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Abstract

We propose a new approach for constructing P2P networks based on a dynamic decomposition of
a continuous space into cells corresponding to servers. We demonstrate the power of this approach
by suggesting two new P2P architectures and various algorithms for them. The first serves as a DHT
(Distributed Hash Table) and the other is a dynamic expander network. The DHT network, which we
call Distance Halving, allows logarithmic routing and load, while preserving constant degrees. It offers
an optimal tradeoff between the degree and the path length in the sense that degree d guarantees a path
length of O(logd n). Another advantage over previous constructions is its relative simplicity. A major
new contribution of this construction is a dynamic caching technique that maintains low load and storage
even under the occurrence of hot spots. Our second construction builds a network that is guaranteed to
be an expander. The resulting topologies are simple to maintain and implement. Their simplicity makes
it easy to modify and add protocols. A small variation yields a DHT which is robust against random
Byzantine faults. Finally we show that, using our approach, it is possible to construct any family of
constant degree graphs in a dynamic environment, though with worse parameters. Therefore we expect
that more distributed data structures could be designed and implemented in a dynamic environment.

1 Introduction

The problem we deal with is how to maintain a network structure and functionality in a dynamic environment
where the participants of the network change over time. Such networks are sometimes called Peer-to-peer
(P2P) systems. Peer-to-peer networks are characterized by a mostly symmetric communication pattern and
by the lack of central control or a-priori hierarchical organization. Moreover a P2P system is expected to
scale gracefully as the size of the network grows. The sheer scale and dynamism in which P2P networks are
supposed to operate make the design of P2P systems challenging even for relatively simple applications.

A distributed hash table (DHT) is a giant hash table that is maintained by a large number of servers in a
P2P manner. The hash table interface is useful for the implementation of a large variety of tasks, therefore
it received a considerable amount of attention from the research community. Previous DHT designs in-
clude the Plaxton-Rajaraman design [39], Tapestry [48], Chord [45], Pastry [43], CAN [41], Kademlia [32],
Viceroy [29] and many more. These systems follow the general paradigm of consistent hashing [19]: Let I
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‡Incumbent of the Judith Kleeman Professorial Chair.
§Research done while at the Weizmann Institute
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denote the space into which the data item’s keys are hashed. The idea is to assign to each node an ID from
I as well. Typically I = {0, 1}k for some k > 0, without loss of generality we may assume that I = [0, 1).
Assign each node a segment (say the segment that lies between its ID and the next larger ID) and let each
node be responsible for storing all the data items with hash values that fall within its assigned segment.
The connections in the network are also determined by the ID’s of the different nodes. Connections are set
such that the system supports a lookup protocol that allows nodes to find the node which is responsible for
a required hash value, and thus retrieve a data item. The differences between the various DHT’s lie in the
different ways in which the connections are established, and the different algorithms by which the routing
paths are found1.

The methodology used in designing these networks could be roughly described as follows: first find
a static family of graphs in which there are good protocols for performing the desired tasks. Typically
designers aim at one of the classical inter-connection networks such as hypercubes and grids. The next
task is to show how to construct in a distributed manner a network with a topology that ‘approximates’ the
topology of the static family of graphs. In this sense CAN approximates the d−dimensional torus. Chord
and Pastry approximate the hypercube and Viceroy approximates the butterfly. The continuous-discrete
approach gives a unified technique for performing this. We use the continuous-discrete approach to design
DHTs based on the De-Bruijn graph which we call Distance Halving.

The parameters by which a DHT is measured include the following metrics:

• Cost of join/leave: The service should accommodate changes easily. When servers join or leave,
only a small number of servers should change their state. In particular the degree of the graph that
represents the network, should be small.

• Congestion: No server should be a bottleneck on the performance of the service. The load incurred
by lookups routing through the system should be evenly distributed among participating servers. See
Section 2.2 for a formal definition.

• Lookup path length: The forwarding path of a lookup should involve as few machines as possible.
We aim to minimize the maximum path length in the network.

• Fault tolerance: The service should function well after some of its servers or connections fail. We
should consider the scenario in which a random subset of the servers fail, and the worst case scenario
in which an adversary chooses which servers fail. In each of these cases there are two models to
consider. The first is the fail and stop model in which failed servers/connections do not respond at
all. The second is a Byzantine model in which failed servers may act in an inconsistent and malicious
way.

• Dynamic caching: Highly popular data items may cause a bottleneck at and around their location.
Relieving the congestion around the hot spot requires the service to support some dynamic caching
mechanism, in which the data item is replicated to other servers. We want to allow the maximally
congested server in the system to have a low load while maintaining the number of data items each
server has to store as small as possible.

Table 1 summarizes the performance of different constructions under these parameters.
1There may be various ways in which a lookup service is implemented even when the network is given and fixed. For instance

in ‘real life’ systems, an iterative lookup algorithm may behave very differently from a recursive one. We are interested in the
algorithmic/combinatorial nature of the algorithms and ignore such issues.
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Lookup Scheme path length congestion linkage
Chord [45] log n (log n)/n log n
Tapestry [48] log n (log n)/n log n

CAN [41] dn1/d dn1/d−1 d
Small Worlds [22] log2 n (log2 n)/n O(1)
Viceroy [29] log n (log n)/n O(1)
Distance Halving logd n (logd n)/n O(d)
(ours) (2 ≤ d ≤

√
n)

Table 1: Comparison of expected performance measures of lookup schemes.

1.1 Our Contributions

Our Contributions are both in the conceptual and in the concrete levels. Conceptually we provide a set of
design rules and a framework in which we believe it is relatively simple to design and analyze dynamic data
structures. We call the approach ‘continuous-discrete’. It is the first attempt to unify different constructions
in this field.

Concretely we suggest five novel constructions and algorithms:

• We present a novel construction for a DHT in Section 2. The construction is very simple and offers
logarithmic dilation and load. An important feature is that it has an optimal tradeoff between the de-
gree and the dilation. A degree of d guarantees a dilation of O(logd n). Previous constructions either
had a logarithmic degree (such as Chord [45]) or were more involved (such as Viceroy [29]). Thus if
one is interested in constant degree DHTs, then the simplicity of our system wins over Viceroy and if
one is interested in log n degree overlay networks, then our construction has shorter path lengths. See
Table 1.

Our DHT construction is inspired by the De-Bruijn graph. We are not the only ones to use the De-
Bruijn graph in this context. Constructions using it were suggested independently by Fraigniaud and
Gauron [12], Kaashoek and Karger [18] and Abraham et al.[1]. The parameters they achieve are
similar to those proved in Section 2, yet their approach in emulating the De-Bruijn graph is different.
They try to do it directly whereas we use the continuous-discrete approach to emulate an ‘infinite
version’ of the De-Bruijn graph. In particular it is not clear how to obtain in these constructions a
caching protocol which relieves hot spots and a low load in permutation routing, which we show in
the following sections.

• We show a dynamic caching algorithm in Section 3 that provably ensures that under any set of requests
for data items which are independent of the intrinsic choices of the hash functions, all servers enjoy
low load with high probability. Thus it relieves the occurrence of hotspots. Dynamic caching achieved
a considerable amount of attention under many different models. The problem of dynamic caching in
DHT’s was specifically raised by Ratnasamy et al.at [42]. To the best of our knowledge the algorithm
we present is the first to ensure this property.

• In Section 4 we present several algorithms for maintaining a good load balancing between servers.
These techniques allow us to build DHT’s with constant degrees with high probability. One of the
methods we show guarantees constant degrees in the worst case. Other constructions with constant
average degree [12][18] have maximum degree of O(log n). The techniques we show are applicable
for other DHT constructions as well.
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• In Section 5 we show a distributed construction of a network which is guaranteed to be a constant
degree expander. To the best of our knowledge our construction is the first to produce constant degree
expanders in a distributed way2. Possible applications for dynamic expanders include load balancing
jobs and an infrastructure for maintaining probabilistic quorums.

• The DHT construction is very flexible. In Section 6 we show how a slight variation of it is robust
against random faults of the servers.

• Finally a general technique for emulating any graph in a distributed setting is shown in Section 7.
This may be used for designing more dynamic data structures.

We stress that the simplicity of the continuous-discrete approach plays a central role in the design and
analysis of the algorithms above. In particular in that of the caching algorithm of Section 3 and the fault
tolerant construction of Section 6. We see the relative ease in which these problems were solved as a ‘proof
of concept’ for the entire approach.

1.2 The Continuous-Discrete Approach

We present a high-level description of the framework which may be titled “think continuously, act dis-
cretely”. Let I be a Euclidean space. Let Gc be a graph where the vertex set is some continuous set I . Each
point in I is connected to some other points. The actual network is a discretization of this continuous graph
based on a dynamic decomposition of the underlying space I into cells where each server is responsible for
a cell. Two cells are connected if they contain adjacent points in the continuous graph. The partition of
the space into cells should be maintained in a distributed manner. When a Join operation is performed an
existing cell splits, when a Leave operation is performed two cells are merged into one. In our view the task
of designing a dynamic and scalable network should follow the following design rules:

1. Choose a proper continuous graph Gc over the continuous space I . Design (and prove the correctness
of) the algorithms in the continuous setting. Designing the algorithms in the continuous graph is
typically quite simple. It has the advantage of ignoring the scalability issue, and it offers strong and
simple mathematical tools for proving statements.

2. Find an efficient way to discretize the continuous graph in a distributed manner, such that the algo-
rithms designed for the continuous graph would perform well in the discrete graph. The discretization
is done via a decomposition of I into cells. An important parameter of the decomposition of I is the
ratio between the size of the largest and the smallest cell which we call the smoothness. We show that
a decomposition in which the smoothness is constant can be used to build the Distance Halving DHT
and the expander based networks. In Section 6 we show that if the cells which compose I are allowed
to overlap then the resulting graph would be fault tolerant.

The main advantage of the approach is that it gives a unified method for performing the Join/Leave
operation and dealing with the scalability issue, thus separating it from the actual network and allowing a
more modular design. In the following chapters we demonstrate the usefulness of the approach.

2Law and Siu have independently designed another algorithm which builds an expander with high probability [25]. Their
approach is completely different from ours.
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2 The Distance Halving DHT

2.1 The Construction

First we define the continuous Distance Halving graph Gc. The vertex set of Gc is the interval I
def
= [0, 1).

The edge set of Gc is defined by the following functions: `(y)
def
= y

2 , r(y)
def
= y

2 + 1
2 where y ∈ I , `

abbreviates ‘left’ and r abbreviates ‘right’. Note that if y is written in binary, then `(y) effectively inserts
0 into the left and r(y) shifts a 1 into the left. This property is the reason the graphs is similar to classic
inter-connection networks and lies at the heart of the routing algorithms.

