects are far more problematic. We mentioned that
behavior must be preserved by the mapping. Put simply, we want
things we know about the behavior of the model (e.g., those discovered
by executing it or by running the synthesized code) to hold for the
implementation, too. Of course, we could run the implemented system
and check that the scenarios match. However, it is necessary to
emphasize that running or executing models and designs usually can-
not guarantee full behavioral consistency because the number of pos-
sible scenarios will often be infinite or at best unreasonably large. As
Dijkstra once put it, testing and debugging cannot be used to demon-
strate the absence of errors, only their presence.

What is needed for air-tight confidence in the system’s desired
behavior is true program or system verification. Because verification is
a whole science in itself, we shall not dwell on it here, except to make a
few general comments. Good basic books on verification include
Francez (1991) and Loeckx and Seiber (1984).

When we use the term verification, we mean rigorous mathema-
tical proofs of correctness. In our framework, this means proving
that the mapping indeed preserves behavior under all circum-
stances. Even this needs to be more carefully stated. For example,
we might want to know that the values of certain variables are pre-
served in the transition to design or that certain kinds of sequences
of events that take place in executing the model will also take place
in the implementation.

The three basic facts about verification in our framework are as fol-
lows (see Chap. 5 of Harel, 1992a):

® The general verification problem is noncomputable. This means that
we cannot hope for a verification tool that will be able to routinely
prove the correctness of any mapping.



. Transition to Design 223

® In principle, a correct mapping can be proved correct in an appro-
priate mathematical setup, so that this direction of work is definitely
worth pursuing.

® In recent years there have been major advances in techniques and
automated tools for verifying systems. Hardware industries are
beginning to use them on real systems, and the feeling is that soft-
ware and embedded systems will not be long in following this lead.
These modern verification methods are based on specifying proper-
ties in temporal logic and on model-checking techniques. A large
amount of material can be found in Manna and Pnueli (1992).






