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WEYL DENOMINATOR IDENTITY FOR AFFINE LIE

SUPERALGEBRAS WITH NON-ZERO DUAL COXETER NUMBER

MARIA GORELIK

Abstract. Weyl denominator identity for the affinization of a basic Lie superalgebra
with non-zero Killing form was formulated by V. Kac and M. Wakimoto and was proven
by them for the defect one case. In this paper we prove this identity.

0. Introduction

Let g be a basic Lie superalgebra with a non-zero Killing form. Let ĝ be the affinization
of g. Let h (resp., ĥ) be the Cartan subalgebra in g (resp., in ĝ) and let (−,−) be the

bilinear form on ĥ∗ which is induced by the Killing form on g. Let ∆ (resp., ∆̂) be the
root system of g (resp., of ĝ). We set

∆# := {α ∈ ∆0| (α, α) > 0}.

Then ∆# is a root system of a simple Lie algebra. Let ∆̂# be the affinization of ∆#.
Denote by Ŵ# (resp., W#) the subgroup of GL(ĥ) generated by the reflections sα : α ∈

∆̂0, (α, α) > 0 (resp., sα : α ∈ ∆#). Then W# is the Weyl group of ∆# and Ŵ# is

the corresponding affine Weyl group. Recall that Ŵ# = W# ⋉ T , where T ⊂ Ŵ# is
the translation group, see [K2], Chapter 6. Let Π be a set of simple roots for g, and

let Π̂ = Π ∪ {α0} be the corresponding set of simple roots for ĝ. Let ∆+, ∆̂+ be the
corresponding sets of positive roots. We set

R :=

∏

α∈∆+,0
(1 − e−α)

∏

α∈∆+,1
(1 + e−α)

, R̂ :=

∏

α∈∆̂+,0
(1 − e−α)

∏

α∈∆̂+,1
(1 + e−α)

.

Following [KW], we call R the Weyl denominator and R̂ the affine Weyl denominator.
The Weyl denominator identity conjectured by V. Kac and M. Wakimoto in [KW] can be
written as

R̂eρ̂ =
∑

w∈T

w(Reρ̂),

where ρ̂ ∈ ĥ∗ is such that 2(ρ̂, α) = (α, α) for each α ∈ Π. The original form of this
identity is given in formula (2). In this paper we prove this identity.

Supported in part by ISF Grant No. 1142/07.
1

http://arxiv.org/abs/0911.5594v1


2 MARIA GORELIK

In the paper [G] we proved the analog of Weyl denominator identity for finite-dimensional
Lie superalgebras (also formulated and partially proven by Kac-Wakimoto). The proof of
the present result makes use of this version of Weyl denominator identity.

Acknowledgments. I am very grateful to V. Kac and A. Joseph for useful comments.

1. Kac-Moody superalgebras

The notions of a Kac-Moody superalgebras and its Weyl group were introduced in [S].
We recall some definitions below and then prove Lemmas 1.3.2,1.5.1. In the sequel, we
will apply these lemma to the case of affine Lie superalgebras; in this case the lemmas
can be also verified using the explicit description of root systems.

1.1. Construction of Kac-Moody superalgebras. Let A = (aij) be an n × n-matrix
over C and let τ be a subset of I := {1, . . . , n}. Let g = g(A, τ) = n− ⊕ h ⊕ n+ be the
associated Lie superalgebra constructed as in [K1],[K2]. Recall that, in order to construct
g(A, τ), one considers a realization of A, i.e. a triple (h, Π, Π∨), where h is a vector space
of dimension n + corankA, Π ⊂ h∗ (resp. Π∨ ⊂ h) is a linearly independent set of vectors
{αi}i∈I (resp. {α∨

i }i∈I), such that 〈αi, α
∨
j 〉 = aji, and constructs a Lie superalgebra g̃(A, τ)

on generators ei, fi, h, subject to relations:

[h, h] = 0, [h, ei] = 〈αi, h〉ei, [h, fi] = −〈αi, h〉fi, for i ∈ I, h ∈ h, [ei, fj] = δijα
∨
i ,

p(ei) = p(fi) = 1 if i ∈ τ, p(ei) = p(fi) = 0 if i 6∈ τ, p(h) = 0.

Then g(A, τ) = g̃(A, τ)/J = n− ⊕ h ⊕ n+, where J is the maximal ideal of g̃(A, τ),
intersecting h trivially, and n+ (resp. n−) is the subalgebra generated by the images of
the ei’s (resp. fi’s). We obtain the triangular decomposition g(A) = n− ⊕ h ⊕ n.

Let ∆ be the set of roots of g(A), i.e. ∆ = {α ∈ h∗|α 6= 0 & gα 6= 0}, ∆+ = {α ∈
h∗|nα 6= 0}, ∆− = {α ∈ h∗|n−,α 6= 0}. One has ∆ = ∆+

∐

∆−, ∆− = −∆+.

We say that a simple root αi is even (resp., odd) if i 6∈ τ (resp., i ∈ τ) and that αi is
isotropic if aii = 0. One readily sees that if i ∈ τ (i.e., ei, fi are odd), then [ei, ei], [fi, fi] ∈ J
iff aii = 0. Therefore for a simple root α one has 2α ∈ ∆ iff α is a non-isotropic and odd.