The out-degree of each point is 2 while the in-degree is 1. It would often be the case that we treat
the graph as undirected. In this case we call the single incoming edge the backward edge and denote it as

b(y)
def
= 2y mod 1. In Figure 1 the upper diagram shows the edges of a point in I , the lower diagram

shows that an interval is mapped into two intervals, each half its size. We may abuse the notation and write
r([y, z)), `([y, z)) meaning the image of the interval [y, z) under r, `. Next we show how to construct a
discrete Distance Halving graph. The nodes of the graph correspond to a set of n servers V0, V1, . . . , Vn−1.
Denote by ~x a set of n points in I such that x0 < x1 < . . . < xn−1. The point xi would typically be a
hash of the i.d of some server Vi. The points of ~x divide I into n segments. Define the segment of xi to be
s(xi) = [xi, xi+1) (i = 1 . . . n− 1) and s(xn) = [xn−1, 1) ∪ [0, x1).

In the discrete Distance Halving graph G~x, each server Vi is associated with the segment s(xi), we may
refer to this segment as s(Vi) as well. If a point y is in s(xi) we say that Vi covers y. A pair of vertices
(Vi, Vj) is an edge of G~x if there exists an edge (y, z) in the continuous graph, such that y ∈ s(xi) and
z ∈ s(xj). The edges (Vi, Vi+1) and (Vn−1, V0) are added such that G~x contains a ring. The ring edges are
anti-parallel directed edges. If a new server V wishes to enter the system it does the following:

Algorithm Join

1. Choose some point x and set V.id ← x. (How to choose x is not shown here. Various options for
doing that are discussed in Section 4).

2. Call the lookup procedure3 for point x. The procedure returns the address of the server Vj for which
x ∈ s(xj).

3. The segment s(xj) should be divided into two parts so that s(x) = [x, xj+1). Receive from Vj all the
data items that are mapped to s(x) and the addresses of all the neighbors V should have.

4. Inform the neighbors of V so that they can change their address tables accordingly.

Assuming the graph has constant degree, Step 3 of the algorithm involves only O(1) messages. Step
2 of the algorithm involves one operation of Lookup which would be discussed later. Step (1) has some
variations which are discussed in Section 4. When server Vi leaves the network, some existing server should
take over its segment. The simplest solution would be that the server that is the predecessor of Vi on the ring
enlarges its segment such that it includes s(xi). More sophisticated solutions are discussed in Section 4.

Theorem 2.1. The total number of edges in G~x without the ring edges is at most 3n− 1.

3We do not deal with the problem of how to perform this initial lookup. It is assumed that that the server has some some host
server which helps it to join the system.
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Figure 1: The upper figure demonstrates the edges of a point in the continuous
graph. The lower figure shows a mapping of a segment to two smaller ones.

Proof. The proof is by induction on n. If n = 1 then there are two self edges.
Now assume the segment [x, z) is split into [x, y), [y, z). The segment which covers the point y/2 will

be the only segment into which both segments [x, y) and [y, z) will have a left edge, thus at most one new
left edge is formed. Similarly there would be at most one new right edge and one new backward edge.

Theorem 2.1 implies that for every vector ~x, the average degree of the graph is at most 6. In order to
bound the maximum degree of the graph, another property should be considered:

Definition 1. The smoothness of ~x is denoted by ρ(~x) and is defined to be maxi,j
|s(xi)|
|s(xj)| .

If it is guaranteed that the smoothness of ~x is bounded by some constant independent of n, we say that ~x
is smooth. We may abuse the notation and write ρ(G~x) instead of ρ(~x). The smoothness of ~x plays a central
role in the analysis of the construction.

Theorem 2.2. The maximum out-degree of G~x without the ring edges is at most ρ(~x) + 4, the maximum
in-degree without the ring edges is at most d2ρ(~x)e+ 1.

Proof. Let i be such that |s(xi)| is maximum. The length of the minimum segment is therefore at least
|s(xi)|

ρ . We have |r(s(xi))| = 1
2 |s(xi)|, therefore there are at most

d(1
2 |s(xi)|)/( |s(xi)|

ρ )e+ 1 = d12ρe+ 1

different segments that intersect the interval r(s(xi)). The same argument applies for `(s(xi)), and we have
2(d12ρe+ 1) ≤ ρ + 4, which bounds the out-degree.

The bound on the in-degree follows in a similar way. Now the preimage of |s(x)| is one contiguous of
segment of length 2|s(x)|, and at most d2ρ(~x)e+ 1 different segments might intersect it.

Mapping the data items to servers The mapping of data items to nodes is done in the same manner as
other constructions of distributed hash tables (such as consistent hashing [19], Chord [45], Viceroy [29] and
CAN [41]). First data items are mapped into the interval I using a hash function. Server Vi should hold
all data items mapped to points in s(Vi). We assume that h is some hash function ( for instance a k−wise
independent function for some k), which is chosen at the construction of the system and is given to every
server upon joining.
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The De-Bruijn Graph The Distance Halving construction resembles the well known De-Bruijn graph.

Definition 2. The r-dimensional De-Bruijn graph consists of 2r servers and 2r+1 directed edges. Each
node corresponding to an r−bit binary string. There is a directed edge from each node u1u2 · · ·ur to nodes
u2 · · ·ur0 and u2 · · ·ur1.

The Distance Halving DHT emulates the De-Bruijn graph in the following sense. Assume that n = 2r.
Let ~x be a set of m points such that xi = i

n , the discrete Distance Halving graph G~x without the ring edges
is isomorphic to the r-dimensional De-Bruijn graph. To see this expand the interval I by a factor n so that
I = [0, 2r). Now the location of point xi is at i. Let v1v2 . . . vr be the binary representation of i. It is easy
to verify that `(xi) is 0v1 . . . vr−1 and that r(xi) is 1v1 . . . vr−1. Now the isomorphism follows by mapping
each v1v2 . . . vr of G~x to vrvr−1 . . . v1 in the De-Bruijn graph.

The r-dimensional De-Bruijn graph is a well investigated combinatorial object. It is known for instance
that its diameter and mixing time are Θ(r) and that the smallest bisection contains Θ(r−12r) edges. The
ease in which short routes are found makes it a popular topology for parallel algorithms. See Leighton [26]
for an overview of various properties of this graph.

While the definition of De-Bruijn graph we presented assumes each node is represented by a binary
string, it is natural to generalize the definition so that each node is represented by a string of alphabet size ∆.
In this case the diameter of the graph is log∆ n. A variation of the continuous graph emulates the De-Bruijn
graph with alphabet size ∆. See more details in Section 2.3. Different ways to emulate the De-Bruijn graph
in a P2P manner were suggested in [12, 18, 1].

2.2 The Lookup Operation

We set some notation that is useful in the future. For any two points x, y ∈ I , define d(x, y) to be |x − y|.
Let σ denote some infinite sequence of binary digits, and σt denote its prefix of length t. Denote by σt.0
and σt.1 the concatenation of a bit to the string σt. For every point y ∈ I we define the function w(σt, y) in
the following recursive manner:

w(σ0, y) = y (1)

w(σt.0 , y) = `(w(σt, y)) (2)

w(σt.1 , y) = r(w(σt, y)) (3)

In other words w(σt, y) is the point reached by a walk that starts at y and proceeds according to σt from the
least significant bit to the most significant bit of σt when 0 represents ` and 1 represents r.
Routing properties of the continuous DH graph: The following observation justifies the name ‘Distance
Halving’:

Observation 2.3 (distance halving property). For all y, z ∈ I and for all binary strings σ it holds that:

d(r(y), r(z)) = |y2 + 1
2 −

z
2 + 1

2 | =
1
2d(y, z)

d(`(y), `(z)) = |y2 −
z
2 | =

1
2d(y, z)

therefore by induction on t
d(w(σt, y), w(σt, z)) = 2−t · d(y, z)

Observation 2.3 says that any binary string could be used to identify paths starting at y and at z that
approach one another. This fact would be used to analyze the distance halving routing algorithm described
in Section 2.2.2.
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In the following we show a different way which yields short paths between different segments of the
continuous graph.

Let σ(y) be the binary representation of y and σ(y)t the first t bits of σ(y).

Claim 2.4. Let y, z ∈ I .For all t it holds that d (y, w(σ(y)t, z)) ≤ 2−t.

The claim states that a walk determined by the binary representation of y would approaches y quickly,
and this is independent of the starting point z.

Proof. Let ht be the point reached by walking backwards from y (i.e. along the backward edges as defined
in Section 2.1) for t steps. Note that the direction (left or right) of the i’th step in this walk is determined by
the i’th bit in σ(y). In other words it holds that: w(σ(y)t, ht) = y. We have:

d
(
w(σ(y)t, z), y

)
= d

(
w(σ(y)t, z), w(σ(y)t, ht)

)
.

By Observation 2.3 it holds that d
(
w(σ(y)t, z) , w(σ(y)t, ht)

)
= 2−td(z, ht) ≤ 2−t.

The previous two claims demonstrate two ways in which nodes of the continuous graph can approach
one another. Loyal to our design rules we use the properties of the continuous graph to design simple
routing algorithms on the discrete graph. These algorithms emulate the implied by Claims 2.3 and 2.4.
Assume server Vi wishes to lookup the point y. The lookup should return the server Vj such that y ∈ s(xj).
We present two algorithms that perform lookup. The first will have short lookup paths, while the second
will increase the lookup path by a factor of at most two and will have better load balancing qualities.

2.2.1 Fast Lookup

Claim 2.4 states that from every pair of points y, z, a path starting at y which is determined by the binary
representation of z would approach z quickly. Assume server Vi wants to find y. Let the point z be the
midpoint in s(Vi). Now we know that for every number t, a path starting at y which walks according to
σ(z)t would reach a point which is at distance 2−t from z. So if t is large enough w(σ(z)t, y) ∈ s(Vi). A
subtle point is that this path is determined by σ(z)t from the least significant bit towards the most significant,
as a result the number t should be chosen in advance such that indeed w(σ(z)t, y) ∈ s(Vi). Let t be the
smallest number such that w(σ(z)t, y) ∈ s(Vi) and denote h := w(σ(z)t, y). Now, a message travelling
from Vi to y using Fast Lookup would start at h and travel the path backwards, along the backward edges,
until it has reached y. The following is a more formal description of the protocol:

Fast Lookup (Vi, y)

1. Let z be the point in the middle of s(Vi). Calculate the minimum t such that w(σ(z)t, y) is in s(Vi).

2. Let h = w(σ(z)t, y). Start moving from h (i.e. from s(Vi) in the continuous graph and therefore from
Vi) on the backward edges. Each hop the header of the message should be updated so that it holds the
current position of the message on I . After t steps the server covering y is reached.

