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Figure 1: Two bijective seamless mappings between models of two humans are shown in (c),(d), generated by our algorithm from the two
different cut-placements in (a),(b) (respectively), cuts visualized as colored curves. The two maps interpolate the same set of user-given
landmarks, shown as colored spheres. The maps are visualized by texturing the male model and transferring the texture to the female model
using the mappings. The algorithm is not affected by the choice of cuts: the maps do not exhibit any artifacts near the cut nor does the poor
cut-correspondence (e.g.the torso in (b)) affect them, and in fact for the two different cut-placements, the produced maps are identical.

Abstract

We introduce a method for computing seamless bijective mappings
between two surface-meshes that interpolates a given set of corre-
spondences.
A common approach for computing a map between surfaces is to
cut the surfaces to disks, flatten them to the plane, and extract the
mapping from the flattenings by composing one flattening with the
inverse of the other. So far, a significant drawback in this class of
techniques is that the choice of cuts introduces a bias in the com-
putation of the map that often causes visible artifacts and wrong
correspondences.
In this paper we develop a surface mapping technique that is indif-
ferent to the particular cut choice. This is achieved by a novel type
of surface flattenings that encodes this cut-invariance, and when
optimized with a suitable energy functional results in a seamless
surface-to-surface map.
We show the algorithm enables producing high-quality seamless
bijective maps for pairs of surfaces with a wide range of shape
variability and from a small number of prescribed correspondences.
We also used this framework to produce three-way, consistent and
seamless mappings for triplets of surfaces.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling
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1 Introduction

Computation of mappings between surfaces is a core problem in
computer graphics and vision, medical imaging and related fields
of research. Many applications require the map to (i) be bijective,
so as to establish point-to-point correspondences between the sur-
faces, and (ii) posses low-distortion to enable transferring of surface
attributes with as little corruption as possible.

The basic task tackled in this paper is the computation of a low-
distortion piecewise-linear bijective map f : A → B between two
surfaces A, B, while interpolating a set of corresponding landmark
points provided on the two surfaces, pi ∈ A, qi ∈ B.

A common approach for constructing such a map is to first cut the
two surfaces consistently into topological disks (one disk, or many)
and then map the disks to a common planar domain via some opti-
mization process. The surface mapping is then induced according
to the overlay of the flattened disks of one mesh over the flattened
disks of the other mesh. This method often requires prescribing cor-
respondences also along the cuts [Aigerman et al. 2014] or alterna-
tively facing the challenging problem of optimizing also the disk-
boundary correspondence and/or the cuts directly over the surfaces
[Schreiner et al. 2004; Kraevoy and Sheffer 2004]. In most cases
the choice of cuts affects the resulting mapping, and quite often the
cut area will exhibit visible artifacts such as non-smoothness, dis-
tortion bias or wrong correspondences.

The goal of this paper is to develop an algorithm for constructing
low-distortion bijective mappings of surfaces that are seamless, that
is, indifferent to the choice of cuts, thereby relieving the user from
the need to worry about cut placement. The key new insight is that
there exist a set of rather simple conditions that, when enforced
on the flattenings of the surfaces A,B, assures the resulting map
f : A → B between the surfaces is seamless. We name flattenings
which satisfy these conditions G-flattenings, where G stands for a
group of transformations which relates planar copies of the mesh
cut curves.



Figure 1 shows an example of two different mappings, (c) and (d),
between two human models from the FAUST dataset [Bogo et al.
2014], computed by the algorithm when provided with two differ-
ent cut placements, (a) and (b), respectively. Although the cuts are
placed in different locations in (a) and (b), the two computed map-
pings are practically identical, and seamless, as there are no artifacts
near the seams and the wrong correspondence of the seams has no
effect on the produced map. See also Figure 6, for an experiment in
which we completely change the chosen cuts.
We demonstrate that the algorithm developed in this paper can be
used to produce high-quality bijective and seamless mappings be-
tween surface-meshes, and show, both theoretically and practically
that the resulting maps are indifferent to homotopic changes in the
cuts of the surfaces.

2 Previous work
Surface maps via base domains. Our work builds upon
the common approach of computing surface maps using mesh-
parameterizations ([Lee et al. 1999; Praun et al. 2001; Michikawa
et al. 2001; Lin et al. 2003; Sheffer et al. 2006; Hormann et al.
2007]). In this approach, one computes mappings of the two
meshes into a simpler base-domain, and then defines the surface
map as the composition of the inverse of one parameterization over
the other parameterization. In [Kraevoy and Sheffer 2004; Bradley
et al. 2008; Schreiner et al. 2004] coarse meshes are used as the
base domain. In [Aigerman et al. 2014] the mappings to the com-
mon planar domain are not required to be injective but rather only
locally-injective, however they also specify the correspondences
along geodesics connecting the input landmarks, thereby prescrib-
ing the image of the seams. [Steiner and Fischer 2005] generate
seamless parameterizations of a mesh. [Tsui et al. 2013] com-
pute a mapping between two spherical meshes interpolating a set of
prescribed correspondences by first establishing a hyperbolic cone
metric over the two surfaces and then minimize the Dirichlet energy
of an initial plausible mapping between them.

Generalized mappings. Several works extend the notion of
mappings, see [van Kaick et al. 2011] for a detailed survey. A
common approach is to use ideas from metric-geometry, such as
the Gromov-Hausdorff distance [Bronstein et al. 2006; Mémoli and
Sapiro 2005]. Others use spectral embeddings [Jain et al. 2007;
Ovsjanikov et al. 2010], or represent maps in the functional lin-
ear space [Ovsjanikov et al. 2012]. [Panozzo et al. 2013] represent
maps using generalized weighted averages. Although able to pro-
duce good correspondences, these methods solve a slightly different
problem as they do not produce a continuous bijective map.

Quadrangulation algorithms. Our work is also related to pre-
vious work dealing with quad-meshing (for a recent survey see
[Bommes et al. 2013]). The general quadrangulation approach is
to cut the mesh, parameterize it, and then overlay an integer-grid
over the parameterization to define the quads. A main issue is en-
suring the grid connects across the cuts in a seamless manner. This
is guaranteed by requiring that planar copies of the same cut are
related by automorphisms of the planar grid, i.e., rotations by inte-
ger multiplication of π/2 and integer translations. Cross fields are
used to guide the parameterization [Ray et al. 2006; Kälberer et al.
2007; Ray et al. 2008; Knöppel et al. 2013]. [Tong et al. 2006] use
discrete harmonic forms to compute two scalar fields which define
the quadrangulation. Bommes et al., [2009] apply a mixed integer
solver to ensure the grid connects across the seam while minimiz-
ing a smoothness energy defined via a cross-field. [Myles and Zorin
2012; Myles and Zorin 2013] compute a seamless metric while
placing cone singularities to reduce curvature at other locations.
Our method shares quite a few similar components with quadran-
gulation methods, in particular the fact that a transformation group
relates copies of the cuts in the plane. The crucial difference is that
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Figure 2: G-flattening of a sphere. First the surface is cut to a disk
(middle), and then flattened to the plane (right) so that twin seams
(visualized using the same color) are related by transformations
from a group of affine motions g ∈ G. Here G was chosen to be the
group of similarity transformations, thus each seam is a scaled and
rotated copy of its twin.

in our case we apply this procedure to two surfaces simultaneously.
Since the two parameterizations of the two surfaces are composed
one with the inverse of the other to yield the final map, we only
need to require that the transformation group G is invariant to the
energy minimized on the flattenings. This allows using continuous
groups like planar similarities which are tractable and are easy to
optimize over, in strong contrast to the discrete group of planar grid
automorphisms used in quadrangulations.