Note that, multiplying the i-th row of the matrix A by a non-zero number corresponds
to multiplying ei and α∨

i by this number, thus giving an isomorphic Lie superalgebra.
Hence we may assume from now on that aii = 2 or 0 for all i ∈ I.

1.1.1. We consider the case when the Cartan matrix A = (aij) is such that

(1) aii ∈ {0, 2} for all i ∈ I and aij = 0 forces aji = 0;

(2) if i 6∈ τ , then aii = 2 and aij ∈ Z≤0 for j 6= i;

(3) if i ∈ τ and aii = 2, then aij ∈ 2Z≤0 for j 6= i.

In this case ad ei, ad fi act locally nilpotently for each i ∈ I.
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1.2. Weyl group. Recall a notion of odd reflections, see [S]. Let Π be a set of simple
roots and ∆+ be the corresponding set of positive roots. Fix a simple regular isotropic
root β ∈ Π and set sβ(Π) := {sβ(α)| α ∈ Π}, where

for α ∈ Π

sβ(α) = −α, sβ(α∨) = α∨ if α = β,
sβ(α) = α, sβ(α∨) = α∨ if aαβ = 0, α 6= β,
sβ(α) = α + β, sβ(α∨) = aαββ∨ + aβαα∨ aαβ 6= 0, aαα + 2aαβ = 0,

sβ(α) = α + β, sβ(α∨) = 2
aαββ∨+aβαα∨

aβα(aαα+2aαβ)
aαβ , aαα + 2aαβ 6= 0.

One has 〈α, α∨〉 ∈ {0, 2} for each α ∈ sβ(Π).

By [S], Sect. 3, sβ(Π) is a set of simple roots for ∆ and the corresponding set of
positive roots is sβ(∆+) := ∆+ \ {β}∪ {−β}. The Cartan matrix corresponding to sβ(Π)
is (〈α∨, α′〉)α,α′∈sβ(Π).

1.2.1. We assume that g(A) is such that for any chain of odd reflections, the corre-
sponding Cartan matrix satisfies the conditions (1)-(3) of 1.1.1. By [S] Section 6, the
finite-dimensional Kac-Moody superalgebras and their affinizations satisfy this assump-
tion; other examples and classification are given in [S],[HS].

1.2.2. Let Θ be the collection of all possible sets of simple roots obtained from Π by
finite sequences of odd reflections.

1.2.3. Definition. An even root α ∈ ∆ is called principal if α ∈ Π′ or 1
2
α ∈ Π′ for

some Π′ ∈ Θ.

1.2.4. For each principal root α we fix α∨ as follows: we choose Π′ ∈ Θ such that α ∈ Π′

or 1
2
α ∈ Π′; in first case, we take α∨ ∈ (Π′)∨ and in the second case we take α∨ := (1

2
α)∨/2,

where (1
2
α)∨ ∈ (Π′)∨. Thanks to the assumption 1.2.1, 〈β, α∨〉 ∈ Z for each β ∈ Π′. Thus

for each principal root α one has 〈∆, α∨〉 ⊂ Z.

The matrix A is called symmetrizable if for some invertible diagonal matrix D the
product DA is a symmetric matrix. If A is symmetrizable, then g(A) admits a non-
degenerate invariant bilinear form and the restriction of this form induces a non-degenerate
bilinear form (−,−) on h∗. In this case, for each principal root α the coroot α∨ is given

by the formula 〈µ, α∨〉 = 2(µ,α)
(α,α)

for any µ ∈ h∗.

1.2.5. Take Π′ ∈ Θ. Recall that if α ∈ Π′ is odd and is such that 〈α, α∨〉 6= 0, then 2α
is a root. Thus α ∈ Π′ is principal iff 〈α, α∨〉 6= 0.

Since the odd reflections do not change the set of even positive roots, all principal roots
are positive.

For a principal root α let sα ∈ GL(h∗) be the reflection µ 7→ µ − 〈µ, α∨〉α. If α ∈ Π,
then sα(∆+(Π) \ {α}) = ∆+(Π) \ {α}. If α/2 ∈ Π, then sα(∆+(Π) \ {α, α/2}) = ∆+(Π) \
{α, α/2}.
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1.2.6. Definition. The Weyl group W is the subgroup of GL(h∗) generated by the
reflections sα with respect to the principal roots. Clearly, det sα = −1 so det w = ±1 for
each w ∈ W . Denote by sgn : W → {±1} the group homomorphism sgn(w) := det w.

One has W∆ = ∆.

1.2.7. Remark. Let g be a finite-dimensional Kac-Moody superalgebra. By [S], g

satisfies the assumption 1.2.1. Let ∆ be the root system of g. In this case g0 is a
reductive Lie algebra so ∆0 is a root system of finite type. The set of principal roots in
∆ is a set of simple roots in ∆0 (corresponding to the set of positive roots ∆0 ∩ ∆+). In
particular, the Weyl group of g coincides with the Weyl group of ∆0.

Consider the case when g 6= gl(n, n). The affinization ĝ of g is a Kac-Moody superal-

gebra, satisfying the assumption 1.2.1 (see [S]). Let ∆̂ be the root system of ĝ. In this

case ∆̂0 is a disjoint union of affine root systems (which are the affinizations of irreducible

components of ∆0) and the set of principal roots in ∆̂ is a set of simple roots in ∆̂0

(corresponding to the set of positive roots ∆̂0 ∩ ∆̂+). In particular, the Weyl group of ĝ

coincides with the Weyl group of ∆̂0, so it is the direct product of affine Weyl groups.

