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The unique properties of DNA make it a fundamental building
block in the fields of supramolecular chemistry, nanotechnology,
nano-circuits, molecular switches, molecular devices, and molecu-
lar computing. In our recently introduced autonomous molecular
automaton, DNA molecules serve as input, output, and software,
and the hardware consists of DNA restriction and ligation enzymes
using ATP as fuel. In addition to information, DNA stores energy,
available on hybridization of complementary strands or hydrolysis
of its phosphodiester backbone. Here we show that a single DNA
molecule can provide both the input data and all of the necessary
fuel for a molecular automaton. Each computational step of the
automaton consists of a reversible software molecule�input mol-
ecule hybridization followed by an irreversible software-directed
cleavage of the input molecule, which drives the computation
forward by increasing entropy and releasing heat. The cleavage
uses a hitherto unknown capability of the restriction enzyme FokI,
which serves as the hardware, to operate on a noncovalent
software�input hybrid. In the previous automaton, software�input
ligation consumed one software molecule and two ATP molecules
per step. As ligation is not performed in this automaton, a fixed
amount of software and hardware molecules can, in principle,
process any input molecule of any length without external energy
supply. Our experiments demonstrate 3 � 1012 automata per �l
performing 6.6 � 1010 transitions per second per �l with transition
fidelity of 99.9%, dissipating about 5 � 10�9 W��l as heat at
ambient temperature.

The function of DNA is to store hereditary information and
regulate the expression of this information (1). The unique

chemical properties of DNA encouraged its utilization in novel
contexts. The highly selective base pairing renders DNA an
excellent building block for supramolecular ensembles, one of
the few that can assemble in an aqueous environment. DNA may
serve either as a principal structural component or as a mediator
that arranges tethered ligands or particles (2, 3). The former
approach encompasses nanoscale DNA constructs (4) and ex-
tended spatial structures (5). The latter includes DNA-directed
assembly of proteins (6), fullerenes (7), and golden particles (8)
and DNA-templated nanowire formation (9). DNA also forms
dynamic constructs, such as a molecular switch (10) and oscil-
lating molecular machines (11, 12). DNA recognition properties
are also exploited in antisense regulation of gene expression (13).

The combination of information-encoding and recognition
capabilities of DNA, and the enzymatic machinery available for
DNA manipulation, facilitated the emergence of the field of
biomolecular computing. Experimental DNA computers (14–
23) use single-stranded or double-stranded DNA to encode their
data and possibly the software. These molecules interact in a
programmed fashion, accompanied by enzymatic or manual
manipulations, providing a DNA molecule encoding an output.

So far, little attention has been given to the energetic aspects
of DNA computers. In practice, all of the protocols use ATP to
allow ligation and�or heating to allow strand dissociation. How-
ever, the reverse operations, i.e., the hydrolysis of the DNA
backbone and strand hybridization, are spontaneous because
they are driven by the potential free energy stored in DNA itself.
A molecular computer using these operations may, in principle,

be fueled by its DNA input. In fact, the potential free energy of
single-stranded DNA was used in noncomputational context to
fuel oscillating devices (11, 12). Here we describe a DNA-based
finite automaton that computes via repeated cycles of self-
assembly and processing. The reversible self-assembly is driven
by hybridization energy between input�software complementary
sticky ends, whereas the irreversible processing step is driven
exclusively by the energy released upon hydrolysis of the input
DNA backbone and does not require ATP or heating. Our
automaton can, in principle, use a fixed amount of software and
hardware molecules to process any input molecule of any length
without external energy supply, and as such provides experi-
mental realization of the theoretical possibility to use the
potential energy of a DNA input molecule to drive a molecular
computation.

Materials and Methods
Materials. FokI stock (54 �M, 60 units��l), T4 DNA ligase (400
units��l), and T4 polynucleotide kinase (PNK) (10 units��l)
were from New England Biolabs. Redivue [�-32P]ATP (�3,000
mCi�mmol, 3.33 pmol��l) and ATP (100 mM) were obtained
from Amersham Pharmacia. Synthetic oligonucleotides (de-
salted and lyophilized, 1-�mol scale) were from Sigma-Genosys.