3 Problem statement and overview

We assume to be given two surface-meshes, A and B, with ver-
tices, edges and faces (VA,EA,TA), (VB,EB,TB) (respectively).
We are also given as input a set of corresponding landmarks
P = {pi} ⊂ VA, Q = {qi} ⊂ VB. The output of our algorithm
is a bijective surface-to-surface mapping f : A → B that maps the
landmarks correctly, i.e. f(pi) = qi.

The algorithm consists of three stages: 1) The two surfaces A,B
are cut into topological disks Ā, B̄; 2) The two disks are mapped
to the plane, each via a G-flattening, where G denotes a subgroup
of the affine transformations. The G-flattenings of Ā and B̄ are
optimized to minimize some distortion energy E which is invariant
to the group G; and 3) The final map f : A→ B is computed from
the flattenings.

The key ingredient in the algorithm above, and the reason the re-
sulting map f is seamless is the G-flattening and the way it is used
to define f . We proceed by laying out the foundations of our algo-
rithm by first introducing the definition forG-flattenings of a single
surface-mesh in Section 4. We then discuss how two G-flattenings
can be used simultaneously to define a bijective mapping between
surface-meshes in Section 5. In Section 6 we define the concept
of seamless surface maps and characterize the G-flattenings which
yield them. In Section 7 we present the details of our algorithm
to compute seamless G-flattenings in practice and extract the final
map. Section 8 presents an evaluation of the algorithm.

4 G - Flattening

In this section we define the concept ofG-flattening, a specific type
of flattening of disk-type meshes which is instrumental in our con-
struction of seamless mappings. For this definition we may focus
on a single surface-mesh, A.

cut-graph. Before flattening is possible, the surface needs to be
cut to a topological disk, as illustrated in Figure 2. In the first step
of the algorithm, a cut-graph GA ⊂ EA spanning the landmarks P
is computed, and the surface is cut along it into a topological disk.
The cut-graph consists of a set of disjoint seams GA = {α`}, where
a seam, denoted henceforth without a subindex as α ∈ GA, is a



simple path1 of edges, α ⊂ EA, connecting a pair of landmarks
pi, pj ∈ P , e.g., in Figure 2 (left), the seam α connects p1 to p2.
Cutting A along GA transforms the mesh into a topological disk,
as illustrated in Figure 2 (middle). We denote the cut mesh by Ā;
Ā is constructed by duplicating all vertices along the seams, and
disconnecting triangles on opposite sides of a seam. The process
of cutting the meshes creates two “twin” copies of each seam: the
left side and the right side of the seam, which are denoted for a
seam α as αl, αr , as depicted in Figure 2 (middle). We visualize
the correspondence between twin seams by coloring them with the
same color. Similarly, the cutting duplicates each landmark pi ∈ P
several times, where the number of copies of each landmark is the
number of seams connected to it, for example in Figure 2 the num-
ber of copies of the red landmark p1 is three, one of which is ak.
The landmark-copies are colored according to the color of the orig-
inal landmark. To simplify notation we will denote the duplicated
landmarks by P̄ = {ak}, where we assume we have logged for
each duplicate landmark ak its original landmark pi.

Definition of G-flattenings. The flattenings considered in
this paper are simplicial mappings of the cut surface-meshes,
Φ : Ā→ R2, i.e., affine when restricted to any face of the mesh
and globally continuous. Simplicial maps are defined by prescrib-
ing the image Φ(v) ∈ R2 of every vertex v ∈ VĀ, and extending
linearly to every face t ∈ TĀ.

A G-flattening is a specific type of a simplicial map: Given a sub-
group G = {g} of planar affine transformations, Φ : Ā → R2 is a
G-flattening if it satisfies the following two properties:

1. Local-injectivity. That is, Φ is injective when restricted to
every 1-ring of Ā, except possibly at the landmarks.

2. G seam-transformations. The planar images of both copies of
each seam are related by a seam-transformation in the group
G. That is, for every seam α ∈ GA which the cutting has split
into αl, αr , there exists gα ∈ G such that

Φ(αr) = gα ◦ Φ(αl). (1)

A specific type of G-flattenings is used, for example, in surface
quadrangulation [Bommes et al. 2013] where the particular choice
of G is the group of integer-grid automorphisms in the plane,
namely rotations by integer multiplications of π/2 and integer
translations. For seamless surface mappings, the choice of G is
related to the type of energy one wishes to optimize. As we will
mainly optimize conformal distortion, we focus on the similarity-
transformation group, that is the group of scaled rotations, which
can be parameterized as the linear space,

G =

{
x 7→ Tx+ η

∣∣∣∣ T =

(
a −b
b a

)
∈R2×2, η ∈ R2×1

}
(2)

See Figure 2 (right) for an illustration of a G-flattening with this
choice of G, where a black arrow marks seams that are related by a
seam-transformation from G. The theory we develop, however, is
also applicable to other subgroups of affine transformations.

5 Surface maps induced by G-flattenings

Having defined G-flattenings on a single surface-mesh, in this sec-
tion we use G-Flattenings of a pair of surface meshes to define a
family of bijective surface maps f : A → B. A main benefit in
this representation is that the seams are not necessarily mapped to

1a path is simple if it is intersection-free.
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Figure 3: The two surfaces (left, right) are cut according to the
same cut-logic (middle).

seams. Later, in Section 6, we will explain how to choose a seam-
less representative from this family.

Similarly to the surface A in Section 4, we assume to have also cut
the second surface-mesh, B, to a topological disk B̄ using a cut-
graph GB = {β`} which is consistent with GA, i.e., they both share
the same cut-logic, as depicted in Figure 3, middle. Namely, there is
a cut α ∈ GA connecting the landmarks pi, pj if and only if there is
a cut β ∈ GB connecting qi, qj . We denote by Q̄ = {bk} the copies
of the landmarksQ created in the cutting process of B, and note that
the cut-graphs induce a bijective correspondence ak ↔ bk between
the duplicated landmarks P̄ and Q̄ in Ā and B̄, respectively.

Given two G-Flattenings, Φ : Ā → R2, Ψ : B̄ → R2, we now
consider the question: when do Φ,Ψ define a bijection f : A→ B
between the uncut meshes? If Φ,Ψ were both bijective mappings
into the same planar domain, we could have defined f = Ψ−1 ◦Φ.
In that case corresponding seams α, β are mapped to one another
as boundaries of the cut meshes.

