
Appendix A

Claim 1 Let (yi, zi) denote the location of the ith viewer row, `p
the pixel size, `e the horizontal distance between two consecutive
angular positions within the seat, and τ the distance between the
vertical barrier and the screen (see Table 1). The z-coordinate of
the slanted barrier ζi is a linear function of zi,

ζi =
`p

`p + `e
· zi +

−`eτ
`p + `e

, (6)

and the y-coordinate ρi,j is a function of zi and yo
j , the y-

coordinate of the jth vertical slit

ρi,j = yo
j +

(c1 · zi + c2) · (c3 · zi + c4 − yoj)
zi

(7)

where c1 =
`p

`p+`e
, c2 = −`e

`p+`e
· τ , c3 =

∆y

∆z
, c4 = y1 − ∆y

∆z
z1.

Proof: The geometric relationship in the barrier structure defines
a pair of similar triangles (see Fig. 18a) from which the following
equation can be derived

`p
`e

=
(ζi + τ)

zi − ζi
. (8)

A short rearrangement of the terms in Eq. (8) leads to ζi as given by
Eq. (6).

Similarly, ρi,j can be derived using the similar triangles of Fig. 18b

ρi,j − yoj

yoj − yi
=
−ζi
zi
⇒ ρi,j = yo

j +
yo

j − yi
zi

(−ζi). (9)

We express yi as a linear function of zi,

yi =
∆y

∆z
· zi + y1 −

∆y

∆z
z1, (10)

and substitute in Eq. (9) the ζi, yi values from Eqs. (6) and (10),
resulting in the ρi,j values of Eq. (7).

Appendix B

Claim 2 Denote by αi the angle of rays from the ith viewer row
(yi, zi) towards the top slit yony . To prevent ray blocking the slit
spacing g should satisfy

g ≥ [
yo

ny − y1

z1
− yo

ny − ym
zm

] · −ζ1z1

z1 − ζ1
(11)

or equivalently

g ≥ (α1 − αm) · −ζ1z1

z1 − ζ1
(12)

Proof: The proof refers to the sketch in Fig. 19. Let us denote by
(ρ1,j−1, ζ1) the intersection point of the ray from the first row with
the slanted barrier at slit yoj−1, by (ρm,j , ζm) the intersection of
the ray from the last row with the slanted barrier at slit yoj , and by
(ρ′m,j , ζ1) the intersection of the same ray with the plane at depth ζ1.
To prevent the barriers from blocking rays, the following relation
must hold

ρ1,j−1 ≤ ρ′m,j . (13)

We can write the relationships between the y and z coordinates of
the slanted horizontal parallax barrier and the viewers by looking at
the similar triangles of Fig. 19.

Figure 18: Shaping the slanted barrier. To derive the x, y coordinates of
the slanted barrier, i.e. ρ and ζ, we are looking at similar triangles in the
geometry.

Figure 19: Calculating the minimal slit separation. To prevent the slanted
barriers from blocking each other, we force ρ′m,j ≥ ρ1,j−1 (rays can cross
each other after passing ζ1).

From the blue triangles:

ρ′m,j − yoj

yoj − ym
=
−ζ1
zm
⇒ ρ′m,j = yo

j +
−ζ1
zm

(yo
j − ym). (14)

From the orange triangles:

ρ1,j−1 − yoj

yoj−1 − y1
=
−ζ1
z1
⇒ ρ1,j−1 = yo

j−1 +
−ζ1
z1

(yo
j−1 − y1).

(15)

We can substitute yoj−1 in Eq. (15) by yoj − g leading to

ρ1,j−1 = yo
j − g +

−ζ1
z1

(yo
j − g − y1). (16)

Substituting Eqs. (14) and (16) in Eq. (13) we get

g +
−ζ1
zm

(yo
j − ym) +

ζ1
z1

(yo
j − g − y1) ≥ 0. (17)

Rearranging Eq. (17) provides a lower bound on g

g ≥ [
yo

j − y1

z1
− yo

j − ym
zm

] · −ζ1z1

z1 − ζ1
. (18)

The highest value of the right-hand side of Eq. (18) is obtained at
the top screen row, at j = ny, leading to the g bound in Eq. (11).

Using first order approximation (tanα ≈ α) on the geometric
relationship of Fig. 19 we can write

yo
ny − y1

z1
≈ α1,

yo
ny − ym
z1

≈ αm, (19)

leading to Eq. (12).