Assembly of the Machine Components. Single-stranded components
of the software and inputs were purified to homogeneity by using
a 15% denaturing acrylamide gel (40 cm � 1.5 mm) containing
8 M urea (24). The oligonucleotides for the construction of the
software were TN1368 (5�-AAGAGCTAGAGTCGGATGC),
TN24 (5�-AAGAGCTAGAGTCGGATGCC), TN57 (5�-
AAGAGCTAGAGTCGGATG), TN1-as (5�-AGCCGCATC-
CGACTCTAGCTCT), TN2-as (5�-AGCCGGCATCCG-
ACTCTAGCTCT), TN3-as (5�-CCTGGCATCCGACTC-
TAGCTCT), TN4-as (5�-CCTGGGCATCCGACTCTAG-
CTCT), TN5-as (5�-GCCACATCCGACTCTAGCTCT),
TN6-as (5�-GCCAGCATCCGACTCTAGCTCT), TN7-as (5�-
CTGCCATCCGACTCTAGCTCT), and TN8-as (5�-CTGCG-
CATCCGACTCTAGCTCT).

The software molecules were prepared by annealing the
following pairs of oligonucleotides: T1, TN1368 and TN1-as; T2,
TN24 and TN2-as; T3, T1368 and TN3-as; T4, TN24 and TN4-as;
T5, TN57 and TN5-as; T6, TN1368 and TN6-as; T7, TN57 and
TN7-as; and T8, TN1368 and TN8-as.

The oligonucleotides for the construction of the inputs were:
abb-s (5�-GGCTGCCGCAGGGCCGCAGGGCCGTCGG-
TACCGATTAAGTTGGA), abb-as (5�-CCAACTTAATCGG-
TACCGACGGCCCTGCGGCCCTGCGGC), abba-s (5�-G-
GCTGCCGCAGGGCCGCAGGGCCTGGCTGCCGTCGG-
TACCGATTAAGTTGGA), abba-as (5�-CCAACTTAATCG-
GTACCGACGGCAGCCAGGCCCTGCGGCCCTGCGGC),
babb2-s (5�-CAGGGCCTGGCTGCCGCAGGGCCGCA-
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GGGCCT), babb2-as (5�-AGCCAGGCCCTGCGGCCCT-
GCGGCAGCCAGGC), baaa2-s (5�-CAGGGCCTGGCTGC-
CTGGCTGCCTGGCTGCCT), baaa2-as (5�-AGCCAG-
GCAGCCAGGCAGCCAGGCAGCCAGGC), abbb3-s (5�-
GGCTGCCGCAGGGCCGCAGGGCCGCAGGGCCG), and
abbb3-as (5�-CCTGCGGCCCTGCGGCCCTGCGGCCCT-
GCGGC).

The input building blocks were prepared by annealing of the
sense and antisense strands of each block, i.e., abb (abb-s and
abb-as), etc. The inputs I3-I8 were prepared by stepwise ligation
of the building blocks: I3 (babbabb), ligation of abb and babb2;
I4 (babbabba), babb2 and abba; I5 (baaaabb), baaa2 and abb; I6
(baaaabba), baaa2 and abba; I7 (abbbbabbabb), abbb3, babb2,
and abb; and I8 (abbbbaaaabba), abbb3, baaa2, and abba.