The length of the lookup path is determined by t. By Claim 2.4 we need 2−t ≤ |S(Vi)|/2 so t =
− log(|s(Vi)|) + 1 suffices. The shortest segment in I is of length at least 1

ρn , therefore we have:

Corollary 2.5. The length of a lookup path taken by Greedy Lookup is at most log n + log ρ + 1.

Note that in Fast Lookup the servers need not to know what ρ or n are, and all computations are based
on local knowledge only. Next we analyze the congestion of Greedy Lookup.
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Definition 3. The congestion of server Vi is the probability Vi is active in a routing between a randomly
chosen server and a random point. The congestion of the network is the maximum congestion over all its
servers.

First we prove that the congestion of the continuous graph is low.

Lemma 2.6. Let y, z be chosen randomly from I . The probability that server V participates in a Fast
Lookup of length t that starts at y and approaches z is at most |s(V )|(t + 1).

Proof. We show that for every j ≥ 0 the probability a message hits V after exactly j steps is at most |s(V )|.
The theorem is then derived by union bounding the probabilities for 0 ≤ j ≤ t. The message hits V at step
0 iff y ∈ s(V ) which happens with probability |s(V )|. Denote by b(V ) all points which are reached via the
backward edges from s(V ). Clearly |b(V )| = 2|s(V )|. Now, in order for the message to hit V at the jth
step it must hit b(V ) at step j − 1. The probability of this 2|s(V )| by the induction hypothesis. Given that
the message is at b(V ), the probability it hits s(V ) the next step is exactly 1

2 , due to the randomness of z.
Thus the probability the message hits s(V ) at the jth step is at most 1

22|s(V )| = |s(V )|.

Theorem 2.7. Let V be a server, the congestion of V is at most (log n + log ρ + 1)ρ|S(V )| which implies
that if ~x is a smooth set of points, the congestion of G~x under Greedy Lookup is Θ( log n

n ).

Proof. The proof follows the same lines of the previous lemma. The number of hops in the path is bounded
by log n+log ρ+1. For each hop in the path, we show that the probability that V participates is bounded by
ρ|s(V )|. Fix some i ≤ log n+log ρ+1. As before, there is a unique segment of length 2i|s(V )| in which y
must exist in order for the path to reach s(V ) on ith step. The probability of this occurring is 2i|s(V )|. Now,
given that y is in this segment, in order for V to participate, there is a unique set of i steps leading from y
to |s(V )|. Let U be a randomly chosen server which lookups y and let z be its middle point. We need to
calculate the probability the first i bits of σ(z) are indeed i bits leading from y to s(V ). This is tantamount
to asking what is the probability z falls within some segment of length 2−i. Since the smoothness is ρ, the
size of each s(U) is at least 1

ρn , thus there are at most 2−iρn different servers whose middle points might be
in the segment. Thus the probability V participates in the ith step is bounded by:

2−iρn

n
· 2i|s(V )| = ρ|s(V )|.

The second part of theorem follows by the fact that if ρ is constant then |s(V )| is Θ( 1
n).

2.2.2 Distance Halving Lookup

The Distance Halving lookup scheme enjoys small congestion even in a worst case permutation routing. It
has two phases, the first phase is to send the message to an almost random destination, the second phase
routes the message from the random destination to the target. First we describe how to perform the first
phase. When server Vi initiates a lookup for point y, it first chooses a random string of bits τ . The header
of the message Vi sends should contain xi which is Vis location, the target y, the random string τ , and a
counter t initially set to 0. Upon receiving a message a server does the following:

Distance Halving Lookup - Phase I

1. Check if w(τt, y) is covered by the current segment or by one of the neighboring segments. If so move
the message to the server which covers w(τt, y) and move to phase II.
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2. Set t← (t + 1) and update the header of the message.

3. Send the message to the neighbor covering the point w(τt, xi). An edge exists in the continuous graph
and therefore must exist in discrete graph as well.

In the second phase the message moves backwards along the backward edges from w(τt, y) to y. Each step
the server handling the message deletes the last bit in τ .

It is convenient to think of the routing as if two messages are moving simultaneously, one from the
source and one from the target. Both of them move according to the same sequence τ . Claim 2.3 states that
each step the distance between them is shrinks in half, until their distance is at most 1

ρn , in which case they
would be in the segment of the same server (or neighboring servers). The following theorem is therefore an
immediate consequence of Claim 2.3:

Theorem 2.8. The length of a lookup path taken by Distance Halving Lookup is at most 2 log n + 2 log ρ.

The following theorem states that the maximum congestion of the Distance Halving Lookup is also
logarithmic.

Theorem 2.9. Let ~x be a smooth set of points. The congestion of G~x under Distance Halving Lookup is
Θ( log n

n ).

Proof. The first phase of the routing is similar to Fast Lookup, i.e. the messages pass through a random path.
Thus the same analysis of Theorem 2.7 holds. The message then is in a random location and performs one
step only which does not affect the congestion of the system. The second phase of the routing is analogical to
the first phase. In the second phase the message traverses backward along a random path to the destination,
thus the second phase is again identical to the Fast Lookup case and 2.7 holds for the second phase as
well.

2.2.3 Permutation Routing

The Distance Halving Lookup is similar in spirit to the routing scheme suggested by Valiant [46] for the
hypercube, therefore it is not surprising that it imposes small congestion for worst case permutation routing.
Let η be some permutation and assume that for all i server Vi initiates a lookup for a point in s(Vη(i)).

Theorem 2.10. Given that G~x is smooth, then for every permutation η it holds that when routing η w.h.p
each server participates in the routing of at most O(log n) messages, where the probability is taken over the
random choices of the routing algorithm.

Proof. First, note that since the length of each of the n lookup paths is Θ(log n), by an averaging argument
there is a server which serves Ω(log n) messages.

For the upper bound fix a server V . In the following we prove that the expected number of lookups
that V participates in is O(log n). The high probability bound will follow later. For a contiguous segment
Q ⊂ I , let LQ

i be the random variable counting the number of lookups that reach segment Q at the ith step4,
and consider only the first phase of the routing. We claim that

E
[
L

s(V )
i

]
≤ n(ρ + 1)|s(V )|.

We prove it by induction on i. As common in proofs by induction we need to strengthen the claim slightly
and prove that any segment Q ⊂ I , has Θ(n(ρ + 1)|Q|) messages reaching it at step i. Clearly Q can cover
points which belong to at most nρ|Q|+ 1 ≤ n(ρ + 1)|Q| different servers, therefore LQ

0 ≤ n(ρ + 1)|Q|.
4It is not necessary that the messages in the ith step indeed reach the segment together. There is no implied assumption of

synchrony.
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For a message to reach Q in the ith step, it must be that on step i− 1 the message was in an interval of
length 2|Q| and then moved to Q. Call this interval Q′.

E
[
LQ

i | L
Q′

i−1

]
=

1
2
LQ′

i−1

E
[
LQ

i

]
=

1
2

E
[
LQ′

i−1

]
The induction hypothesis states that

1
2

E(LQ′

i−1) ≤
1
2
n(ρ + 1)|Q′| = n(ρ + 1)|Q|.

There are at most log n + log ρ steps in the first phase, and |s(V )| ≤ ρ
n . Summing over i yields that the

expected number of lookups that pass through V in the first phase is at most (log n + log ρ)(ρ + 1)ρ, which
is O(log n) when ρ is a constant.

The second phase of the routing is similar to the first phase but in reverse order. When paths are seen
as going from the target towards the middle random point, then each path is a random walk determined by
the random choices of the routing algorithm. Thus the analysis of the first phase holds for the second phase
as well. We conclude that if ~x is smooth, for each server it holds that the expected number of messages it
handles is O(log n).

Next we prove that w.h.p the actual number of lookups that pass through V is indeed O(log n). Let pi

(i = 1 . . . n) indicate the probability that message i passes through s(V ) during the first phase of the lookup.
By the previous claim we know that

∑n
i=1 pi ∈ O(log n). The random choices that determine the paths that

messages take are independent from one another. Standard use of Chernoff’s inequality yields:

Pr
[∑

pi > Θ((1 + ε) log n)
]
≤ n−Θ(ε2)

Choosing ε large enough allows us to use the union bound over all servers thus proving the bound for the
first phase. As before the analysis of the second phase is similar to that of the first.

In reality, permutation routing is not likely to occur. Rather, servers initiate lookups for files, and the hash
function which maps filenames to points should spread them evenly along I . A family of hash functions
H is said to be k-wise independent if when h ∈ H is chosen randomly it holds that for any data items
m1 6= m2 6= . . . 6= mk the random variables h(m1), h(m2), . . . , h(mk) are independent and uniformly
distributed in I .

Assume that each server initiates one lookup. Denote by mi the data item searched by server Vi; i.e.
server Vi seeks for the server covering the point h(mi). We also assume that mi 6= mj for all i 6= j.5

Theorem 2.11. Given that G~x is smooth and h is log n-wise independent, for every permutation τ it holds
that when routing τ with high probability each server participates in the routing of O(log n) messages,
where the probability is taken over the choice of the hash function and the random choices of the routing
algorithm.

Proof. The proof follows the same lines as the proof of Theorem 2.10. The only difference is that in the
second phase it is not true that the paths messages take are independent, but rather are log n-wise indepen-
dent. Fix some server V and let Xi denote the event that message i was handled by V in the second phase of
the routing. The analysis of Theorem 2.10 holds in this case as well so we know E[

∑
Xi] is O(log n) and

that the Xis are (log n)-wise independent. We use Theorem 4.21 in [10] which is a high moment version of
Chebyshev’s inequality.

5Section 3 deals with the case where the same item is queried by multiple servers.
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Claim 2.12. Let X1, X2, . . . , Xn be random variables with 0 ≤ Xi ≤ 1 and E[Xi] = pi for each i ∈ [n].
Let X :=

∑
i Xi and set µ := E[X] and p := µ/n. For any δ > 0 define k∗ := dµδ/(1− p)e. Then, if

X1, . . . , Xn are k−wise independent for k > k∗,

Pr[X ≥ µ(1 + δ)] ≤
(

en

µ(1 + δ)

)k∗

· pk

In our case µ ∈ O(log n) and p ∈ O(log n/n), so if δ = 2 we have that k∗ ∈ O(log n). Plugging it in it
follows that there are constants c1, c2 such that

Pr[X ≥ 2µ] ≤ ck∗
1 ·
(

c2 log n

n

)k−k∗

Now if k − k∗ = log n the theorem follows.