As it turns out, for G-flattenings, the condition that seams are
mapped to seams is not necessary for defining a bijective mapping
between the surfaces. Leaving aside rather pathological cases for
now, to ensure Φ, Ψ define a bijective f : A → B it is enough
to merely add the requirement that Φ and Ψ map copies of match-
ing landmarks to the same planar location, and that corresponding
seams have the same seam-transformation. We refer to these re-
quirements as the G-mapping-conditions:
Definition 1. Φ : Ā → R2,Ψ : B̄ → R2 satisfy the G-mapping-
conditions if

1. Φ,Ψ are G-flattenings.

2. Corresponding seams α, β share the same seam-
transformation, that is gα = gβ .

3. All corresponding copies of landmarks ak, bk satisfy

Φ(ak) = Ψ(bk).

For the choice of the similarity-transformations group for G, the
second condition is implied from the third one, as a similarity is
uniquely defined by prescribing the image of two points.

To see how the G-mapping-conditions define a bijective map
f : A→ B consider the example depicted in Figure 4. In (a), two
flattenings Φ,Ψ that satisfy the G-mapping-conditions are shown.
By using the seam-transformations we can cut pieces from the flat-
tening of Ā, that is from Φ(Ā), and move them to match the flat-
tening of B̄, as explained next: due to the G-mapping-conditions,
two corresponding seams α, β share the same seam-transformation,
gα = gβ . This entails that the area confined between the flat-
tenings of αl and βl is in fact identical, up-to applying the seam-
transformation gα, to the area confined between the flattenings of
αr and βr . Hence, cutting these areas from the G-flattening of Ā
accordingly and transforming them with gα, as shown for one area
in (b), makes the image of Φ identical to that of Ψ, as shown in
(c). These operations are equivalent to moving the seams of GA on
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Figure 4: Φ,Ψ which satisfy the G-mapping-conditions define a bijective map between A and B. In (a), two G-flattenings are shown.
Although the images of the mappings Φ,Ψ do not coincide, the mutually-exclusive parts in orange and blue are perfect similarities of one
another, as indicated with black arrows. As shown in (b), blue pieces can be cut and matched using the seam-transformation. Repeating this
process leads to (c) where the planar images of Φ,Ψ are identical, allowing the definition of the map f = Ψ−1 ◦ Φ. These cut-and-paste
operations are equivalent to moving the seams on the mesh A.

the surface A. More precisely, each such operation replaces a single
seamα ∈ GA with a new oneα′. Note that after each such operation
the flattenings Φ,Ψ continue to satisfy the G-mapping-conditions.

Upon reaching the situation where the images of Φ,Ψ coincide,
the mapping f : A → B can be inferred. In cases in which the
mappings are injective, like the case depicted in Figure 4, one can
simply define f = Ψ−1 ◦ Φ. More generally, the map f can be
defined also in cases where Φ,Ψ are locally, but not globally in-
jective. In these cases, after applying the cut-and-paste operations
and reaching the situation where the images of Φ,Ψ coincide, the
map f can be defined via the implicit relation Φ = Ψ ◦ f , and can
be computed using a lifting algorithm, similar to the one detailed
in Aigerman et al., [2014]. That algorithm sequentially computes
the map piece by piece by using the fact that locally the flattenings
are injective and can be inverted. In practice, it is not required to
actually perform the cut-and-paste operations described above, and
the lifting algorithm can be directly adapted to our case by “jump-
ing across the seams” using the seam-transformations. This will be
detailed in Section 7.

As noted above, there are some pathological cases where local
injectivity of the flattenings, and the fact that their images coin-
cide, is not enough to guarantee the existence of a bijective map
f : A → B. As will be explained in Subsection 7.4, the algorithm
we use to calculate Φ,Ψ is nevertheless guaranteed to avoid these
cases.

6 Seamless mappings

In this section we detail how to compute a seamless mapping from
the family of mappings defined in the previous section. Intuitively,
a map is seamless if it presents no bias towards the cuts. The key
observation is that a pair of flattenings Φ : Ā→ R2,Ψ : B̄→ R2

which satisfy the G-mapping-conditions will define a seamless
mapping between the surfaces f : A → B if they minimize a G-
invariant energy functional. Specifically, we define the joint energy
E of Φ and Ψ as

E(Φ,Ψ) = E(Φ) + E(Ψ),

and ask that E is G-invariant, as explained next.

G-invariant energy. For achieving seamless mappings the en-
ergy functional E, and the group of transformations G should be
related. More specifically, we require E to be invariant to com-
positions with transformations from the group G, that is, for all

simplicial flattenings Φ we ask that

E(g ◦ Φ) = E(Φ), ∀g ∈ G. (3)

In this paper we choose E to be the L2 average of the conformal
distortion, which is invariant to composition with similarity trans-
formations, our choice for the group G. We define,

E(Φ) =
∑
tj∈TĀ

Dconf (Aj)
2 |tj | , (4)

where Aj ∈ R2×2 is the linear part (differential) of the affine map
Φ|tj mapping the face tj to the plane, Dconf(A) = Σ(A)/σ(A)
is the conformal distortion of the matrix A, namely the ratio of the
maximal (Σ(A)) and minimal (σ(A)) singular values ofA, and |tj |
is the area of the face tj . AlthoughDconf(A) is not a convex energy
and poses a certain challenge to optimize, we are unaware of exist-
ing simpler formulations of energies which measure other notions
of discrete conformality of simplicial maps that are guaranteed to be
similarity-invariant, produce locally-injective mappings, and allow
easy incorporation of positional constraints. For instance, Least-
Squares-Conformal-Maps [Lévy et al. 2002] measures the L2 de-
viation of the mapping from satisfying the Cauchy-Riemann equa-
tions, and is convex and quadratic but is not scale invariant and in
general does not guarantee local-injectivity as the mapping may tri-
angles .

We are now ready to formulate the optimization problem that leads
to a seamless mapping f ,

min
Φ,Ψ

E(Φ,Ψ)

s.t. Φ,Ψ satisfy the G-mapping-conditions.
(5)

The algorithmic details of how we solve problem (5) in practice are
discussed in Section 7. We next explain in what sense do the local
minimizers Φ∗,Ψ∗ of (5) define a seamless mapping f : A → B.
We first formally define what is a seamless mapping, and then show
that f constructed from Φ∗,Ψ∗ satisfies this definition.

Definition of seamless mappings. To properly define which
mappings {f} that are defined via a pair of G-flattenings Φ : Ā→
R2, Ψ : B̄ → R2 are seamless, we need to introduce the notion of
homotopies of seams and cut-graphs. A seam homotopy is a mod-
ification of a seam α ∈ GA on the mesh A by repeatedly applying
the atomic operation of continuously moving faces from one side of
the seam to the other side while maintaining that the seam is simple.
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Figure 5: For a G-flattening, one may homotopically modify a
seam while modifying the flattening’s boundary using the seam-
transformation.

For example, Figure 5 shows a homotopy of the red seam (top-left)
which moves two faces (in green) from one side of the seam to an-
other (top-right). A homotopy of the cut-graph is a homotopy of
the seams such that seams do not intersect each-other and their end
points remain at the landmarks.