When radioactive inputs were required, 20 pmol of the abb-as
and abba-as oligonucleotides were 32P-labeled and added to a
varying amount of unlabeled oligonucleotides (2,000–6,000
pmol each) before annealing. For radioactive labeling, 20 pmol
of the substrate were mixed with 5 �l of [�-32P]ATP and 10 units
of T4 PNK in 10 �l of T4 PNK reaction buffer and incubated at
37°C for 60 min. Labeled oligonucleotides were purified with a
nucleotide removal kit (Qiagen, Valencia, CA), eluted into
50–100 �l of EB buffer (10 mM Tris�HCl, pH 8.5) (Qiagen), and
dried in a SpeedVac. Termini bound to ligate were phosphor-
ylated before annealing. Typically, 6,000 pmol of a substrate
oligonucleotide was phosphorylated by 160 units of T4 PNK in
240 �l of PNK buffer supplied with 1 mM ATP, for 60 min at
37°C, ethanol-precipitated, and resuspended in TE buffer
(10 mM Tris�HCl, 1 mM EDTA, pH 8.0). The annealing was
performed by mixing equimolar (100–200 �M) amounts of the
sense and antisense oligonucleotides in 50 mM NaCl, heating to
94°C, and slow-cooling to room temperature. Double-stranded
blocks (1,500 pmol of each) were ligated by T4 DNA ligase
(�1,700 units) in 400 �l of T4 DNA ligase buffer at 16°C for 1 h.
The ligation products were ethanol-precipitated, resuspended
in TE buffer (pH 8.0), and purified from native PAGE (12%,
16 cm � 1.5 mm) (25). Purified duplexes were quantified by
GeneQuant apparatus (Amersham Pharmacia). Single-
nucleotide extrusions were introduced into all substrates to avoid
blunt-end ligations in control experiments in the presence of
ligase.

Computation Reaction. In a typical reaction the FokI enzyme was
added in a 1:1 ratio to the desired set of transition molecules,
while each software molecule was maintained at least at 1 �M
concentration and at the same time in excess of or equal to the
input. The reactions were performed in 10 �l of NEB4 buffer at
8°C and assayed by 20% denaturing PAGE with input molecules
labeled in the 5� terminus of the antisense strands. In this assay,
S0 and S1 outputs were represented by 15-nt and 16-nt bands,
respectively.

Performance Optimization. Performance was optimized with soft-
ware A2 and input I3. To calculate the total number of opera-
tions, gel images were analyzed by using IMAGE GAUGE 3.41
software (Fuji). The relative amounts of unreacted input, inter-
mediates, and output were measured by assuming linear depen-
dence between signal intensity and the amount of radioactive
label. The total number of steps S was calculated according to the
formula S � N(�1 � 2 �2 � . . . L �L), where N is a total number
of molecules, L is a number of symbols in an input molecule, and
�i is a relative abundance of an ith intermediate.

Energy Dissipation Calculation. A computation is a series of single-
symbol cleavages, which occur sequentially for each input mol-
ecule but concurrently for the entire set of input molecules:

a1a2a3 . . . an^ a1 � a2a3 . . . an^ a2 � a3 . . . an

^ . . .^ an�1 � an.

Each elementary reaction is a hydrolysis of two phosphodiester
bonds with �Go � �44.31 kJ�mol at 25°C (26). A corrected
value for 8°C assuming the same equilibrium constant is �Go

(281 K) � �41.78 kJ�mol. Actual �G values depend on the
concentrations of the different species, thus energy dissipation
rate depends on the reaction coordinate. For a particular
reaction, we directly measure the number of moles of each
intermediate ai. . . an at a time t and denote it as �i(t). We denote
the number of moles of each cleaved symbol ai as �i(t),

�i�t	 � �
j�i�1

n

�j�t	.

To calculate average energy dissipation between time points t1
and t2, we measure the mole numbers of intermediates at these
time points, then calculate the following for this time interval:
(i) an average rate of each elementary reaction, which is
equivalent to the transition rate of the molecular computer:

�i �
�i�t2	 � �i�t1	

t2 � t1
,

and (ii) the average number of moles of each intermediate:

�� i �
�i�t2	 � �i�t1	

2
, �� i �

�i�t2	 � �i�t1	

2
.

The average value of �G for each elementary reaction in this
interval is

�Gi � �G0�281 K	 � RT ln Qi, Qi �
�� i�� i�1

�� i
V�1 ,

where V is the reaction volume. The �Gi has the units of J�mole.
To obtain energy dissipation rate, we multiply it by the average
transition rate. For each elementary reaction, this dissipation
rate is g � �1�G1 and the total dissipation is g � �1�G1 � �2�G2
� . . . � �n-1�Gn-1, which has units of J�s or W. This includes
both enthalpy and entropy contribution, whereas strictly speak-
ing, heat dissipation refers to enthalpy change only. There is no
accurate data on entropy change except that it is positive. The
calculated value of g gives therefore an upper bound on heat
dissipation.