1.2.8. In the sequel we will use the following lemma.

Lemma. For any w ∈ W the set R(w) := ∆+ ∩ w−1∆− is finite.

Proof. Let α be a principal root, i.e. α ∈ Π′ or 1
2
α ∈ Π′ for some Π′ ∈ Θ; let ∆′

+ be

the corresponding set of the positive roots. By above, ∆′
+ ∩ sα∆′

− ⊂ {α, 1
2
α}. Therefore

∆+ ∩ sα(∆−) ⊂ {α, 1
2
α} ∪

(

∆+ \ ∆′
+

)

. Since Π′ ∈ Θ, the set ∆+ \ ∆′
+ is finite. Hence

R(sα) is finite as well.

Now let w = sαy, where y ∈ W is such that R(y) is finite. One has

R(w) ⊂ R(y) ∪ {γ ∈ ∆+| yγ ∈ ∆+ ∩ sα(∆−)} ⊂ R(y) ∪ y−1R(sα),

so R(w) is finite. The claim follows. �

1.3. Set

Q+ =
∑

α∈Π

Z≥0α, P := {λ ∈ h∗| 〈λ, α∨〉 ∈ Z for all α ∈ Π s.t. 〈α, α∨〉 6= 0}.

Clearly, P is an additive subgroup of h∗. The conditions on the Cartan matrix in 1.1.1
ensure that ∆ ⊂ P ; in particular, P − Q+ ⊂ P . Introduce the standard partial order
on P by µ ≤ ν if (ν − µ) ∈ Q+. Introduce the height function ht : Q+ → Z≥0 by
ht(

∑

α∈Π mαα) :=
∑

α∈Π mα.
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1.3.1. Choose ρ such that 〈ρ, α∨〉 = 1
2
〈α, α∨〉 for each α ∈ Π. For each Π′ ∈ Θ set

ρΠ′ := ρ +
∑

β∈∆+(Π)\∆+(Π′) β. One readily sees that 〈ρΠ′, α∨〉 = 1
2
〈α, α∨〉 for each α ∈ Π′.

The assumption 1.2.1 ensures that 〈β, α∨〉 ∈ Z for each α ∈ Π′ such that 〈α, α∨〉 6= 0.
We conclude that 〈ρ, α∨〉 ∈ Z for each α ∈ Π′ such that 〈α, α∨〉 6= 0 and each Π′ ∈ Θ. In
particular, Wρ ⊂ (ρ +

∑

α∈∆ Zα).

1.3.2. Lemma. Let Π+ be the set of principal roots satisfying 〈ρ, α∨〉 ≥ 0 and let W+

be the subgroup of W generated by the reflections {sα, α ∈ Π+}.

(i) One has ρ − wρ ∈ Q+ for any w ∈ W+.

(ii) If w = sαi1
. . . sαir

is a reduced decomposition of w ∈ W+, then

ht(ρ − wρ) ≥ |{j : 〈ρ, αij〉 6= 0}|.

(iii) The stabilizer of ρ in W+ is generated by the reflections {sα| α ∈ Π+ & 〈ρ, α〉 = 0}.

Proof. By [S], Cor. 4.10, W is the Weyl group of a Kac-Moody algebra, whose set of
simple roots coincides with the set of principal roots in ∆. Therefore W+ is the Weyl
group of a Kac-Moody algebra, whose set of simple roots coincides with Π+. For w ∈ W+,
let l(w) be the length of w. Write w = w′sα, where l(w) > l(w′) and α ∈ Π+. By [J],
A.1, the inequality l(w) > l(w′) implies that w′α is a non-negative linear combination of
elements of Π+, so w′α ∈ ∆+. One has

ρ − wρ = ρ − w′ρ + 〈ρ, α〉w′α.

By 1.3.1, 〈ρ, α〉 ∈ Z. Since α ∈ Π+, one has 〈ρ, α〉 ∈ Z≥0 so 〈ρ, α〉w′α ∈ Q+ and
〈ρ, α〉w′α = 0 iff 〈ρ, α〉 = 0. The assertions (i), (ii) follow by induction on the length of
w; (iii) follows from (ii). �

1.4. The algebra R. Call a Q+-cone a set of the form (λ − Q+), where λ ∈ h∗.

For a formal sum of the form Y :=
∑

ν∈P bνe
ν , bν ∈ Q define the support of Y by

supp(Y ) := {ν| bν 6= 0}. Let R be a vector space over Q, spanned by the sums of the
form

∑

ν∈Q+ bνe
λ−ν , where λ ∈ P, bν ∈ Q. In other words, R consists of the formal

sums Y =
∑

ν∈P bνe
ν with the support lying in a finite union of Q+-cones. Note that for

any non-zero Y ∈ R the support of Y has a maximal element (with respect to the order
introduced in 1.3).

Clearly, R has a structure of commutative algebra over Q. One has If Y ∈ R is such
that Y Y ′ = 1 for some Y ′ ∈ R, we write Y −1 := Y ′.

1.4.1. Action of the Weyl group. For w ∈ W set w(
∑

ν∈P bνe
ν) :=

∑

ν∈P bνe
wν. One has

wY ∈ R iff w(supp Y ) is a subset of a finite union of Q+-cones.