Theorem 2.11 demonstrates that in some sense the Distance Halving Lookup is good in a worst case
scenario. An adversary may choose for each Vi its appropriate mi (as long as the adversary is oblivious of
h). It is worth noting a few facts:

• The routing is oblivious routing in the sense that the path a message passes does not does not depend
on the paths of other messages. A subtle issue is that the path choice is not only a function of the
destination but also depends on the numeric value of xi.

• The routing algorithm is sensitive to small perturbations in the numerical value of the parameters.
It is important to be precise enough, and to allocate enough bits for the variables. The edges of the
continuous graph are tantamount to shuffling bits to the left. Since the length of all paths is bounded
by 4 log n it is enough to allocate 4 log n bits for each variable.

2.3 Degree-Path Length Optimality

In this section we describe an emulation of the De-Bruijn graph with degree larger than 3.

Definition 4. The r-dimensional De-Bruijn graph of degree ∆ consists of ∆r nodes and ∆r+1 directed
edges. Each node corresponding to an r−bit string over the alphabet {0, 1, . . . ,∆− 1}. There is a directed
edge from each node u1u2 · · ·ur to nodes u2 · · ·urv for every v ∈ {0, 1, . . . ,∆− 1}.

Every ∆−regular graph has a diameter of at least log∆ n. The De-Bruijn graph meets this lower bound:
an n node De-Bruijn graph with degree ∆ has a diameter of log∆ n. Emulating this graph may reduce the
lookup length and the congestion while increasing the degree.

For any ∆ ≥ 2 construct a continuous graph with the following edges: fi(y) = y
∆+ i

∆ (i = 0, 1, . . . ,∆−
1). Now both routing schemes suggested before could be applied in this case as well: Claim 2.3 translates
to be d(fi(y), fi(z)) = 1

∆d(y, z) and Claim 2.4 translates to be d(y, σt(z)) ≤ ∆−t. Therefore:

Theorem 2.13. A smooth discretization of the continuous graph results with a graph of degree Θ(∆) and
with path length Θ(log∆ n).

As mentioned the diameter of any ∆-regular graph is at least log∆ n, so for every ∆ the construction
has optimal path length with respect to the degree (up to constants). Two interesting options are setting
∆ = log n or ∆ = nε (for some constant ε), as the first results in a lookup length of log n

log log n , and the second
in a lookup length of O(1). It is worth noting that the analysis of the previous section shows that for each
choice of ∆, if the points are smooth the congestion is Θ( log∆ n

n ). Thus, the increase of the degree decreases
the congestion as well.
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3 Dynamic Caching - Relieving Hot Spots

In this section we discuss a protocol that eliminates the occurrence of hot spots in the network. A hot spot
occurs whenever a data item is requested simultaneously by a large number of clients - an event that happens
quite often in today’s internet. A highly popular data item might not only cause the server holding it to be
swamped, but might also cause a bottleneck at and around its location. In order to avoid the congestion
caused by a hotspot it is necessary to replicate the popular data item to other servers (i.e. caching), such
that the load of handling all requests is distributed between a large number of servers. Relieving hot spots
was pointed out as one of the main open problems regarding the design of DHT’s by Ratnasamy et al.[42].
To the best of our knowledge ours is the first protocol that resolves this problem, at least in the sense of
providing a provable guarantee. A detailed comparison with previous work is provided bellow. A dynamic
caching protocol should satisfy four properties:

1. Prevent Swamping: Each server should handle as few messages as possible. This is the ultimate goal
of the protocol, and should hold for every possible set of requests.

2. Keep the Caches small: Each server has a cache in which it stores data items. A trivial, yet inefficient,
caching protocol would be to store all data items in all nodes. Such a solution of course prevents
swamping, but would also have horrific performance in terms of memory use. Our goal is to keep the
cache of each server as small as possible.

3. Reduce latency: The caching protocol may cause some delays in obtaining the desired data item. Our
goal is to reduce this delay to a minimum.

4. Keep update time low: Content may change over time, a caching protocol must be able to accommo-
date efficiently changes in the cached data item itself.

Previous Work

Various caching techniques were suggested in the literature, which operate under various distributed models
(e.g. [39],[19],[8],[7]). Ranade [40] was the first to deal with the problem of hot-spots in routing (for
simulating PRAMs) and showed that in the Butterfly network, which is closely related to the De-Bruijn
network, it is possible to prevent hot-spots by combining on-the-fly message requests along the paths to
the destination. Combining messages is not an appropriate technique for an asynchronous and dynamic
environment. Our approach does not combine messages but rather uses explicit caches. Chankhunthod et
al.[7] suggested that caches be arranged as trees, where a request for the data item arrives at a random leaf
of the tree and if possible handled there. If a cache does not hold the data item (and neither does its sibling)
it passes the request to its parent in the cache tree until finally the message is forwarded to the root which
must hold the item. The advantage of the cache tree is that requests are divided more or less evenly between
the leaves and each cache receives requests from its children only, thus no cache is being swamped. Karger
et al.[19] enhanced the idea and suggested that each data item have a different random tree of caches, thus
better dividing the load. They used hash functions in order to sample a cache tree for each data item, and
managed to prove that a single popular data item will not cause a hot spot with high probability.

In the context of a P2P overlay network where each server serves both as a cache and as a client, the
suggestion of Karger et al.[19] has the following disadvantage. The random cache trees associated with
each data item are not supported by the overlay network. Thus, when a cache needs to forward a request
to its parent it must either use a DHT lookup or maintain a separate overlay network for this use only.
The first alternative will cause a meaningful slowdown and has a high communication complexity. The
second alternative requires a new link established for every data item and thus would dramatically increase
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Figure 2: The first 2 layers of the path tree.

the linkage of each server and the maintenance cost associated with it. We also note that the additional
messages that run in the system due to the caching protocol may cause congestion in their own sake.

Our Contribution

Our suggestion is similar in spirit to that of Consistent Hashing [19]. We also construct a random tree of
servers for each data item and forward a message from a random leaf towards the root. Our scheme differs
in one important point: we use the Distance Halving overlay network as the overlay network of the caching
protocol as well; i.e. we couple the cache trees with the Distance Halving graph. The Distance Halving
routing algorithm ensures that requests arrive at a random leaf of the cache tree. Thus the caching protocol
requires no extra connections and imposes no extra delay. As a result we are able to show that any set of
requests (for possibly many data items) do not swamp servers and do not cause congestion.

Given a ‘batch’ of n requests for data items that arrive in the network6, the main achievement of this
section is to show a dynamic caching protocol with the following properties:

• Swamp Prevention: Each server’s cache is hit O(1) times on average and O(log2 n) with high prob-
ability. The total number of messages passed through each server (by the routing scheme and by the
caching scheme) is O(log2 n) w.h.p. This property is proven in Theorem 3.8.

• Small Caches: With high probability each server stores at most O(log n) data items in its cache. There
are at most O( n

log n) new copies of data items stored in caches throughout the network. This property
is proven in Theorem 3.8.

• No Caching Latency: The caching protocol causes no extra delay.

• Quick Content Update: Changes in the data item are updated in O(log n) time.

3.1 The Protocol

As usual we first describe the protocol in the continuous graph. Denote byD the set of data items. Let i ∈ D
be a popular data item and denote y to be h(i), so the server which covers y also holds a copy of i.

Definition 5. The path tree rooted at y is a subgraph of the continuous graph Gc. The tree is created by
assigning y as the root, and each node z in the tree is the parent of `(z), r(z).

6Since n denotes the number of servers in the network, we assume that each server issues one request.
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The first two layers of the path tree are drawn in Figure 2. The key observation is that if the Distance
Halving routing algorithm (of Section 2.2.2) is used , then every request for i reaches y via a random path in
the path tree; i.e. the probability that a message reaches y via the point y

2 is half, and so on. This observation
suggests that it is wise to replicate data item i from the root of the tree downward, thus creating a cache
tree (a-la [7],[19]). If the data item is copied into the nodes of some layer, then the randomness of the
routing protocol ensures that requests are divided evenly (more or less) among the nodes. In other words,
the continuous graph may serve as a random cache tree where the nodes of the path tree hold the data item.
We call a node that holds a copy of the data item i an active node. The tree which consists of all the active
nodes is the active tree.

In order to deal with a dynamic caching setting formally, we need to define the dynamics of the requests.
Assume all servers of the system count7 the same time epoch. Each server decides upon some number c that
is a parameter of the protocol and serves as a threshold. Typically c would be in the order of log n and may
be updated over time. It is not necessary that all servers choose the exact same parameter, yet for sake of
convenience we assume that c is a global parameter known to all servers. The term node is used only in the
context of the path tree, while the term server refers to the participants of the network.

Continuous Hot Spots Protocol:

1. Each leaf of the active tree holds a counter which indicates the number of times of the data item was
requested during an epoch. Once a data item is requested more than c times, the leaf replicates the
data item into both its children, effectively blocking itself from handling subsequent requests.

2. If z is the parent of two leaves of the active tree, then at the end of an epoch z performs the following
procedure: It checks how many times i was supplied by its children during the epoch. If i was supplied
less than c times by both its children, then both children may delete the item i and cease to be active.
As a consequence the point z becomes a leaf of the active tree.

3. Step 2 repeats itself recursively, in the same epoch, collapsing the active tree if there are no requests.

In practice it may be beneficial to set a different threshold in Step (1) and Step (2). This adds stability
to the active tree when the rate of requests is close to the threshold. It also may be more efficient to modify
Step (1) such that the data item is initially copied into one child, and after another c requests into the second.
While both modifications may increase efficiency slightly, they also complicate the analysis.

Presentation In Section 3.2 we analyze the protocol on the continuous graph, i.e. on the active tree. In
Section 3.3 we analyze the case of a single hot spot. In Section 3.4 we analyze the more general case, in
which multiple hot spots are formed.

3.2 The Active Tree

Denote by qi the number of times i is requested during an epoch. Each node of the active tree handles at
most c requests. Two siblings are deleted if they handled less than c requests each, therefore:

Observation 3.1. For every initial active tree, by the end of the epoch the active tree contains at most 4qi

c

nodes. Therefore, the total size of caches in the network is at most 4qi

c .

Observation 3.2. The distance between two points in the jth layer of a path tree is at least 2−j .
7We don’t assume that the system is synchronized, this assumption is for convenience and does not play a major role.
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Next we show how the active tree grows and shrinks as a function of qi. The threshold c is assumed to
be at least log n.

Lemma 3.3. If c ≥ log n then with probability at least 1 − 1
n , the lowest point in the active tree at the end

of the epoch is at layer at most log( q
c ) + O(1), where the probability is taken over the random decisions of

the Distance Halving routing scheme.