Results
State Machines and Finite Automata. Generally, a state machine
consists of (i) a data tape divided into cells, each containing a
symbol selected from the tape alphabet and (ii) a computing
device driven by transition rules. The device is positioned over
one of the cells and is in one of a finite number of internal states.
Depending on the symbol detected and the internal state, a
transition rule instructs the device to write a new symbol, change
state, and move one cell to the left or to the right. The Turing
machine (27) is the most general type of state machine, capable
of writing on the tape as well as moving in both directions.

A more restricted, yet important, class of state machines is
finite automata (28). A finite automaton is a unidirectional
read-only Turing machine. Its input is a finite string of symbols.
It is initially positioned on the leftmost input symbol in a default
initial state, and in each transition moves one symbol to the right,
possibly changing its internal state. Its software consists of
transition rules, each specifying a next state based on the current
state and current symbol. A computation terminates after the
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last input symbol is processed, the final state being its ‘‘output.’’
Alternatively, it may suspend without completion when no
transition rule applies. Some states are deemed accepting. An
automaton accepts an input if there is a computation with this
input that ends in an accepting final state. A finite automaton
with two states and an alphabet of two symbols is shown in Fig.
1A. It determines if an input over the alphabet {a, b} contains
an even number of a symbols. Fig. 1B shows the intermediate
configurations obtained during a computation of this automa-
ton. A two-state, two-symbol automaton can have eight possible
transition rules. Programming such an automaton amounts to
selecting transition rules and deciding which states are accepting.
A selection of such programs is shown in Fig. 1C.

Design and Mechanism of Operation of the Molecular Finite Autom-
aton. Double-stranded DNA molecules with sticky ends realize
both the software (Fig. 2C) and the input (Fig. 2D) and the class
IIS restriction enzyme FokI functions as the hardware (Fig. 2B).
Unlike previous work (22), the core computational step (Fig.
2E) does not use energy-consuming ligase to bond the input and
software molecules. Rather, it uses a hitherto unknown capa-
bility of FokI to cleave DNA in the presence of a noncovalent
hybridization complex between its recognition and cleavage
sites. As a beneficial side effect, the software molecule used in
this step is not consumed, unlike previous work, because it
dissociates spontaneously from the cleaved input symbol (Fig.
2E), rendering it reusable for subsequent transitions. The soft-
ware molecules (Fig. 2C) effectively operate as a family of
cofactors of variable specificity (29) to FokI, each determining
a specific FokI cleavage site on the input molecule, and a fixed
amount of software and hardware molecules can, in principle,
process any input molecule of any length.

Each computational step cleaves and scatters one input sym-
bol, a short molecule with an even shorter double-stranded
region (3–5 bp), which probably dissociates in solution to single-
stranded DNAs (Fig. 2E). For very long inputs the accumulation
of input fragments may slow the computation down by reversibly
binding to the sticky ends of the input and the software. It is
conceivable that the residual energy of these fragments may be
sufficient to dispose of them, for example, through selective
hydrolytic digestion.

The computation proceeds until no software molecule
matches the state-symbol pair encoded by the exposed sticky end
or until the special terminator symbol is cleaved. This final state

encoded by the output molecule can be identified according to
either its length (Fig. 3) or its sticky end (22).

Although a hint of ligase-free operation has been observed
(22), its direct realization via removal of ligase and ATP proved
impossible, requiring important design changes. We found that
the ability of FokI to cleave DNA with its recognition and
cleavage sites attached by sticky-end hybridization was limited to
specific hybridization complexes. To identify them we varied the
composition of the spacer between the FokI recognition site and
the sticky end of the software molecule, the length of the spacer
and the composition of the sticky end, with corresponding
modifications to the input molecules. We observed that long
spacers and low GC content often resulted in cleaving only one
of the input strands, producing a computationally illegal con-
figuration. Correct performance was achieved with short spacers
and high GC content of the sticky ends. Our final design uses the
shortest possible spacers of 0, 1, and 2 bp (Fig. 2C), which
dictates a particular symbol encoding (Fig. 2 A) and the intro-
duction of spacers between the symbols (Fig. 2D).