Let W ′ be a subgroup of W . Let RW ′ := {Y ∈ R| wY ∈ R for each w ∈ W ′}. Clearly,
RW ′ is a subalgebra of R.
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1.4.2. Infinite products. An infinite product of the form Y =
∏

α∈X(1+aαe−α)r(α), where
aα ∈ Q, r(α) ∈ Z≥0 and X ⊂ ∆ is such that the set X \ ∆+ is finite, can be naturally
viewed as an element of R; clearly, this element does not depend on the order of factors.
Let Y be the set of such infinite products. For any w ∈ W the infinite product

wY :=
∏

α∈X

(1 + aαe−wα)r(α),

is again an infinite product of the above form, since the set w∆+ \ ∆+ = −(w∆− ∩ ∆+)
is finite by Lemma 1.2.8. Hence Y is a W -invariant multiplicative subset of RW .

It is easy to see that the elements of Y are invertible in R: using the geometric series
we can expand Y −1 (for example, for α ∈ ∆+ one has (1 − eα)−1 = −e−α(1 − e−α)−1 =
−

∑∞
i=1 e−iα).

1.4.3. The subalgebra R′. Denote by R′ the localization of RW by Y . By above, R′ is
a subalgebra of R. Observe that R′ 6⊂ RW : for example, (1 − e−α) ∈ R′, but (1 −
e−α)−1 =

∑∞
j=0 e−jα 6∈ RW . We extend the action of W from RW to R′ by setting

w(Y −1Y ′) := (wY )−1(wY ′).

An infinite product of the form Y =
∏

α∈X(1 + aαe−α)r(α), where aα, X are as above

and r(α) ∈ Z lies in R′ and wY =
∏

α∈X(1 + aαe−wα)r(α). One has

supp(Y ) ⊂ λ′ − Q+, where λ′ := −
∑

α∈X\∆+:aα 6=0

rαα.

1.4.4. Let W ′ be a subgroup of W . For Y ∈ R′ we say that Y is W ′-invariant (resp.,
W ′-skew-invariant) if wY = Y (resp., wY = sgn(w)Y ) for each w ∈ W ′.

Let Y =
∑

aµeµ ∈ RW ′ be W ′-skew-invariant. Then awµ = (−1)sgn(w)aµ for each µ
and w ∈ W ′. In particular, W ′ supp(Y ) = supp(Y ), and, moreover, for each µ ∈ supp(Y )
one has StabW ′ µ ⊂ {w ∈ W ′| sgn(w) = 1}. The condition Y ∈ RW ′ is essential:
for example, for W ′ = {id, sα}, the expression Y := eα − e−α is W ′-skew-invariant, so
Y −1 = e−α(1 − e−2α)−1 is also W ′-skew-invariant, but supp(Y −1) = −α,−3α, . . . is not
sα-invariant.

Take Y =
∑

aµeµ ∈ RW ′ and set
∑

w∈W ′ sgn(w)wY =:
∑

bµe
µ. One has bµ =

∑

w∈W ′ sgn(w)awµ so bµ = sgn(w)bwµ for each w ∈ W ′. We conclude that

Y ∈ RW ′ &
∑

w∈W ′

sgn(w)wY ∈ R =⇒







∑

w∈W ′ sgn(w)wY ∈ RW ′;
∑

w∈W ′ sgn(w)wY is W ′-skew-invariant;
supp(

∑

w∈W ′ sgn(w)wY ) is W ′-stable.

1.5. For each Π′ ∈ Θ (see 1.2.2) introduce the following elements of R:

R(Π′)0 :=
∏

α∈∆+(Π′)∩∆0

(1 − e−α), R(Π′)1 :=
∏

α∈∆+(Π′)∩∆1

(1 + e−α), R(Π′) :=
R(Π′)0

R(Π′)1

.
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We set

R0 := R(Π)0, R1 := R(Π)1, R := R(Π).

One readily sees from 1.3.1 that R(Π′)eρΠ′ = Reρ for any Π′ ∈ Θ.

1.5.1. Lemma. Reρ is a W -skew-invariant element of R′.

Proof. By 1.4.2, R0, R1 ∈ Y so Reρ ∈ R′. Let α be a principal root. If α ∈ Π′, then
sα(∆′

+ \ {α}) = ∆′
+ \ {α}. If α/2 ∈ Π′, then sα(∆′

+ \ {α, α/2}) = ∆′
+ \ {α, α/2}. In both

cases sα(R(Π′)eρΠ′ ) = −R(Π′)eρΠ′ . By 1.5, R(Π′)eρΠ′ = Reρ. The claim follows. �

2. Proof of the denominator identity

We retain notation of Sect. 0.

Fix triangular decomposition of the reductive Lie algebra g0. By [S], any two sets of
simple roots of g, which are compatible with a triangular decomposition of the reductive
Lie algebra g0, are connected by a chain of odd reflections. By 1.5, both sides of the
denominator identity R̂eρ̂ =

∑

w∈T w(Reρ̂) do not change if we substitute Π by sβΠ,
where β is a simple odd root of g. Hence it is enough to prove the denominator identity
for one choice of Π; this is done in this section.

2.1. Another form of denominator identity. Let us recall the denominator identity
for g (see [KW],[G] for a proof).

Recall that S ⊂ ∆1 is called a maximal isotropic set of roots if S is a basis of a maximal
isotropic subspace in h∗ with respect to the form (−,−). By [KW], there exists a maximal
isotropic set of roots S and each such S is a subset of a set of simple roots (for each S
there exists Π such that S ⊂ Π).