Now, consider a mapping f : A→ B defined by a pair of flattenings
Φ∗ : Ā→ R2, Ψ∗ : B̄→ R2 locally minimizing (5).
Definition 2. We say that f is seamless if for an arbitrary homo-
topic deformation of the cut-graphs, G†A,G†B, there exist a pair of
flattenings Φ†,Ψ† of these differently-cut meshes such that Φ†, Ψ†

1. Satisfy the G-mapping-conditions,

2. Define the same surface map f : A→ B as Φ∗,Ψ∗, and

3. Are also local minimizers of E , satisfying E(Φ†,Ψ†) =
E(Φ∗,Ψ∗).

Intuitively, the definition says that f constructed from (Φ∗,Ψ∗) is
seamless if one can choose any other arbitrary (but homotopic) cut-
graphs, and construct the same map f by minimizing the same en-
ergy functional.

We now show that in the case E is G-invariant, it follows that a
local minimum (Φ∗,Ψ∗) of (5) indeed defines a seamless map in
the above sense. Consider some arbitrary homotopic cut-graphs
G†A,G†B, and let us show the existence of Φ†,Ψ†. Consider the cut-
graph GA and its homotopic deformation to G†A. Each step of the
homotopy moves a seam by one face tj at a time. Each such opera-
tion induces a corresponding change to the G-flattening Φ, moving
the face tj from one copy of a seam to to its twin copy, using the
relevant seam-transformation from G. Two operations of this sort
(moving two faces) are shown in Figure 5, bottom row. These oper-
ations can be applied repeatedly and independently both to Φ∗ and
Ψ∗ while maintaining that the G-mapping-conditions are satisfied.
We thus achieve Φ†, Ψ† that satisfy the G-mapping-conditions and
correspond to the new cut-graphs G†A, G†B. By construction Φ†,Ψ†

define the same map f as Φ∗,Ψ∗. Lastly, since E is invariant to
compositions with g ∈ G we have that E(Φ†) = E(Φ∗) and
E(Ψ†) = E(Ψ∗) and hence E(Φ∗,Ψ∗) = E(Φ†,Ψ†). As the
procedure above is reversible, Φ∗,Ψ∗ is a local minimum of E if
and only if Φ†,Ψ† is a local minimum. Thus we’ve shown,

Theorem 1. If E is G-invariant, and the flattenings (Φ∗,Ψ∗)
are local minimum of problem (5), then the bijective mapping
f : A→ B defined via (Φ∗,Ψ∗) is seamless.

We summarize this section in Algorithm 1, detailing the framework
for computing bijective seamless mappings between two surfaces,
given a set of corresponding landmark points. In the next section
we complete the picture by providing the implementation details
for the algorithm.

Algorithm 1: Computation of seamless surface-maps
input : Meshes A,B

Landmarks P ⊂ VA,Q ⊂ VB,
Transformation group G, and G-invariant energy E.

output: Bijective mapping f : A→ B

1 Cut the two meshes A,B into the disks Ā, B̄.
2 Compute Φ : Ā→ R2,Ψ : B̄→ R2 by optimizing problem (5).
3 Extract the surface-map f : A→ B from the flattenings.

7 Algorithm and implementation details

We now complete the implementation details of the algorithm for
computing seamless bijective mappings between surfaces as out-
lined in Algorithm 1. We will first elaborate on the cutting process,
move to the optimization of problem (5), and finish with the extrac-
tion of the map from the flattenings. Each of these three steps is
self-contained and does not depend on the implementation of the
other two.

7.1 Cutting the meshes

The goal of this step is to produce two consistent cut-graphs
GA,GB using the input of the corresponding landmark points P ⊂
VA,Q ⊂ VB on the two surfaces A,B. For simplicity we assume
in the following that the surface is of genus zero, however the algo-
rithm can be readily applied to any genus, as exemplified in Figure
11.

The algorithm is initialized with Ā = A, B̄ = B and empty cut-
graphs GA = ∅,GB = ∅. In each iteration, while not all landmarks
participate in the cut-graphs, a pair of seams, α ⊂ EĀ connecting
pi /∈ GA, and pj ∈ GA, and β ⊂ EB̄ connecting qi /∈ GB, qj ∈ GB,
are added to the cut-graphs GA and GB, respectively. The meshes
are then cut accordingly and Ā, B̄ are updated.

As the computed maps are invariant to homotopic changes of the
cut-graphs (as explained in Section 6), the particular choice of cuts
in a fixed homotopy class does not affect the resulting map. There-
fore, we use the convenient choice of Dijkstra’s algorithm for pro-
ducing the seams and cutting the meshes. The particular choice of
seams α, β to be added at each iteration of the above algorithm is
decided as follows. We iteratively take the next seams α, β to be the
ones with minimal sum of distances distA(pi, pj) + distB(qi, qj)
among all pairs pi /∈ GA, pj ∈ GA, qi /∈ GB, qj ∈ GB. The dis-
tance functions distA, distB in A and B are measured using a flat
metric produced by mapping the cut meshes Ā, B̄, after the first
cut is performed, to the unit disk using Mean Value Coordinates
([Floater 2003]). This is a heuristic aimed at producing cut-graphs
that induce mappings in the natural homotopy class of mappings.
Although not guaranteed, it produced natural homotopic class in all
examples tested in this paper. We discuss the affect of choosing
cut-graphs of different homotopy classes in Section 8.



The above algorithm is guaranteed to produce topologically con-
sistent cut meshes Ā, B̄, in the sense that it is always possible to
construct a homeomorphism f0 : A → B by prescribing two flat-
tenings Φ0 : Ā → R2, Ψ0 : B̄ → R2 that satisfy the G-mapping-
conditions. Note that previous works ([Kraevoy and Sheffer 2004;
Schreiner et al. 2004]) map the surface to a coarser version and
therefore cut it into patches rather than along a tree. This requires
care to assure no blocking of paths, or inconsistent orientation of
paths occurs.

7.2 Optimization

We now elaborate on the optimization of problem (5). This task
poses two challenges: first, the energy E is non-convex (since the
conformal energy Dconf(A) is non-convex), and second, the con-
straints of the G-mapping-conditions on Φ,Ψ are bilinear. We first
explain how the optimization of the energy is performed and then
how to incorporate the constraints.

Setting. At this stage of the algorithm we are provided with two
disk-type surface-meshes Ā, B̄. Our goal is to compute two sim-
plicial flattenings Φ : Ā → R2, Ψ : B̄ → R2 that satisfy the
G-mapping-conditions and locally minimize the L2 average con-
formal distortion. The free variables in the optimization problem
are the planar vertex images of Ā and B̄ under Φ and Ψ (respec-
tively), that is Φ(v), ∀v ∈ VĀ and Ψ(v), ∀v ∈ VB̄. The differ-
entials Aj of the simplicial flattenings are expressed, as usual, as
linear combinations of the variables, as described in Appendix B.