To optimize reaction conditions, we calculated the relative
abundance of the hardware�software�input complex for differ-
ent initial concentrations of these molecules, assuming dissoci-
ation constants of 2 nM (30) for the hardware�software complex
and 50 �M for software�input hybrid. The highest proportion of
the complex was found at equimolar ratio of hardware and
software molecules, the absolute concentrations of both being in
the micromolar range and in excess of the input. This finding
suggests that the reactive species is a tight (30) hardware�
software complex (Fig. 2E), possessing both recognition and
cleavage capabilities. Indeed, experiments showed that preincu-
bation of hardware and software molecules before input addi-
tion resulted in almost a 2-fold rate increase, supporting this
suggestion.

Proof of the Proposed Mechanism. Conclusive evidence for the
ability of FokI to perform a transition based on hybridization
without ligation is shown in Fig. 3A. We incubated a one-symbol
input, complementary software and FokI and compared phos-
phorylated and nonphosphorylated 5� termini of the input and
software molecules. The reaction proceeded independently of
the 5� phosphate availability and therefore it was ligase inde-
pendent (1). In addition, the software molecule did not undergo
any change as judged from the gel image and, as expected, served
as a double-stranded DNA cofactor for the enzyme.

System Performance. This ATP-free system retains the compu-
tational capabilities of the previous automaton and even out-
performs it. Three programs (Fig. 1 A and C) were applied to a
selection of eight inputs up to 12 symbols long (Fig. 1D). In each
case the major output molecule was formed in agreement with
the prediction (Fig. 3B). The byproducts visible at the locations
of the incorrect outputs cannot be unambiguously assigned at
this stage. The correctness of the computation, based on the
worst-case assumption that the byproducts represent incorrect
outputs, depends on the software. We obtained single-step
fidelity of 99.9% with input I8 and software A3 whereas the
average value for 12-symbol inputs was �99.5%. We also
observed that the abundance of the putative erroneous bands
was almost independent of input length, resulting in lower
single-step fidelity values for shorter inputs. For example, pro-
gram A1 applied to input I2 (four symbols long) rendered
single-step correctness of only 95%. However, it is clear that the
real fidelity is higher, otherwise the computations would ran-
domize completely after 12 steps. Indeed, analysis of the cor-
rectness with detection molecules able to hybridize selectively to
different outputs (22) indicates that at least some of the by-
products do not represent real errors, and the average single-step

Fig. 1. Finite automata and inputs for which we show molecular realizations.
(A) Automaton A1. Incoming unlabeled arrow marks the initial state, and
labeled arrows represent transition rules. A double circle represents an ac-
cepting state. (B) A computation of A1 scanning and digesting the input abba.
Each row represents an intermediate configuration showing current state and
remaining input. The transition rule applied is shown in brackets. (C) The two
other automata for which we demonstrate molecular operation. (D) The set of
inputs used as fuel.
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fidelity for long inputs determined by this method is �99.9%
(data not shown). We have yet to explain this discrepancy.

The reusability of software molecules was demonstrated by
using a small amount of software to process a large amount of
input (Fig. 3C). During this computation one type of software
molecule (T8) performed on the average 54 transitions per
molecule, with some molecules necessarily performing many
more transitions than the average.

Optimization of the Computation Reactions. We optimized system
performance in two respects. First, the duration of a single
computational step was minimized. The fastest computation was
achieved when 4 �M of program A2 (1 �M of each software
molecule) and 4 �M of hardware were mixed with 10 nM of the
I3 input at 8°C. This computation proceeded with an initial rate
of 20 s per step per input molecule, about 50-fold improvement
compared with the previous system (22) (1,000 s per step per