Fix a maximal isotropic set of roots S and a set of simple roots Π such that S ⊂ Π.
The denominator identity for g takes the following form:

(1) Reρ =
∑

w∈W#

sgn(w)w
( eρ

∏

β∈S(1 + e−β)

)

,

where ρ ∈ h∗ is such that 2(ρ, α) = (α, α) for each α ∈ Π. Note that ρ̂−ρ is W#-invariant.
Using (1) we obtain

∑

y∈T y(Reρ̂) =
∑

y∈T y
(

eρ̂−ρReρ
)

=
∑

y∈T y
(

eρ̂−ρ
∑

w∈W# sgn(w)w
(

eρ
Q

β∈S(1+e−β)

))

=
∑

y∈T y
(
∑

w∈W# sgn(w)w
(

eρ̂
Q

β∈S(1+e−β)

))

=
∑

w∈Ŵ# w
(

eρ̂
Q

β∈S(1+e−β)

)

.

Hence the denominator identity for ĝ can be rewritten as

(2) R̂eρ̂ =
∑

w∈Ŵ#

sgn(w)w
( eρ̂

∏

β∈S(1 + e−β)

)

.
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We set

Y :=
∑

w∈Ŵ#

sgn(w)w(
eρ̂

∏

β∈S(1 + e−β)
).

2.2. Notation. We set

∆2 = {α ∈ ∆0| (α, α) < 0}.

Then ∆0 = ∆#
∐

∆2, and ∆#, ∆2 are root systems of semisimple Lie algebras.

Denote by δ the minimal imaginary root in ∆̂. Let Π be a set of simple roots for ∆+

and θ ∈ ∆+ be a maximal root. Recall that Π̂ = Π∪ {δ − θ} is the set of simple roots for

∆̂+ = ∪∞
s=1{sδ + ∆} ∪ ∆+.

For g 6= B(n, n), we fix a set of simple roots Π for ∆ such that

(i) Π contains a maximal isotropic set of roots S;
(ii) ∀α ∈ Π (α, α) ≥ 0;
(iii) θ ∈ ∆#,

see 3.2 for a choice of Π. For g = B(n, n) we choose Π as in 3.2; in this case the properties
(i) and (ii) hold, but θ is isotropic. Note that in all cases (θ, θ) ≥ 0. Combining with (ii),

we get (ρ̂, β) = (β, β)/2 ≥ 0 for all β ∈ Π̂. Set Q̂+ :=
∑

α∈Π Z≥0α. We obtain

(ρ̂, Q̂+) ≥ 0,
(ρ̂, α)

(α, α)
≥ 0 for α ∈ ∆̂#.

2.3. Support of R̂eρ̂. Set

U := {µ ∈ ρ̂ − Q̂+| (µ, µ) = (ρ̂, ρ̂)}.

From representation theory we know that the character of the trivial ĝ-module is a linear
combination of the characters of Verma ĝ-modules M(λ), where λ ∈ −Q̂ and (λ + ρ̂, λ +

ρ̂) = (ρ̂, ρ̂) (since ĝ admits the Casimir element). Therefore 1 =
∑

λ∈U−ρ̂ aλR̂
−1eλ that is

supp(R̂eρ̂) ⊂ U.

2.4. Support of Y . Expanding the summands of Y we obtain

supp
( ewρ̂

∏

β∈S(1 + e−wβ)

)

⊂ {wρ̂− Q̂+} ∩ {wρ̂ +
∑

β∈S

Zwβ}.

Since (ρ̂, S) = (S, S) = 0 this implies

(3) supp
( ewρ̂

∏

β∈S(1 + e−wβ)

)

⊂ {µ ∈ wρ̂ − Q̂+| (µ, µ) = (ρ̂, ρ̂)}.
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2.4.1. Lemma. (i) Y is a well-defined element of R (see 1.4 for the notation);

(ii) supp(Y ) ⊂ U ;

(iii) for g 6= B(n, n) the coefficient of eρ̂ in Y is equal to 1.

Proof. By [S], the set of principal roots of ∆̂+ is the set of simple roots of ∆̂+,0. By 2.2, Ŵ#

is a subgroup of the group W+ introduced in Lemma 1.3.2. By above, supp
(

ewρ̂
Q

β∈S(1+e−wβ )

)

⊂

wρ̂ − Q̂+. In the light of Lemma 1.3.2 for (i) it is enough to show that Hr := {w ∈

Ŵ#| ht(ρ̂ − wρ̂) ≤ r} is finite for each r.

Let Σ be the set of simple roots of ∆̂#
+ . Set Σ0 := {α ∈ Σ| (ρ̂, α) = 0}. By Lemma 1.3.2,

H0 = StabŴ# ρ̂ is the subgroup of Ŵ# generated by the reflections {sα : α ∈ Σ0} and
any w ∈ Hr is of the form w1sβ1

w2sβ2
w3 . . . sβr

wr+1, where wj ∈ H0 and βj ∈ Σ \ Σ0.
This means that the finiteness of H0 implies the finiteness of Hr for r ≥ 0 and that H0

is the Weyl group of the Dynkin diagram corresponding to Σ0. Hence for (i) it is enough
to verify that the Dynkin diagram of Σ0 is of finite type. This can be shown as follows.
Observe that Σ is an indecomposable Dynkin diagram of affine type. Since Σ0 ⊂ Σ, it
is enough to verify that Σ0 6= Σ. Since (ρ̂, δ) = h∨ 6= 0, there exists β ∈ Π̂ such that

(ρ̂, β) 6= 0 that is (β, β) 6= 0. By 2.2, (α, α) ≥ 0 for all α ∈ Π̂, so (β, β) > 0. Hence β or

2β belongs to ∆̂#. Therefore (ρ̂, ∆̂#) 6= 0 so Σ0 6= Σ. This establishes (i).

