
Foundations of Cryptography: Lecture 7

Lecture by Moni Naor, scribe notes by Noga Amit

December 6, 2021

1 PRFs for Authentication

Last time we talked about using Pseudorandom Functions (PRFs) for En-
cryption. Now we want to find out how can we use PRFs for Authentication.
The settings are the same as before: we have Alice and Bob, Alice wants to
authenticate and Bob asks her to prove that she’s indeed Alice.

We may have many Bobs and everyone except Eve shares a secret key s ∈R

{0, 1}n. Eve listens to the communication between Alice and Bob and then
wants to convince some Bob that she’s Alice. Eve wins if after seeing m sessions
she manages to create another session. In other words, if the system is secure,
then the only sessions created are sessions which were initiated by Alice.

We assume that each Bob has an ID: Bob1, Bob2, Bob3, ...

The protocol for Bobi is as follows:

• Bob sends rbi ∈R {0, 1}n.

• Alice sends Fs(rbi ◦ i).

• Bob calculates Fs(rbi◦i) and checks if it’s equal to the message he received.

Figure 1: The Authentication protocol using a PRF

1



Security: Eve cannot guess the value Fs(rbj ◦ j), which with high proba-
bility has never appeared before: after m sessions, the probability of seeing a

repetition is
(m2 )
2n . Therefore, if F is a truly random function, then she cannot

guess it, and if it’s a PRF, guessing would mean breaking the PRF.

Why should we concatenate Bob’s index? To prevent a Man in the
Middle attack. Suppose Alice wants to authenticate to Bob1 and Eve wants to
authenticate as Alice to Bob2, and suppose that Eve controls the line. That
way, whatever message Bob2 is sending, Eve can divert it as if it’s the message
that Bob1 is sending. Alice would think that she’s talking to Bob1 when she’s
actually talking to Bob2.

Can we make this scheme into a public-key one? In other words, a
scheme where Alice and the Bobs do not share a secret s but rather some public
key derived from s (which is known only to Alice). The answer is yes, and we
will discuss it when we will talk about zero-knowledge proofs. We can even
make such schemes into signature schemes using the Fiat-Shamir Heuristic1.

2 Domain Extension

In the same context, one may ask what can we do if Alice wants to send a mes-
sage as well, instead of solely authenticate. That’s simple: we can modify the
second step of the protocol such that Alice sends ⟨m,Fs(m ◦ rbi ◦ i)⟩. However,
in order to do so, we need to expand the domain of the PRF.
Generally speaking, there are two questions: how to expand the domain of a
PRF and how to expand its range. The second one is easier; we can simply use
two keys and apply it twice. In the future, we’ll see how to generate two keys
from only one key. However, extending the domain is harder:

Given a PRF Fs : {0, 1}n → {0, 1}n, we want to build F ′
s : {0, 1}2n → {0, 1}n

which would also be a PRF.

Attempt 1: Interpret the input x ∈ {0, 1}2n as x = xL ◦ xR and define
F ′
s(xL ◦ xR) = Fs(xL)⊕ Fs(xR).

Problem: ∀x F ′
s(x ◦ x) = 0n.

Attempt 2: Use two secrets and define F ′
s1s2(xL ◦ xR) = Fs1(xL)⊕Fs2(xR) in

the same manner.
Problem: Linearity. Taking 3 messages that are linearly independent would
reveal the image of a 4th message:

x1
L ◦ x1

R =⇒ Fs1(x
1
L)⊕ Fs2(x

1
R)

1Fiat, Amos; Shamir, Adi (1987). ”How To Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems”. Advances in Cryptology — CRYPTO’ 86.

2

http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Zero-knowledge_proof
http://en.wikipedia.org/wiki/Fiat-Shamir_heuristic...


x1
L ◦ x2

R =⇒ Fs1(x
1
L)⊕ Fs2(x

2
R)

x2
L ◦ x1

R =⇒ Fs1(x
2
L)⊕ Fs2(x

1
R)

Would yield the image of x2
L ◦x2

R since the XOR of all of them sums up to zero.