Fig. 2. A molecular finite automaton that uses input as fuel. (A) Encoding of a, b, and terminator (sense strands) and the 
state, symbol� interpretation of
exposed 4-nt sticky ends, the leftmost representing the current symbol and the state S1, similarly the rightmost for S0. (B) Hardware: The FokI restriction enzyme,
which recognizes the sequence GGATG and cleaves 9 and 13 nt apart on the 5�3 3� and 3�3 5� strands, respectively. (C) Software: Each DNA molecule realizes
a different transition rule by detecting a current state and symbol and determining a next state. It consists of a 
state, symbol� detector (yellow), a FokI
recognition site (blue), and a spacer (gray) of variable length that determines the FokI cleavage site inside the next symbol, which in turn defines the next state.
Empty spacers effect S1 to S0 transition, 1-bp spacers maintain the current state, and 2-bp spacers transfer S0 to S1. (D) Input: The exposed sticky end at the 5�
terminus of the DNA molecule encodes the initial state and first symbol. Each symbol is encoded with 5 bp separated by 3-bp spacers. (E) Suggested mechanism
of operation of the automaton. The computation proceeds via a cascade of transition cycles, each cleaving and scattering one input symbol, exemplified with
the input molecule bab in the initial state S0 and the transition S0 b3 S1. Both hardware and software molecules are recycled.
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molecule). We considered the initial rates obtained over the first
30 s of the reaction because at longer sampling times fully
processed input molecules accumulated, introducing a bias to-
ward lower numbers.

Second, the parallel performance of the system was improved
by maximizing the total number of operations performed per s
in a unit solution volume. Ten micromolar program A2 (2.5 �M
of each molecule) and 10 �M FokI were preincubated at 8°C for
30 min and then mixed with 5 �M of the I3 input. A cumulative
initial rate was 6.646 � 1010 operations per s per �l, an
�8,000-fold improvement over the previous system (8.3 � 106

operations per s per �l). The single-step duration at these
conditions was �45 s, only about two times slower than in the
fastest reaction.

Error rates in the optimized processes versus the slow com-
putation with software recycling provided an insight into the
speed�error rate tradeoff. In the fast reaction, the apparent
single-step correctness rose slightly from 98.1% after the first
30 s to 98.9% after 4 min. In the reaction optimized for parallel
performance, the correctness remained constant over time,
equaling 99.5%. In the ‘‘slow’’ computation, the fidelity after
18 h was 98.7%. These results suggest that error rate is inde-
pendent of computation speed and rather depends on the
molecular structure of the reacting compounds.

Energy Dissipation. Heat dissipation depends on reaction condi-
tions, reaction coordinate, and the number of symbols in the
input. We therefore selected a particular computation, namely
the high-performance reaction, and estimated its average heat
dissipation between 30 and 60 s from its onset (see Materials and
Methods). The calculation provides an upper limit on the value
of heat dissipation of � 5.3 � 10�9 W��l under these conditions

and an average free energy change of ��33.9 kT per transition.
Reaction rates were surprisingly insensitive to temperature and
remained similar over the range of 2–20°C. This finding might
represent a tradeoff between a decrease in stability of sticky end
hybridization and an increase in enzyme activity as the temper-
ature increases.

Discussion
We define the DNA energy balance of a molecular computation
to be the difference between the free energy of the DNA output
and byproducts and the free energy of the DNA input. Negative
balance implies that, thermodynamically, the DNA input con-
tains enough potential free energy to fuel the computation. The
two types of compounds that contribute to the overall negative
balance are self-assembled complexes of the input components
or products of input hydrolysis. The former use hybridization
energy between complementary strands whereas the latter use
the energy-rich phosphodiester bonds of DNA backbone. Actual
harvesting of the free-energy difference depends on the activa-
tion energies en route between intermediates and is a function
of the molecular mechanism used.