Combining (3) and Lemma 1.3.2 (i), we obtain supp(Y ) ⊂ U , thus (ii).

Let us show that the coefficient of eρ̂ in Y is 1 for g 6= B(n, n). Indeed, by above,

ρ̂ ∈ supp
(

ewρ̂
Q

β∈S(1+e−wβ )

)

forces w ∈ H0. By 2.2, for g 6= B(n, n) one has θ ∈ ∆# so

α0 ∈ Σ \ Σ0 and thus H0 ⊂ W#. Therefore the coefficient of eρ̂ in Y is equal to the
coefficient of eρ̂ in the expression

∑

w∈W#

sgn(w)w(
eρ̂

∏

β∈S(1 + e−β)
) = eρ̂−ρ

∑

w∈W#

sgn(w)w(
eρ

∏

β∈S(1 + e−β)
).

Using the denominator identity (1) we get
∑

w∈W# sgn(w)w( eρ̂
Q

β∈S(1+e−β)
) = Reρ̂. Clearly,

the coefficient of eρ̂ in Reρ̂ is equal to 1. This establishes (iii). �

2.4.2. Lemma. For g = B(n, n) the coefficient of eρ̂ in Y is equal to 1.

Proof. Expanding the expression w( eρ̂
Q

β∈S(1+e−β)
), we see that the coefficient of eρ̂ in Y is

equal to the sum
∑

w∈H sgn(w), where

H := {w ∈ Ŵ#| wρ̂ = ρ̂ & wS ⊂ ∆̂+}.
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Take w ∈ H and write w = tµy, where y ∈ W# and tµ ∈ T (see Sect. 0 for notation) is
given by

tµ(λ) = λ + (λ, δ)µ − ((λ, µ) +
(µ, µ)

2
(λ, δ))δ for λ ∈ ĥ∗.

Retain notation of 3.2. One has S = {δi − εi}
n
i=1 and w(δi − εi) = δi − yεi + (y−1µ, εi)δ,

because (µ, ∆2) = 0, see 2.2 for notation. The condition wS ⊂ ∆̂+ gives (y−1µ, εi) ≥ 0
for i = 1, . . . , n. On the other hand,

wρ̂ = yρ̂ + h∨µ − ((ρ̂, y−1µ) +
(µ, µ)

2
h∨)δ.

Since µ and ρ̂−yρ̂ lie in the Q-span of ∆#, the condition wρ̂ = ρ̂ gives (ρ̂, y−1µ)+ (µ,µ)
2

h∨ =

0. One has (µ, µ) ≥ 0 since µ lies in the Q-span of ∆#. Since h∨ > 0, we get

0 ≥ (ρ̂, y−1µ) = (ρ, y−1µ) = (
1

2

n
∑

i=1

εi, y
−1µ).

Using the above inequalities (y−1µ, εi) ≥ 0, we conclude that 0 = (ρ̂, y−1µ) = (µ,µ)
2

h∨ that

is µ = 0. Therefore w = y ∈ W#. Now we can obtain the statement using the argument
of the proof of Lemma 2.4.1 (iii), or, by observing that yρ̂ = ρ̂ implies that y permutes

{εi}
n
i=1 and then yS ⊂ ∆̂+ forces y = {id}. �

2.5. Assume that the denominator identity does not hold so R̂eρ̂ − Y 6= 0.

The coefficient of eρ̂ in R̂eρ̂ is equal to 1. From Lemmas 2.4.1, 2.4.2 we get

(4) supp
(

R̂eρ̂ − Y
)

⊂ U \ {ρ̂}.

Let ρ̂# be the standard element for the root system ∆̂# = (∆̂# ∩ ∆̂+)
∐

(∆̂# ∩ ∆̂−).
Set

X := R̂1e
ρ̂#−ρ̂(R̂eρ̂ − Y ).

By the above assumption X 6= 0.

By 1.4.2, R̂0, R̂1e
ρ̂#−ρ̂ ∈ RW , where W is the Weyl group of ĝ. By Lemma 1.5.1,

R̂eρ̂, R̂0e
ρ̂#

are Ŵ#-skew-invariant elements of R′. Therefore for each w ∈ Ŵ# one has

R̂0e
ρ̂#

R̂1eρ̂#−ρ̂
= R̂eρ̂ = sgn(w)w(R̂eρ̂) = sgn(w)

w(R̂0e
ρ̂#

)

w(R̂1eρ̂#−ρ̂)
=

R̂0e
ρ̂#

w(R̂1eρ̂#−ρ̂)
.