Optimization of the energy. The energy E is a sum of two en-
ergies, E(Φ) and E(Ψ), that measure the L2 average conformal
distortion of the simplicial flattenings Φ and Ψ, as defined in Equa-
tion (4). We concentrate on the optimization of only E(Φ) (the
combination of both E(Φ), E(Ψ) follows naturally). We suggest
a novel way to optimize E(Φ) using a re-weighting scheme of the
isometric distortion energy,

E′(Φ, c) =
1

4

∑
tj∈TĀ

[Diso(cjAj)]
4 |tj | , (6)

where

Diso(A) =

(
Σ(A)2 +

1

σ(A)2

)1/2

, (7)

Aj ∈ R2×2 is the differential of Φ restricted to face tj , and
c =

(
c1, ..., c|TĀ|

)
∈ R|TĀ| is a vector of weights representing

the area-distortion of each face.
The motivation in casting the conformal energy as in Eq. (6) stems
from the fact that the isometric distortion (7) has an efficient convex
relaxation. The following proposition, proven in Appendix B, as-
serts that minimizing this alternative energy will yield minimizers
of the original L2 conformal energy:

Proposition 2. For a given non-degenerate simplicial map Φ,

E(Φ) = min
c>0

E′(Φ, c),

where the optimal c is given by

c∗j = |det (Aj)|−1/2 . (8)

Note that Eq. (8) prescribes cj to be one over the area-distortion of
face j; in case A is a similarity then cj , as defined by Eq. (8) is the
reciprocal of the conformal factor of the face tj .

This leads to the following scheme for optimizingE(Φ): Start from
an initial feasible Φ0, set c = 1 (a vector of all ones), and alternate

between optimizing E′(Φ; c) as a function of Φ while c is held
fixed, and updating c according to Eq. (8) while Φ is fixed. For the
optimization of E′(Φ; c) as a function of Φ we employ the convex-
ification method of [Aigerman et al. 2014]. For completeness, in
Appendix B we provide all the necessary details of the optimiza-
tion of E′(Φ; c). This algorithm is guaranteed to reduce the energy
E(Φ) monotonically, and maintain local injectivity of Φ, except
possibly at the landmarks.

G-flattening constraints. For incorporating the G-mapping-
conditions on Φ,Ψ, we first note that local injectivity of Φ,Ψ is
already assured by the optimization described above. Furthermore,
the constraints Φ(ak) = Ψ(bk) for all corresponding landmark
copies ak ↔ bk are linear in the optimization variables (remem-
ber that the landmarks are vertices in the original meshes). Lastly,
theG-mapping-conditions require that for each seam α, there exists
a similarity-transformation gα ∈ G which satisfies

Φ(αr) = Tα · Φ(αl) + ηα,

where Tα ∈ R2×2, ηα ∈ R2×1 are respectively the linear-
transformation part and the translational part which make up gα
as defined in Eq. (2). These constraints are bilinear in the vari-
ables, and we optimize them by interleaving. We use an equivalent
symmetric formulation to this constraint and introduce an auxiliary
copy ᾱ of the seam α and require

T lαᾱ+ ηlα = Φ(αl), T rαᾱ+ ηrα = Φ(αr), (9)

g

gr

gl

α

α

r

αl
α

α

where T lα, ηlα and T rα, ηrα are unknowns defin-
ing two similarity transformations, glα, g

r
α

which relate the seam copy ᾱ with its realiza-
tions αl, αr (see inset). We alternate between
fixing T lα, T rα for all α and fixing ᾱ in the op-
timization. In both cases Eq. (9) becomes a linear constraint that is
added to the optimization. We eliminate the translation degree of
freedom of ᾱ by fixing one end point of ᾱ. The global rigid-motion
invariance of the energy E′ is eliminated by adding a constraint
fixing one landmark to its current place and a second landmark to
lie on the infinite ray spanned between it and the first landmark.
Lastly, for numerical stability we limit the area scale of all faces
from above and below 100−1 ≤ cj ≤ 100.

Initialization. The optimization algorithm requires a pair of fea-
sible initial mappings Φ0,Ψ0. These are constructed as follows.
We use Mean Value Coordinates
[Floater 2003] to produce G-
flattenings by prescribing the images
of the boundaries of Ā, B̄ to lie on
the same convex regular planar poly-
gon where copies of landmarks are
mapped to vertices of the polygon
and the seams are mapped to straight
lines, with vertices equally-spaced
across each seam, as depicted in the
inset. This ensures that a similarity
g ∈ G (in-fact, a rigid motion) exists between every pair of
matching seams. Convex combination maps to a convex domain
are guaranteed to be globally injective, and by construction
corresponding copies of landmarks are mapped to the same vertex
of the regular planar polygon. It follows that Φ0,Ψ0 satisfy the
G-mapping-conditions. In this case the mapping f0 : A → B is
defined via f0 = Ψ−1

0 ◦ Φ0. Note this map is not seamless as
Φ0,Ψ0 are not local minimizer of E , however it serves well as an
initial feasible guess.

We summarize the optimization of problem (5) in Algorithm 2. The
algorithm monotonically decreases the energy E until converging to



the two flattenings Φ∗,Ψ∗ which are a local minimum of Problem
(5), hence defining a seamless surface map f : A → B, as defined
in Section 6.

Algorithm 2: Optimization of flattenings

input : Cut meshes Ā, B̄
output: Φ∗ : Ā→ R2,Ψ∗ : B̄→ R2 with G-mapping-conditions

1 Compute Φ0,Ψ0 via convex combination maps
2 while Φn,Ψn have not converged do
3 Update cΦ, cΨ according to Φn−1,Ψn−1 using Eq. (8)
4 if current iteration is odd-numbered then
5 Fix all seam-copies ᾱ, β̄
6 else
7 Fix all transformations T lα, T rα, T lβ , T rβ
8 Compute Φn,Ψn by optimizing the following problem
9 (as detailed in Appendix B)

min
Φ,Ψ

E′(Φ, cΦ) + E′(Ψ, cΨ)

s.t. Φ(ak) = Ψ(bk), ∀k
T sαᾱ+ ηsα = Φ(αs), ∀α ∈ GA, s ∈ {l, r}
T sβ β̄ + ηsβ = Φ(βs), ∀β ∈ GB, s ∈ {l, r}

7.3 Computing the map

The last step in the algorithm is to recover the surface bijection
f : A → B from the G-flattenings Φ = Φ∗, Ψ = Ψ∗. Towards
this end we adapt the lifting algorithm from [Aigerman et al. 2014]
to our settings, as detailed next. To map a point z on Ā, we choose
a landmark-copy ak ∈ VĀ and its corresponding landmark-copy
bk ∈ VB̄. We connect ak to z by constructing a simple polygonal
curve Γ (e.g., using Dijkstra’s algorithm). We then map Γ to the
plane via Φ, to get the planar polygonal curve γ = Φ(Γ). Next, γ is
lifted to B by tracing it, as follows. We traverse γ and at every step
restrict our attention to a 1-ring (denoted R) in the target domain
B̄. Restricted to this 1-ring, the map Ψ|R is injective and thus can
be inverted to map the next piece of the curve γ to B̄. The 1-ring
R is then updated according to the end point of the lifted piece of
the curve and the algorithm continues. The only change we need
to apply to this lifting algorithm is to handle the case in which γ
crosses a seam β of the flattening Ψ(B̄). In which case we apply
the relevant seam-transformation, gβ , to make the transition to the
‘other side’ of the seam. This process of lifting γ is described in
Algorithm 3 using the path γ and bk (the corresponding landmark
to ak) as the initial input. In practice, for efficiency, we compute
the image under f of all the vertices in A (or any other point on A
we wish to map) by constructing a tree rooted at some landmark ak
and spanning all vertices VA. The tree can be lifted to B similarly
to the algorithm described above for curves.