Attempt 3: Define F ′
s(xL ◦ xR) = Fs(xL).

Problem: The same prefix would give the same result. Therefore, after seeing
the image of a single message, one can get the image of any other message with
the same prefix.

Solution: Define F ′
s(xL ◦ xR) = Fs(Fs(xL)⊕ xR).

Security: The intuition behind its security is that the probability of a colli-
sion is very small. Formally, we should condition on a bad event which has a
negligible probability. We define

BAD = {∃ i ̸= j : Fs(x
i
L)⊕ xi

R = Fs(x
j
L)⊕ xj

R}

for two different inputs xi, xj ∈ {0, 1}2n and m trials. When Fs is truly random,

Pr[BAD] =

(
m
2

)
2n

which is negligible if n is large enough. Now, this already gives us security
against non-adaptive attack, since if all messages are chosen ahead of time, the
probability of breaking F ′

s is exactly the probability of getting a collision, and
we just saw that it’s negligible. However, we also get security against adaptive
attacks using the conditional probability on BAD:

Pr[breaking F ′
s] =

Pr[collision in F ′
s|BAD] ∗ Pr[BAD] + Pr[collision in F ′

s|BAD] ∗ Pr[BAD] ≤
Pr[BAD] + Pr[collision in F ′

s for two distinct inputs] ∗ Pr[BAD] ≈

Pr[BAD] +
m

2n
= negligible .

The last equality is followed by the fact that conditioned on BAD (i.e., no
collisions occurred), the distribution of {Fs(xL)⊕ xR} is close to uniform.
The key observation here is that the adversary does not see the inner inputs
Fs(xL)⊕ xR; they are embedded inside the definition of F ′

s.

What if we want to use this scheme ℓ times? We use a pairwise inde-
pendent function2. This is called Levin’s Trick : we add a pairwise independent
function h : {0, 1}ℓn → {0, 1}n to the shared secret and apply

F ′
s,h(x) = Fs(h(x))

That is the easiest solution for solving the domain extension problem. As be-
fore, the proof of security is based on defining a BAD event as a collision and
conditioning on it.

2h ∈R H and for all x ̸= x′ ∈ {0, 1}ℓn,Pr[h(x) = h(x′)] ≈ 1
2ℓn

.

3



3 PRFs for Encryption: revisited

Last time we saw how to use PRFs for encryption:

• Alice picks rA ∈R {0, 1}n and sends Bob ⟨rA, Fs(rA)⊕m⟩.

• Bob gets ⟨rA, c⟩, calculates Fs(rA) and decrypts m = c⊕ Fs(rA).

However, suppose Eve knows what m is, which makes sense in certain circum-
stances (e.g., Alice sends ”Hello” to Bob every morning). If Eve is passive,
there’s not much she can do with this assumption; however if Eve is active, she
can change the message easily by sending her new message (e.g. ”Attack at
dawn”) XORed with Alice’s original message, since

(Fs(rA)⊕”Hello”)⊕(”Hello”⊕”Attack at dawn”) = Fs(rA)⊕”Attack at dawn”

which would give Eve a legal ciphertext. To be secure against this kind of
attacks, known as malleability, the simplest thing would be sending

⟨rA, Fs(rA)⊕m,Fs(m)⟩

and when Bob decrypts ⟨rA, c, v⟩, he outputs m = c⊕Fs(rA) only if v = Fs(m).

4 Indistinguishability

Consider the following test: the adversary Eve chooses m0,m1, gets a ciphertext
c = Enc(mb) for some b ∈R {0, 1} and has to guess b. We define two type of
resistance against Eve’s attack:

• CPA (Chosen Plaintext Attack): Eve can choose to see Enc(m) as long
as m ̸= m0,m1.

• CCA (Chosen Ciphertext Attack):
- CCA1 (aka Lunch Time): Eve can choose to see Dec(c) for every c
before she gets the test.
- CCA2: Eve can choose to see Dec(c) even during the test, as long as
c ̸= Enc(mb).