Thus R̂1e
ρ̂#−ρ̂ is a Ŵ#-invariant element of RW . Therefore

R̂1e
ρ̂#−ρ̂Y =

∑

w∈Ŵ#

sgn(w)w
(

R̂1e
ρ̂#

∏

β∈S

(1 + e−β)−1
)

and so

X = R̂0e
ρ̂#

−
∑

w∈Ŵ#

sgn(w)wZ, where Z := eρ̂#
∏

β∈∆̂1+\S

(1 + e−β).
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Since ρ̂# − ρ̂ ∈ supp(R̂1e
ρ̂#−ρ̂) ⊂ ρ̂# − ρ̂ − Q̂+, we obtain from (4)

max supp(X) = ρ̂# − ρ̂ + max supp
(

R̂eρ̂ − Y
)

⊂ ρ̂# − ρ̂ + (U \ {ρ̂}),

that is

(5) max supp(X) ⊂ {µ ∈ ρ̂# − (Q̂+ \ {0})| (µ − ρ̂# + ρ̂, µ − ρ̂# + ρ̂) = (ρ̂, ρ̂)}.

2.5.1. Recall [J], A.1.18, [KT], that for any λ ∈ ĥ∗ the stabilizer StabŴ# λ is either trivial
or contains a reflection sα. Let us call λ ∈ P regular if StabŴ# λ = {id}. Say that the

orbit Ŵ#λ is regular if λ is regular (so the orbit consists of regular points).

By 1.4.2, Z ∈ RW . One has
∑

w∈Ŵ# sgn(w)wZ = R̂1e
ρ̂#−ρ̂Y ∈ R, because Y ∈

R. In the light of 1.4.4,
∑

w∈Ŵ# sgn(w)wZ belongs to RŴ# and is Ŵ#-skew-invariant.

By Lemma 1.5.1, R̂0e
ρ̂#

∈ RW is Ŵ#-skew-invariant. Hence X belongs to RŴ# and is

Ŵ#-skew-invariant. Using 1.4.4 we conlclude that supp(X) is a union of regular Ŵ#-
orbits.

2.5.2. Take ν ∈ max supp X. Then ν is a maximal element in a regular Ŵ#-orbit and,
by (5), ν ∈ ρ̂# − (Q̂+ \ {0}).

One has Q̂+ ⊂ Q∆̂# +QM , where M = ∆2 (see 2.2 for notation) if ∆ is not of the type
A(m, n), C(n), and, for the types A(m, n), C(n) one has M = ∆2 ∪ {ξ}, where ξ ∈ Q∆ is
such that (ξ, ξ) < 0, (ξ, ∆0) = 0. The element ξ is given in 3.2.

Write ν = ρ̂# + ν1 + ν2, where ν1 ∈ Q∆̂# and ν2 ∈ QM . Since Ŵ#ν2 = ν2, the vector
ν − ν2 is also a maximal element in a regular Ŵ#-orbit. For each simple root α of ∆̂#

+

one has

〈ν − ν2, α
∨〉 = 〈ν, α∨〉 ∈ 〈ρ̂#, α∨〉 − 〈Q̂+, α∨〉 ⊂ Z,

since 〈ρ̂#, α∨〉 = 1 and 〈∆̂, α∨〉 ⊂ Z, by 1.2.4. In the light of Lemma 3.1.1, ν − ν2 =
ρ̂# + ν1 ∈ ρ̂# − Qδ so ν1 = −sδ for some s ∈ Q.

Substituting ν1 = −sδ and using (5) we get

(6) (ρ̂ − sδ + ν2, ρ̂ − sδ + ν2) = (ρ̂, ρ̂).

By 2.2, (ρ̂,−sδ + ν2) ≤ 0, since −sδ + ν2 ∈ −Q̂+. Therefore (ν2, ν2) ≥ 0. Recall that
the form (−,−) is negatively definite on ∆2 and so is negatively definite on M . Thus
(ν2, ν2) ≥ 0 gives ν2 = 0. Now the formula (6) gives s = 0 (because (ρ̂, δ) = h∨ 6= 0).
Hence ν = ρ̂#, a contradiction.

3. Appendix

3.1. The following lemma is used in 2.5.2. Let g be an affine Lie algebra, let Π be its set
of simple roots. Let W be the Weyl group of g. Define regular W -orbits as in 2.5.1.
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3.1.1. Lemma. If λ ∈
∑

α∈Π Qα is such that λ + ρ is a maximal element in a regular
W -orbit and 〈λ, α∨〉 ∈ Z for any α ∈ Π, then λ ∈ Qδ, where δ is the minimal imaginary
root.

Proof. For each α ∈ Π set kα := 〈λ, α∨〉. Since λ + ρ is a maximal element in a regular
W -orbit one has sα(λ + ρ) = λ + ρ− kαα 6≥ λ + ρ, so kα 6∈ Z≤0. By the assumption, kα is
an integer, so kα > 0.

Write λ =
∑

α∈Π xαα, xα ∈ Q. Since 〈λ, α∨〉 > 0 for each α ∈ Π, we have Ax ≥ 0,
where A is the Cartan matrix of g and x = (xα)α∈Π. From [K2], Thm. 4.3 it follows that
∑

α∈Π xαα ∈ Qδ as required. �

3.2. Basic Lie superalgebras. The basic Lie superalgebras with a non-zero Killing
form, which are not Lie algebras, are A(m, n), m 6= n; B(m, n); C(n); D(m, n), m 6= n +
1; F4; G3. Below for each of these root systems we give an example of Π satisfying the

conditions (i), (ii) of 2.2. In all cases ∆# lies in the lattice spanned by {εi}
max(m,n)
i=1 and

∆2 lies in the lattice spanned by {δi}
min(m,n)
i=1 .