Proof. If for some layer j of the tree it holds that each node in the layer receives less than c messages, then
clearly the tree cannot exceed layer j. Consider layer j = log( q

c ) + t of the tree, for some constant t. There
are q

c2
t nodes in layer j. The randomness of the routing algorithm causes each message to reach the target

independently through a random node in the layer. A standard balls and bins argument shows that with high
probability each node in level j received at most c messages: The probability a message reaches a fixed node
in level j is 2−j . The total number of messages reaching the node is distributed according to the Binomial
distribution with expectation 2−jq = 2−tc. Chernoff’s bound (e.g. [3]) states that for a binomial variable
X it holds that Pr[|X − µ(X)| ≥ εµ(X)] ≤ 2e−δε log εµ(X) where ε > 10 and δ is a constant independent
of ε, n. Substituting µ(X) for 2−tc and ε for 2t we get that the probability the number of messages handled
by a node exceeds c is at most e−Θ(tc). If t is large enough and c is Ω(log n), then with probability at most
1
n2 the node receives at most c messages. Union bounding over the 2j nodes in the layer yields that with
probability at least 1− 1

n all nodes of layer j receives less than c messages.

Lemma 3.4. The load on each active node is bounded as follows:

1. The cache at each node is hit at most c times.

2. Given that c is Ω(log n), w.h.p each active node passes at most O(log n) messages up to its parent
where the probability is taken over the random choices of the routing algorithm.

Proof. Once a cache is hit more than c times in the same epoch the node replicates the data item to its
children, effectively blocking it from being hit again in this epoch and the next. To prove the second claim
consider a node at level j + 1 and denote by X the number of messages it passed on to its parent. There
are at most 2j active nodes in the first j levels of the tree, therefore at most c2j requests were passed to
the first j levels of the tree by the 2j+1 nodes in level j + 1, so X has the binomial distribution with
expectation at most O(c/2). Now the analysis is similar to that of Lemma 3.3. Chernoff’s bound states that
Pr[|X − c

2 | ≥ ε c
2 ] ≤ e−Θ(ε log ε c

2
). Since c is Ω(log n) we have that for ε large enough, with probability

1− 1
n the number of messages passed on by each of the nodes is O(log n).

3.3 Analysis of a Single Hotspot

In the discrete protocol (as usual) server V emulates all the points in s(V ). In Figure 3 it is demonstrated
how the nodes of the active tree are mapped to the servers.

Lemma 3.5. Server V covers with high probability O(log( q
c )+ q

c |s(V )|) nodes of the active tree, where the
probability is over the random choices of the routing algorithm.

Proof. Observation 3.2 implies that server V covers at most d|s(V )|2je points from layer j. It may be that
V covers one point from each layer of the tree. If for instance V covers the point 0 and the root of the tree,
then it also covers all the points in the left branch of the tree. Summing over the levels of the tree Lemma
3.3 implies that the number of times V served as a cache is w.h.p.

log
q
c +O(1)∑
j=0

(
d|s(V )|2je

)
≤

log
q
c +O(1)∑
j=0

|s(V )|2j + 1 = O(log( q
c ) +

q

c
|s(V )|)
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Figure 3: The mapping of an active tree to the servers. The bold edges rep-
resent the active tree. The dashed edges represent the mapping. The [0, 1)
interval is divided to segments which represents the servers.

Lemma 3.4 bounds the load of each node in the active tree, so Lemma 3.5 combined with Lemma 3.4
immediately implies the following:

Theorem 3.6. The load on each server is bounded as follows:

1. The cache at each server is hit at most O(log( q
c )c + q|s(V )|) times w.h.p.

2. Given that c is Ω(log n), w.h.p each server passes at most O(log n) messages where the probability is
taken over the random choices of the routing algorithm.

The Theorem states that the number of times V served as a cache is O(c log( q
c )+ q|s(V )|). Given that c

is Θ(log n) and q ≤ n (each server may issue at most one request per time epoch then), and |s(V )| ≤ log2 n
n

(very reasonable) then the bound translates to O(log2 n). Note that Lemma 3.5 uses only the randomness of
the routing protocol and does not assume that the hash function h has any specific properties. It holds even
if an adversary is allowed to choose h(i).

In the following we make a mild assumption over the hash function. We assume the hash function h is
randomly chosen from a family of hash functionsH. The familyH has the property that for every i it holds
that h(i) is uniformly distributed in I . This property is sometimes called one-wise independence. We stress
that this is a very weak requirement; for instance, the common notion of a pairwise independent family of
hash functions satisfies this requirement. As before we need to count the number of active nodes covered
by V . Denote by Bv the number of nodes covered by V . Now Bv depends both on the randomness of the
routing algorithm and on the randomness of the hash function.

Lemma 3.7. If h(i) is uniformly distributed in I and |s(V )| is O( log n
n ), then for every t > 0:

Pr[Bv ≥ t] is O
(
|s(V )| · q

c
· 2−Θ(t)

)
where the probability is over the choice of the hash function h and the routing algorithm.
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Proof. Consider level j of the path tree. According to Observation 3.2, s(V ) covers at most d|s(V )|2je
active nodes. Lemma 3.3 bounds the depth of the active tree by log( q

c ) + O(1), and |s(V )| is bounded by
log n. We conclude V covers at most O(1) nodes from each level of the active tree. Therefore if Bv ≥ t
then V covers at least one node from the first log( q

c )−Θ(t) + O(1) levels of the tree.
We proceed by calculating the probability V covers at least one node from level j. Every specific level

j node of the path tree is uniformly distributed (by the hash function) in a segment of length 2−j . For
instance the leftmost node of level j is uniformly distributed in the segment [0, 2−j ] and so on. Therefore
the expected number of nodes V covers in level j is O(|s(V )|2j). We conclude that the probability V covers
at least one node in level j is bounded by O(|s(V )|2j).

Now we have: Pr[Bv ≥ t] ≤ Pr[V covers at least one point in the first log( q
c ) − Θ(t) + O(1) levels]

which is at most
log(

q
c )−Θ(t)+O(1)∑

j=0

|s(V )|2j = O
(
|s(V )| · q

c
· 2−Θ(t)

)
.

By linearity of expectation, the expected number of active nodes V covers is O(|s(V )| qc ). When |s(V )|
is Θ( 1

n) (the graph is smooth) and q ≤ n the bound translates to O(1
c ). Therefore the expected number of

requests handled by V is O(|s(V )|q), which is O(1) when the graph is smooth.

3.4 Multiple Hotspots

In this Section we analyze the more general case where there is an arbitrary set of demands for n data items.
We make the following assumptions: the threshold is set c = Θ(log n), the demand for data item i is qi such
that

∑
i qi = n, the hash function h which maps the data items into I is randomly chosen from a log n-wise

independent family and the graph is smooth.
The following is the main result of this Section:

Theorem 3.8. If h is k−wise independent where k ≥ log n, then for all sequences of n requests:

(i) - Given that |s(V )| ≤ log n
n for each server V , with probability at least 1− 1

n the maximum number of
items stored at any of the caches is O(log n), where the probability is taken over the random choices
of the routing algorithm and the hash function.

(ii) - For each server V the expected number of times V supplies a data item is O(|s(V )|n). Given that
|s(V )| ≤ log n

n , with probability 1− 1
n , each server supplies data items at most O(log2 n) times.

Proof. Fix a server V . Denote by pi the probability V supplies data item i. According to Lemma 3.7 we
have that pi is O( qi|s(V )|

c ). Denote by Lv the number of data items supplied by V . We have

E[Lv] =
∑

i

pi = O

(∑
i

qi|s(V )|
c

)
= O

(
n|s(V )|

c

)
.

Recall that c ≥ log n and |s(V )| ≤ log n
n so E[Lv] is O(1). The random variable Lv is the sum of (log n)-

wise independent Bernoulli variables. Using Claim 2.12 we have that:

Pr[Lv ≥ δ log n] ≤ Pr
[
|Lv − E[Lv]| ≥ δ′ log n · E[Lv]

]
≤ O

(
(δ2 log n)−

1
2

log n
)

where δ′ is some constant depending upon δ. The proof of part (i) is completed by setting the constant δ
large enough so that Pr[Lv ≥ δ log n] ≤ 1

n2 and union bounding the probabilities for the n servers.
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Part (ii) is composed of two statements. The first follows directly from Lemma 3.7 which states that
the expected number of times V handles the i’th data item is E[qi|s(V )|]. Therefore the expected number of
times V supplies a data item is O(

∑
i qi|s(V )|) = O(|s(V )|n).

For the second part let Bi denote the random variable counting the number of active nodes V covers from
the ith active tree. Lemma 3.7 implies that there is a constant a such that w.h.p Bi ≤ a log n. Furthermore
E[
∑

Bi] is O(
∑ |s(V )|qi

c ) which is O(1). Define Xi := Bi/a log n and X :=
∑

Xi. Now, w.h.p 0 ≤ Xi ≤
1 and E[X] ∈ O(1/ log n). It holds that for every α there is an α′ such that Pr [

∑
Bi ≥ α log n] ≤ Pr[X ≥

α′]. Now Claim 2.12 implies that that there is a constant α′ such that Pr[X ≥ α′] ≤ 1
n2 which concludes

the proof of Theorem 3.8.

Content Update The tree-like structure of the cache means that the popular data item may be changed or
altered efficiently by propagating the update from the owner of the data (the root) along the active tree. As
a consequence, an update of all the caches in which the data item is stored takes O(log q

c ) ≤ O(log n) time
and O(log q

c ) ≤ O(log n) messages.

Summary We have shown that our caching scheme satisfies the properties required: Hot spots are elim-
inated with high probability for every set of requests, caches of servers are small, and most strikingly the
caching scheme causes no extra delay for obtaining the data item. All done in a dynamic and scalable man-
ner. The caching scheme uses the fact that in the Distance Halving continuous graph, every node is the
root of an infinite binary tree. The same property was also used by Nadav and Naor [34] in order to build
fault tolerant storage systems.

4 Load Balancing the ID’s - Achieving Smoothness

We have seen that the smoothness of the decomposition of I determines the efficiency of many of our
protocols. In this section we suggest various distributed algorithms in which a server can choose its i.d.
(i.e. perform the first step of Algorithm Join in Section 2). The goal is that all servers choose their i.d.
such that I is smoothly divided between them. An algorithm for choosing an i.d. should be as local and
efficient as possible. Ideally the smoothness should be maintained even under worst case conditions where
an adversary chooses which and when servers join and leave the system. In practice most of the algorithms
we show assume that some properties are behaving randomly. The problem of achieving smoothness was
also addressed in [1],[30],[20]. In the following we always assume that I is continuous. All bounds remain
correct even if points are perturbed by a polynomially small values, therefore a allocating 3 log n bits per
variable is enough in order for the theorems to be correct in the discrete case.