Figure 20: A top view of the pinhole solution. The distance between the
barrier and the screen was set to allow the last row to see pixels whose size
is not lower than the native pixel size `p. A viewer at a closer row, however,
sees wider pixels whose width ˜̀

p was derived in the text. Thus the pinhole
solution suffers from a horizontal resolution loss factor of ˜̀

p/`p.

Appendix C

In this section, we will analyze the resolution limits of the naive
pinhole solution, and show that our proposed display has superior
resolution in both the horizontal and vertical directions.

Horizontal resolution

As discussed in Sec. 2.3.2, the number of pixels our display supports
horizontally is k times lower than the number of pixels on the screen,
where k is the number of angular images. That is, if the native
screen width supports Nx pixels, our angular images can include
nx = Nx/k pixels.

To determine the resolution of the pinhole solution, note first that the
minimal distance between the pinhole plane and the screen should be
set such that the farthest row, which is the one obtaining the smallest
disparity, can observe pixels whose size does not fall below`p (oth-
erwise we have to under-sample thek angular images displayed for
that row). However, closer rows achieve wider disparities and hence
require wider pixels (see Figs. 10 and 20), and hence the resolution
decreases. For example, in the cinema parameters considered at the
beginning of Sec. 5, the resolution of the pinhole display is 1.7 times
lower than in our display. The following claim derives the exact
resolution gain.

Claim 3 The x-axis resolution of our proposed display is zm
z1

times
better than the x-axis resolution of the naive pinhole solution.

Proof: Let Nx denote the number of horizontal pixels on the screen,
and `p the native pixel size. The number of horizontal pixels in our
proposed display is nx = Nx/k, as discussed in Sec. 2.3.2.
Note that for any position of the pinhole array, geometry implies
that the farthest row always achieves the smallest disparity on the
screen. If our screen has pixels of size `p, and we do not want to
under-sample the k different angular images that we display for
that row, we can conclude from a similar triangle argument that the
minimal distance between the pinhole plane and the screen must be

(τ + ζm) = `p
zm
`e
. (20)

However, since the first row is closer, it obtains larger disparities at
the same screen position. As a result, displaying the k angular im-
ages at the shifts of the first row requires wider pixels. Considering

Figure 21: Vertical resolution limits: (a) The naive pinhole solution
display (dashed lines denote the equivalent z position of the vertical and
horizontal barriers in our display), compared to (b) our proposed display. In
our display the bound on they resolution is set such that rays from different
rows do not intersect before the slanted barriers, but can intersect between
these barriers and the screen. In contrast, in the pinhole arrangement, rays
from different rows cannot intersect all the way to the screen. The difference
results from the fact that the screen content is different for different viewer
rows in the pinhole solution, while it is identical in our solution.

the similar triangles in Fig. 20, we can express these wider pixels as
˜̀
p,

˜̀
p =

`e
z1

(τ + ζm). (21)

Combining Eqs. (20) and (21) leads to

˜̀
p =

zm
z1
`p. (22)

Thus, the number of horizontal pixels that the pinhole construction
can present to the first row is in practice

Nx

k ˜̀
p

=
Nx

k`p
· z1

zm
= nx ·

z1

zm
(23)

Vertical resolution

The vertical resolution of our display is determined by g, the spacing
between two adjacent slits in the vertical barrier, as calculated in
Eq. (3). Similarly, let us denote by gn the spacing between two
adjacent pinhole rows. The minimal spacing gn can be computed
using arguments similar to the proof of Claim 2, and is equal to

gn ≥ [
yo

j − y1

z1
− yo

j − ym
zm

] · (τ + ζm) · z1

z1 + τ + ζm
. (24)

To understand the intuition, consider Fig. 21. In our display, the
vertical spacing is derived from the constraint that rays from the
extreme viewer rows (row 1 and row m) should not cross each other
before the end of the slanted barrier. However, it is fine for these rays
to cross between the barrier and the screen, since the screen content
is identical for all viewer rows. In contrast, in the pinhole solution,
we must limit the vertical spacing of pinholes such that rays from
different rows will not cross all the way up to the screen itself, since
different viewer rows should see different pixel rows on the screen
(see Fig. 10). Since the distance between the vertical barrier and
the horizontal one is smaller than the distance to the screen, g is
smaller than gn. For example, with the cinema parameters described
in the beginning of Sec. 5, g = 28mm and gn = 67mm. See
also the visual comparison in Fig. 9. Note that g = 28mm is the
spacing obtained with our basic two-barriers solution, without angle
reduction elements, but their addition can improve resolution much
further.