4.1 CPA Security

We prove that the encryption scheme described in the previous section is CPA-
secure. The proof essentially relies on the security of One-time pad: since
the XOR operator is invertible, if Fs(ri) acts uniformly then so does mi⊕Fs(ri).
The following figure shows that if the CPA-Attacker has advantage δ in guessing
m′

b, then the PRF-Attacker has advantage δ
2 in distinguishing Fs from a truly

random function. This reduction yields that the security of the PRF implies
CPA security for our encryption scheme.

4



Figure 2: CPA/CCA1 Attacker to a PRF Attacker

4.2 CCA Security

We’ll consider CCA1. It turns out that if we add v = Fs(m) like we did earlier,
we also get CCA1-security with the same proof. We argue that we cannot learn
anything from the decryption function.
In order to do so, we need to extend the protocol by allowing Bob to return
”fail” as output, which we indicate with a ⊥. So, Alice sends

⟨rA, Fs(rA)⊕m,Fs(m)⟩

and when Bob decrypts ⟨rA, c, v⟩ he outputs

{
m = c⊕ Fs(rA) if v = Fs(m)

⊥ otherwise

We claim that adding the ⊥ doesn’t leak information. Specifically, we claim
that every message which Eve creates would end up in Bob outputting a ⊥.
The security follows directly from the same proof presented in Figure 2.

Why isn’t this scheme CCA2-secure? Eve can flip all the bits of the
given ciphertext, get the flipped message — since she can ask about any cipher-
text different from the one in the test — flip the result and get the original
message. That way, she may distinguish between every pair of messages.

5



5 PRGs

5.1 An overview of our related primitives

The last thing we haven’t dealt with so far in our foregoing discussion about
PRFs was how to construct one. Like in many other cases, it turns out that we
can rely on the existence of a weaker primitive, called PRG, which would be
defined next. But first, let’s examine the hierarchy between them:

where the =⇒ is existential, e.g. we can existentially construct a PRG
from a OWF.

5.2 A detour: OWFs from PRFs

We now turn to a direct construction of a OWF from a PRF. The construction
would imply that if OWFs do not exist, then PRFs do not exist.

Attempt: Define g(x) = Fs(x) where s is some known string.
Problem: If we take F which is actually a PRP then it’s invertible, so g is
invertible and therefore not one-way.

Solution: g(x) = Fx(
′0′) ◦ Fx(

′1′).
Security: The intuition is that one cannot expect to find an inverse to a truly
random function. Formally, assume that we have two random strings y1 ◦ y2 ∈
{0, 1}n, then Pr[∃x.y0 ◦ y1 = Fx(

′0′) ◦ Fx(
′1′)] ≤ 1

2n . Therefore, if g is not a
OWF, then one may distinguish between F and a truly random function, in
contradiction to F being a PRF.

5.3 Definition

A poly-time function G : {0, 1}n → {0, 1}m(n), where m(n) > n, would be called
a PRG if G’s output on s ∈R {0, 1}n is indistinguishable from r ∈R {0, 1}m(n).
s is the secret key and also called the seed.

5.4 Discussion

Note that G is not a function in the sense that we only run it once. However,
we can think of G as a PRF of a very small domain, of log(n) bits. Since the

3In general, PRP is an invertible PRF which models block ciphers like AES. We would
learn about them in the next lectures.

6

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard


domain is small, we can ”ask” about all of it, which suggests another possible
perspective to viewing G as the outputs PRF (0), PRF (1), PRF (2), ...

The inherent difference from a PRF is that we get the output at once: putting
n bits and getting m(n) bits with no back and forth.

The security relies on the fact that indeed m(n) > n: since

Pr[guessing the seed] =
2n

2m(n)
,

we have to make sure this probability is small enough.
For example, taking m = 2n would do, since 2n

22n = 1
2n which in negligible in n.

Next time we would build a PRF from a PRG.

7


	PRFs for Authentication
	Domain Extension
	PRFs for Encryption: revisited
	Indistinguishability
	CPA Security
	CCA Security

	PRGs
	An overview of our related primitives
	A detour: OWFs from PRFs
	Definition
	Discussion