A straightforward algorithm, that was also suggested by previous constructions (e.g. [45],[29]) is letting
each server choose its x-value by sampling randomly and uniformly a point in I:

Algorithm Single Choice for server V

1. Choose V.ID in [0, 1) uniformly at random.

The following lemma is proven in [29].

Lemma 4.1. After inserting n random points the length of the longest segment is w.h.p Θ( log n
n ). With high

probability there is no segment which is shorter than Θ( 1
n2 )

An important property of the Single Choice Algorithm is that Lemma 4.1 holds even if a random subset
of the points is deleted, i.e; a random subset of the servers quit the system. In the Single Choice Algorithm

19



segments remain small w.h.p, and in fact a careful look at our proofs shows that this is enough, i.e. using
this scheme would only cause a logarithmic blowup in parameters. The main drawback of the scheme is that
it may allow some segments to be very small - of length O( 1

n2 ), which means that the servers covering them
hardly share any of the load. A slight improvement is the following.

Improved Single Choice Algorithm for server V

1. Choose a point z ∈ [0, 1) uniformly at random.

2. Lookup z and find the bounderies of the segment of the server which currently covers z.

3. Set V.ID to be middle point in that segment.

Lemma 4.2. In the improved single join algorithm, the shortest segment is of length Θ( 1
n log n) w.h.p and

the longest segment remains O( log n
n ).

Proof. Simulate the process of choosing the x1, x2, . . . , xn points by growing a random binary tree in the
following way: Let z1, z2, . . . , zn denote the n random points chosen at Step (1) of the algorithm, where zi

is the point chosen by the ith server. The point x1 always takes the value 1
2 , which corresponds to the root of

the tree. The point x2 takes a value of 1
4 with probability 1

2 (if 0 ≤ z2 < 1
2 ), in which case we add a left child

to the root. The point x2 takes a value of 3
4 with probability 1

2 , in which case we add a right child to the root,
and so on. Each time a point is added, it randomly selects a path from the root until it reaches a leaf (the
path is determined by the binary representation of z), and then becomes either the left or the right child of
that leaf. Now consider the layer of the tree in which there are Θ(n log n) nodes. For each node of the tree,
with high probability there is at most one z-point which reached it (balls and bins). It immediately follows
that the smallest segment is of length Ω( 1

n log n) with high probability. Consider the layer of the tree which
has Θ(n/ log n) nodes. With high probability each one of them were hit by at least one of the z-points. It
follows that the largest segment is of size O( log n

n ).

The idea of the following algorithm (following the spirit of the two choice paradigm, see [33] for a
survey), is to let a joining server choose many locations and set its ID to be the best location found.

Multiple Choice Algorithm

1. Estimate log n.

2. Sample t log n random points from I , when t is some constant to be determined later.

3. Check all segments containing those points. Let s be the longest of these segments. Set ID to be the
middle point of s.

Estimating log n is a simple task and can be done in various ways which are discussed in Section 6. For
convenience we assume the estimation is completely accurate. The problems caused by the inaccuracy of
the estimation could be overcome by slightly increasing the parameter t.

Lemma 4.3. If t ≥ 2, after n points are inserted, the length of the shortest segment is at least 1
4n with

probability at least 1− 1
n .

Proof. A segment of length 1
4n could be created only if all the t log n samples fell in a segment of length

at most 1
2n . The probability a random point in I falls in some segment of length 1

2n is at most 1
2 . The

probability all the t log n fell in these segments is at most 2−t log n = 1
nt . Now, since t ≥ 2 a union bound

over the error probabilities of all the points proves the lemma.
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In the following we show that the Multiple Choice Algorithm has a self correction property. Even when
an adversary controls the initial state of the system, after the injection of n more points, with high probability
no segment is big.

Theorem 4.4. For any m > 0 and any configuration of m points in I , after inserting n more points (servers),
the largest segment is of size at most O( 1

n), with probability 1− 1
n .

Proof. First we prove the following lemma:

Lemma 4.5. Assume the longest segment is of length c
n , then for sufficiently large t, the expected number

of new points needed to be inserted in order to reduce the longest segment to a length of c
2n is at most 3n

c
points. Inserting 20n

c new points suffices with probability 1 − 1
n2 . The probability is taken over the random

choices of the algorithm.

Proof of Lemma 4.5. Denote by k the number of segments of length between c
2n and c

n . There are at most
2n
c such long segments. Our goal is to calculate how many points we should insert into the system until

all these k segments are split. Denote by Xi the random Geometric variable counting the number of new
insertions until the next large segment is split when there are i long segments remaining. The total number
of inserted new points is therefore

∑k
i=1 Xi. We denote by pi the parameter of Xi. The probability that a

uniformly sampled point in I falls within a long segment is at least ic
2n , therefore we have

pi ≥ 1−
(

1− ic

2n

)t log n

(4)

First we deal with the case that i ≤ 2n
ct log n :(

1− ic

2n

)t log n

≤ e−
ict log n

2n ≤ 1− ict log n

4n

where the second inequality follows since ict log n
2n ≤ 1. we conclude that for i ≤ 2n

ct log n it holds that

E[Xi] ≤
1

1− (1− ic
2n)t log n

≤ 4n

ict log n∑
i≤ 2n

ct log n

E[Xi] ≤
4n

ct log n
·
∑ 1

i
≤ 4n

ct
.

Next we show that

Pr[
∑

i≤ 2n
ct log n

Xi ≥
20n

ct
] ≤ 1

n2

Consider only the first log n variables. Clearly E[
∑

i≤log n Xi] ≤ 4n
ct . We bound Pr[

∑
i≤log n Xi ≥ 20n

ct ]
by tossing 20n

ct biased coins, each coin turns Head with probability 4n
ct log n . Denote by Y the number of

successes, E[Y ] = 5 log n. Now:

Pr[
∑

i≤log n

Xi ≥
20n

ct
] ≤ Pr[Y ≤ log n] ≤ 1

n2
.
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The same argument for the next log n variables shows that

Pr[
∑

log n<i≤2 log n

Xi ≥
20n

ct log n
] ≤ 1

n2

All in all, with high probability the total number of new points is at most 20n
ct (1 + 1

log n + 1
log2 n

+ ...) =
20n
ct (1 + 1

log n−1).

Now deal with the case 2n
ct ≥ i > 2n

ct log n . In this case E[Xi] ≤
(
1− (1− ic

2n)t log n
)−1 ≤ 2 and

therefore the expected total contribution of these variables is at most 4n
ct . As before, the probability more

than 20n
ct points are needed is at most 1

n2 . Finally when 2n
c ≥ i > 2n

ct it holds that E[Xi] ≤ n
n−1 and

the total contribution of these variables is at most 2n
c . Therefore with high probability the total number

of points inserted does not exceed 20n
ct (1 + 1

log n−1) + 20n
ct + 2n

c . Choosing t = 20 we conclude that on
expectation it takes at most 3n

c insertions to split all long segments, and at most 20n
c new insertions with

high probability.

The proof of Theorem 4.4 is completed by applying the lemma iteratively log c − 3 times. Thus, we
have that it takes on expectation n new points until the longest segment is of length at most 8

n . With high
probability after inserting n points the longest segment is of length O(1/n).

We stress that the Multiple Choice Algorithms self corrects any initial configuration only in the sense
that it reduces the size of the largest segment. Any extremely small segment in the initial configuration
would remain small after the new points were inserted.

4.1 Handling Deletions

The Multiple Choice Algorithm achieves a smooth set of points in the pure Join model,when servers may
join the system but not leave it. Achieving smoothness in a setting which allows deletions requires a more
complicated scheme.

The most naive way to handle the deletion of a point is to assign its segment to its predecessor on the ring.
It is easy to see that this naive algorithm does not suffice: Assume that there are 2n points spread smoothly
in I , and randomly delete each one with probability 1

2 . With high probability there is a sequence of Ω(log n)
consecutive points that were deleted, creating a segment of length Ω( log n

n ) and violating the smoothness.
We conclude that some balancing mechanism must be implemented in order to maintain smoothness under
deletions.

The Bucket Solution The ‘bucket’ solution was suggested in Viceroy [29]. The servers join the system
with the Single Choice algorithm . The balance is achieved via an extra structure. We maintain a distributed
coordination mechanism between contiguous chains of servers, consisting of O(log n) servers each. We
call such a group of O(log n) servers a bucket. Inside each bucket we maintain a simple ring (which mostly
overlaps the larger ring of the DH construction). The buckets are maintained such that two properties hold:

1. The size of the bucket is always Θ(log n). When the size of a bucket exceeds c log n (for some
constant c) it splits into two. When the size of a bucket shrinks bellow a threshold, it merges with a
neighboring bucket. An estimation of log n is maintained within each bucket.

2. Within each bucket segments are distributed evenly, i.e. servers may change their i.d. slightly so that
no segment is too big or too small.
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The exact way in which Step (2) is performed may vary according to context. Keeping all segments within a
bucket of equal length at all times may have a large overhead, as all members of the bucket update their state
whenever a node joins or leaves. Therefore it makes more sense for the members of the bucket to rearrange
themselves only when the smoothness within the bucket exceeds some tunable parameter.

The correctness of the bucket solution follows from the fact that w.h.p every interval of length log n
n

contains Θ(log n) points (balls and bins). Thus, when a segment becomes too big or too small a balancing
within the bucket suffices.

4.2 Other Solutions

In [35] we describe an algorithm called the Cyclic Scheme which can handle adversarial deletions, albeit
with low throughput. Numerous algorithms that achieve smoothness were published subsequent to [35].
Karger and Ruhl [20] suggest an algorithm that achieves smoothness in a model that also allows deletions.
Upon insertion or deletion O(log log n) nodes need to change their position. Kenthapadi and Manku [21]
generalize the analysis of the Multiple Choice Algorithm to the case where some of the probes are sequential
in the key space.

5 Higher Dimensions

So far we limited ourselves to the case where I is a one dimensional unit interval. Indeed, as was shown
by previous constructions (such as Chord, Pastry and Viceroy) a one dimensional name space suffices for
a Distributed Hash Table. In some applications it may be useful to apply the same approach to a two
dimensional universe. In [37] the continuous-discrete approach was used to construct a dynamic quorum
system. In this paper we show how to construct a network which is an expander.

In the two dimensional case the set of points cannot be associated with segments, but rather be associated
with a tessellation of the plain into cells, such that each point is associated with a cell and is responsible for
all keys that fall within that cell. This was done in CAN [41] where the plain was divided into rectangles.
We present a simpler way to do it using the points as generators to a planar ordinary Voronoi diagram.