Retain notation of 2.2. In all cases except B(m, m) one has θ ∈ ∆# (the condition (iii)
in 2.2); for B(m, m) one has (θ, θ) = 0.

In all cases except A(m, n), C(n) one has Q∆ = Q∆0; for A(m, n), C(n) one has Q∆ =
Q∆0 + Qξ, where ξ is described below.

3.2.1. Case A(m, n), m 6= n. Since A(m, n) ∼= A(n, m), we may assume that m > n. The

roots are ∆0 = {εi − εj}1≤i6=j≤m ∪ {δi − δj}1≤i6=j≤n, ∆1 = {±(εi − δj)}
1≤j≤m
1≤i≤n . Set

Π := {ε1 − δ1, δ1 − ε2, ε2 − δ2, . . . , δn − εn+1, εn+1 − εn+2, . . . , εm−1 − εm}

and S := {εi − δi}. One has θ = ε1 − εm ∈ ∆#. We take ξ =
Pm

i=1 εi

m
−

Pn
j=1 δj

n
. One has

(ξ, ∆0) = 0.

3.2.2. Case B(m, n), m < n. The roots are ∆0 = {±εi ± εj;±2εi}1≤i6=j≤n ∪ {±δi ±

δj ;±δi}1≤i6=j≤m, ∆1 = {±εi ± δj ;±εi}
1≤j≤m
1≤i≤n . We take

Π := {ε1 − δ1, δ1 − ε2, ε2 − δ2, . . . , εm − δm, δm − εm+1, εm+1 − εm+2, . . . , εn−1 − εn, εn}

and S := {εi − δi}
m
i=1. One has θ = 2ε1 ∈ ∆#.

3.2.3. Case B(n, n). The roots are as above. We take

Π := {δ1 − ε1, ε1 − δ2, . . . , δn − εn, εn}

and S := {δi − εi}. One has θ = δ1 + ε1.



AFFINE DENOMINATOR IDENTITY 13

3.2.4. Case B(m, n), m ≥ n + 1. The roots are ∆0 = {±εi ± εj;±εi}1≤i6=j≤m ∪ {±δi ±

δj ;±2δi}1≤i6=j≤n, ∆1 = {±εi ± δj;±εi}
1≤j≤m
1≤i≤n . We take for m = n + 2

Π := {ε1 − ε2, ε2 − δ1, δ1 − ε3, . . . , δn − εn+2, εn+2},

and for m > n + 2

Π := {ε1 − ε2, ε2 − δ1, δ1 − ε3, . . . , δn − εn+2, εn+2 − εn+3, . . . , εm−1 − εm, εm}.

Then S := {εi − δi}
n
i=1 lies in Π. One has θ = ε1 + ε2 ∈ ∆#.

3.2.5. Case C(m). The roots are ∆0 = {±εi ± εj ;±2εi}1≤i6=j≤m, ∆1 = {±εi ± δ1}1≤j≤m

Set

Π := {ε1 − ε2, ε2 − ε3, . . . , εm−1 − εm, εm − δ1, εm + δ1}.

One has θ = 2ε1 ∈ ∆#. Observe that ∆2 = ∅. We take ξ := δ1.

3.2.6. Case D(m, n), n ≥ m. The roots are ∆0 = {±εi ± εj;±2εi}1≤i6=j≤n ∪ {±δi ±

δj}1≤i6=j≤m, ∆1 = {±εi ± δj}
1≤j≤m
1≤i≤n . We take

Π := {ε1 − δ1, δ1 − ε2, ε2 − δ2, . . . , δm − εm, εm − εm+1, . . . , εn−1 − εn, 2εn}

and S := {εi − δi}
m
i=1. One has θ = 2ε1 ∈ ∆#.

3.2.7. Case D(m, n), m > n+1. The roots are ∆0 = {±εi±εj}1≤i6=j≤n∪{±δi±δj ;±2δi}1≤i6=j≤m,

∆1 = {±εi ± δj}
1≤j≤m
1≤i≤n . For m = n + 2 set

Π := {ε1 − ε2, ε2 − δ1, δ1 − ε3, . . . , δn − εn+2, δn + εn+2},

for m > n + 2 set

Π := {ε1 − ε2, ε2 − δ1, δ1 − ε3, . . . , δn − εn+2, εn+2 − εn+3, . . . , εm−1 − εm, εm−1 + εm}.

Then Π contains S := {εi − δi}
n
i=1. One has θ = ε1 + ε2 ∈ ∆#.

3.2.8. Case F (4). We choose

Π := {(ε1 + ε2 + ε3 + δ1)/2; (−ε1 + ε2 + ε3 − δ1)/2; (−ε1 − ε2 − ε3 + δ1)/2; ε1 − ε2}.

In this case S can be any odd simple root; one has θ = ε3 − ε2 ∈ ∆#.

3.2.9. Case G(3). For G(3) the roots are expressed in terms of linear functions ε1, ε2, ε3,
corresponding to G2, ε1 + ε2 + ε3 = 0, and δ1, corresponding to A1; we choose Π = {δ1 −
ε2, ε3−δ1,−ε3−ε1}. In this case S can be any odd simple root; one has θ = ε3−ε1 ∈ ∆#.
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