7.4 Avoiding pathological cases

There exist pathological examples of flattenings Φ,Ψ which sat-
isfy the G-mapping-conditions but do not define a homeomor-
phism f : A → B. One such example can be created using
a construction attributed to Milnor, shown in the inset (we illus-
trate the cut meshes as 2-dimensional discs). Φ,Ψ satisfy the
G-mapping-conditions, but there is no possible homeomorphism
f : A → B that can be defined in this case: first, the images

Figure 6: Three mappings computed for different cut-graphs, ex-
hibiting our algorithm’s invariance to cut placement. All three
maps are identical, although the cuts vary at each row: the mid-
dle row’s cuts are a perturbed variation of the cuts of the top row,
and the bottom row has a completely different cut-graph. At the
bottom we show the three G-flattenings that produced these maps.

Φ Ψ

Ā B̄

of Φ,Ψ coincide, and hence no cut-and-paste
operations are required. However, consider-
ing the image of the dashed curve under Φ,
it has no preimage under Ψ which yields a
single connected curve, hence a homeomor-
phism cannot exist. Our optimization algo-
rithm avoids these cases, as it solves a fea-
sible convex problem at each iteration, and
starts from a feasible configuration Φ0,Ψ0 for which a homeo-
morphism f0 exists. This entails that the flattenings are continu-
ously deformed while preserving their local-injectivity during the
optimization, ensuring such pathological examples (which require
a non-homotopic or non-locally-injective deformation of the flat-
tenings) cannot happen in practice.

8 Results

We now present the evaluation of the algorithm described in the
previous sections. We have tested its different properties, compared
it to relevant previous work and experimented with a wide range of
surfaces.

Visualization. We visualize the maps by first transferring an
RGB color function from the left surface to the right one using the
computed map. This provides a good visualization of the global
structure of the map. Additionally, we compute texture coordinates



Figure 7: Mappings produced by our algorithm on pairs of models from the SHREC07 [Giorgi et al. 2007] dataset.

for the visible part of the left mesh (to get a low distortion texture)
and then transfer a letter-grid texture from the left model to the
right, again using the computed map. This provides more detailed,
local information about the map. Note that the second approach
might leave un-textured areas on the target mesh in some cases,
although the map is always surjective, as exhibited by the coloring.

Effect of the cut-graph on the resulting mapping. We illus-
trate the invariance of our algorithm to cut placement in Figures 1
and 6. In Figure 6 we compute the map for one seam placement
(top row), a perturbation of it (middle row), and a completely dif-
ferent cut-logic (bottom). In all three cases the produced mappings
are identical.

Homotopy classes. As discussed in Section 6 and shown in Fig-
ures 1, 6, the algorithm is invariant to the particular choice of the
cuts as long they are chosen in the same homotopy class. The
question is what happens when the cut-graphs are changed non-
homotopically? In this case the algorithm may produce a home-
omorphism from a different homotopy-class of homeomorphisms
(note that we consider here the surfaces as punctured at the land-
marks P , Q). For example, the inset shows two non-homotopic
homeomorphisms produced by choosing non-homotopic cuts.
On the left, the source mesh is
shown, with the prescribed four
landmarks and cut-graph. In the
middle, the first map is shown,
computed for a choice of a cut-
graph in the ”natural” homotopy class, which yields the expected
homeomorphism. On the right, the second map is shown, where
this time the cut-graph was chosen from a different homotopy class.
Note that the cut-graph in the source surface is the same for both
maps. As discussed in Section 7.1, our algorithm uses a heuristic
which produced cuts in the correct homotopy class for all examples
we tested.

The class of cut-graphs for which the algorithm is invariant
to is actually bigger than homotopic cut-graphs; it is possi-
ble to perform other modifications to the cut-graphs and still
maintain the same homotopy class for the homeomorphism.
Figure 6 shows such an example: the cut-
graph in the bottom row has a different con-
nectivity compared to the rows above it (e.g.,
the nose), yet it produces the same map (right-
column). One possible atomic operation that
can be applied to both cut-graphs of the sur-
faces without changing the homeomorphism’s
homotopy class is depicted in the inset, for one
of the surfaces: create a new seam connecting the blue and green
landmarks (bottom-row shows the G-flattenings) and stitch back
the seam between the green and red landmarks. On the surface
(top-row) this is equivalent to replacing a seam in the cut-graph
with another. Doing this operation to both cut-graphs of the two
surfaces keeps the homeomorphism they define intact and in partic-
ular in the same homotopy class. Furthermore, this statement also
shows that there is nothing to be gained by adding more cuts to the
mesh than is needed to cut it to a topological disk.

Computation of maps in SHREC07 We computed maps be-
tween different models in the SHREC07 dataset [Giorgi et al.
2007], as depicted in Figure 7. Note the low-distortion seamless
mapping of the humans from a sparse set of landmarks at the ex-
tremities and on the head of the models. The algorithm also pro-
duces high quality maps for articulated non-isometric pairs such as
the 4-legged animals. Note the cuts pass on arbitrary and different
positions on the pig’s and bull’s bodies, however the produced map-
ping still maps that area correctly, from a sparse set of landmarks
which are rather far from the main part of the body. The algorithm
also nicely handles the twisted and elongated parts of the octopus,
although the cuts are rather arbitrary in this case. On the pair of
hands, each model is of a different length, and the landmarks give
no cue to the algorithm as to where the palm of the hand starts,



Figure 8: Comparison of the method presented in this paper (top-row) to the method of [Aigerman et al. 2014] (bottom-row). The left
example exhibits our method’s invariance to the cut placement, while the fixed correspondences of the cuts in [Aigerman et al. 2014] cause
unnatural mapping in the wing area. The middle example exhibits the seamlessness of our method as demonstrated using the flow-lines. On
the right is one of the results used in [Aigerman et al. 2014], for which our method also compares favorably due to its seamless property.

however the map still correctly maps the palms with high accuracy.
Also note how the map gracefully handles the fact the middle-finger
and ring-finger are not separated on the left model. Lastly, note the
smooth mapping of the sharp features of the mechanical parts. We
note that in case one wishes to exactly map feature lines to fea-
ture lines, it is possible to add seam constraints to force that in the
mapping, however this is out-of-scope for this paper.