Several theoretical and experimental molecular computing
systems exhibit negative DNA energy balance. Ensembles of
DNA tiles have lower energy than the individual tiles; assembled
DNA representing paths in a graph have lower energy than the
single strands representing vertices and edges. Because of its
intrinsic instability, further processing of a self-assembled com-
putational output may require covalent sealing using external
energy. This is standard practice in the combinatorial approach
and may also be required with tiling-based computations. More-
over, unlike our implementation, each logical operation in the
tiling-based approach consumes a tile-representing software

Fig. 3. Experimental results and mechanism analysis of the molecular automaton. (A) A demonstration that a computation does not require ligase. Different
variants of the software molecule T1 (T1a, nonphosphorylated, and T1b, phosphorylated) and the input (Ia, nonphosphorylated and Ib, phosphorylated) were
incubated with the hardware (FokI) at 8°C for 10 min. Input, software, and hardware concentrations were all 1 �M. Reaction components are shown below the
lanes, and the locations of software molecule (T), input (I), and product (P) are indicated by arrows. (B) Executing automata A1–A3 (Fig. 1 A and C) on inputs I1–I8
(Fig. 1D). Input, software, and hardware concentrations were 1, 4, and 4 �M, respectively. Reactions were set in 10 �l and incubated at 8°C for 20 min. Each lane
contains inputs, intermediate configurations, and output bands at the indicated locations. The programs, inputs, and expected outputs are indicated below each
lane. Location of unprocessed input is shown on the left. Size markers are indicated by arrows on the right. (C) Software reusability with the four-transition
automaton A1 applied to input I8 with each software molecule taken at 0.075 molar ratio to the input. Input, software, and hardware concentrations were 1,
0.3 (0.075 �M each kind), and 1 �M, respectively. After 18 h, molecules T2, T5, and T8 performed on the average 29, 21, and 54 transitions each. Input and output
locations are indicated on the left, and intermediates and software molecules applied at each step are on the right.
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molecule. Even when the ligation is avoided, tile molecules
cannot be reused during the same run and the amount consumed
is linear in the length of the computation for simple automata
and quadratic for universal automata.

Structural decomposition of DNA and other biopolymers is
thermodynamically downhill because turning a spatially con-
strained sequence of bits into an unordered collection increases
entropy and, furthermore, biopolymer cleavage dissipates heat.
Hence input destruction can drive biomolecular computations.
This principle is not readily realized by electronic computers,
which destroy information via erasure. Erasure is thermodynam-
ically uphill because resetting an unknown bit to zero decreases
entropy (31–33), and past research on energy-efficient comput-
ing focused on reversible computers that avoid information
destruction (31–40).

One hypothetical way to obtain energy from information
proposed by Bennett (31) was based on scanning the input tape
and replacing each input symbol by a random symbol. Informa-
tion destruction by randomization can only extract energy from
a nonrandom input, as randomizing an already random input
does not increase entropy (31, 32). Furthermore, it is not clear
how this method can be realized in practice. Another possibility
is to destroy the input structure while preserving the input
symbols, effectively turning the sequence of symbols (string) into
an unordered collection (multiset). Indeed this increase in
entropy is responsible in part for driving our computing machine.

The theoretical possibility of performing any computation
with arbitrarily little energy was suggested three decades ago
(31). Our automaton is very similar in its overall logical structure
to a hypothetical biomolecular computing device envisioned by

Bennett (ref. 35, p. 531) in 1973, as a possible design for such a
low-energy computing device. The important difference is that
unlike the reversible hypothetical device of Bennett, the use of
input destruction by our automaton entails entropy increase and
nontrivial heat dissipation, and therefore is irreversible. Our
computing machine dissipates about 34 kT per transition, which
is �50 times higher than kTln 2, the theoretical energy gain of
randomizing a known bit (32). One can envision other comput-
ing machines that dissipate smaller amounts of heat at the
expense of reduced speed and�or reduced precision (31, 32, 35,
37). Yet DNA cleavage together with its inverse operations of
elongation and ligation seem to strike a very practical balance
between energy, speed, and precision. Furthermore, we believe
that the design choice made by living systems to package
information in metastable polymers, namely DNA, RNA, and
proteins, the decomposition of which dissipates heat and in-
creases entropy, is of fundamental importance. This design
inhibits the formation of unwanted random information and
facilitates discarding dated, erroneous, or hostile information in
the cell and recycling its constituent bits, rendering the cell an
efficient information-processing device. These two observations
regarding the packaging of information and fuel in DNA may
help explain its selection as the basis of nature’s information
system.
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