Appendix D

Here we explain how to derive the exact shape of the slanted mirrors
in our horizontal barriers (Fig. 5f). Recall that our goal is to replace



Figure 22: The slanted mirror surface in (a) the standard coordinate
system, and (b) the converted one. In (c) we demonstrate the parabola
structure, i.e. a 2D slice of the surface in (b).

the opaque surface of the slanted barrier with a reflective surface that
focuses the horizontal component of the rays on the screen. As was
analyzed previously, the original slanted barrier surface is defined
in Claim 1 by the set of points (ρi, ζi), i = 1 . . .m, and is constant
along the x direction. The slanted mirror’s surface, on the other
hand, should focus light rays intersecting at differentx coordinates;
thus, it should have a parabolic structure in the x direction.

To express the surface we define a new coordinate system illustrated
in Fig. 22, in which ŷ is the direction of the best linear approximation
to the slanted barrier surface and ẑ = n̄ is the mean normal direction.
Denoting by θ the angle between the mean normal n̄ and the z axis,
the basis conversion is given by x̂

ŷ
ẑ

 = R̂

 x
y
z

 (25)

with

R̂ =

1 0 0
0 −1 tan(θ)
0 tan(θ) 1

 =

 1 0 0
0
0

r̂

 . (26)

The slanted mirror surface is composed of concave parabolic mirrors
in the direction of the mean normal, and can be written as:

h(x̂, ŷ) = a(ŷ)x̂2 + ζ̂(ŷ), (27)

where a(ŷ) is the parabola power and ζ(ŷ) is the continuous function
of the slanted barrier yz cross-section after the coordinate conversion.
We define ζ(ŷ) and a(ŷ) below.

To define ζ(ŷ), note that in Claim 1 we define the cross-section of the
slanted barriers as the interpolation of points (ρi, ζi), i = 1, ...,m.
These points are essentially the desired y, z coordinates of the barrier
for each row of viewers (note that the spacing is uniform as a function
of the viewing row, but results in a non-linear spacing along the
slanted barrier curve). To define the slanted barrier in the new
coordinate system ŷ, ẑ we simply rotate the keypoints using[

ρ̂i
ζ̂i

]
= r̂

[
ρi
ζi

]
. (28)

We will denote these points as ζ̂i(ŷi) where ŷi = ρ̂i and interpolate
between them to get the continuous function ζ̂(ŷ).

We will now explain how to calculate the parabola power a(ŷ) based
on Fig. 23. For a parabolic mirror to focus light at a distance f
from the plane perpendicular to its normal, it should have a power
of a = − 1

4f
. However, we want the light to focus at a distance

τ − |ζi| from the screen, where τ − |ζi| is the distance along the
(original) z axis, rather than along the normal direction n̄. To convert
the desired focusing point into a parabola power, we need to find a

Figure 23: Designing the focal power of the slanted horizontal mirror in
order to focus rays on the screen.

focusing distance f such that a plane at distance f from the slanted
barrier (that is a plane shifted by a distancef along the direction n̄)
intersects the screen at the required point.

Let us denote the vertical angle of rays reaching the slanted barrier
as α(ŷ), and recall that the surface average normal direction is θ.
From the geometrical relationship applied to the yellow and blue
triangles in Fig. 23, we can get to the relation between f(ŷ) and the
distance from the screen τ − |ζi|:

From the yellow triangle:

f = cos(α(ŷ) + θ) · v. (29)

From the blue triangle:

v =
(τ − |ζi|)

cos(π − (α(ŷ) + 2θ))
. (30)

From Eqs. (29) and (30), it can be seen that if we want the rays to
focus at a distance τ − |ζi| from the screen, then f(ŷ), the focus
distance in the normal direction, should be:

f(ŷ) =
(τ − |ζi|) cos(α(ŷ) + θ)

cos(α(ŷ) + 2θ)
. (31)

The above formula gives a good approximation for the surface, but
it is not accurate, since for the simplicity of the parameterization we
use the mean normal direction n̄ rather than the exact normal at each
point on the slanted surface. Therefore, we perform a non-linear
optimization to try to find more accurate a(ŷ) values. To implement
the optimization, we use a ray-tracing function whose output is the
distance between the intersection of each ray and the intended focus-
ing point on the screen, as a function of the parabola powers a(ŷ).
We use this function within Matlab non-linear optimization function
fminunc, seeking values of a(ŷ) that will reduce the focusing error.