Comparison to previous work We have compared our algo-
rithm to the method of Aigerman et al.[2014] which seems to be
the closest to this work. Results are shown in Figure 8. On the left
example, due to the sparse set of correspondences, the cuts’ posi-
tioning is rather arbitrary as the green and yellow cuts pass through
the bottom of the bird’s wings, but on top of the plane’s wings.
This does not affect our algorithm, which maps the wings correctly.
The map produced by [Aigerman
et al. 2014], on the other hand, re-
quires that the flattenings have the
same image (as shown in the in-
set, our G-flattenings on the left,
Aigerman’s on the right). Hence,
it is forced to map cuts to cuts, which results in mapping the top
of the plane’s wing to the bottom of the bird’s wing (the lack of
texture stems from the mapping of the untextured part of the top of
the plane’s wing). In the middle example, the two non-isometric
animals require a map which possesses relatively high distortion
levels. In this case the map of [Aigerman et al. 2014] presents a
visible “jump” across the seam as shown in the blowup using the
flow-lines. In contrast, our map does not exhibit any special behav-
ior in the vicinity of the cut. On the right example, we used data
from [Aigerman et al. 2014], with the same landmarks they used.
Our map ignores the placement of the seams and produces a more
natural correspondence, without introducing jumps across the cuts
as is visible in the result from [Aigerman et al. 2014].

Cycle-consistent maps between collections Our method can
be readily applied to a collection of more than two meshes, by sim-
ply extending the G-mapping-conditions, defined in Section 5, to
a collection of k meshes, as illustrated in Figures 9a and 9b for
k = 3. Given k meshes M1, . . . ,Mk and corresponding land-
marks prescribed on each mesh, we first cut the meshes consistently
as described in Subsection 7.1 and then map each mesh Mj with a
G-flattening Φj so that corresponding landmark-copies are mapped
to the same position for all meshes. We then optimize the energy
E(Φ1, . . . ,Φk) =

∑k
i=1 E(Φi). Considering any pair of meshes

Mi,Mj in the collection, and their flattenings Φi,Φj , this process
defines a bijection between the meshes, as all pair of flattenings
satisfy the G-mapping-conditions. Furthermore, the joint flatten-
ing of all meshes actually entails a stronger claim, that the maps
are cycle-consistent in the sense of [Nguyen et al. 2011; Huang
and Guibas 2013]: if fi→j is the map between Mi and Mj then
f`→i ◦ fj→` ◦ fi→j ≡ Ii→i, where Ii→i is the identity mapping on

f3

f1

f2

Φ1 Φ2

Φ3

(a)

(b)

Figure 9: Our method can be applied to any number of meshes (in
this example, three) by extending the G-mapping-conditions to a set
of k flattenings, as shown in (a). In the middle, the G-flattenings
Φ1,Φ2,Φ3 of the three meshes M1,M2,M3 are shown. This
process defines the seamless bijective mappings f1, f2, f3 between
any pair of the collection. The maps are guaranteed to be cycle-
consistent. (Differently from the rest of the paper, here for each
flattening we color all its seams with one color). In (b) we show
another example of a cycle-consistent mapping of three surfaces.



Mi. For this application, the ability to ignore the existence of the
seams is crucial, as other mapping methods would need to simul-
taneously plan the seam placement for k meshes, or optimize the
seams’ position on all meshes.

Approximation of conformal mappings Our method strives to
minimize the average conformal distortion of the resulting map. To
test its effectiveness, we have run experiments in which we pre-
scribe three landmarks on genus-zero surfaces, for which case the
theory guarantees the existence of a conformal map mapping the
landmarks correctly. As depicted in Figure 10(a), our algorithm
produces a discrete approximation of a conformal map between
the Stanford Bunny and the sphere. In Figure 10(b) we were able
to reproduce the unique Möbius transformation interpolating three
landmark between two spheres. The Möbius map is shown at the
bottom-left of (b), while results of our algorithm from two different
cuts are shown on the right column of (b).

M

S C1

C2
(a) (b)

Figure 10: Given 3 landmarks, our method approximates a confor-
mal map, such as the mapping of the sphere to the Stanford Bunny
shown in (a). In (b), the algorithm reproduces the unique confor-
mal Möbius transformation which maps the landmarks (the analytic
mapping shown at bottom-left). Textured source mesh is shown on
the top-left. To the right, we show our result for two different cut
choices. The choice of cuts is shown to the left of each map, source
mesh at the top and target at the bottom.

Higher genus. Topologically equivalent meshes of higher genus
can also be mapped using our method, as illustrated for a simple
torus in Figure 11 in which we map the torus to itself using a single
landmark (in yellow). The only change to the algorithm is in the
cutting step, to ensure the cut-graphs cut the meshes into disks.

Figure 11: Our method is applicable to meshes of any genus. In
this case a mapping of the torus was generated from a single land-
mark (in yellow).

Implementation and timings. We implemented the algorithm in
Matlab using MOSEK’s Second-Order-Cone solver [Andersen and
Andersen 1999] and the YALMIP environment [Löfberg 2004].
The experiments were run on a 3.50GHz Intel i7. For a pair of
meshes with a total of 11k vertices and 30k faces, the optimization
ran for 23 minutes, and setup took 26 seconds. For a collection of
three meshes, with a total of 14k vertices and 28k faces, the opti-
mization ran for half an hour and setup took half a minute. We note
that our code is not optimized and we believe significant speedups
are possible.

9 Limitations and failure cases

Our algorithm has two main limitations, discussed next.

Distortion near landmarks. Although the produced maps are
seamless, in some cases they still present stretching near the land-
marks. In Figure 12 we show 4 of the maps from Figure 7 with
a dense checkerboard pattern to better illustrate the behaviour near
landmarks. Unlike the seams, the landmarks are part of the original
problem. Producing a map without bias to the landmarks requires
taking a different approach and we mark this goal as an interesting
future research direction.

Figure 12: Maps from Figure 7 visualized with a dense checker-
board, highlighting the distortion next to the landmarks. Although
pinching is noticeable in some cases (the busts’ neck; the bottom of
the hand) it is mild in others (ants) or non-existent (humans; face
of busts).

Numerical issues. The optimization problem we solve includes
about five second-order cone constraints per face of the meshes.
This results in rather large-scale SOCP that causes slow running
times and limits the size of meshes for which our algorithm is ap-
plicable. As the size of the problem (i.e., meshes) grows we noticed
convergence issues with our solver of choice (MOSEK). We have
conducted an experiment in which we have computed a mapping
between two spheres with the same input landmarks and cut-graphs
for different mesh resolutions and observed that above 80K faces
the solver failed to properly converge. We believe these aforemen-
tioned numerical issues can be solved by a tailor-made solver for
this type of Geometry-Processing optimization problems, and we
consider this to be an important future research venue.

10 Conclusion

We have presented a method to produce high-quality seamless bi-
jective mappings between surface-meshes interpolating a given set
of correspondences. The invariance of the algorithm to cut place-
ment allows the user to place the desired landmarks without con-
cerning about the placement of the cuts, enabling further automa-
tion of the map-computation than was previously possible for simi-
lar methods. We have demonstrated the method’s ability to produce
state-of-the-art mappings between pairs of surfaces, as well as be-
ing able to produce seamless cycle-consistent mappings of triplets
of surfaces.