5.1 Dynamic Voronoi Diagrams

Definition 6 (planar ordinary Voronoi diagram). Given a finite number (at least 2) of distinct points in the
Euclidean plane, we associate all locations in that space with the closest member(s) of the point set with
respect to the Euclidean distance. The result is a tessellation of the plane into a set of regions associated
with members of the point set. We call this tessellation the planar ordinary Voronoi diagram generated by
the point set, the points are sometimes referred to as generators and the regions constituting the Voronoi
diagram Voronoi cells. The dual triangulated graph is called the Delaunay triangulation. See Okabe et
al.[38] for a thorough overview of Voronoi diagrams and their applications.

Given an existing Voronoi diagram, the entrance of a new generator and the exit of an existing one affects
only the cells adjacent to the location of the generator. Therefore a Voronoi diagram can be maintained by
a distributed algorithm, in which every cell is calculated separately and locally. As a result the time and
memory needed to compute a single Voronoi cell is Θ(d) when d is the number of neighbors the cell has;
i.e. the degree of the generator in the Delaunay tessellation. It is known that d is always 6 on average (Euler’s
formula), but might be as high as n−1. In the following we set I = [0, 1)× [0, 1). Let ~x be a set of n points
in I .
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Definition 7. We say that ~x has smoothness ρ if the following two conditions hold: (1) when dividing the
rectangle to ρn rectangles of size 1√

ρn ×
1√
ρn , each rectangle contains at least one point from ~x. (2) when

dividing the rectangle to n
ρ rectangles of size

√
ρ
n ×

√
ρ
n , each rectangle contains at most one point from ~x.

A simple geometric argument shows that when ~x is smooth, the area of each Voronoi cell generated by
~x is Θ( 1

n), see [37] for more details.

5.2 Constructing Expander Graphs

Expander graphs are graphs that are very ‘well connected’ in the sense that for every set of vertices S of
size at most 1

2 |V | there are at least α|S| vertices in V \ S that are adjacent to some vertex in S. In this case
we say the expansion of the graph is α. Expander graphs are probably one of the most researched struc-
tures in combinatorics. They have numerous applications in computer science. Applications in distributed
computing include load balancing, fault tolerance and search through random walks (c.f. [2],[9],[27],[15],
[4]).

It is well known that a random regular graph is an expander with high probability [13]. An explicit and
deterministic construction for expanders was given by Margulis [31] and Gabber and Galil [14], and was
later generalized by Cai [6].

The goal in this Section is to construct a P2P network which is guaranteed to be an expander. Indepen-
dently from this paper, Law and Siu [25] used the fact that random graphs are expanders w.h.p to construct
an expander in a P2P setting. We take a different approach, we use a two dimensional name space and the
continuous-discrete approach in order to emulate the Margulis, Gabber-Galil expander. The main advantage
of our approach is that in our case the expansion of the network could be verified. If the set of ID’s is smooth
then the network is guaranteed to be an expander. Gabber and Galil define a continuous graph G over I
by the following two transformations: f(x, y) = (x + y, y) mod 1 , g(x, y) = (x, x + y) mod 1. The
neighbors of point (x, y) ∈ I are f(x, y), g(x, y), f−1(x, y), g−1(x, y). For any set A ⊆ I define δ(A) to
be the set of points in I \ A which are neighbors of a point in A. Denote by µ(A) the area of the set A (its
Lebesgue measure).

Theorem 5.1 ([14]). For every set A of points in I such that µ(A) ≤ 1
2 is well defined, it holds that

µ(δ(A)) ≥ (2−
√

3)
2 µ(A).

Corollary 5.2. Let ~x be a set of n points in I . Let G~x be the discretization of the Gabber-Galil continuous
graph. The maximum degree of G~x is Θ(ρ), and the expansion of G~x is Ω( (2−

√
3)

ρ ). So if ρ is constant G~x

is a constant degree expander.

Any network created by maintaining a Voronoi diagram of a smooth set of points guarantees expansion.
Currently no know routing scheme is known for the general Gabber-Galil expander. A step towards a routing
scheme was given by Larsen [24] which provides an algorithm for finding short routes in the Gabber-Galil
expander whenever the number of nodes is a square of a prime. In this case the construction yields an
efficient constant degree expanding DHT. In contrast, in the construction of Law and Siu [25], in order for
the expander to be navigable the degree should be logarithmic.

5.3 Achieving Smoothness in Two Dimensions

In this section we show that a natural generalization of the Multiple Choice algorithm, achieves smoothness
with high probability in the two dimension setting. We need to assume that the network supports a lookup
operation for the points in I (for instance by a DHT). For a point z ∈ I define r(z) to be the rectangle
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containing z when I is divided to 2n rectangles of size 1√
2n
× 1√

2n
. Let R(z) be the rectangle containing z

when I is divided to n/2 rectangles of size
√

2
n ×

√
2
n .

2D Multiple Choice

1. Sample t log n random points in I . Call these points z1, z2, . . . , z3 log n.

2. For each zi perform Lookup(zi) and check whether r(zi) and R(zi) are empty.

3. If there exists an i such that r(zi) is empty and R(zi) is empty then set x← zi.

4. Otherwise find an i such that r(zi) is empty and set x ← zi. If no such i exists then the algorithm
failed, set x← z1.

We assume for convenience that the estimation of n is accurate. A multiplicative estimation of n is easily
achievable and suffices.

Lemma 5.3. After inserting n points using the 2D Multiple Choice algorithm, with probability 1 − 1
n it

holds that the smoothness of ~x is as most 2.

Proof. First we show that w.h.p every small rectangle will contain at most one point from ~x, i.e. Step (4) of
the algorithm never fails. There are 2n small rectangles, at most n of them are not empty. The probability
to hit a non empty rectangle is at most 1

2 . The probability that all t log n samples hit a non empty rectangle
is at most 1

nt . Thus, the probability the algorithm failed for some point is at most 1
n2 for any t ≥ 3.

Next we need to show that at the end of the algorithm w.h.p all the big rectangles contain at least one
point. There are n/2 big rectangles. Assume k of them already contain a point from x. The probability a
random point from I hits one of these k rectangles is 2k

n . The probability that when inserting αk points only

non-empty rectangles were hit is at most 2k
n

αkt log n
. This implies that when 3

t log(n/2k) points are inserted,
the probability of hitting non-empty rectangles only is at most 1

n3 . Now for some t = O(1) it holds that

n/2−1∑
i=0

3
t log(n/2i)

≤ 3
4
n

which means that with probability 1− 1
n2 after inserting 3

4n points, all the big rectangles are full. The proof
is completed by union bounding the error probabilities.

6 Fault Tolerant constructions

In this section we present a fault tolerant DHT. There are two common methods for modeling the occurrence
of faults. The first is the random fault model, in which every server becomes faulty with some probability
and independently from the other servers. The other is the worst case model in which an adversary which
knows the state of the system chooses the faulty subset of servers. There are several models that describe
the behavior of faulty servers. One of them is the fail-stop model in which a faulty server stops sending
messages altogether. Another is a false message injection model in which a faulty server may produce
arbitrary false versions of the data item requested, but otherwise behaves correctly. For instance, the false
message injection model does not allow a server to send inconsistent messages regarding the state of the
network itself, and in particular a faulty server joins the network according to protocol. A third model is the
Byzantine model in which there are no restrictions over the behavior of faulty servers.
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Our construction is based on the DH continuous graph. It differs from the construction of Section 2,
only in the discretization, by letting the segments of the vertices overlap. In the random fault model, if we
want all servers to be able to access all the data items then it is necessary that the degree be at least Ω(log n)
and that every data item is stored by at least Ω(log n) servers. Otherwise with high probability there would
be non faulty servers disconnected from the system, and data items completely irretrievable. Indeed our
construction has logarithmic degree. We show two routing algorithms. The first has time and message
complexity of O(log n). It guarantees that in the random fail-stop model w.h.p all servers can locate all
data items. The second routing algorithm guarantees the same but under the random false message injection
model. This algorithm has running time (parallel) of O(log n) and message complexity of O(log3 n).

6.1 Related Work

Several peer-to-peer systems are known to be robust under random deletions ([48], [45], [41]). Stoica et
al.prove that the Chord system [45] is resilient against random faults in the fail-stop model, Hildrum and
Kubiatowicz [16] proved the resilience of Pastry and Tapestry. It does not seem likely that these systems
could be made resistant under false message injection without a significant change in their design. Fiat et
al.[44, 11] propose a content addressable network that is robust against deletion and false message injection
in the worst case scenario, i.e. when an adversary can choose which servers fail. In this model some constant
fraction of the non-failed servers could be denied from accessing some of the data items. While their solution
handles a more difficult model then ours, it has several disadvantages:

• It is not clear whether the system can preserve its qualities when servers join and leave dynamically.

• The linkage needed is Ω(log2 n).

• The construction is very complicated.

It is important to note that all constructions (including ours) assume that the construction itself was done
properly; i.e. that during the Join/Leave operations nodes followed the protocol. Designing a protocol that
is resilient against adversarial behavior in the Join operation seems to be a very difficult task.

6.2 The Overlapping Distance Halving DHT

Our construction (yet again) is a discretization of a continuous graph. The continuous graph we use is the
same continuous graph used to build the DH DHT in Section 2.1. The difference is in the discretization
technique.

The Discrete graph G Each server Vi (1 ≤ i ≤ n) in the graph is associated with a segment s(Vi)
def
=

[xi, yi]. These segments should have the following properties:

• Property I - The set of points ~x = x1, x2, . . . , xn is evenly distributed along I . Specifically we desire
that every interval of length log n

n contains Θ(log n) points from ~x. The point xi is fixed and does not
change as long as Vi is in the network.

• Property II - The point yi is chosen such that the length of each segment is Θ( log n
n ). It is important

to notice that for i 6= j, s(Vi) and s(Vj) may overlap. The point yi will be updated as servers join
and leave the system. The precise manner in which yi is chosen and updated is described in the next
section.
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The edge set of G is defined as follows. A pair of vertices (servers) Vi, Vj is an edge in G if s(Vi) and s(Vj)
are connected in Gc or if s(Vi) and s(Vj) overlap. The edges of G are bi-directional. As before, a point
z ∈ I is said to be covered by Vi if z ∈ s(Vi). The mapping of data items to servers is done as before, server
Vi stores all data itemsD for which h(D) ∈ s(Vi) when h is some hash function. We observe the following:

1. Each point in I is covered by Θ(log n) servers of G. This means that each data item is stored at
Θ(log n) servers.

2. Each server in G has degree Θ(log n).

Join and Leave: Our goal in designing the Join and Leave operations is to make sure that properties I,II
remain valid. When server Vi wishes to join the system it does the following:

Join Algorithm Vi

1. Choose at random xi ∈ [0, 1)

2. Calculates a variable qi which is an estimation of log n
n .

3. Set yi = xi + qi mod 1.

4. Updates all the appropriate neighbors according to the definition of the construction.

5. The neighbors may decide to update their estimation of log n
n and therefore change their y value.

When server Vi wishes to leave the system (or is detected as down) all its neighbors should update their
routing tables and check whether their estimation of log n

n should change. If so they should change their y
value accordingly. The following lemma is straight forward:

Lemma 6.1. If n points are chosen randomly, uniformly and independently from the interval [0, 1] then with
probability 1− 1

n each interval of length Θ( log n
n ) contains Θ(log n) points.