Appendix E

Table 2 provides the transitions grade (TG) evaluated on our pro-
posed display vs. the simple lenticular sheet display.



Table 2: Transitions Grade (TG) measures for the proposed display vs. a simple lenticular sheet display

Extreme seat - our display

angular
position
1

angular
position
2

angular
position
3

angular
position
4

angular
position
5

angular
position
6

angular
position
7

angular
position
8

angular
position
9

row 1 38.52 18.97 7.81 2.45 0.53 0.33 1.51 5.02 22.06
row 2 41.66 14.87 5.42 1.56 0.31 0.40 1.64 5.71 25.59
row 3 42.19 12.80 4.70 1.45 0.40 0.51 1.79 6.00 27.24
row 4 40.52 12.19 4.65 1.65 0.58 0.63 1.96 6.53 27.96
row 5 38.73 12.18 4.92 2.00 0.83 0.82 2.15 7.01 28.14
row 6 37.23 13.05 5.59 2.48 1.14 0.95 2.21 7.00 26.98
row 7 35.72 13.38 6.09 2.93 1.45 1.14 2.40 7.26 26.16
row 8 34.66 13.81 6.78 3.43 1.76 1.35 2.53 7.27 24.94
row 9 33.79 13.99 7.39 3.88 2.11 1.56 2.64 7.27 24.11

row 10 32.94 14.31 8.04 4.45 2.46 1.75 2.67 7.09 23.19

Extreme seat - lenticular sheet display

row 1 26.20 5.91 2.07 0.60 0.24 1.01 2.64 6.55 23.66
row 2 10.54 9.90 9.18 8.68 8.32 8.03 7.73 7.38 8.72
row 3 9.18 9.22 9.22 9.15 8.79 8.41 8.07 7.82 9.35
row 4 8.99 9.00 9.00 8.97 8.85 8.55 8.28 8.71 9.21
row 5 9.08 9.06 9.04 8.81 8.59 8.35 8.24 8.96 9.03
row 6 8.91 8.63 8.43 8.31 8.27 8.26 8.74 9.23 9.26
row 7 8.65 8.68 8.70 8.67 8.63 8.73 9.35 9.50 9.39
row 8 9.00 8.88 8.62 8.47 8.25 8.55 9.03 9.00 9.05
row 9 8.65 8.67 8.65 8.61 8.76 9.25 9.35 9.31 9.38

row 10 8.58 8.40 8.34 8.35 8.67 9.05 9.04 9.06 9.07

Middle seat - our display
row1 36.55 9.29 2.60 0.57 0.12 0.34 1.83 7.49 35.28
row 2 40.69 6.47 1.37 0.18 0.01 0.08 0.89 5.20 39.28
row 3 42.56 5.02 0.85 0.06 0.00 0.02 0.49 4.13 41.24
row 4 43.25 4.51 0.63 0.03 0.00 0.00 0.33 3.81 42.13
row 5 43.47 4.49 0.57 0.02 0.00 0.00 0.26 4.01 42.52
row 6 42.92 4.90 0.62 0.04 0.00 0.00 0.29 4.40 41.96
row 7 42.35 5.47 0.67 0.05 0.00 0.01 0.34 4.84 41.26
row 8 41.61 6.11 0.78 0.08 0.00 0.01 0.43 5.38 40.74
row 9 41.12 6.58 0.97 0.10 0.00 0.02 0.54 5.86 39.89

row 10 40.45 7.16 1.19 0.14 0.01 0.03 0.67 6.25 39.41

Middle seat - lenticular sheet display

row 1 24.49 0.29 0.00 0.00 0.00 0.00 0.00 0.95 30.55
row 2 6.84 7.94 9.70 10.26 10.37 10.36 10.22 9.03 7.63
row 3 9.15 9.11 9.05 8.96 8.41 8.00 8.71 8.97 9.06
row 4 8.77 8.83 8.90 8.92 8.95 8.98 8.96 8.96 8.92
row 5 9.07 9.05 9.02 9.01 8.96 8.48 8.02 8.68 9.00
row 6 8.29 8.34 8.95 9.23 9.23 9.25 9.25 9.24 9.24
row 7 9.45 9.19 8.72 8.65 8.62 8.62 8.68 8.69 8.66
row 8 9.03 9.05 8.98 9.02 9.04 8.92 8.62 8.22 8.27
row 9 8.64 8.63 8.67 8.63 8.66 9.12 9.36 9.33 9.39

row 10 8.36 8.71 9.02 9.05 9.05 9.06 9.05 9.06 9.06