We believe our algorithm can be useful in many applications, such
as collection-mapping and shape matching, where the ability to pro-
duce high quality bijections fully-automatically is crucial. A possi-
ble interesting future venue of research is combining our method in
a collection-analysis framework.
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P. 1999. Multiresolution mesh morphing. In Proceedings of the
26th Annual Conference on Computer Graphics and Interactive
Techniques, ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, SIGGRAPH ’99, 343–350.
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Appendix A

We prove Proposition 2. For a given Φ, each summand of E′(Φ, c)
depends on a different cj and therefore the problem is separable
and we can minimize each summand independently. Let Σ ≥ σ
be the singular values of A ∈ R2×2. Let h(c) = Diso(cA)4 =[
(cΣ)2 + (cσ)−2]2 . If σ > 0 (we assume the simplicial map is

non-degenerate) the only critical point of h in the domain c > 0 is

c∗ = (Σσ)−1/2 .

Since h is differentiable and h goes to +∞ as c approaches zero
or infinity this critical point is the global minimum. Plugging the
minimizer back into h gives

h(c∗) = 4
Σ2

σ2
= 4Dconf (A)2 .

Using this for each of the summands by plugging c = cj , A = Aj
provides the desired result. Lastly, we note that for a 2 × 2 matrix
A, |det(A)| = Σσ, and hence c∗j = |det(Aj)|−1/2.

Appendix B Optimization of E ′

In this appendix we explain how to approach the optimization of
E′(Φ, cΦ) + E′(Ψ, cΨ) in Algorithm 2. It is enough to consider
one of the two terms, e.g., E′(Φ, cΦ). Let us first set some nota-
tion and definitions. We represent Φ as {u1, . . . , un}, where n is
the number of vertices in the cut mesh Ā, and ui ∈ R2×1 repre-
sents the optimization variables Φ(vi). Prescribing all ui uniquely
defines the simplicial map Φ. For each face tj ∈ TĀ we choose
an arbitrary orthonormal frame and denote the affine map of Φ re-
stricted to tj in this frame by Φ|tj (x) = Ajx + δ. We denote

by vj1 , vj2 , vj3 ∈ R2×1 the vertices of the face tj in the local
frame. Given the prescribed vertices’ positions,Aj can be obtained
by solving the linear equation

Aj [vj1 , vj2 , vj3 ]D = [uj1 , uj2 , uj3 ]D,

where D =
(
I − 1

3
11T

)
translates the three vertices so their cen-

troid is at the origin. Let us focus on one such matrix A (we omit
the subscript). To represent the two components of Diso, namely
Σ and σ−1, in a convex framework, we follow the relaxation sug-
gested in [Aigerman et al. 2014; Lipman 2012]: we decompose
A = B + C, where B = 1

2

(
A−AT + tr(A)I

)
is a similarity

matrix, and C = 1
2

(
A+AT − tr(A)I

)
is an anti-similarity ma-

trix. The singular values of A can be written as

Σ = 2−1/2 ( ‖B‖F + ‖C‖F
)
, σ = 2−1/2

∣∣ ‖B‖F − ‖C‖F ∣∣ .
Thus to bound the larger singular value from above by r, we use the
following convex constraint which can be expressed using second-
order cones (SOC):

‖B‖F + ‖C‖F ≤
√

2 r. (10a)

To bound the smaller singular value from below by u, we convexify
the non-convex constraint u ≤ 2−1/2

∣∣ ‖B‖F − ‖C‖F ∣∣ by replac-
ing ‖B‖ with a linear underestimate of it, to get the following SOC
which guarantees a bound on the smaller singular value,

‖C‖F ≤ tr(RTB)−
√

2u, (10b)

whereR ∈ SO(2) is a rotation matrix that determines which linear
underestimate of ‖B‖ will be chosen.
The convex constraint 1/u ≤ s is formulated by the SOC:√

(u− s)2 + 4 ≤ u+ s. (10c)

From these three equations we get for a scalar constant c > 0,

(cΣ)2 + (cσ)−2 ≤ (cr)2 + (c−1s)2.

The constraint (cr)2 + (c−1s)2 ≤ S2 is achieved via the SOC√
(c−1s)2 + (cr)2 ≤ S (10d)

And lastly the constraint S2 ≤ U is equivalent to the SOC√
S2 + (U − 1/4)2 ≤ U + 1/4. (10e)

Imposing the constraints (10a)-(10e) for every differential Aj of
every face tj , we get

(Diso (cjAj))
2 =

(
(cjΣj)

2 + (cjσj)
−2) ≤ Uj ,

where we denote Σj = Σ(Aj), and σj = σ(Aj). Hence, minimiz-
ing the convex quadratic objective∑

tj∈TĀ

U2
j (11)

minimizes the energy E′(Φ, c) as a function of Φ. Lastly, given
Φn−1 from a previous iteration, the optimal choice for the rotation
matrix Rj (Eq. (10b)) for each differential Aj is to choose Rj to
be the rotation part of the polar decomposition of Aj , that is Aj =
RjPj .

To summarize, in each iteration in Algorithm 2 we replace the func-
tional E′(Φ, cΦ) + E′(Ψ, cΨ) with∑

tj∈TĀ

(
UΦ
j

)2

+
∑
tj∈TB̄

(
UΨ
j

)2

,

and add the constraints in Eqs. (10a)-(10e) for all differentials of Φ,
Ψ. As each iteration ends, we update the rotations of Eq. (10b) for
all differentials using their polar decomposition as explained above.



Algorithm 3: Path Lifting
Input: Polygonal path γ = [x0, x1, ..., xn, x] in the plane
A point y0 ∈ B̄ known to be corresponding to x0

G-flattening Ψ : B̄→ R2

Output: A lift τ = [y0, y1, ..., y] ⊂ B̄ such that y = f(x)

1 if γ contains only one vertex, x0 then
2 return y0

3 Let e = (x0, x1] be the first edge in γ
4 LetR := Ψ(RB̄(y0)) the image of the one-ring of y0

5 if e is contained inR then
6 Compute y1 ∈ B̄ by solving Ψ|RB̄(y0)(y1) = x1

7 run Path Lifting on γ′ = [x1, ..., xn, x], and y1

8 else
9 find the edge e′ ofR which e crosses and the point of

intersection x′.
10 if e′ is part of a seam, βs of B̄, s ∈ r, l then
11 Compute y′ ∈ B̄ by solving Ψ|RB̄(y0)(y′) = x′

12 let βt be the twin seam of βs

13 let gβ be the seam-transformation taking βs to βt

14 set y1 to be the corresponding point on βt to y′

15 set γ′ = gβ ([x′, x1, ..., xn, x])
16 run path lifting on γ′, y1

17 else
18 Run Path Lifting on γ′ = [x0, x′, x1, ..., xn, x] and y0

Appendix C Lifting

We next detail the algorithm we use to compute the mapping f from
the flattenings, as discussed in Subsection 7.3. As mentioned there,
the algorithm in initiated with a polygonal curve γ = Φ(Γ). We
denote by γ = [x0, ..., xn] the polygonal curve where each xi, xi+1

is an edge, and by R(y) we denote the 1-ring of y in the mesh B̄,
namely the union of all faces containing it (even if y is not a vertex).