If each server chooses its x-value uniformly at random from I then property-I holds. Observe that if
each server’s estimation of log n

n is accurate within a multiplicative factor then property II holds as well. The
procedure for calculating qi is very simple. Assume xj is the predecessor of xi along I . It is proven in [29]
that with high probability

log n− log log n− 1 ≤ log
(

1
d(xi, xj)

)
≤ 3 log n

Conclude that server Vi can estimate log n within a multiplicative factor simply by inverting the distance
between its x-value and the x-value of its predecessor. Call this estimation αi. A multiplicative estimation
of log n implies a polynomial estimation of n, therefore an additional idea should be used. Let qi be such
that in the interval [xi, xi + qi] there are exactly αi different x-values. A direct consequence of Lemma 6.1
is the following:

Lemma 6.2. With high probability the number qi estimates logn
n within a multiplicative factor.

When a server joins or leaves the system at most O(log n) servers need to update their q value. So with
high probability property II holds as well.
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Mapping the data items to servers The mapping of data items to servers is done in the same manner as
previously. First data items are mapped into the interval I using a hash function. Server Vi should hold all
data items mapped to points in s(Vi).

All servers holding the same data item are connected to one another so they form a clique. Once a server
storing a data item was located, the remaining servers storing the same data item are quickly located as well.
This means that accessing different servers associated with the same data item in parallel can be simple and
efficient. It suggests storing the data using an erasure correcting code, (for instance the digital fountains
suggested by Byers et al.[5]) and thus avoid the need for replication. The data stored by any small subset
of the servers suffices to reconstruct the data item. It is known that often the use of erasure correcting codes
is more efficient than replication. For instance, Weatherspoon and Kubiatowicz [47] claim that an erasure
correcting code may improve significantly the bandwidth and storage used by the system.

6.3 The Lookup Operation

The routing properties of the continuous graph Gc were discussed in Section 2.2. Assume processor Vi

looks up point y ∈ I . Recall that Claim 2.4 implies that there is a point z ∈ s(Vi) such that there is a path
of length O(log n) between z and y in Gc. Call this path the canonical path. The canonical path exists is
Gc, yet by the definition of G, if (a, b) is an edge in Gc, a is covered by Vi and b is covered by Vj then the
edge (Vi, Vj) exists in G. This means that the canonical path can be emulated by G.

Simple Lookup Every point in I is covered by Θ(log n) servers. This means that when server i wishes
to pass a message to a server covering point z ∈ I it has Θ(log n) different neighbors that cover z. In
the Simple Lookup it chooses one of these servers at random and sends the message to it. The following
theorem follows directly from Claim 2.4 and Theorem 2.7.

Theorem 6.3. Simple Lookup has the following properties:

1. The length of each lookup path is at most log n + O(1). The message complexity is log n + O(1).

2. If Vi is chosen at random from the set of servers and y is chosen at random from I , then the probability
a given server participates in the lookup is Θ( log n

n ).

The following theorem describes the fault tolerance properties of the lookup:

Theorem 6.4. If each server fail-stops independently with fixed probability p, then for sufficiently low p
(which depends entirely on the parameters chosen when constructing G), with high probability each surviv-
ing server can locate every data-item.

Note that the theorem holds even if failures are correlated (e.g. by a power failure). As long as the
failures are independent of the random choices within the system, the randomization of the Join algorithms
implies that I.D’s of the failed servers is a random set.

Proof. We prove the following claim:

Claim 6.5. If p is small enough, then w.h.p every point in I is covered by at least one server.

Proof. Assume for convenience that x1 < x2 < · · · < xn. Each point in an interval [xi, xi+1] is covered by
the same set of Θ(log n) servers. Call this set Si. We have

Pr[ All servers in Si were deleted ] = pΘ(log n)
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Figure 4: The message is sent through all the servers covering the path.

Therefore for sufficiently small p this probability is smaller than n−2. Applying the union bound over all
i yields that with probability greater than 1 − 1

n every point in I is covered by at least one server. It is
important to notice that for an arbitrary value of p it is possible to adjust the q values, so that each point in I
is covered by sufficiently many servers, and the claim follows.

For every edge (a, b) in Gc there exists at least one edge in G whose servers cover a and b, therefore the
canonical path could be emulated in G and the simple lookup succeeds. We stress that after the deletions
the lookup still takes log n time and log n messages. Furthermore the average load induced on each server
does not increase significantly.

False Message Resistant Lookup Now we assume that a failed server may generate arbitrarily false data
items. We wish to show that every server can find all correct data items w.h.p. Just as in the simple lookup,
the false message resistant lookup between the server V and y ∈ I emulates the path between s(V ) and y in
the continuous graph. The main difference is that now when server Vi wishes to pass a message to a server
covering point a it will pass the message to all Θ(log n) servers covering a. At each time step each server
receives Θ(log n) messages, one from each server covering the previous point of the path. The server sends
on a message only if it were sent to it by a majority of servers in the previous step.

Theorem 6.6. Assume each server fails with some small enough probability p. The false message resistant
lookup has the following properties:

1. With high probability all surviving servers can obtain all correct data items.

2. The lookup takes (parallel) time of log n.

3. The lookup requires O(log3 n) messages in total.

Proof. As before, Statement (2) follows directly from Claim 2.4. Statement (3) is correct since each edge
of the canonical path in Gc translates to a bipartite complete graph with O(log n) nodes and O(log2 n)
edges, and a message is passed along each of these O(log2 n) edges. It remains to prove Statement (1).
Claim 6.5 in fact shows that if each server fails with probability p, then for sufficiently small p (which
depends entirely on the parameters chosen when constructing G) it holds that with high probability every
point in I is covered by a majority of non-failed servers. Now the proof of Theorem 6.6 is straight forward
and is done by induction on the length of the path. Every point of the canonical is covered by a majority of
good servers, therefore every server along the path receives a majority of the authentic message. It follows
that with high probability all servers can find all true data items.

The easy proofs of Theorems 6.4 and 6.6 demonstrate the advantage of designing the algorithms in Gc

and then migrating them to G. Proving the robustness of Gc is a straight forward argument.
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7 Emulating General Graphs - Smoothness is Everything

In this section we show how our techniques can be used to dynamically construct an overlay network which
embeds any family of fixed degree graphs. We show that if it is possible to maintain a smooth partitioning of
[0, 1) plus a lookup operation such as the DH construction offers, then it is possible to emulate any bounded
degree graph with fixed cost. General techniques for constructing network topologies were independently
suggested by Abraham et al.[1].

Let {G1, G2, . . .} be an infinite family of graphs with maximum degree d. Assume that Gi has 2i ver-
tices, denoted u1, u2, . . . , u2i . We first describe a static simulation and then show how to make it dynamic.
Let ~x be a smooth set of n points in [0, 1) and associate a node (server) Vj with each point. We define a
graph G~x on V = {V1, . . . Vn} that emulates Gdlog ne. For each k, define the function Φk from the 2k nodes
of Gk to the n servers of G~x as follows:

Φk(uj) = Vi if j
2k ∈ s(xi).

If ~x is smooth, then the function Φk spreads the nodes of Gk evenly among the servers. Note that the
function Φk can be computed locally, i.e. each server Vi can determine based on xi and xi+1 which nodes
in Gk are mapped to it. The edges of G~x are defined as:

E(G~x) = {(Vi, Vj) | ∃(u`, um) ∈ E(Gk) , Φk(u`) = Vi,Φk(um) = Vj} .

If (u`, um) ∈ E(Gk) and Φk(u`) = Vi and Φk(um) = Vj then we say that edge (u`, um) is simulated
by (Vi, Vj). Let k = dlog ne and let ρ be the smoothness of ~X . It is straightforward to verify the following
properties:

1. Every server in G~x simulates at most ρ + 1 servers in Gk: if a nodes are mapped to sever i then
a−1
2k ≤ xi+1 − xi and by smoothness xi+1 − xi ≤ ρ/n ≤ ρ/2k.

2. Every edge in G~x simulates at most ρ2 edges in Gk: follows from (1).

3. The degree of G~x is at most ρ · d: follows from (1).

In other words if ~x is smooth then G~x is a real time emulation of Gk. In Particular this means that any
computation performed by Gk, could be performed by G~x in constant slow down. (See [28] and [23] for an
overview on the literature of real time emulations.)

Suppose that the servers have a mechanism to dynamically maintain a smooth partition ~x as servers join
and leave as well as a lookup mechanism, i.e. each server can find the server in charge of point x ∈ [0, 1)
(as in the DH construction). Then, assuming all servers know what n is, each server can calculate separately
which are its neighbors in G~x using the lookup service. Furthermore, they can maintain G~x as changes
occur and the cost is not more than O(ρ) per change.

Next we remove the assumption that all servers know the value of n, using the smoothness (there are
other methods for doing so, as discussed in [29] and [17]). A smooth ~x implies that each server Vi can
estimate the value of n setting ni = 1

|s(Vi)| (ni is server Si’s guess to n). By definition of smoothness
maxi,j

ni
nj

= ρ(~x). Therefore it holds that for all 1 ≤ i ≤ n we have log ni− log ρ ≤ log n ≤ log ni +log ρ.
If ~x is guaranteed to have smoothness of at most ρ, then each server can calculate a list of length 2 log ρ that
contains dlog ne. Each server now sets edges according to every index in its list; i.e. the edges each server
would open would result from the union of the Φ’s on its list.

Theorem 7.1. When G~x is constructed and maintained as described above it holds that
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1. The degree of G~x is at most 2d · ρ log ρ.

2. If ρ is a constunt then the graph G~x can emulate in real time the graph Gdlog ne.

Theoretically speaking, this result implies that considering scalable systems separately is superfluous;
i.e. for any problem it is possible to come up with a solution in a static environment and then make it dynamic
via this technique. The main disadvantage of this technique is that the dependency on the smoothness is
heavier, so tailored designs are indeed interesting.
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